JP2012145284A - Steam generator - Google Patents

Steam generator Download PDF

Info

Publication number
JP2012145284A
JP2012145284A JP2011004512A JP2011004512A JP2012145284A JP 2012145284 A JP2012145284 A JP 2012145284A JP 2011004512 A JP2011004512 A JP 2011004512A JP 2011004512 A JP2011004512 A JP 2011004512A JP 2012145284 A JP2012145284 A JP 2012145284A
Authority
JP
Japan
Prior art keywords
outer cylinder
tube
support
inner cylinder
indicates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011004512A
Other languages
Japanese (ja)
Inventor
Ryoichi Kawakami
亮一 川上
Kengo Shimamura
健吾 嶋村
Itaru Muroya
格 室屋
Tomoya Nakagawa
知也 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011004512A priority Critical patent/JP2012145284A/en
Publication of JP2012145284A publication Critical patent/JP2012145284A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steam generator which can make it hard to cause a recess or a flaw in the heat conductive pipe and prevent a drop in the reliability and the durability of a heat conductive pipe.SOLUTION: The steam generator 10 includes an outer cylinder 11, an inner cylinder 21, which is arranged inside the outer cylinder and is supported by a support 28, many heat conductive pipes 22, which are arranged inside the inner cylinder and are shaped like reverse U's, a pipe plate 17, which is fixed to the lower part in the inner cylinder to support the ends of many heat conductive pipes, a plurality of pipe supporting plates 24A-24G, which are supported by a stay rod 25 extended upward from the pipe plate to support the direct pipe parts of many heat conductive pipes, a water supply pipe 16, which is provided in the outer cylinder to send supply water, and a steam separator 26, which is provided at the upper part inside the inner cylinder to separate steam and heat water that are generated in heat exchange between primary cooling water, flowing in many heat conductive pipes, and the supply water. The support 28 is arranged between the outer cylinder and the inner cylinder and also is arranged in the middle part excluding both ends of the lower barrel 21a of the inner cylinder.

Description

本発明は、蒸気発生器に関し、例えば原子力発電設備にて熱交換器として用いられる蒸気発生器に関する。   The present invention relates to a steam generator, for example, a steam generator used as a heat exchanger in a nuclear power generation facility.

原子力発電設備として、例えば、加圧水型原子力発電プラントでは、原子炉において加熱された一次冷却水を蒸気発生器へ供給している。   As a nuclear power generation facility, for example, in a pressurized water nuclear power plant, primary cooling water heated in a nuclear reactor is supplied to a steam generator.

上述した蒸気発生器では、中空密閉形状の外筒内に、その内壁面と所定の間隔を有して内筒(管群外筒)が配置され、内筒内には、逆U字形状をなす多数本の伝熱管が配置されている。外筒の下部には、前記多数本の伝熱管の両端部を支持する管板が配置されている。内筒の高さ方向に沿う複数箇所には管支持板が配置されている。伝熱管の直管部分が管支持板の管穴に挿通されて管支持板により支持されている。管支持板は、複数箇所を多数のステーロッドにより支持され、その周縁部が内筒の内周面に対して固定されている。内筒と外筒の間には、内筒の下端で、かつ、内筒の周方向における所定間隔離間した位置に、複数の支持具(軸方向拘束具)が配置されている。複数の支持具により、内筒が外筒に支持されている。   In the steam generator described above, an inner cylinder (tube group outer cylinder) is arranged in the hollow sealed outer cylinder with a predetermined distance from the inner wall surface, and an inverted U-shape is formed in the inner cylinder. A number of heat transfer tubes are arranged. Tube plates that support both end portions of the multiple heat transfer tubes are disposed at the lower portion of the outer cylinder. Tube support plates are arranged at a plurality of locations along the height direction of the inner cylinder. The straight tube portion of the heat transfer tube is inserted through the tube hole of the tube support plate and supported by the tube support plate. The tube support plate is supported at a plurality of locations by a number of stay rods, and the peripheral edge thereof is fixed to the inner peripheral surface of the inner cylinder. Between the inner cylinder and the outer cylinder, a plurality of supports (axial restraints) are arranged at the lower end of the inner cylinder and at a position spaced apart by a predetermined distance in the circumferential direction of the inner cylinder. The inner cylinder is supported by the outer cylinder by a plurality of support tools.

よって、原子炉にて加熱された一次冷却水は、外筒の下部に形成された水室を通じて多数本の伝熱管に供給される一方、二次冷却水が外筒の上部に配置された給水管から外筒を通じて内筒に供給されると、一次冷却水により二次冷却水を加熱して二次蒸気を生成している。この二次蒸気を外筒の上端部に設けられた主蒸気管を通じて蒸気タービンに供給し蒸気タービンを回転することにより、発電機を駆動するようにしている。   Therefore, the primary cooling water heated in the nuclear reactor is supplied to a large number of heat transfer tubes through a water chamber formed in the lower part of the outer cylinder, while the secondary cooling water is supplied to the upper part of the outer cylinder. When supplied from the pipe to the inner cylinder through the outer cylinder, the secondary cooling water is heated by the primary cooling water to generate secondary steam. The secondary steam is supplied to the steam turbine through a main steam pipe provided at the upper end of the outer cylinder, and the steam turbine is rotated to drive the generator.

なお、下記特許文献1,2には、管群外筒(ラッパー部)の長手方向における所定間隔離間した位置で、且つ、周方向における所定間隔離間した位置に配置された複数のジャッキ組立体(半径方向支持手段)により胴部に位置決め支持されている蒸気発生器が記載されている。   In Patent Documents 1 and 2 below, a plurality of jack assemblies (positions spaced at predetermined intervals in the longitudinal direction of the tube group outer cylinder (wrapper portion) and at predetermined intervals in the circumferential direction ( A steam generator is described which is positioned and supported on the barrel by radial support means).

特開2007−147138号公報(例えば、明細書の段落[0027]、[図1],[図2],[図4]など参照)JP 2007-147138 A (see, for example, paragraphs [0027], [FIG. 1], [FIG. 2], [FIG. 4], etc. of the specification) 特公平7−18522号(例えば、[第1図],[第2図]など参照)Japanese Patent Publication No. 7-18522 (see, for example, [FIG. 1], [FIG. 2], etc.)

