JP2012145121A - Refrigerant gas suction amount controller in rotary compressor - Google Patents

Refrigerant gas suction amount controller in rotary compressor Download PDF

Info

Publication number
JP2012145121A
JP2012145121A JP2012107148A JP2012107148A JP2012145121A JP 2012145121 A JP2012145121 A JP 2012145121A JP 2012107148 A JP2012107148 A JP 2012107148A JP 2012107148 A JP2012107148 A JP 2012107148A JP 2012145121 A JP2012145121 A JP 2012145121A
Authority
JP
Japan
Prior art keywords
refrigerant gas
valve
valve seat
suction
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012107148A
Other languages
Japanese (ja)
Other versions
JP5196049B2 (en
Inventor
Shinsuke Aso
伸介 麻生
Shinichi Sato
真一 佐藤
Hitoshi Inukai
均 犬飼
Kazuo Kobayashi
和男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012107148A priority Critical patent/JP5196049B2/en
Publication of JP2012145121A publication Critical patent/JP2012145121A/en
Application granted granted Critical
Publication of JP5196049B2 publication Critical patent/JP5196049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To properly control a refrigerant gas flow rate to be sucked into a compression chamber of a rotary compressor, in both a low-speed rotation area and a high-speed rotation area.SOLUTION: In the low-speed rotation area, a reed valve 55 keep a planar state with its elasticity, and separates from a valve seat 54. A refrigerant gas flows through all the opening areas of the through-hole 58 of the reed valve 55 and the through-hole 58 of the valve seat 54, and is sucked into a suction chamber 16. Hence, a necessary flow rate of the refrigerant gas is fully secured. In the high-speed rotation area, the reed valve 55 is brought into contact with the valve seat 54 by the pressure of the refrigerant gas. The through-hole 58 of the valve seat 54 and the through-hole 58 of the reed valve 55 are communicated with a suction port 17, with their opening areas throttled. As a result, the refrigerant gas of a high flow rate is adjusted to a predetermined low flow rate by a throttle valve 50 and is sucked into the suction chamber 16, The generation of an excessive cooling capacity is prevented thereby.

Description

本願発明は、回転式圧縮機の低速回転領域及び高速回転領域における冷媒ガスの吸入量を調整可能とした吸入量制御装置に関するものである。   The present invention relates to a suction amount control device capable of adjusting a suction amount of refrigerant gas in a low speed rotation region and a high speed rotation region of a rotary compressor.

特許文献1は、ベーン式圧縮機の高速回転時の冷房能力過剰を抑制するために考案されたもので、次のような構成が開示されている。ベーン式圧縮機において、圧縮室の吸入ポート又は吸入ポートに連通する流通路の流入口に、吸入ポート又は流入口の開口面積よりも狭い面積の弁部を有するリード弁が配設される。   Patent Document 1 has been devised in order to suppress excessive cooling capacity during high-speed rotation of a vane compressor, and the following configuration is disclosed. In the vane compressor, a reed valve having a valve portion having an area smaller than the opening area of the suction port or the inlet is disposed at the inlet of the flow passage communicating with the suction port or the suction port of the compression chamber.

リード弁は圧縮室へ吸入されるガス量が少ない低速回転時には吸入通路の開度が大きい状態に保持されて冷房能力を充分に発揮する。一方、回転が上昇した時、リード弁は吸入ガス量の増大によって吸入通路の開度を連続的に絞る方向に回動され、圧縮室内に吸入されるガス量を抑制するように作用する。従って、特許文献1に開示された技術は高速回転時における冷房能力の過剰を防止することができる。   When the reed valve rotates at a low speed with a small amount of gas sucked into the compression chamber, the reed valve is maintained in a state in which the opening of the suction passage is large and exhibits a sufficient cooling capacity. On the other hand, when the rotation rises, the reed valve is rotated in the direction of continuously reducing the opening of the suction passage by increasing the amount of suction gas, and acts to suppress the amount of gas sucked into the compression chamber. Therefore, the technique disclosed in Patent Document 1 can prevent an excessive cooling capacity during high-speed rotation.

特許文献2は、油量調整弁としてスプール式絞り弁の構成を開示している。即ち、弁本体の圧油通路の途中に圧油通路よりも大径、かつ圧油通路と同軸の弁体室が形成される。弁体室には、圧油通路よりも大径の有底筒状の弁体が圧油の流れに押されて所定距離だけ摺動可能に内装されている。弁体の底壁には、圧油通路の軸線に対して偏心した貫通孔が設けられている。   Patent Document 2 discloses a configuration of a spool type throttle valve as an oil amount adjusting valve. That is, a valve body chamber having a larger diameter than the pressure oil passage and coaxial with the pressure oil passage is formed in the middle of the pressure oil passage of the valve body. In the valve body chamber, a bottomed cylindrical valve body having a diameter larger than that of the pressure oil passage is pushed by the flow of pressure oil and is slidable by a predetermined distance. The bottom wall of the valve body is provided with a through hole that is eccentric with respect to the axis of the pressure oil passage.

圧油が圧油通路内を弁体の底壁側から開口側へ流れると、弁体は圧油によって移動され、弁体の底壁が弁体室の壁面から離れる。このため、圧油は弁体の貫通孔の開口面積分だけ流れることができる。一方、圧油が圧油通路内を弁体の開口側から底壁側へ、即ち前記と反対方向へ流れると、弁体が前記と反対側へ移動し、弁体の底壁が弁体室の壁面に当接する。貫通孔は圧油通路に対して偏心しているため、貫通孔の一部が閉鎖され、貫通孔の開口面積が絞られて圧油の流れの流量を減少する。従って、特許文献2に開示された技術は正逆方向に流れる圧油の流量を1つの油量調整弁によって異なる流量に調整することができる。   When the pressure oil flows in the pressure oil passage from the bottom wall side of the valve body to the opening side, the valve body is moved by the pressure oil, and the bottom wall of the valve body is separated from the wall surface of the valve body chamber. For this reason, the pressure oil can flow by the opening area of the through hole of the valve body. On the other hand, when the pressure oil flows in the pressure oil passage from the opening side of the valve body to the bottom wall side, that is, in the opposite direction, the valve body moves to the opposite side, and the bottom wall of the valve body moves to the valve body chamber. Abuts against the wall surface. Since the through hole is eccentric with respect to the pressure oil passage, a part of the through hole is closed, the opening area of the through hole is reduced, and the flow rate of the pressure oil flow is reduced. Therefore, the technique disclosed in Patent Document 2 can adjust the flow rate of the pressure oil flowing in the forward and reverse directions to a different flow rate by one oil amount adjusting valve.