ところで、上述した構成の蒸気発生器の製造は、外筒の長手方向を横方向に配置した状態にて行われている。内筒、支持具、管板、管支持板、ステーロッド、伝熱管を外筒の内部に組み付けた後に、溶接処理後の溶接部の健全性確保のための溶接後熱処理(PWHT)を外筒の下部に形成された水室に対して行っている。   By the way, manufacture of the steam generator of the structure mentioned above is performed in the state which has arrange | positioned the longitudinal direction of an outer cylinder in the horizontal direction. After assembling the inner tube, support, tube plate, tube support plate, stay rod, and heat transfer tube inside the outer tube, post-weld heat treatment (PWHT) is performed to ensure the soundness of the welded portion after the welding process. It goes to the water chamber formed in the lower part of.

例えば、図5に示すように、溶接後熱処理を外筒101における管板102の近傍に対して行うと、この処理による熱110は、外筒101の下方側(図中右方向)および上方側(図中左方向)へ伝導している。上述した通り、蒸気発生器を横置きの状態にて溶接後熱処理を行っているため、この熱処理により外筒内の気体(空気)が暖められ、暖められた気体が外筒内の上方に滞留している。この気体の熱を受けて、外筒101内に配設される内筒103、および内筒103内に配置される複数本のステーロッド104が加熱される。外筒と内筒の間における上方側の気体は内筒内の気体と比べて高温となっている。すなわち、外筒内にて温度分布が生じている。そのため、内筒103における上方に配置される部分の熱伸び量ΔL11は、上方側に配置されるステーロッド104の熱伸び量ΔL12よりも大きくなっている。なお、管板102は肉厚が厚い板状部材であるため、熱110が管板102を介して多数本のステーロッド104へはほとんど伝導しない。 For example, as shown in FIG. 5, when the post-weld heat treatment is performed on the vicinity of the tube plate 102 in the outer cylinder 101, the heat 110 by this process is generated on the lower side (right direction in the figure) and the upper side of the outer cylinder 101. Conducted in the left direction. As described above, since the heat treatment is performed after welding with the steam generator placed horizontally, the gas (air) in the outer cylinder is warmed by this heat treatment, and the warmed gas stays in the upper part in the outer cylinder. is doing. In response to the heat of the gas, the inner cylinder 103 disposed in the outer cylinder 101 and the plurality of stay rods 104 disposed in the inner cylinder 103 are heated. The upper gas between the outer cylinder and the inner cylinder has a higher temperature than the gas in the inner cylinder. That is, a temperature distribution is generated in the outer cylinder. Therefore, the thermal elongation amount ΔL 11 of the portion disposed above the inner cylinder 103 is larger than the thermal elongation amount ΔL 12 of the stay rod 104 disposed on the upper side. Since the tube plate 102 is a thick plate-like member, the heat 110 hardly conducts to the multiple stay rods 104 through the tube plate 102.

ステーロッド104では、その下端部が管板102に固定されており、上方側に向けて熱伸びすることになる。内筒103では、その下端部が支持具105により外筒101に支持されており上方側に向けて熱伸びすることになる。これらの熱伸びにより、内筒103とステーロッド104とによって支持される管支持板106における、上方側に配置される部分にて、管板102から離間する方向へ湾曲する歪みが生じる。特に、内筒内にて一番上方に配置される管支持板106にあっては、内筒103の熱伸びによる歪みが大きくなっている。   In the stay rod 104, the lower end portion is fixed to the tube plate 102, and heat-extends upward. In the inner cylinder 103, the lower end portion thereof is supported by the outer cylinder 101 by the support tool 105, and heat expands upward. Due to these thermal elongations, a distortion that curves in a direction away from the tube plate 102 occurs at a portion of the tube support plate 106 supported by the inner cylinder 103 and the stay rod 104 arranged on the upper side. In particular, in the tube support plate 106 disposed at the uppermost position in the inner cylinder, the distortion due to the thermal expansion of the inner cylinder 103 is large.

管支持板106に歪みが生じると、管支持板106の管穴の内面がこの管穴に挿通されている伝熱管に対して傾斜して、管穴の開口端などが伝熱管に押し付けられる。すなわち、伝熱管に対して大きな負荷が加わる。このため、伝熱管にへこみや傷を生じさせてしまう可能性がある。   When distortion occurs in the tube support plate 106, the inner surface of the tube hole of the tube support plate 106 is inclined with respect to the heat transfer tube inserted through the tube hole, and the open end of the tube hole is pressed against the heat transfer tube. That is, a large load is applied to the heat transfer tube. For this reason, a dent and a damage | wound may be produced in a heat exchanger tube.

このように、伝熱管にへこみや傷が生じると、伝熱管の信頼性や耐久性を損ねるので、好ましくない。   As described above, when the heat transfer tube is dented or scratched, the reliability and durability of the heat transfer tube are impaired.

以上のことから、本発明は、前述した課題を解決するために為されたもので、伝熱管にへこみや傷が生じにくく、伝熱管の信頼性および耐久性の低下を防止することができる蒸気発生器を提供することを目的としている。   In view of the above, the present invention has been made to solve the above-described problems, and is a steam that is unlikely to cause dents and scratches on the heat transfer tube and can prevent deterioration of the reliability and durability of the heat transfer tube. It aims to provide a generator.