実開平2−137588号公報Japanese Utility Model Publication No. 2-137588 実開昭57−48367号公報Japanese Utility Model Publication No. 57-48367

特許文献1に開示された技術は、高速回転時に流量が増大した吸入ガスの圧力によってリード弁が回動し、弁部が吸入ポート又は流入口の一部を閉鎖して吸入ガスの通路を絞る構成である。また、低速回転時にはリード弁が開いて吸入ガスの通過流量を増加するように作用する。しかし、リード弁が開いた時、吸入ガスは弁部の周囲を回り込んで吸入ポート又は流入口を通過しなければならないため、弁部が抵抗となり充分な流量を確保することができないという問題がある。   In the technique disclosed in Patent Document 1, the reed valve is rotated by the pressure of the suction gas whose flow rate has increased during high-speed rotation, and the valve portion closes a part of the suction port or the inlet to narrow the passage of the suction gas. It is a configuration. In addition, the reed valve opens during low-speed rotation and acts to increase the flow rate of the intake gas. However, when the reed valve is opened, the suction gas has to go around the valve portion and pass through the suction port or inlet, so that the valve portion becomes a resistance and a sufficient flow rate cannot be secured. is there.

また、前記した理由から、高速回転時に吸入ガスの流量を充分に絞ろうとすれば、低速回転時における吸入ガスの通路が狭まり、逆に低速回転時における吸入ガスの通路を広げようとすれば、高速回転時における吸入ガスの通路を充分に絞れないと言う矛盾した現象が生じやすく、吸入ガスの流量調整が難しい。従って、特許文献1に開示された技術では、低速回転時から高速回転時の全ての領域における適切な吸入ガス量の確保が困難である。   For the reasons described above, if the intake gas flow rate is sufficiently reduced during high-speed rotation, the intake gas passage during low-speed rotation is narrowed, and conversely if the intake gas passage during low-speed rotation is widened, A contradictory phenomenon that the intake gas passage cannot be sufficiently throttled during high-speed rotation is likely to occur, and adjustment of the intake gas flow rate is difficult. Therefore, with the technique disclosed in Patent Document 1, it is difficult to secure an appropriate amount of intake gas in all regions from low speed rotation to high speed rotation.

特許文献2に開示された技術は、圧油通路に対し偏心させた貫通孔を備える筒状の弁体により圧油の流れを絞る構成である。しかし、弁体による絞り効果は圧油通路を正逆方向に流れる圧油の内、一方の流れの場合にのみ生じ、しかも一方の流れに対しては常に同一の絞り効果を生じさせる構成である。また、絞り効果を解消するためには圧油の流れを反転させて他方向に変更しなければならない。従って、特許文献2に開示された技術では、低速回転領域から高速回転領域に亘って一方向に流れる冷媒ガスの流量調整を必要とする回転式圧縮機に適用することは困難である。   The technique disclosed in Patent Document 2 is a configuration in which the flow of pressure oil is reduced by a cylindrical valve body having a through hole that is eccentric with respect to the pressure oil passage. However, the throttle effect by the valve element is generated only in the case of one flow of the pressure oil flowing in the forward and reverse directions in the pressure oil passage, and the same throttle effect is always generated for one flow. . Further, in order to eliminate the throttling effect, the flow of pressure oil must be reversed and changed in the other direction. Therefore, the technique disclosed in Patent Document 2 is difficult to apply to a rotary compressor that requires adjustment of the flow rate of refrigerant gas flowing in one direction from the low-speed rotation region to the high-speed rotation region.

本願発明は、回転式圧縮機の圧縮室に吸入される冷媒ガスの流量を低速回転領域と高速回転領域とで適切に制御できるようにすることを目的とする。   An object of the present invention is to enable appropriate control of the flow rate of refrigerant gas sucked into a compression chamber of a rotary compressor in a low-speed rotation region and a high-speed rotation region.

請求項1に記載の本願発明は、吸入ポートと吸入通路と吸入室を含む冷媒ガスの吸入部、前記冷媒ガスの圧縮機構を含む圧縮部及び吐出ポートと吐出通路と吐出室を含む冷媒ガスの吐出部を備えた回転式圧縮機において、前記吸入部に弁座及び前記弁座に対して接近及び離間可能な弁体からなる絞り弁を配設し、前記弁座及び弁体にそれぞれ前記冷媒ガスの流通方向に貫通する貫通孔を形成し、少なくとも前記弁座及び弁体のいずれか一方の貫通孔の中心軸線を前記吸入部の中心軸線から偏心して配設し、前記弁体を弾性体からなるリード弁によって構成し、前記弁座を前記リード弁が当接する剛体の弁座によって形成し、前記弁体を前記弁座から離間する方向に付勢するとともに前記冷媒ガスの流量増加により前記弁座に接近させたことを特徴とする。   The invention of claim 1 is directed to a refrigerant gas suction portion including a suction port, a suction passage, and a suction chamber, a compression portion including a compression mechanism for the refrigerant gas, and a refrigerant gas including a discharge port, a discharge passage, and a discharge chamber. In the rotary compressor having a discharge part, a throttle valve comprising a valve seat and a valve body that can approach and separate from the valve seat is disposed in the suction part, and the refrigerant is provided in the valve seat and the valve body, respectively. A through hole penetrating in the gas flow direction is formed, and at least the central axis of one of the valve seat and the valve body is arranged eccentrically from the central axis of the suction portion, and the valve body is an elastic body The valve seat is formed by a rigid valve seat against which the reed valve abuts, and the valve body is urged away from the valve seat and the flow rate of the refrigerant gas increases to increase the flow rate. That they were approaching the valve seat And butterflies.

請求項1記載の本願発明によれば、低速回転領域では弁体が弁座から離間するとともに弁体の貫通孔の存在により冷媒ガスの流動抵抗が少なく、冷媒ガスが充分な吸入量となるように調整される。一方、高速回転領域では弁体が弁座に当接することにより貫通孔の開口面積が絞られ、冷媒ガスが適切な吸入量に調節される。この結果、低速回転領域から高速回転領域に至る全回転領域において最適な冷房能力を得ることができる。
また、前記弁体を弾性体からなるリード弁によって構成し、前記弁座を前記リード弁が当接する剛体の弁座によって形成したことを特徴とするため、既知のリード弁に貫通孔を形成すれば足りるため、絞り弁を容易に得ることができる。
According to the first aspect of the present invention, in the low-speed rotation region, the valve body is separated from the valve seat, and the flow resistance of the refrigerant gas is small due to the presence of the through hole of the valve body, so that the refrigerant gas has a sufficient suction amount. Adjusted to On the other hand, in the high-speed rotation region, the opening area of the through hole is reduced by the valve body coming into contact with the valve seat, and the refrigerant gas is adjusted to an appropriate suction amount. As a result, the optimum cooling capacity can be obtained in the entire rotation region from the low-speed rotation region to the high-speed rotation region.
In addition, since the valve body is constituted by a reed valve made of an elastic body, and the valve seat is formed by a rigid valve seat against which the reed valve abuts, a through hole is formed in a known reed valve. Therefore, the throttle valve can be easily obtained.

請求項2に記載の本願発明は、前記弁座及び弁体を備えた絞り弁をユニット化したことを特徴とするため、回転式圧縮機へ絞り弁を取り付ける作業が容易となる。また、既存の圧縮機へも容易に装着することができる。   The invention according to claim 2 is characterized in that the throttle valve including the valve seat and the valve body is unitized, so that the operation of attaching the throttle valve to the rotary compressor is facilitated. Further, it can be easily mounted on an existing compressor.

請求項3に記載の本願発明は、前記弁座は前記吸入部と別体で形成され、前記吸入部に装着されることを特徴とするため、弁座及び弁体の貫通孔の形成位置が自由となり、貫通孔の絞り量の設定が容易となる。   The present invention according to claim 3 is characterized in that the valve seat is formed separately from the suction portion and is attached to the suction portion. It becomes free, and it becomes easy to set the amount of throttling of the through hole.

請求項4に記載の本願発明は、前記弁座及び弁体の通孔を真円によって形成したことを特徴とするため、弁体の貫通孔の絞り量を最も大きくすることができる。   The invention of claim 4 is characterized in that the valve seat and the through hole of the valve body are formed by a perfect circle, so that the amount of throttling of the through hole of the valve body can be maximized.

請求項5に記載の本願発明は、前記弁座及び弁体の通孔を楕円によって形成したことを特徴とするため、低速回転領域において冷媒ガスが通過する貫通孔の開口面積を大きく取ることができる。   The invention of claim 5 is characterized in that the valve seat and the through hole of the valve body are formed by an ellipse. Therefore, the opening area of the through hole through which the refrigerant gas passes can be increased in the low speed rotation region. it can.

本願発明は、回転式圧縮機において、低速回転領域では冷媒ガスの充分な吸入量を確保して適切な冷房能力を発揮し、高速回転領域では冷媒ガスの吸入量を減少して過剰な冷房能力の発生を防止することができる。   The present invention provides a rotary compressor that has a sufficient amount of refrigerant gas sucked in a low speed rotation region to exhibit an appropriate cooling capacity, and has an excessive cooling capacity by reducing the amount of refrigerant gas sucked in a high speed rotation region. Can be prevented.

本発明の実施形態を示すベーン式圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the vane type compressor which shows embodiment of this invention. 図1の絞り弁を拡大表示したもので、(a)は縦断面図、(b)は(a)の平面図である。FIG. 2 is an enlarged view of the throttle valve in FIG. 1, (a) is a longitudinal sectional view, and (b) is a plan view of (a).

図1および図2に示した本実施形態は以下のように構成される。図1に示すように、ベーン式圧縮機のハウジング1は図の左方に位置するフロントハウジング2に図の右方に位置する有底筒状のリヤハウジング3が接合された状態で一体に形成されている。リヤハウジング3のフロント側内部には楕円筒状の内周面4を有するシリンダブロック5が収容され、その前後両端面にはフロントサイドプレート6及びリヤサイドプレート7が嵌合し、固定されている。フロントサイドプレート6及びリヤサイドプレート7には回転軸8がラジアルベアリング9を介して支持されている。   The present embodiment shown in FIGS. 1 and 2 is configured as follows. As shown in FIG. 1, a vane compressor housing 1 is integrally formed with a front housing 2 located on the left side of the figure and a bottomed tubular rear housing 3 located on the right side of the figure. Has been. A cylinder block 5 having an oval cylindrical inner peripheral surface 4 is accommodated inside the front side of the rear housing 3, and a front side plate 6 and a rear side plate 7 are fitted and fixed to both front and rear end surfaces. A rotating shaft 8 is supported on the front side plate 6 and the rear side plate 7 via a radial bearing 9.