上述した課題を解決する第1の発明に係る蒸気発生器は、
中空密閉形状をなす外筒と、前記外筒内に配置され、支持具により支持された管群外筒と、前記管群外筒内に配設されて逆U字形状をなす多数の伝熱管からなる伝熱管群と、前記外筒内の下部に固定されて前記多数の伝熱管の端部を支持する管板と、前記管板から上方に延設されたステーロッドにより支持されて前記多数の伝熱管の直管部分を支持する複数の管支持板と、前記外筒に設けられ当該外筒内に給水を送る給水管と、前記外筒内の上部に設けられ、前記多数の伝熱管内を流れる熱媒と前記給水との熱交換で生成した蒸気と熱水を分離する気水分離器とを備えた蒸気発生器であって、
前記支持具が、前記外筒と前記管群外筒の間に配置されると共に、前記管群外筒の直管部分の両端を除く中間部分に配置される
ことを特徴とする。
The steam generator according to the first invention for solving the above-described problem is:
An outer cylinder having a hollow sealed shape, a tube group outer cylinder disposed in the outer cylinder and supported by a support, and a number of heat transfer tubes having an inverted U shape disposed in the tube group outer cylinder A plurality of heat transfer tube groups, a tube plate fixed to a lower portion of the outer cylinder and supporting end portions of the plurality of heat transfer tubes, and a plurality of support rods supported by stay rods extending upward from the tube plate. A plurality of pipe support plates that support the straight pipe portion of the heat transfer pipe, a water supply pipe that is provided in the outer cylinder and feeds water into the outer cylinder, and is provided at an upper portion in the outer cylinder, and the multiple heat transfer tubes A steam generator comprising a steam generated by heat exchange between the heat medium flowing in the pipe and the feed water and a steam separator separating hot water;
The support is disposed between the outer tube and the tube group outer tube, and is disposed in an intermediate portion excluding both ends of the straight tube portion of the tube group outer tube.

上述した課題を解決する第2の発明に係る蒸気発生器は、
第1の発明に係る蒸気発生器であって、
前記支持具が、以下の(1)式を満足する位置に配置される
ことを特徴とする。

Figure 2012145284
ただし、L1が管群外筒内にて一番上方に配置される管支持板と管板の距離を示し、L2が管群外筒内にて一番上方に配置される管支持板と支持具の距離を示し、T1が外筒下部へ溶接後熱処理をしたときにおける外筒と管群外筒の間の空間の温度を示し、T2がそのときの管群外筒内の温度を示し、T3がそのときの管板よりも上方部分の外筒の温度を示し、α1がステーロッドの線膨張係数を示し、α2が管群外筒の線膨張係数を示し、α3が外筒の線膨張係数を示す。 The steam generator according to the second invention for solving the above-described problem is
A steam generator according to the first invention,
The support is arranged at a position satisfying the following expression (1).
Figure 2012145284
However, L1 indicates the distance between the tube support plate disposed at the uppermost position in the outer tube of the tube group and the tube plate, and L2 indicates support between the tube support plate disposed at the uppermost position in the outer tube of the tube group. Indicates the distance of the tool, T1 indicates the temperature of the space between the outer cylinder and the tube group outer cylinder when heat treatment after welding to the lower part of the outer cylinder, T2 indicates the temperature in the tube group outer cylinder at that time, T3 indicates the temperature of the outer cylinder above the tube plate at that time, α1 indicates the linear expansion coefficient of the stay rod, α2 indicates the linear expansion coefficient of the tube group outer cylinder, and α3 indicates the linear expansion of the outer cylinder. Indicates the coefficient.

本発明に係る蒸気発生器によれば、支持具が、外筒と管群外筒の間に配置されると共に、管群外筒の直管部分の両端を除く中間部分に配置されることにより、蒸気発生器を横置きの状態とし、外筒の下部に設けられた水室に対して溶接後熱処理を行っても、従来の蒸気発生器の場合と比べて、管群外筒の上方側への熱伸び量が小さく、管群外筒とステーロッドとの熱伸び差が小さくなる。これにより、管支持板に生じる歪が小さくなり、伝熱管にへこみや傷が生じにくくなり、伝熱管の信頼性および耐久性の低下を防止することができる。   According to the steam generator according to the present invention, the support is disposed between the outer tube and the tube group outer tube, and is disposed in an intermediate portion excluding both ends of the straight tube portion of the tube group outer tube. Even if the steam generator is placed horizontally and the post-weld heat treatment is performed on the water chamber provided at the lower part of the outer cylinder, the upper side of the outer tube of the tube group compared to the conventional steam generator The amount of thermal elongation to the tube is small, and the difference in thermal elongation between the tube group outer cylinder and the stay rod is small. Thereby, the distortion which arises in a pipe support plate becomes small, it becomes difficult to produce a dent and a damage | wound in a heat exchanger tube, and the fall of the reliability and durability of a heat exchanger tube can be prevented.

本発明の第1の実施例に係る蒸気発生器の概略構成図である。1 is a schematic configuration diagram of a steam generator according to a first embodiment of the present invention. 蒸気発生器を製造するときの説明図である。It is explanatory drawing when manufacturing a steam generator. 蒸気発生器の水室に対して溶接後熱処理を行ったときの説明図である。It is explanatory drawing when heat processing after welding is performed with respect to the water chamber of a steam generator. 蒸気発生器の水室に対して溶接後熱処理を行ったときに管支持板に歪みが生じない場合の説明図である。It is explanatory drawing in case distortion does not arise in a pipe support plate, when post-weld heat processing is performed with respect to the water chamber of a steam generator. 従来の蒸気発生器の水室に対して溶接後熱処理を行ったときの説明図である。It is explanatory drawing when heat processing after welding is performed with respect to the water chamber of the conventional steam generator.

本発明に係る蒸気発生器について、実施例にて具体的に説明する。   The steam generator according to the present invention will be specifically described in Examples.

本発明の第1の実施例に係る蒸気発生器について、図1〜図4を参照して説明する。   A steam generator according to a first embodiment of the present invention will be described with reference to FIGS.

本実施例に係る蒸気発生器は、加圧水型原子力発電プラントで用いられる蒸気発生器である。蒸気発生器10は、図1に示すように、略円筒形状の下部胴12と、下部胴12の上端に接続し、上方に向かうに従い拡径する円錐胴13と、円錐胴13の上端に接続し、略円筒形状の上部胴14とで構成される外筒(容器)11を有している。   The steam generator according to the present embodiment is a steam generator used in a pressurized water nuclear power plant. As shown in FIG. 1, the steam generator 10 is connected to a substantially cylindrical lower barrel 12, a cone barrel 13 that is connected to the upper end of the lower barrel 12 and expands in diameter toward the upper side, and is connected to the upper end of the cone barrel 13. And an outer cylinder (container) 11 composed of a substantially cylindrical upper body 14.

下部胴12の下部には、管板17が一体的に接続され、外筒11の下部を塞ぐ状態で配置されている。管板17は肉厚が厚い板状部材であり、多数の孔が形成されている。   A tube plate 17 is integrally connected to the lower portion of the lower body 12 and is disposed so as to close the lower portion of the outer cylinder 11. The tube plate 17 is a plate-like member having a large thickness, and has a large number of holes.