回転軸8にはシリンダブロック5内に位置するようにロータ10が嵌合し、固定されている。このロータ10には複数箇所に放射状にベーン溝11が形成され、各ベーン溝11にはベーン12が出没可能に収容されている。シリンダブロック5の内周面4とロータ10の外周面との間に形成された三日月状の空間は、前記ベーン12により複数の作動室13に区画形成されている。なお、図示されていないが、作動室13を形成する三日月状の空間は回転軸8に対して対象となる位置に2箇所形成されている。ロータ10、ベーン溝11及びベーン12は本願発明における冷媒ガスの圧縮機構を構成する。また、前記圧縮機構に作動室13を含めて本願発明の圧縮部を構成する。   A rotor 10 is fitted and fixed to the rotary shaft 8 so as to be located in the cylinder block 5. The rotor 10 is formed with vane grooves 11 radially at a plurality of locations, and vanes 12 are accommodated in the vane grooves 11 so as to be able to appear and retract. A crescent-shaped space formed between the inner peripheral surface 4 of the cylinder block 5 and the outer peripheral surface of the rotor 10 is partitioned into a plurality of working chambers 13 by the vanes 12. Although not shown in the drawing, two crescent-shaped spaces forming the working chamber 13 are formed at two positions with respect to the rotating shaft 8. The rotor 10, the vane groove 11 and the vane 12 constitute a refrigerant gas compression mechanism in the present invention. In addition, the compression mechanism of the present invention is configured by including the working chamber 13 in the compression mechanism.

ロータ10が回転すると、ベーン12の先端面が遠心力によりシリンダブロック5の内周面4に接触する。ロータ10の回転方向に関して作動室13が容積を拡大する行程が吸入行程となり、減少する行程が圧縮行程となる。前記吸入行程中の作動室13はシリンダブロック5に設けた吸入通路14及び吸入通路14に連通するフロントサイドプレート6に設けた吸入通路15を通してフロントハウジング2内の吸入室16と連通されている。吸入室16は図示しない外部冷媒回路に接続する吸入ポート17と連通し、冷媒ガスを吸入する。   When the rotor 10 rotates, the tip surface of the vane 12 contacts the inner peripheral surface 4 of the cylinder block 5 by centrifugal force. A stroke in which the working chamber 13 expands in volume with respect to the rotation direction of the rotor 10 is a suction stroke, and a stroke in which the working chamber 13 decreases is a compression stroke. The working chamber 13 during the suction stroke communicates with a suction chamber 16 in the front housing 2 through a suction passage 14 provided in the cylinder block 5 and a suction passage 15 provided in the front side plate 6 communicating with the suction passage 14. The suction chamber 16 communicates with a suction port 17 connected to an external refrigerant circuit (not shown) and sucks refrigerant gas.

シリンダブロック5の外周部にはリヤハウジング3及び両サイドプレート6、7とともに吐出室18が区画形成されている。シリンダブロック5には圧縮行程中の作動室13と吐出室18とを連通する複数の吐出口19が形成されている。これらの吐出口19は吐出弁20により開閉可能となっている。なお、吐出弁20はリテーナ21により開放位置が規制される。   A discharge chamber 18 is defined in the outer periphery of the cylinder block 5 together with the rear housing 3 and the side plates 6 and 7. A plurality of discharge ports 19 are formed in the cylinder block 5 to communicate the working chamber 13 and the discharge chamber 18 during the compression stroke. These discharge ports 19 can be opened and closed by a discharge valve 20. Note that the release position of the discharge valve 20 is restricted by the retainer 21.

リヤサイドプレート7には回転軸8の方向に貫通した小径の絞り通路22が形成され、吐出室18に連通している。また、リヤサイドプレート7のリヤ側の側面には、溝加工された吐出通路23が形成されている。吐出通路23は一端が絞り通路22に連通するとともに他端がリヤサイドプレート7とリヤハウジング3との間に形成された貯油室24に連通している。貯油室24はリヤハウジング3に形成した吐出ポート25により外部冷媒開路(図示せず)と連通している。   The rear side plate 7 is formed with a small-diameter throttle passage 22 penetrating in the direction of the rotary shaft 8 and communicates with the discharge chamber 18. Further, a grooved discharge passage 23 is formed on the rear side surface of the rear side plate 7. The discharge passage 23 has one end communicating with the throttle passage 22 and the other end communicating with an oil storage chamber 24 formed between the rear side plate 7 and the rear housing 3. The oil storage chamber 24 communicates with an external refrigerant open circuit (not shown) through a discharge port 25 formed in the rear housing 3.

貯油室24内の上部には、吐出通路23から供給される冷媒ガス中のミスト状の潤滑油を分離するために油分離器26が設けられている。油分離器26を構成するケース27はリヤサイドプレート7に対し回転軸8のリヤ側端部及び吐出通路23を覆うように固定されている。ケース27は有底円筒状の油分離室28とその上部に嵌合固定された円筒状の油分離筒29とを備え、油分離室28の底面に貯油室24と連通する油通路30を有する。また、ケース27には回転軸8の方向に貫通する通路31が形成されている。通路31は、一端が吐出通路23の下方側出口32に連通し、他端が油分離筒29の外周面に指向されている。吐出室18、吐出口19、絞り通路22、吐出通路23、吐出ポート25及び通路31は本願発明の吐出部を構成する。   An oil separator 26 is provided in the upper part of the oil storage chamber 24 in order to separate the mist-like lubricating oil in the refrigerant gas supplied from the discharge passage 23. A case 27 constituting the oil separator 26 is fixed to the rear side plate 7 so as to cover the rear end of the rotating shaft 8 and the discharge passage 23. The case 27 includes a bottomed cylindrical oil separation chamber 28 and a cylindrical oil separation cylinder 29 fitted and fixed to the top thereof, and has an oil passage 30 communicating with the oil storage chamber 24 on the bottom surface of the oil separation chamber 28. . Further, a passage 31 that penetrates in the direction of the rotation shaft 8 is formed in the case 27. One end of the passage 31 communicates with the lower outlet 32 of the discharge passage 23, and the other end is directed to the outer peripheral surface of the oil separation cylinder 29. The discharge chamber 18, the discharge port 19, the throttle passage 22, the discharge passage 23, the discharge port 25, and the passage 31 constitute a discharge portion of the present invention.

なお、ケース27の油通路30の下方部分には、リヤ側から見て屋根型(図示せず)に形成された油の案内板33が軸方向に突出して設けられている。案内板33は油分離室28の油通路30から滴下する油を下方へ案内するとともに貯油室24に貯留された油面を安定化する機能を有する。また、リヤサイドプレート7には油供給通路34が形成され、貯油室24に貯留された油をラジアルベアリング9及びベーン溝11等に導入して潤滑を行う。   An oil guide plate 33 formed in a roof shape (not shown) as viewed from the rear side is provided in the lower portion of the oil passage 30 of the case 27 so as to protrude in the axial direction. The guide plate 33 has a function of guiding oil dropped from the oil passage 30 of the oil separation chamber 28 downward and stabilizing the oil level stored in the oil storage chamber 24. An oil supply passage 34 is formed in the rear side plate 7, and the oil stored in the oil storage chamber 24 is introduced into the radial bearing 9, the vane groove 11 and the like for lubrication.

絞り弁50はベーン式圧縮機の吸入ポート17に設けられている。吸入ポート17は上流の入口側が吸入ポート17の中心軸線X3と同一の中心軸線を有する大径の吸入通路51に形成されている。吸入通路51は吸入ポート17との接続部を段差状に形成され、図の右側部分(図1、図2(a)参照)が高台座部52に形成され、左側部分が低台座部53に形成されている。   The throttle valve 50 is provided in the suction port 17 of the vane compressor. The suction port 17 is formed in a large-diameter suction passage 51 whose upstream inlet side has the same central axis as the central axis X3 of the suction port 17. In the suction passage 51, a connection portion with the suction port 17 is formed in a stepped shape, a right portion (see FIGS. 1 and 2A) of the drawing is formed in the high pedestal portion 52, and a left portion is formed in the low pedestal portion 53. Is formed.

高台座部52には、板状の弁座54及び本願発明の弁体に相当するリード弁55の基端側がボルト56によって固定されている。弁座54及びリード弁55は略長方形状(図2(a)参照)に形成され、吸入ポート17を完全に覆うことができる寸法を有している。弁座54は剛体からなり、湾曲状に塑性変形されて先端側が低台座部53上に当接されている。また、弁座54には貫通孔57が形成され、貫通孔57は吸入ポート17及び吸入通路51の中心軸線X3に対して偏心した中心軸線X1を有する。リード弁55は弾性体からなり、図1の実線にて示されるように、変形しなければほぼ平面状態に維持される。従って、リード弁55は通常の状態で弁座54から一定距離だけ離間している。リード弁55には貫通孔58が形成され、貫通孔58は中心軸線X1と異なる位置となるように中心軸線X3から偏心された中心軸線X2を有する。   A base end side of a plate-shaped valve seat 54 and a reed valve 55 corresponding to the valve body of the present invention is fixed to the high pedestal portion 52 by bolts 56. The valve seat 54 and the reed valve 55 are formed in a substantially rectangular shape (see FIG. 2A) and have dimensions that can completely cover the suction port 17. The valve seat 54 is made of a rigid body, is plastically deformed in a curved shape, and is in contact with the lower pedestal portion 53 at the distal end side. A through hole 57 is formed in the valve seat 54, and the through hole 57 has a central axis X 1 that is eccentric with respect to the central axis X 3 of the suction port 17 and the suction passage 51. The reed valve 55 is made of an elastic body, and as shown by the solid line in FIG. Therefore, the reed valve 55 is separated from the valve seat 54 by a certain distance in a normal state. A through hole 58 is formed in the reed valve 55, and the through hole 58 has a central axis X2 that is eccentric from the central axis X3 so as to be at a position different from the central axis X1.

この場合の一定の距離とは、弁座54及びリード弁55による絞り作用が生じない距離である。なお、吸入通路51の中心軸線X3に対する貫通孔57の中心軸線X1及び貫通孔58の中心軸線X2の偏心距離はベーン式圧縮機の運転時に必要な絞り量に応じて種々設定することができる。また、貫通孔57、58の開口面積は同一に設定してあるが、必要に応じて異なる面積となるように設定してもよい。異なる開口面積の採用は絞り量を設定するための自由度を高めることができる。   The constant distance in this case is a distance at which the throttle action by the valve seat 54 and the reed valve 55 does not occur. The eccentric distances of the central axis X1 of the through hole 57 and the central axis X2 of the through hole 58 with respect to the central axis X3 of the suction passage 51 can be variously set according to the amount of restriction required when the vane compressor is operated. Moreover, although the opening areas of the through holes 57 and 58 are set to be the same, they may be set to be different areas as necessary. The use of different opening areas can increase the degree of freedom for setting the aperture amount.

以上のように構成された本実施形態は以下のように作用する。
ベーン式圧縮機の一般的な動作を説明すると、回転軸8がエンジンの動力により回転されるため、ロータ10及びベーン12が回転され、吸入ポート17から吸入室16に流入した冷媒ガスは吸入通路15及び14を介して吸入行程中の作動室13に吸入される。作動室13内の冷媒ガスは、圧縮行程に入った作動室13の容積減少により圧縮される。圧縮された冷媒ガスは吐出口19及び吐出弁20を介して吐出室18に吐出される。
The present embodiment configured as described above operates as follows.
The general operation of the vane compressor will be described. Since the rotary shaft 8 is rotated by the power of the engine, the rotor 10 and the vane 12 are rotated, and the refrigerant gas flowing into the suction chamber 16 from the suction port 17 flows into the suction passage. The air is sucked into the working chamber 13 during the suction stroke through 15 and 14. The refrigerant gas in the working chamber 13 is compressed by the volume reduction of the working chamber 13 that has entered the compression stroke. The compressed refrigerant gas is discharged into the discharge chamber 18 through the discharge port 19 and the discharge valve 20.