管板17の下方は仕切板18により、高温側水室19と低温側水室20とに区画されている。   The lower side of the tube plate 17 is partitioned by a partition plate 18 into a high temperature side water chamber 19 and a low temperature side water chamber 20.

外筒11の内部には、その内壁面11aと所定の間隔を有して内筒(管群外筒)21が配置されている。内筒21は略円筒形状の部材であって、直管状をなす下部胴21aと、下部胴21aの上端に接続し、拡径する部分を有す上部胴21bとで構成される。内筒21の下部胴21aの下端部は、管板17の近傍まで延設されている。   Inside the outer cylinder 11, an inner cylinder (tube group outer cylinder) 21 is arranged with a predetermined distance from the inner wall surface 11 a. The inner cylinder 21 is a substantially cylindrical member, and includes a lower cylinder 21a having a straight tube shape, and an upper cylinder 21b that is connected to the upper end of the lower cylinder 21a and has a portion that expands in diameter. The lower end portion of the lower body 21 a of the inner cylinder 21 extends to the vicinity of the tube plate 17.

内筒21の内部には逆U字型の伝熱管22が多数本配置されている。多数本の伝熱管22により伝熱管群23を構成している。全ての伝熱管22の直管部分は内筒21の下部胴21aで囲まれる。各伝熱管22の逆U字型に湾曲した部分は上部側に配置されている。各伝熱管22の下部側の両端は、管板17に形成された多数の孔に挿入され拡管により固定されて、それぞれ、高温側水室19と低温側水室20に接続されている。伝熱管22の直管部分は、上下方向(内筒21の高さ方向)にて所定の間隔を有して複数箇所(図示例では7箇所)に配置された略円板形状をなす管支持板24A〜24Gにより支持されている。具体的には、管支持板24A〜24Gには多数本の伝熱管22が挿通するための管穴が形成されており、伝熱管22の直管部分が管支持板24A〜24Gの管穴に挿通されて管支持板24A〜24Gにより支持されている。   A large number of inverted U-shaped heat transfer tubes 22 are arranged inside the inner cylinder 21. A large number of heat transfer tubes 22 constitute a heat transfer tube group 23. The straight pipe portions of all the heat transfer tubes 22 are surrounded by the lower body 21 a of the inner cylinder 21. A portion of each heat transfer tube 22 curved in an inverted U shape is disposed on the upper side. Both ends on the lower side of each heat transfer tube 22 are inserted into a large number of holes formed in the tube plate 17 and fixed by expansion, and are connected to the high temperature side water chamber 19 and the low temperature side water chamber 20, respectively. The straight tube portion of the heat transfer tube 22 is a tube support having a substantially disk shape arranged at a plurality of locations (seven locations in the illustrated example) with a predetermined interval in the vertical direction (the height direction of the inner cylinder 21). It is supported by the plates 24A to 24G. Specifically, tube holes for inserting a large number of heat transfer tubes 22 are formed in the tube support plates 24A to 24G, and the straight tube portion of the heat transfer tubes 22 is formed in the tube holes of the tube support plates 24A to 24G. It is inserted and supported by the tube support plates 24A-24G.

管支持板24A〜24Gは、管板17から上方に延設された複数本のステーロッド25(図1では1本のみ図示)により複数箇所を支持されている。管支持板24A〜24Gの周縁部が、内筒21の内周面に対して固定されている。よって、管支持板24A〜24Gにより、伝熱管22の振動が防止され、多数本の伝熱管22の間隔が保持される。さらに、地震などにより横荷重が伝熱管22に作用したときに、この横荷重を管支持板24A〜24Gにより支えることができる。   The tube support plates 24A to 24G are supported at a plurality of locations by a plurality of stay rods 25 (only one is shown in FIG. 1) extending upward from the tube plate 17. The peripheral portions of the tube support plates 24 </ b> A to 24 </ b> G are fixed to the inner peripheral surface of the inner cylinder 21. Therefore, the tube support plates 24 </ b> A to 24 </ b> G prevent the heat transfer tube 22 from vibrating, and the intervals between the multiple heat transfer tubes 22 are maintained. Furthermore, when a lateral load acts on the heat transfer tube 22 due to an earthquake or the like, the lateral load can be supported by the tube support plates 24A to 24G.

上部胴14の内部における内筒21の上部には、給水を蒸気と熱水に分離する気水分離器26が設けられる。上部胴14の内部における上部には、分離された蒸気の湿分を除去して乾燥蒸気に近い状態とする蒸気乾燥器27が設けられる。   An air / water separator 26 that separates the feed water into steam and hot water is provided at the upper portion of the inner cylinder 21 inside the upper body 14. A steam dryer 27 that removes moisture from the separated steam and brings it into a state close to dry steam is provided in the upper part of the upper body 14.

上部胴14には、伝熱管群23と気水分離器26との間にて、下部胴内に二次冷却水(給水)を送る給水管16が挿入される。上部胴14の天井部には、蒸気を排気する主蒸気管(図示せず)が挿入される。   A water supply pipe 16 for sending secondary cooling water (water supply) into the lower body is inserted into the upper body 14 between the heat transfer tube group 23 and the steam separator 26. A main steam pipe (not shown) for exhausting steam is inserted into the ceiling portion of the upper body 14.

上述した蒸気発生器10では、原子炉(図示せず)にて加熱された一次冷却水(熱媒)が、高温側水室19に供給されてから、伝熱管22内に流通し、低温側水室20を通って、原子炉に戻るように構成されている。   In the steam generator 10 described above, the primary cooling water (heat medium) heated in the nuclear reactor (not shown) is supplied to the high temperature side water chamber 19 and then circulates in the heat transfer tube 22, so that the low temperature side The water chamber 20 is configured to return to the nuclear reactor.