冷媒ガスが吐出室18へ間欠的に吐出されることにより発生する吐出脈動は、吐出された冷媒ガスが絞り通路22を介して吐出通路23に流入することにより抑制される。吐出通路23を流れる冷媒ガスは油分離器26の通路31から油分離筒29の外周面に吹き付けられ、油分離筒29の外周を旋回しながら油分離室28へ導かれる。このため、冷媒ガスから油が分離され、分離された油は油通路30から貯油室24内へ滴下される。油を分離された冷媒ガスは油分離筒29の内部を通して上方へ流れ、貯油室24の上部空間から吐出ポート25に導入される。   Discharge pulsation generated by intermittently discharging the refrigerant gas into the discharge chamber 18 is suppressed by the discharged refrigerant gas flowing into the discharge passage 23 via the throttle passage 22. The refrigerant gas flowing through the discharge passage 23 is blown from the passage 31 of the oil separator 26 to the outer peripheral surface of the oil separation cylinder 29 and guided to the oil separation chamber 28 while turning around the outer periphery of the oil separation cylinder 29. For this reason, the oil is separated from the refrigerant gas, and the separated oil is dropped from the oil passage 30 into the oil storage chamber 24. The refrigerant gas from which the oil has been separated flows upward through the oil separation cylinder 29 and is introduced from the upper space of the oil storage chamber 24 into the discharge port 25.

ベーン式圧縮機はエンジンの回転数に比例して低速回転領域から高速回転領域の間を変動している。リード弁55はベーン式圧縮機の低回転領域において、自身の弾性力により平面状態を維持し、弁座54から離間している。従って、冷媒ガスは貫通孔58及び59の開口面積全域を流通することができるので、充分な流量を吸入室16へ吸入することができる。このため、ベーン式圧縮機は低速回転領域における冷媒ガスの必要な流量を十分確保することができる。   The vane compressor fluctuates between a low speed rotation region and a high speed rotation region in proportion to the engine speed. The reed valve 55 maintains a planar state by its own elastic force in the low rotation region of the vane compressor, and is separated from the valve seat 54. Accordingly, since the refrigerant gas can flow through the entire opening area of the through holes 58 and 59, a sufficient flow rate can be sucked into the suction chamber 16. For this reason, the vane type compressor can sufficiently secure the necessary flow rate of the refrigerant gas in the low speed rotation region.

一方、ベーン式圧縮機が高速回転領域で運転される場合、流量が増加した冷媒ガスの圧力により、リード弁55は図2(a)の実線にて示すように、自身の弾性力に抗して吸入通路51の下流側に撓み、弁座54に近接する。偏心した貫通孔58は偏心した貫通孔57に重なるため、冷媒ガスの通過可能な開口面積S3(図2(b)参照)が大きく絞られ、冷媒ガスの通過流量が抑制される。従って、絞り弁50の入口に流入する高流量の冷媒ガスは絞り弁50によって予め設定された低流量に調整されて吸入室16に吸入され、過剰な冷房能力の発生が防止される。このように、本実施形態は貫通孔58を有するリード弁を用いて絞り弁を構成することによって、簡単な構成によりベーン式圧縮機の全回転領域において適切な冷房能力を得ることができる。また、冷媒ガスは貫通孔57及び58を流通するため、流動抵抗が減少される。   On the other hand, when the vane compressor is operated in the high-speed rotation region, the reed valve 55 resists its own elastic force as shown by the solid line in FIG. Then, it bends to the downstream side of the suction passage 51 and approaches the valve seat 54. Since the eccentric through hole 58 overlaps the eccentric through hole 57, the opening area S3 (see FIG. 2B) through which the refrigerant gas can pass is greatly reduced, and the flow rate of the refrigerant gas is suppressed. Therefore, the high flow rate refrigerant gas flowing into the inlet of the throttle valve 50 is adjusted to a low flow rate set in advance by the throttle valve 50 and sucked into the suction chamber 16, thereby preventing the occurrence of excessive cooling capacity. As described above, in this embodiment, by configuring the throttle valve using the reed valve having the through hole 58, it is possible to obtain an appropriate cooling capacity in the entire rotation region of the vane compressor with a simple configuration. Further, since the refrigerant gas flows through the through holes 57 and 58, the flow resistance is reduced.

このように、本実施形態におけるベーン式圧縮機は低速回転領域から高速回転領域に至る全領域において冷媒ガスの適切な吸入量を確保し、最適な冷房能力を得ることができる。   Thus, the vane type compressor in the present embodiment can secure an appropriate amount of refrigerant gas in the entire region from the low-speed rotation region to the high-speed rotation region, and obtain an optimal cooling capacity.

前記した本実施形態は以下の作用効果を有する。
(1)低速回転領域及び高速回転領域における冷媒ガスの吸入量を適切に制御することができるので、全回転領域において最適な冷房能力が得られる。
(2)絞り弁50の弁座54及びリード弁55は、吸入通路51の中心軸線X3に対して偏心させた中心軸線を有する貫通孔57、58を備えているため、冷媒ガスの流動抵抗が少なく、効率の良い絞り機能が得られる。
(3)弁座54及びリード弁55の貫通孔57、58は吸入通路51に対して共に偏心させた構成であるため、絞り量の設定における自由度を高めることができる。
(4)弁座54及びリード弁55の貫通孔57、58を真円に形成するため、絞り弁50の構成が簡素化され、かつ小型化され、ベーン式圧縮機への搭載性を向上させることができる。
The above-described embodiment has the following operational effects.
(1) Since the amount of refrigerant gas sucked in the low-speed rotation region and the high-speed rotation region can be appropriately controlled, optimum cooling capacity can be obtained in the entire rotation region.
(2) Since the valve seat 54 and the reed valve 55 of the throttle valve 50 are provided with through holes 57 and 58 having a center axis eccentric with respect to the center axis X3 of the suction passage 51, the flow resistance of the refrigerant gas is reduced. There are few and efficient diaphragm functions can be obtained.
(3) Since the through holes 57 and 58 of the valve seat 54 and the reed valve 55 are both eccentric with respect to the suction passage 51, the degree of freedom in setting the throttle amount can be increased.
(4) Since the through holes 57 and 58 of the valve seat 54 and the reed valve 55 are formed in a perfect circle, the configuration of the throttle valve 50 is simplified and reduced in size, and the mountability to the vane compressor is improved. be able to.

本願発明は、前記した実施形態の構成に限定されるものではなく本願発明の趣旨の範囲内で種々の変更が可能であり、次のように実施することができる。   The present invention is not limited to the configuration of the above-described embodiment, and various modifications are possible within the scope of the spirit of the present invention, and can be implemented as follows.

(1)本実施形態では、弁座54及びリード弁55の各貫通孔57、58の中心軸線X1、X2を共に吸入ポート17の中心軸線X3から偏心させた構成として説明したが、本願発明は弁座又は弁体のいずれか一方の貫通孔の中心軸線のみを偏心させた構成としても本願発明の作用効果を得ることができる。
(2)本実施形態では、吸入部を構成する吸入ポート17から独立した別体構成の弁座54が吸入ポート17に装着される構成であるが、吸入ポート17の内壁の一部を加工して弁座を構成することが可能である。この場合、弁座に形成される貫通孔は吸入ポート17を兼用することになるため、弁座の貫通孔の中心軸線は吸入ポート17の中心軸線と一致し、弁体の貫通孔の中心軸線のみが偏心する。
(3)弁座54及びリード弁55を備えた絞り弁50をユニット化しても良く、これによりベーン式圧縮機へ絞り弁50を取り付ける作業が容易となる。また、既存の圧縮機へも容易に装着することができる。
(1) In the present embodiment, the center axis X1 and X2 of the through holes 57 and 58 of the valve seat 54 and the reed valve 55 are both described as being eccentric from the center axis X3 of the suction port 17. The effect of the present invention can be obtained even when only the central axis of the through hole of either the valve seat or the valve body is eccentric.
(2) In the present embodiment, a separate valve seat 54 independent of the suction port 17 constituting the suction portion is mounted on the suction port 17, but a part of the inner wall of the suction port 17 is processed. It is possible to constitute a valve seat. In this case, since the through hole formed in the valve seat also serves as the suction port 17, the central axis of the through hole of the valve seat coincides with the central axis of the suction port 17, and the central axis of the through hole of the valve body Only eccentric.
(3) The throttle valve 50 including the valve seat 54 and the reed valve 55 may be unitized, thereby facilitating the work of attaching the throttle valve 50 to the vane compressor. Further, it can be easily mounted on an existing compressor.

(4)本実施形態あるいは変更例によって説明した絞り弁50は、本願発明の吸入部に該当する例えば図1に示した吸入通路14及び15あるいは吸入室16に配設することが可能である。
(5)弁座54及びリード弁55の各貫通孔57、58あるいは吸入ポート17及び吸入通路14、15、51は真円に限らず楕円あるいは角孔に形成することが可能である。貫通孔57及び58が楕円形状に形成されている場合、冷媒ガスの通路となる貫通孔57の開口面積(貫通孔58も同様)を真円の場合に比して大きくすることができ、小型化された絞り弁においても冷媒ガスの流量確保が容易になる。
(6)本願発明は、ベーン式圧縮機に限らず、スクロール式圧縮機、スクリュー式圧縮機あるいはルーツ式圧縮機等の回転式圧縮機において実施することができる。
(4) The throttle valve 50 described in the present embodiment or the modified example can be disposed in the suction passages 14 and 15 or the suction chamber 16 shown in FIG.
(5) The through holes 57 and 58 of the valve seat 54 and the reed valve 55 or the suction port 17 and the suction passages 14, 15 and 51 are not limited to a perfect circle but can be formed as an ellipse or a square hole. When the through holes 57 and 58 are formed in an elliptical shape, the opening area of the through hole 57 serving as a refrigerant gas passage (the same applies to the through hole 58) can be made larger than that of a perfect circle. It is easy to secure the flow rate of the refrigerant gas even in the reduced throttle valve.
(6) The present invention can be implemented not only in a vane compressor but also in a rotary compressor such as a scroll compressor, a screw compressor, or a roots compressor.

1 ハウジング
2 フロントハウジング
3 リヤハウジング
8 回転軸
10 ロータ
11 ベーン溝
12 ベーン
13 作動室
14、15、51 吸入通路
16 吸入室
17 吸入ポート
18 吐出室
25 吐出ポート
50 絞り弁
54 弁座
57、58 貫通孔
55 リード弁
S1、S2、S3 開口面積
X1、X2、X3 中心軸線
DESCRIPTION OF SYMBOLS 1 Housing 2 Front housing 3 Rear housing 8 Rotating shaft 10 Rotor 11 Vane groove 12 Vane 13 Working chamber 14, 15, 51 Suction passage 16 Suction chamber 17 Suction port 18 Discharge chamber 25 Discharge port 50 Throttle valve 54 Valve seats 57, 58 Through Hole 55 Reed valves S1, S2, S3 Open area X1, X2, X3 Central axis

Claims (5)