一方、二次冷却水が、給水管16を介して、外筒11と内筒21との間の空間(ダウンカマー)内に供給されてダウンカマー内を下降し、内筒21の下端から内筒内に入り内筒内を上昇する。二次冷却水が、内筒内を上昇しつつ流通する際に、伝熱管22を介して一次冷却水から熱を受けて加熱される。これにより、蒸気が発生し、この蒸気は、気水分離器26、蒸気乾燥器27、主蒸気管を通って蒸気タービン(図示せず)に送られる。   On the other hand, the secondary cooling water is supplied into the space (downcomer) between the outer cylinder 11 and the inner cylinder 21 via the water supply pipe 16 and descends in the downcomer. Enters the cylinder and ascends the inner cylinder. When the secondary cooling water flows while rising in the inner cylinder, it is heated by receiving heat from the primary cooling water via the heat transfer pipe 22. Thereby, steam is generated, and the steam is sent to the steam turbine (not shown) through the steam separator 26, the steam dryer 27, and the main steam pipe.

上述した蒸気発生器10にあっては、内筒21の下部胴21a(直管部分)の上端から距離d1(<内筒21の下部胴21aの長手方向の長さ)の位置にて、かつ、内筒21の下部胴21aの周方向にて所定間隔離間した位置に支持具(軸方向拘束具)28が配置される。支持具28により、内筒21が外筒11に支持される。   In the steam generator 10 described above, at a position of distance d1 (<length in the longitudinal direction of the lower barrel 21a of the inner cylinder 21) from the upper end of the lower barrel 21a (straight pipe portion) of the inner cylinder 21, and A support tool (axial restraint tool) 28 is disposed at a position spaced apart by a predetermined distance in the circumferential direction of the lower barrel 21 a of the inner cylinder 21. The inner cylinder 21 is supported by the outer cylinder 11 by the support tool 28.

すなわち、上述した支持具28は、内筒21の下部胴21a(直管部分)における端部以外の箇所、つまり、内筒21の下部胴21aの上端部および下端部を除く中間部分に配置される。これにより、上述した従来の蒸気発生器100、具体的には、支持具105を内筒103の下端部に設けた場合と比べて、溶接後熱処理による内筒21の下部胴21aの上端における上方側への熱伸び量を小さくすることができる。これは、内筒21の下部胴21aの両端部が自由端となり、内筒21の下部胴21aにて、上端部および下端部にて熱伸びできるからである。よって、端部近傍に固定される管支持板、すなわち、内筒内にて一番上方に配置される(最上段の)管支持板24A、および内筒内にて一番下方に配置される(最下段の)管支持板24Gでの歪みが小さくなる。その結果、伝熱管22に加わる負荷が小さくなり、伝熱管22の信頼性や耐久性を損ねる可能性が低減される。   That is, the above-described support 28 is disposed at a location other than the end portion of the lower barrel 21a (straight tube portion) of the inner cylinder 21, that is, an intermediate portion excluding the upper end portion and the lower end portion of the lower barrel 21a of the inner cylinder 21. The Thereby, compared with the case where the conventional steam generator 100 described above, specifically, the support 105 is provided at the lower end portion of the inner cylinder 103, the upper end of the lower barrel 21a of the inner cylinder 21 by heat treatment after welding is higher. The amount of thermal elongation to the side can be reduced. This is because both ends of the lower barrel 21a of the inner cylinder 21 are free ends, and the upper barrel 21a of the inner cylinder 21 can be thermally extended at the upper end and the lower end. Therefore, the pipe support plate fixed in the vicinity of the end portion, that is, the uppermost pipe support plate 24A arranged in the inner cylinder and the lowermost arrangement in the inner cylinder. The distortion at the tube support plate 24G (at the bottom) is reduced. As a result, the load applied to the heat transfer tube 22 is reduced, and the possibility of impairing the reliability and durability of the heat transfer tube 22 is reduced.

上述した蒸気発生器10の製造は、従来の蒸気発生器100と同様、外筒11の長手方向を横方向に配置した状態にて行われる。具体的には、図2に示すように、外筒11の長手方向を横方向に配置し、この状態にて、外筒11の内部に、拡径部分より下方部分の内筒21、支持具28、管板17、管支持板24、ステーロッド25、伝熱管22、および仕切板などを組み付けた後に、溶接後熱処理(PWHT)を水室19,20に対して行っている。なお、外筒11は、下部胴12と、下部胴12の上端に接続された円錐胴13で構成されている。   The manufacture of the steam generator 10 described above is performed in a state where the longitudinal direction of the outer cylinder 11 is arranged in the horizontal direction, as in the conventional steam generator 100. Specifically, as shown in FIG. 2, the longitudinal direction of the outer cylinder 11 is arranged in the horizontal direction, and in this state, the inner cylinder 21 in the lower part from the enlarged diameter portion, the support tool, and the inside of the outer cylinder 11. 28, the tube plate 17, the tube support plate 24, the stay rod 25, the heat transfer tube 22, the partition plate, and the like are assembled, and then a post-weld heat treatment (PWHT) is performed on the water chambers 19 and 20. The outer cylinder 11 includes a lower body 12 and a conical cylinder 13 connected to the upper end of the lower body 12.

ここで、溶接後熱処理を管板17近傍の外筒11における水室19,20を構成する部分に対して行ったときの、内筒21およびステーロッド25の熱伸び量について、図3を参照して具体的に説明する。   Here, refer to FIG. 3 for the amount of thermal expansion of the inner cylinder 21 and the stay rod 25 when the post-weld heat treatment is performed on the portion constituting the water chambers 19 and 20 in the outer cylinder 11 near the tube plate 17. This will be described in detail.

図3に示すように、溶接後熱処理を管板近傍の外筒11に対して行うと、この処理による熱30は、外筒11の下方側および上方側へ伝導する。上述したように、外筒11の長手方向を横方向に配置した状態にて溶接後熱処理を行っているため、この熱処理により外筒内の気体が暖められ、暖められた気体が外筒内の上方に滞留する。この気体の熱を受けて、内筒21およびステーロッド25が加熱される。外筒11と内筒21の間における上方側の気体は内筒内の気体と比べて高温となっている。すなわち、外筒内にて温度分布が生じている。そのため、内筒21における上方に配置される部分の熱伸び量ΔL1は、上方側に配置されるステーロッド25の熱伸び量ΔL2よりも大きくなっている。なお、管板17自体が厚い部材であるため、熱30が管板17を介して多数のステーロッド25へはほとんど伝導しない。 As shown in FIG. 3, when the post-weld heat treatment is performed on the outer cylinder 11 in the vicinity of the tube sheet, the heat 30 by this process is conducted to the lower side and the upper side of the outer cylinder 11. As described above, since the heat treatment after welding is performed in a state where the longitudinal direction of the outer cylinder 11 is arranged in the lateral direction, the gas in the outer cylinder is warmed by this heat treatment, and the warmed gas is heated in the outer cylinder. Stays up. In response to the heat of the gas, the inner cylinder 21 and the stay rod 25 are heated. The upper gas between the outer cylinder 11 and the inner cylinder 21 is at a higher temperature than the gas in the inner cylinder. That is, a temperature distribution is generated in the outer cylinder. Therefore, the thermal elongation amount ΔL 1 of the portion disposed above the inner cylinder 21 is larger than the thermal elongation amount ΔL 2 of the stay rod 25 disposed on the upper side. Since the tube plate 17 itself is a thick member, the heat 30 hardly conducts to the many stay rods 25 through the tube plate 17.

ステーロッド25では、その下端部が管板17に固定されており、上方側(図3にて左側)に向けて熱伸びすることになる。内筒21では、下部胴21aの上端から距離d1にて支持具28により外筒11に支持されており、上方側(図3にて左側)に向けて熱伸びすると共に、下方側(図3にて右側)に向けても熱伸びすることになる。これにより、内筒21における上方側に向けた熱伸び量ΔL1を、内筒の下端が支持具により外筒に支持される従来の蒸気発生器の場合における内筒の上方側に向けた熱伸び量ΔL11と比べて小さくすることができる。このように内筒21の上方側に向けた熱伸び量ΔL1が小さくなるため、ステーロッド25の熱伸び量ΔL2との差を従来の蒸気発生器の場合と比べて小さくすることができる。これにより、内筒21とステーロッド25によって支持される管支持板24における、上方側に配置される部分にて、管板17から離間する方向へ湾曲する歪みが従来の場合と比べて小さくなる。特に、内筒内における一番上方に配置される管支持板24Aにて、内筒の熱伸びによる歪みが小さくなる。 The lower end portion of the stay rod 25 is fixed to the tube plate 17 and thermally expands upward (left side in FIG. 3). The inner cylinder 21 is supported by the outer cylinder 11 by the support 28 at a distance d1 from the upper end of the lower barrel 21a, and is thermally expanded toward the upper side (left side in FIG. 3) and at the lower side (FIG. 3). Even if it is directed to the right), it will heat up. As a result, the heat expansion amount ΔL 1 directed upward in the inner cylinder 21 is expressed as heat directed toward the upper side of the inner cylinder in the case of the conventional steam generator in which the lower end of the inner cylinder is supported by the outer cylinder by the support. It can be made smaller than the elongation amount ΔL 11 . Thus, since the amount of thermal expansion ΔL 1 directed upward of the inner cylinder 21 becomes small, the difference from the amount of thermal elongation ΔL 2 of the stay rod 25 can be made smaller than in the case of the conventional steam generator. . Thereby, in the tube support plate 24 supported by the inner cylinder 21 and the stay rod 25, the distortion that curves in the direction away from the tube plate 17 is reduced compared to the conventional case. . In particular, in the tube support plate 24A disposed at the uppermost position in the inner cylinder, distortion due to thermal expansion of the inner cylinder is reduced.

このように管支持板24Aに生じる歪みが小さくなるため、管支持板24Aの管穴の内面が伝熱管22に対して傾斜する傾斜量は小さくなる。これにより、管穴の開口端などが伝熱管22に押し付けられて伝熱管22に対して加わる負荷が小さくなる。その結果、伝熱管22にへこみや傷が生じにくくなり、従来の蒸気発生器の場合と比べて、伝熱管22の信頼性や耐久性の低下を防止することができる。   Since the distortion generated in the tube support plate 24A is thus reduced, the amount of inclination with which the inner surface of the tube hole of the tube support plate 24A is inclined with respect to the heat transfer tube 22 is reduced. Thereby, the open end of the tube hole is pressed against the heat transfer tube 22 and the load applied to the heat transfer tube 22 is reduced. As a result, dents and scratches are less likely to occur in the heat transfer tube 22, and a decrease in reliability and durability of the heat transfer tube 22 can be prevented as compared with the case of a conventional steam generator.

また、上述した支持具28の内筒21の長手方向における固定箇所は、外筒11、内筒21、管支持板24A〜24G、ステーロッド25などの材質や大きさなどの設計条件に応じて適宜に決定され得る値である。各部材の温度が均一であると仮定し、近似式を用いて上述した支持具28の固定箇所を求めることができる。具体的には、図4に示すように、外筒下部の箇所に対して溶接後熱処理を行ったとき、外筒11と内筒21の間の空間の温度をT1℃とし、内筒内の空間の温度をT2℃とし、管板上方部分の外筒11の温度をT3℃とする。なお、初期温度をT0℃とする。内筒内にて一番上方に配置される(最上段の)管支持板24Aと管板17の距離をL1とし、内筒内にて一番上方に配置される(最上段の)管支持板24Aと支持具28の距離をL2とする。ステーロッド25の線膨張係数をα1とし、内筒21の線膨張係数をα2とし、外筒11の線膨張係数をα3とする。   Moreover, the fixing location in the longitudinal direction of the inner cylinder 21 of the support tool 28 described above depends on the design conditions such as the material and size of the outer cylinder 11, the inner cylinder 21, the tube support plates 24A to 24G, the stay rod 25, and the like. This value can be determined as appropriate. Assuming that the temperature of each member is uniform, it is possible to obtain the fixed portion of the support 28 described above using an approximate expression. Specifically, as shown in FIG. 4, when post-weld heat treatment is performed on the lower part of the outer cylinder, the temperature of the space between the outer cylinder 11 and the inner cylinder 21 is set to T1 ° C. The temperature of the space is T2 ° C., and the temperature of the outer cylinder 11 in the upper part of the tube sheet is T3 ° C. The initial temperature is T0 ° C. The distance between the uppermost (uppermost) tube support plate 24A and the tubeplate 17 in the inner cylinder is L1, and the uppermost (uppermost) pipe support is disposed in the inner cylinder. The distance between the plate 24A and the support 28 is L2. The linear expansion coefficient of the stay rod 25 is α1, the linear expansion coefficient of the inner cylinder 21 is α2, and the linear expansion coefficient of the outer cylinder 11 is α3.

このとき、内筒21と最上段の管支持板24Aの接続箇所(最上段の管支持板24Aの内筒21への固定箇所)P1における熱伸びによる変位U−aは、以下の(2)式にて表される。   At this time, the displacement U-a due to thermal expansion at the connecting portion (the fixing portion of the uppermost tube support plate 24A to the inner tube 21) P1 of the inner tube 21 and the uppermost tube support plate 24A is the following (2). It is expressed by a formula.

Figure 2012145284
Figure 2012145284

最上段の管支持板24Aとステーロッド25の接続箇所P2における熱伸びによる変位U−bは、以下の(3)式にて表される。   The displacement Ub due to thermal elongation at the connection point P2 between the uppermost tube support plate 24A and the stay rod 25 is expressed by the following equation (3).

Figure 2012145284
Figure 2012145284

ここで、位置P1と位置P2の変位が等しくなる場合のL2(最上段の管支持板24Aが傾かない場合のL2)は、上述した式(2)と式(3)とが等しくなり、以下の(4)式にて表される。   Here, L2 when the displacements of the position P1 and the position P2 are equal (L2 when the uppermost tube support plate 24A is not tilted) is equal to the above-described expression (2) and expression (3). (4).

Figure 2012145284
Figure 2012145284

この式(4)をL2で整理すると、以下の(5)式となる。   When this formula (4) is arranged by L2, the following formula (5) is obtained.

Figure 2012145284
Figure 2012145284

よって、上述した(5)式を満足する位置に支持具28を配置することにより、内筒21の上方側への熱伸び量とステーロッド25の上方側への熱伸び量とが同じになる。そのため、溶射後熱処理を外筒下部に対して行っても最上段の管支持板24Aに歪が生じないことから、伝熱管の信頼性や耐久性の低下をより確実に防止することができる。   Therefore, by disposing the support tool 28 at a position that satisfies the above-described expression (5), the amount of thermal expansion upward of the inner cylinder 21 and the amount of thermal expansion upward of the stay rod 25 become the same. . Therefore, even if the thermal treatment after thermal spraying is performed on the lower part of the outer cylinder, the uppermost tube support plate 24A is not distorted, so that the reliability and durability of the heat transfer tube can be prevented more reliably.

本発明に係る蒸気発生器によれば、管群外筒とステーロッドの熱伸び差が小さくなり、管支持板による伝熱管のディギングを防止することができるため、蒸気発生器を備える加圧水型原子炉にて有益に利用することができる。   According to the steam generator of the present invention, the difference in thermal expansion between the tube group outer cylinder and the stay rod is reduced, and digging of the heat transfer tube by the tube support plate can be prevented. It can be used beneficially in the furnace.

10 蒸気発生器
11 外筒
12 下部胴
13 円錐胴
14 上部胴
16 給水管
18 仕切板
19 高温側水室
20 低温側水室
21 内筒
22 伝熱管
23 伝熱管群
24A〜24G 管支持板
25 ステーロッド
26 気水分離器
27 蒸気乾燥器
28 支持具
30 熱
DESCRIPTION OF SYMBOLS 10 Steam generator 11 Outer cylinder 12 Lower cylinder 13 Conical cylinder 14 Upper trunk 16 Water supply pipe 18 Partition plate 19 High temperature side water chamber 20 Low temperature side water chamber 21 Inner cylinder 22 Heat transfer tube 23 Heat transfer tube group 24A-24G Tube support plate 25 Stay Rod 26 Steam / water separator 27 Steam dryer 28 Support tool 30 Heat

Claims (2)

中空密閉形状をなす外筒と、前記外筒内に配置され、支持具により支持された管群外筒と、前記管群外筒内に配設されて逆U字形状をなす多数の伝熱管からなる伝熱管群と、前記外筒内の下部に固定されて前記多数の伝熱管の端部を支持する管板と、前記管板から上方に延設されたステーロッドにより支持されて前記多数の伝熱管の直管部分を支持する複数の管支持板と、前記外筒に設けられ当該外筒内に給水を送る給水管と、前記外筒内の上部に設けられ、前記多数の伝熱管内を流れる熱媒と前記給水との熱交換で生成した蒸気と熱水を分離する気水分離器とを備えた蒸気発生器であって、
前記支持具は、前記外筒と前記管群外筒の間に配置されると共に、前記管群外筒の直管部分の両端を除く中間部分に配置される
ことを特徴とする蒸気発生器。
An outer cylinder having a hollow sealed shape, a tube group outer cylinder disposed in the outer cylinder and supported by a support, and a number of heat transfer tubes having an inverted U shape disposed in the tube group outer cylinder A plurality of heat transfer tube groups, a tube plate fixed to a lower portion of the outer cylinder and supporting end portions of the plurality of heat transfer tubes, and a plurality of support rods supported by stay rods extending upward from the tube plate. A plurality of pipe support plates that support the straight pipe portion of the heat transfer pipe, a water supply pipe that is provided in the outer cylinder and feeds water into the outer cylinder, and is provided at an upper portion in the outer cylinder, and the multiple heat transfer tubes A steam generator comprising a steam generated by heat exchange between the heat medium flowing in the pipe and the feed water and a steam separator separating hot water;
The said generator is arrange | positioned between the said outer cylinder and the said tube group outer cylinder, and is arrange | positioned in the intermediate part except the both ends of the straight pipe part of the said tube group outer cylinder, The steam generator characterized by the above-mentioned.
請求項1に記載された蒸気発生器であって、
前記支持具は、以下の(1)式を満足する位置に配置される
ことを特徴とする蒸気発生器。
Figure 2012145284
ただし、L1が管群外筒内にて一番上方に配置される管支持板と管板の距離を示し、L2が管群外筒内にて一番上方に配置される管支持板と支持具の距離を示し、T1が外筒下部へ溶接後熱処理をしたときにおける外筒と管群外筒の間の空間の温度を示し、T2がそのときの管群外筒内の温度を示し、T3がそのときの管板よりも上方部分の外筒の温度を示し、α1がステーロッドの線膨張係数を示し、α2が管群外筒の線膨張係数を示し、α3が外筒の線膨張係数を示す。
A steam generator according to claim 1,
The said steam generator is arrange | positioned in the position which satisfies the following (1) Formula, The steam generator characterized by the above-mentioned.
Figure 2012145284
However, L1 indicates the distance between the tube support plate disposed at the uppermost position in the outer tube of the tube group and the tube plate, and L2 indicates support between the tube support plate disposed at the uppermost position in the outer tube of the tube group. Indicates the distance of the tool, T1 indicates the temperature of the space between the outer cylinder and the tube group outer cylinder when heat treatment after welding to the lower part of the outer cylinder, T2 indicates the temperature in the tube group outer cylinder at that time, T3 indicates the temperature of the outer cylinder above the tube plate at that time, α1 indicates the linear expansion coefficient of the stay rod, α2 indicates the linear expansion coefficient of the tube group outer cylinder, and α3 indicates the linear expansion of the outer cylinder. Indicates the coefficient.
JP2011004512A 2011-01-13 2011-01-13 Steam generator Withdrawn JP2012145284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011004512A JP2012145284A (en) 2011-01-13 2011-01-13 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004512A JP2012145284A (en) 2011-01-13 2011-01-13 Steam generator

Publications (1)

Publication Number Publication Date
JP2012145284A true JP2012145284A (en) 2012-08-02

Family

ID=46789015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004512A Withdrawn JP2012145284A (en) 2011-01-13 2011-01-13 Steam generator

Country Status (1)

Country Link
JP (1) JP2012145284A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798115A (en) * 2012-08-17 2012-11-28 中广核工程有限公司 Support structure for steam generator in nuclear station and steam generator
WO2014030717A1 (en) * 2012-08-24 2014-02-27 三菱重工業株式会社 Vibration suppression member, vibration suppression member arrangement method and steam generator
JP2014157001A (en) * 2013-02-18 2014-08-28 Mitsubishi Heavy Ind Ltd Heat exchanger and gas turbine plant provided with the same
CN104357644A (en) * 2014-11-05 2015-02-18 上海电气核电设备有限公司 Circular seam heat treatment system of nuclear power vapor generator and application of heat treatment system
CN105066083A (en) * 2015-09-11 2015-11-18 中山大学 U-shaped-row-tube type fused salt steam generating device and method
CN105408686A (en) * 2013-08-29 2016-03-16 卡萨尔公司 Shell-and-tube apparatus for heat recovery from hot process stream
CN107143833A (en) * 2017-05-05 2017-09-08 中广核研究院有限公司 Multiple-unit tubular type once through steam generator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798115A (en) * 2012-08-17 2012-11-28 中广核工程有限公司 Support structure for steam generator in nuclear station and steam generator
CN102798115B (en) * 2012-08-17 2016-01-27 中广核工程有限公司 A kind of nuclear power station steam generator supporting structure and steam generator
WO2014030717A1 (en) * 2012-08-24 2014-02-27 三菱重工業株式会社 Vibration suppression member, vibration suppression member arrangement method and steam generator
JP2014157001A (en) * 2013-02-18 2014-08-28 Mitsubishi Heavy Ind Ltd Heat exchanger and gas turbine plant provided with the same
KR101785818B1 (en) * 2013-02-18 2017-10-16 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Heat exchanger and gas turbine plant provided therewith
US10365044B2 (en) 2013-02-18 2019-07-30 Mitsubishi Hitachi Power Systems, Ltd. Heat exchanger and gas turbine plant provided therewith
CN105408686A (en) * 2013-08-29 2016-03-16 卡萨尔公司 Shell-and-tube apparatus for heat recovery from hot process stream
CN105408686B (en) * 2013-08-29 2017-05-03 卡萨尔公司 Shell-and-tube apparatus for heat recovery from hot process stream
CN104357644A (en) * 2014-11-05 2015-02-18 上海电气核电设备有限公司 Circular seam heat treatment system of nuclear power vapor generator and application of heat treatment system
CN105066083A (en) * 2015-09-11 2015-11-18 中山大学 U-shaped-row-tube type fused salt steam generating device and method
CN107143833A (en) * 2017-05-05 2017-09-08 中广核研究院有限公司 Multiple-unit tubular type once through steam generator

Similar Documents

Publication Publication Date Title
JP2012145284A (en) Steam generator
US20080104838A1 (en) Anti-vibration support for steam generator heat transfer tubes and method for making same
AU2012253987B2 (en) Modular solar receiver panels and solar boilers with modular receiver panels
JP2017508942A (en) Steam generator tube support
JP5927292B2 (en) Clamp tool for steady bar
EP2960614B1 (en) Device and method for suppressing vibration of heat transfer tube, and steam generator
JP2016205806A (en) Collar supported pressure part for heat recovery steam generator
JP6049943B2 (en) Particle separator assembly connectable to fluidized bed reactor and fluidized bed reactor
JP6071298B2 (en) Method for additionally installing gap expansion jig for heat transfer tube and vibration suppressing member
KR101465047B1 (en) Heat recovery steam generator and method of manufacturing the same
JP2014035161A (en) Heat exchanger and additional installation method for vibration suppression members
JP2018096574A (en) Boiler
JP7288459B2 (en) Waste heat recovery boiler
JP3875933B2 (en) Boiler horizontal heat transfer tube support structure
US12130010B2 (en) Connection tube support of waste heat recovery boiler and waste heat recovery boiler including same
US20240175572A1 (en) Connection tube support of waste heat recovery boiler and waste heat recovery boiler including same
WO2012063661A1 (en) Method for producing steam generator
JP2016084971A (en) Steam generator and heat transfer pipe support method
RU174948U1 (en) Convective heating surface
JP2013108662A (en) Steam generator
KR102408191B1 (en) Boiler
RU2673974C2 (en) Long-life heat recovery steam generator device with use of internal stiffeners
EP3130849A1 (en) Circulating fluidized bed furnace
JP2014047993A (en) Clearance expansion jig for heat transfer pipe and method for arranging vibration suppression member
WO2014050259A1 (en) Steam generator and assembly method for steam generator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401