吸入ポートと吸入通路と吸入室を含む冷媒ガスの吸入部、前記冷媒ガスの圧縮機構を含む圧縮部及び吐出ポートと吐出通路と吐出室を含む冷媒ガスの吐出部を備えた回転式圧縮機において、
前記吸入部に弁座及び前記弁座に対して接近及び離間可能な弁体からなる絞り弁を配設し、前記弁座及び弁体にそれぞれ前記冷媒ガスの流通方向に貫通する貫通孔を形成し、少なくとも前記弁座及び弁体のいずれか一方の貫通孔の中心軸線を前記吸入部の中心軸線から偏心して配設し、前記弁体を弾性体からなるリード弁によって構成し、前記弁座を前記リード弁が当接する剛体の弁座によって形成し、前記弁体を前記弁座から離間する方向に付勢するとともに前記冷媒ガスの流量増加により前記弁座に接近させたことを特徴とする回転式圧縮機における冷媒ガスの吸入量制御装置。
In a rotary compressor including a refrigerant gas suction portion including a suction port, a suction passage, and a suction chamber, a compression portion including a compression mechanism of the refrigerant gas, and a refrigerant gas discharge portion including a discharge port, a discharge passage, and a discharge chamber ,
A throttle valve comprising a valve seat and a valve body that can approach and separate from the valve seat is disposed in the suction portion, and through holes that respectively penetrate in the refrigerant gas flow direction are formed in the valve seat and the valve body. And at least a central axis of one of the through hole of the valve seat and the valve body is arranged eccentrically from a central axis of the suction portion, and the valve body is constituted by a reed valve made of an elastic body, Is formed by a rigid valve seat against which the reed valve abuts, and the valve body is urged in a direction away from the valve seat and is brought closer to the valve seat by increasing the flow rate of the refrigerant gas. A refrigerant gas suction amount control device in a rotary compressor.
前記弁座及び弁体を備えた絞り弁をユニット化したことを特徴とする請求項1に記載の回転式圧縮機における冷媒ガスの吸入量制御装置。   2. The refrigerant gas suction amount control device for a rotary compressor according to claim 1, wherein the throttle valve including the valve seat and the valve body is unitized. 前記弁座は前記吸入部と別体に形成され、前記吸入部に装着されることを特徴とする請求項1又は請求項2に記載の回転式圧縮機における冷媒ガスの吸入量制御装置。   3. The refrigerant gas intake amount control device for a rotary compressor according to claim 1, wherein the valve seat is formed separately from the intake portion and is attached to the intake portion. 前記弁座及び前記弁体の通孔を真円によって形成したことを特徴とする請求項1〜請求項3のいずれか1項に記載の回転式圧縮機における冷媒ガスの吸入量制御装置。   The refrigerant gas intake amount control device for a rotary compressor according to any one of claims 1 to 3, wherein the valve seat and the through hole of the valve body are formed in a perfect circle. 前記弁座及び前記弁体の通孔を楕円によって形成したことを特徴とする請求項1〜請求項3のいずれか1項に記載の回転式圧縮機における冷媒ガスの吸入量制御装置。   The refrigerant gas suction amount control device for a rotary compressor according to any one of claims 1 to 3, wherein the valve seat and the through hole of the valve body are formed by an ellipse.
JP2012107148A 2012-05-09 2012-05-09 Refrigerant gas suction amount control device for rotary compressor Expired - Fee Related JP5196049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012107148A JP5196049B2 (en) 2012-05-09 2012-05-09 Refrigerant gas suction amount control device for rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012107148A JP5196049B2 (en) 2012-05-09 2012-05-09 Refrigerant gas suction amount control device for rotary compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008188021A Division JP5029526B2 (en) 2008-07-22 2008-07-22 Refrigerant gas suction amount control device for rotary compressor

Publications (2)

Publication Number Publication Date
JP2012145121A true JP2012145121A (en) 2012-08-02
JP5196049B2 JP5196049B2 (en) 2013-05-15

Family

ID=46788895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107148A Expired - Fee Related JP5196049B2 (en) 2012-05-09 2012-05-09 Refrigerant gas suction amount control device for rotary compressor

Country Status (1)

Country Link
JP (1) JP5196049B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051939A (en) * 2012-09-07 2014-03-20 Ihi Corp Supercharger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109926U (en) * 1978-01-20 1979-08-02
JPH03377U (en) * 1989-05-24 1991-01-07
JPH07145872A (en) * 1993-11-24 1995-06-06 Nec Corp Evacuating valve
JP2006022653A (en) * 2004-07-06 2006-01-26 Calsonic Compressor Inc Check valve and gas compression device equipped with check valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109926U (en) * 1978-01-20 1979-08-02
JPH03377U (en) * 1989-05-24 1991-01-07
JPH07145872A (en) * 1993-11-24 1995-06-06 Nec Corp Evacuating valve
JP2006022653A (en) * 2004-07-06 2006-01-26 Calsonic Compressor Inc Check valve and gas compression device equipped with check valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051939A (en) * 2012-09-07 2014-03-20 Ihi Corp Supercharger

Also Published As

Publication number Publication date
JP5196049B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
KR100618481B1 (en) Variable displacement pump
JP6402648B2 (en) Vane type compressor
JP6852636B2 (en) Vane compressor
JP5029526B2 (en) Refrigerant gas suction amount control device for rotary compressor
JP5196049B2 (en) Refrigerant gas suction amount control device for rotary compressor
JP5825367B2 (en) Vane type compressor
JP2008057361A (en) Vane pump
JP6613222B2 (en) Vane pump
JP5475701B2 (en) Vane pump
JP6369066B2 (en) Compressor
JP2015175280A (en) compressor
CN103511254B (en) Serial vane compressor
JP2008115773A (en) Oil pump
JP2018168780A (en) Vane type compressor
KR101684549B1 (en) Rotary vacuum pump
JP2009127553A (en) Vacuum pump
JP2014219027A (en) Relief valve structure
JP2007327376A (en) Gas compressor
JP2015175266A (en) Oil pump relief structure
JP6123488B2 (en) Rotary compressor
KR101662553B1 (en) Vane pump
JP2001165082A (en) Sliding vane type compressor
BR102015001370A2 (en) double head piston oscillating plate compressor
JP2006177278A (en) Variable displacement gas compressor
JP2015059523A (en) Variable displacement vane pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees