JP2012142095A - Secondary battery, control system for secondary battery, and lease system for secondary battery - Google Patents

Secondary battery, control system for secondary battery, and lease system for secondary battery Download PDF

Info

Publication number
JP2012142095A
JP2012142095A JP2010292060A JP2010292060A JP2012142095A JP 2012142095 A JP2012142095 A JP 2012142095A JP 2010292060 A JP2010292060 A JP 2010292060A JP 2010292060 A JP2010292060 A JP 2010292060A JP 2012142095 A JP2012142095 A JP 2012142095A
Authority
JP
Japan
Prior art keywords
secondary battery
power storage
storage elements
storage element
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010292060A
Other languages
Japanese (ja)
Other versions
JP5709517B2 (en
Inventor
Yuki Watanabe
佑樹 渡辺
Yoshihiro Tsukuda
至弘 佃
Kazuya Sakashita
和也 坂下
Kazuo Yamada
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010292060A priority Critical patent/JP5709517B2/en
Priority to PCT/JP2011/080100 priority patent/WO2012090948A1/en
Publication of JP2012142095A publication Critical patent/JP2012142095A/en
Application granted granted Critical
Publication of JP5709517B2 publication Critical patent/JP5709517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery which can reduce manufacturing cost even when the secondary battery has a plurality of power storage elements, and by which electrolytic solution is made to be infiltrated quickly inside an electrode group provided in each of the power storage elements, and which has a good usability and high convenience, and to provide a control system for a secondary battery that enables efficient use of the plurality of power storage elements, and a highly convenient lease system for a secondary battery.SOLUTION: A plurality of power storage elements are arranged on the same plane of an exterior case 11 at a predetermined interval L1 in an insulation state, and positive and negative external terminals (6Aa-6Bb) corresponding to the respective power storage elements are provided respectively. By configuring to detect abnormalities of the respective power storage elements via a controller 21 connected with the respective external terminals via voltage detection lines 22 (22A and 22B), a control system electrically disconnecting a connector 24 of the power storage element in which abnormalities are detected is provided. By connecting with an Internet network 28 via a communication unit 27, a lease system that can communicate abnormality information is provided.

Description

本発明は、二次電池に関し、特に、正極板と負極板を複数層積層した積層型の二次電池、この二次電池の制御システム、および、この二次電池のリースシステムに関する。   The present invention relates to a secondary battery, and more particularly to a stacked secondary battery in which a plurality of positive and negative electrode plates are stacked, a control system for the secondary battery, and a lease system for the secondary battery.

近年、高エネルギー密度を有し小型軽量化が可能であることからリチウム二次電池が、携帯電話やノート型パソコン等の携帯型電子機器の電源用電池として用いられている。また、大容量化が可能であることから、電気自動車(EV)やハイブリッド電気自動車(HEV)等のモータ駆動電源や、電力貯蔵用蓄電池としても注目されてきている。   In recent years, lithium secondary batteries have been used as power source batteries for portable electronic devices such as mobile phones and notebook computers because they have a high energy density and can be reduced in size and weight. Further, since the capacity can be increased, it has been attracting attention as a motor drive power source for electric vehicles (EV) and hybrid electric vehicles (HEV), and a storage battery for power storage.

上記リチウム二次電池は、電池缶を構成する外装ケース内部に正極板と負極板とをセパレータを挟んで対向配置した電極群を収納し、電解液を充填し、複数の正極板の正極集電タブに連結される正極集電リードと、この正極集電リードと電気的に接続される正極外部端子と、複数の負極板の負極集電タブに連結される負極集電リードと、この負極集電リードと電気的に接続される負極外部端子を備えた構成とされる。   In the lithium secondary battery, an electrode group in which a positive electrode plate and a negative electrode plate are arranged opposite to each other with a separator interposed therebetween is housed in an outer case constituting a battery can, filled with an electrolyte, and positive electrode current collectors of a plurality of positive electrode plates A positive current collecting lead coupled to the tab; a positive external terminal electrically connected to the positive current collecting lead; a negative current collecting lead coupled to the negative current collecting tabs of the plurality of negative electrode plates; and the negative current collecting lead. It is set as the structure provided with the negative electrode external terminal electrically connected with an electrical lead.

また、電極群としては、巻回型と積層型が知られている。巻回型の電極群は、正極板と負極板との間にセパレータを介装して一体に巻回した構成であり、積層型の電極群は、正極板と負極板とをセパレータを介して複数層積層した構成である。   As the electrode group, a wound type and a laminated type are known. The wound electrode group has a configuration in which a separator is interposed between a positive electrode plate and a negative electrode plate, and is integrally wound. The laminated electrode group has a positive electrode plate and a negative electrode plate interposed via a separator. It is the structure which laminated | stacked multiple layers.

積層型の電極群を備えるリチウム二次電池においては、正極板と負極板とをセパレータを介して複数層積層した電極群を外装ケースに収容し、非水電解液で充填した構成とされ、それぞれの正極板の正極集電タブに連結される正極集電リードと、この正極集電リードと電気的に接続される外部端子、および、負極板の負極集電タブに連結される負極集電リードと、この負極集電リードと電気的に接続される外部端子がそれぞれ設けられている。   In a lithium secondary battery including a stacked electrode group, an electrode group in which a plurality of layers of a positive electrode plate and a negative electrode plate are stacked via a separator is housed in an outer case and filled with a non-aqueous electrolyte, respectively. A positive current collecting lead connected to the positive current collecting tab of the positive electrode plate, an external terminal electrically connected to the positive current collecting lead, and a negative current collecting lead connected to the negative current collecting tab of the negative electrode plate And an external terminal electrically connected to the negative electrode current collecting lead.

そのために、通常の二次電池は、一つの電池缶に一つの電極群を収容し、正極外部端子と負極外部端子とがそれぞれ1個設けられている。また、大容量の二次電池を作製するためには、同一の正負極材料を用いた場合は、正極板および負極板の面積を大きくする、単位面積当りの塗工量を増やす、積層数を増加させる、活物質量に合わせて充填する電解液量も増加させるなどが必要である。   For this purpose, a normal secondary battery accommodates one electrode group in one battery can and is provided with one positive external terminal and one negative external terminal. In addition, in order to produce a large-capacity secondary battery, when the same positive and negative electrode materials are used, the area of the positive electrode plate and the negative electrode plate is increased, the coating amount per unit area is increased, and the number of layers is increased. It is necessary to increase the amount of electrolyte solution to be filled in accordance with the amount of active material.

しかし、大きなサイズの電池缶に1セットの蓄電要素(電極群と集電リードとを含む発電・蓄電部)を備える構成では、積層体作製中に異物混入が起こった場合に、一枚の集電体上に大面積の活物質領域が形成されていると、短絡などによる材料ロスが多くなってしまう。   However, in a configuration in which a large-sized battery can is provided with a set of power storage elements (a power generation / power storage unit including an electrode group and a current collecting lead), if a foreign object is mixed during the production of the laminate, If an active material region having a large area is formed on an electric body, material loss due to a short circuit or the like increases.

また、一定以上の面積になると、従来の注液・含浸方法では、中央部に電解液が充填されるまで時間がかかり好ましくない。また、電解液が浸み込み易くするために高真空にして真空注液を行う場合は、所定の真空度に達するまでの時間が長くなると共に、設備費用が高くなってしまう問題が生じる。   On the other hand, if the area exceeds a certain level, it is not preferable in the conventional liquid injection / impregnation method because it takes time until the central portion is filled with the electrolytic solution. In addition, when the vacuum injection is performed under a high vacuum so that the electrolytic solution can easily penetrate, there is a problem that the time until a predetermined degree of vacuum is reached becomes long and the equipment cost becomes high.

また、小型化を目指しながら大容量化を図るために、蓄電要素(発電要素)を上下二段に重ねたスタック型の電池が知られている(例えば、特許文献1参照)。   In addition, in order to increase the capacity while aiming for miniaturization, a stack type battery in which power storage elements (power generation elements) are stacked in two upper and lower stages is known (for example, see Patent Document 1).

特開2003−257408号公報Japanese Patent Laid-Open No. 2003-257408

蓄電要素の大容量化を図るために、積層型の電極群の平面積を大きくすると、搬送の際に撓んでしまいハンドリング性に問題が生じる。ハンドリング性が悪くなると、短絡などにより歩留まりが悪化し、材料ロスの原因となって、製造コストが増加するので好ましくない。   If the plane area of the stacked electrode group is increased in order to increase the capacity of the power storage element, it will be bent during transportation, causing a problem in handling. If the handling property is deteriorated, the yield is deteriorated due to a short circuit or the like, which causes a material loss and increases the manufacturing cost.

また、所定大きさの蓄電要素を重ね合わせて、共通の電池缶に複数の蓄電要素を組み込む構成として大容量化を図ることは可能である。しかし、単に重ね合わせるだけでは、電極群の中央部まで電解液を浸透させる時間が長くなったり、中央部まで充分に浸透させることができなくなったりする問題が生じる。   In addition, it is possible to increase the capacity as a configuration in which a plurality of power storage elements are incorporated in a common battery can by overlapping power storage elements of a predetermined size. However, simply superimposing them causes problems that the time for allowing the electrolyte to penetrate to the center of the electrode group becomes long, or that the electrolyte cannot be sufficiently penetrated to the center.

そのために、複数の電極群を共通の電池缶に組み込む際には、単一の電極群に電解液が浸透する程度の時間で、複数の電極群の全てに電解液が浸透可能な構成が好ましい。また、それぞれの蓄電要素の有効利用を図るためには、それぞれの電極群にそれぞれ外部端子を設けて、それぞれ個別にも、直列に接続して同時にも、使用可能な構成であり制御システムであることが好ましい。   Therefore, when a plurality of electrode groups are incorporated in a common battery can, a configuration in which the electrolyte solution can permeate all of the plurality of electrode groups in a time sufficient for the electrolyte solution to permeate the single electrode group is preferable. . In addition, in order to effectively use each power storage element, each electrode group is provided with an external terminal, and can be used individually or simultaneously in series and is a control system. It is preferable.

また、家庭用の電力貯蔵用蓄電池として用いる場合には、それぞれの蓄電要素の不具合情報を直ちに報告することで、複数の蓄電要素を備える二次電池の管理を容易とし、使い勝手の良い二次電池のリースシステムを構築することが求められる。   In addition, when used as a power storage battery for home use, it is easy to manage a secondary battery including a plurality of power storage elements by immediately reporting failure information of each power storage element, and a user-friendly secondary battery It is required to construct a leasing system.

そこで本発明は、上記問題点に鑑み、複数の蓄電要素を備えた二次電池であっても、製造コストを低減し、それぞれの蓄電要素が有する電極群の内部まで電解液を速やかに浸透させることができ、使い勝手がよく利便性の高い二次電池を提供し、複数の蓄電要素を効率よく使用可能とする二次電池の制御システムを提供し、使い勝手がよく利便性の高い二次電池のリースシステムを提供することを目的とする。   Therefore, in view of the above problems, the present invention reduces the manufacturing cost even for a secondary battery including a plurality of power storage elements, and allows the electrolytic solution to quickly penetrate into the electrode group of each power storage element. Providing a secondary battery that is easy to use and highly convenient, and provides a secondary battery control system that enables efficient use of multiple power storage elements. The purpose is to provide a leasing system.

上記目的を達成するために本発明は、電池缶内に、正極板と負極板とをセパレータを介して複数層積層した電極群を具備する蓄電要素を、複数一体に収容し電解液を充填した二次電池であって、前記電池缶を構成する外装ケースの同一平面上に、複数の前記蓄電要素を所定間隔離間して並設し、それぞれの前記蓄電要素に対応する正負の外部端子をそれぞれ設けたことを特徴としている。   In order to achieve the above-mentioned object, the present invention accommodates a plurality of power storage elements each including an electrode group in which a plurality of layers of a positive electrode plate and a negative electrode plate are laminated via a separator in a battery can and is filled with an electrolyte solution. A secondary battery, wherein a plurality of power storage elements are arranged side by side at a predetermined interval on the same plane of an outer case constituting the battery can, and positive and negative external terminals corresponding to the power storage elements are respectively provided. It is characterized by providing.

この構成によると、複数の蓄電要素を外装ケースの同一平面上に所定間隔離間して並設しているので、厚み方向に厚くならず、複数の電極群に電解液を同時に浸透させることができ注液コストを低減することができる。また、複数の蓄電要素を合わせて大面積の電極を構成するので、それぞれの蓄電要素のハンドリング性が良好となって短絡などの弊害が生じる確率が低減することと併せて製造コストを低減することができる。さらに、複数の蓄電要素にそれぞれ正負の外部端子を設けているので、使い勝手がよく利便性の高い二次電池を得ることができる。   According to this configuration, since the plurality of power storage elements are arranged in parallel on the same plane of the outer case at a predetermined interval, the electrolyte solution does not become thicker in the thickness direction, and the electrolyte solution can be simultaneously permeated into the plurality of electrode groups. The injection cost can be reduced. In addition, since a large-area electrode is configured by combining a plurality of power storage elements, the handling performance of each power storage element is improved, and the probability of causing adverse effects such as a short circuit is reduced, and the manufacturing cost is reduced. Can do. Further, since the positive and negative external terminals are provided for each of the plurality of power storage elements, a secondary battery that is convenient and highly convenient can be obtained.

また本発明は上記構成の二次電池において、前記所定間隔は、前記電解液の流動性を阻害しない程度の幅とされることを特徴としている。この構成によると、複数の電極群を同一平面上に並設した構成であっても、それぞれの電極群に電解液を同時に浸透させることができ、電池缶に電解液を充填する時間を短縮することができる。   According to the present invention, in the secondary battery having the above-described configuration, the predetermined interval is set to a width that does not hinder the fluidity of the electrolytic solution. According to this configuration, even in a configuration in which a plurality of electrode groups are arranged side by side on the same plane, the electrolyte solution can be simultaneously infiltrated into each electrode group, and the time for filling the battery can with the electrolyte solution can be shortened. be able to.

また本発明は上記構成の二次電池において、並設される前記蓄電要素同士が電気的に絶縁されていることを特徴としている。この構成によると、同一の電池缶内に同じ電解液が充填された構成であっても、隣り合う蓄電要素同士が影響を及ぼし合うことなく、それぞれ個別の蓄電要素として用いることができる。   According to the present invention, in the secondary battery having the above-described configuration, the storage elements arranged in parallel are electrically insulated from each other. According to this structure, even if it is the structure with which the same electrolyte solution was filled in the same battery can, it can each be used as an individual electrical storage element, without the adjacent electrical storage elements having influence.

また本発明は上記構成の二次電池において、並設される前記蓄電要素同士の間に、所定幅の絶縁部材からなるスペーサを配設したことを特徴としている。この構成によると、隣り合う蓄電要素を確実に絶縁状態に維持することができる。   In the secondary battery having the above-described configuration, the present invention is characterized in that a spacer made of an insulating member having a predetermined width is disposed between the power storage elements arranged in parallel. According to this configuration, adjacent power storage elements can be reliably maintained in an insulating state.

また本発明は上記構成の二次電池において、並設される前記蓄電要素同士の間、および、各蓄電要素と前記電池缶の内壁との間に、所定厚みの絶縁部材からなるスペーサを配設したことを特徴としている。この構成によると、それぞれの蓄電要素を個別に、また、電池缶に対して、確実に絶縁状態に維持することができる。   According to the present invention, in the secondary battery having the above-described configuration, a spacer made of an insulating member having a predetermined thickness is disposed between the storage elements arranged side by side and between each storage element and the inner wall of the battery can. It is characterized by that. According to this configuration, each power storage element can be reliably maintained in an insulated state individually and with respect to the battery can.

また本発明は上記構成の二次電池において、前記蓄電要素の上面側と下面側とに前記スペーサを介装し、これらの上下のスペーサを介して前記蓄電要素を圧接状態に挟持することを特徴としている。この構成によると、絶縁部材からなるスペーサを介して蓄電要素を押し付けることで、電極同士の密着距離を所定の密着距離に維持して、所定の電池容量を維持することができる。   Further, in the secondary battery having the above-described configuration, the present invention is characterized in that the spacer is interposed between the upper surface side and the lower surface side of the power storage element, and the power storage element is sandwiched between the upper and lower spacers. It is said. According to this configuration, by pressing the power storage element through the spacer made of an insulating member, the contact distance between the electrodes can be maintained at a predetermined contact distance, and a predetermined battery capacity can be maintained.

また本発明は上記構成の二次電池において、前記蓄電要素は、長辺部と短辺部を有する矩形の活物質領域を備え、該活物質領域は、前記長辺部の端部から前記短辺の二等分線までの距離が100mm以下に形成されていることを特徴としている。この構成によると、大面積の電極群を構成する際に、一個の蓄電要素の大きさを、長辺部の端部から短辺の二等分線までの距離を100mm以下とすることで、電極群の中央部に電解液が浸透する時間が長くなり過ぎることを抑制し、電極群の内部まで電解液を速やかに浸透させることができる。   According to the present invention, in the secondary battery configured as described above, the power storage element includes a rectangular active material region having a long side portion and a short side portion, and the active material region extends from the end of the long side portion to the short side. The distance to the bisector of the side is formed to be 100 mm or less. According to this configuration, when configuring a large-area electrode group, the size of one power storage element, the distance from the end of the long side to the bisector of the short side is 100 mm or less, It is possible to prevent the electrolyte solution from penetrating into the central portion of the electrode group from becoming too long, and to rapidly penetrate the electrolyte solution into the electrode group.

また本発明は上記構成の二次電池において、前記外部端子に電圧検出線を接続し、それぞれの前記蓄電要素の電池容量を確認可能としたことを特徴としている。この構成によると、複数の蓄電要素を同一の電池缶内に収容した構成であっても、それぞれの外部端子に接続する電圧検出線を介して、各蓄電要素の電池容量を個別に確認して、それぞれの蓄電要素が正常であるか否かを検知することができる。   According to the present invention, in the secondary battery having the above-described configuration, a voltage detection line is connected to the external terminal so that the battery capacity of each power storage element can be confirmed. According to this configuration, even in a configuration in which a plurality of power storage elements are accommodated in the same battery can, the battery capacity of each power storage element is confirmed individually via the voltage detection line connected to each external terminal. It is possible to detect whether or not each power storage element is normal.

また本発明は、請求項1から8のいずれかに記載された二次電池の制御システムであって、前記二次電池が備える複数の蓄電要素にそれぞれ設ける外部端子と外部機器とを電気的に接続する接続部と、該接続部の切り替えの制御と、前記外部端子に接続する電圧検出線を介して前記蓄電要素の出力電圧を認識して当該蓄電要素の異常を検知する機能を有する制御部と、を設け、前記制御部が異常を検知したときに、当該蓄電要素の接続部を電気的に切り離すことを特徴としている。   Further, the present invention provides a control system for a secondary battery according to any one of claims 1 to 8, wherein an external terminal and an external device provided in each of a plurality of power storage elements included in the secondary battery are electrically connected. A control unit having a function of detecting a malfunction of the storage element by recognizing the output voltage of the storage element through a connection part to be connected, switching control of the connection part, and a voltage detection line connected to the external terminal And when the control unit detects an abnormality, the connection part of the power storage element is electrically disconnected.

この構成によると、制御部を介して、各蓄電要素の正常・異常を確認することができ、異常と確認された蓄電要素を切り離すことで、所定の電池容量を発揮する正常な蓄電要素のみを使用することができて、安定した電池容量を得る制御を行うことが可能となる。そのために、複数の蓄電要素を効率よく使用可能とする二次電池の制御システムを得ることができる。   According to this configuration, normality / abnormality of each power storage element can be confirmed via the control unit, and only normal power storage elements that exhibit a predetermined battery capacity can be obtained by separating the power storage elements that are confirmed as abnormal. It can be used and can be controlled to obtain a stable battery capacity. Therefore, it is possible to obtain a secondary battery control system that can efficiently use a plurality of power storage elements.

また本発明は、請求項1から8のいずれかに記載された二次電池のリースシステムであって、前記二次電池が備える複数の蓄電要素にそれぞれ設ける外部端子と外部機器とを電気的に接続する接続部と、該接続部の切り替えの制御と、前記外部端子に接続する電圧検出線を介して前記蓄電要素の出力電圧を認識して当該蓄電要素の異常を検知する機能を有する制御部と、該接続部に接続されインターネット網と通信可能な通信部とを設け、前記制御部が異常を検知したときに、前記通信部を介して、当該二次電池の使用者にその異常情報を通知すると同時に、前記インターネット網を経由して当該二次電池の管理会社にその異常情報および管理情報を通知することを特徴としている。この構成によると、二次電池に不具合が生じて規定容量以下となった情報を使用者(ユーザー)に伝えると同時に、二次電池管理会社に伝えることで、管理が容易となって、使い勝手がよく利便性の高い二次電池のリースシステムを構築することができる。   Further, the present invention is the secondary battery leasing system according to any one of claims 1 to 8, wherein an external terminal and an external device provided in each of the plurality of power storage elements included in the secondary battery are electrically connected. A control unit having a function of detecting a malfunction of the storage element by recognizing the output voltage of the storage element through a connection part to be connected, switching control of the connection part, and a voltage detection line connected to the external terminal And a communication unit connected to the connection unit and capable of communicating with the Internet network, and when the control unit detects an abnormality, the abnormality information is sent to the user of the secondary battery via the communication unit. Simultaneously with the notification, the abnormality information and the management information are notified to the management company of the secondary battery via the Internet network. According to this configuration, information that the secondary battery malfunctions and falls below the specified capacity is communicated to the user (user), and at the same time, the information is communicated to the secondary battery management company, making management easier and easier to use. It is possible to construct a secondary battery leasing system that is well convenient.

本発明によれば、外装ケースの同一平面上に、複数の蓄電要素を所定間隔離間して並設し、それぞれの蓄電要素に対応する正負の外部端子をそれぞれ設けた構成としたので、複数の蓄電要素を備えた二次電池であっても、製造コストを低減し、それぞれの蓄電要素が有する電極群の内部まで電解液を速やかに浸透させることができ、使い勝手がよく利便性の高い二次電池を得ることができる。また、外部端子に接続した電圧検出線を介してそれぞれの蓄電要素の異常を検知して、電気的に切り離す制御を行うことで、複数の蓄電要素を効率よく使用可能とする二次電池の制御システムを得ることができる。また、インターネット網を介して、不具合が生じた二次電池の情報を管理会社に直ちに伝えるリースシステムとすることで、管理が容易となって、使い勝手がよく利便性の高い二次電池のリースシステムを構築することができる。   According to the present invention, on the same plane of the exterior case, a plurality of power storage elements are arranged in parallel at a predetermined interval, and a positive and negative external terminal corresponding to each power storage element is provided. Even secondary batteries equipped with power storage elements can reduce manufacturing costs, and can quickly infiltrate the electrolyte into the electrode group of each power storage element. A battery can be obtained. In addition, secondary battery control that makes it possible to efficiently use a plurality of power storage elements by detecting an abnormality of each power storage element via a voltage detection line connected to an external terminal and performing control to electrically disconnect You can get a system. In addition, a lease system for secondary batteries that is easy to manage, easy to use, and convenient by providing a lease system that immediately notifies the management company of information on secondary batteries that have malfunctioned via the Internet. Can be built.

本発明に係る二次電池の第一実施形態を示す概略平面図である。1 is a schematic plan view showing a first embodiment of a secondary battery according to the present invention. 本発明に係る二次電池の第二実施形態を示す概略平面図である。It is a schematic plan view which shows 2nd embodiment of the secondary battery which concerns on this invention. 本発明に係る二次電池の第三実施形態を示す概略平面図である。It is a schematic plan view which shows 3rd embodiment of the secondary battery which concerns on this invention. 本発明に係る二次電池の第四実施形態を示す概略側面図である。It is a schematic side view which shows 4th embodiment of the secondary battery which concerns on this invention. 実施例1の電極群を示す概略説明図である。3 is a schematic explanatory diagram illustrating an electrode group of Example 1. FIG. 比較例1の電極群を示す概略平面図である。6 is a schematic plan view showing an electrode group of Comparative Example 1. FIG. 本発明に係る二次電池の第五実施形態を示す概略平面図である。It is a schematic plan view which shows 5th embodiment of the secondary battery which concerns on this invention. 二次電池の分解斜視図である。It is a disassembled perspective view of a secondary battery. 二次電池が備える電極群の分解斜視図である。It is a disassembled perspective view of the electrode group with which a secondary battery is provided. 二次電池の完成品を示す斜視図である。It is a perspective view which shows the completed product of a secondary battery. 電極群の概略断面図である。It is a schematic sectional drawing of an electrode group. 実施例A1の制御システムを示す概略説明図である。It is a schematic explanatory drawing which shows the control system of Example A1. 比較例B1の制御システムを示す概略説明図である。It is a schematic explanatory drawing which shows the control system of comparative example B1. 比較例B2の制御システムを示す概略説明図である。It is a schematic explanatory drawing which shows the control system of comparative example B2. 比較例B3の制御システムを示す概略説明図である。It is a schematic explanatory drawing which shows the control system of comparative example B3. 容量保持率80%で切り離し制御を行ったサイクル特性を示す。The cycle characteristics in which separation control is performed with a capacity retention rate of 80% are shown. 容量保持率70%で切り離し制御を行ったサイクル特性を示す。The cycle characteristics in which the separation control is performed with a capacity retention rate of 70% are shown. 容量保持率60%で切り離し制御を行ったサイクル特性を示す。The cycle characteristics in which separation control is performed with a capacity retention rate of 60% are shown. 注液時間を比較したインピーダンス測定結果を示す。The impedance measurement result which compared injection | pouring time is shown. 二次電池のリースシステムの概要を示すブロック図である。It is a block diagram which shows the outline | summary of the lease system of a secondary battery.

以下に本発明の実施形態を図面を参照して説明する。また、同一構成部材については同一の符号を用い、詳細な説明は適宜省略する。   Embodiments of the present invention will be described below with reference to the drawings. Moreover, the same code | symbol is used about the same structural member, and detailed description is abbreviate | omitted suitably.

本発明に係る二次電池としてリチウム二次電池について説明する。例えば、図1に示す本実施形態に係るリチウム二次電池RB1は、積層型の二次電池であって、電池缶10内に、正極板と負極板とをセパレータを介して複数層積層した積層型の電極群1(1A、1B)を複数備えた構成である。また、それぞれの電極群の極板の面積を大きくし、積層数を増やすことで比較的大容量の二次電池となり、電気自動車用蓄電池や電力貯蔵用蓄電池などに適用可能なものである。   A lithium secondary battery will be described as the secondary battery according to the present invention. For example, the lithium secondary battery RB1 according to this embodiment shown in FIG. 1 is a stacked secondary battery, in which a plurality of layers of a positive electrode plate and a negative electrode plate are stacked in a battery can 10 via a separator. It is the structure provided with two or more type | mold electrode groups 1 (1A, 1B). Further, by increasing the area of the electrode plate of each electrode group and increasing the number of stacked layers, a secondary battery having a relatively large capacity is obtained, and can be applied to a storage battery for electric vehicles, a storage battery for power storage, and the like.

また、電極群1A、1Bはそれぞれ別の外部端子に接続されており、電極群1Aの正極集電リード5Aaと負極集電リード5Abは、それぞれ正極外部端子6Aa、負極外部端子6Abに接続し、電極群1Bの正極集電リード5Baと負極集電リード5Bbは、それぞれ正極外部端子6Ba、負極外部端子6Bbに接続している。   The electrode groups 1A and 1B are connected to different external terminals, respectively. The positive electrode current collecting lead 5Aa and the negative electrode current collecting lead 5Ab of the electrode group 1A are connected to the positive electrode external terminal 6Aa and the negative electrode external terminal 6Ab, respectively. The positive electrode current collecting lead 5Ba and the negative electrode current collecting lead 5Bb of the electrode group 1B are connected to the positive electrode external terminal 6Ba and the negative electrode external terminal 6Bb, respectively.

次に、積層型のリチウム二次電池RBと電極群1の具体的な構成について、図6〜図9を用いて説明する。   Next, specific configurations of the stacked lithium secondary battery RB and the electrode group 1 will be described with reference to FIGS.

図6に示すように、積層型のリチウム二次電池RBは平面視矩形とされ、それぞれが矩形とされる正極板と負極板とセパレータとを積層した電極群1を備えている。また、底部11aと側部11b〜11eを備えて箱型とされる外装ケース11と蓋部材12とから構成される電池缶10に収容して、外装ケース11の側面(例えば、側部11b、11cの対向する二側面)に設ける外部端子11f(前述した正極外部端子6Aa、6Ba、負極外部端子6Ab、6Bbに相当)から充放電を行う構成としている。   As shown in FIG. 6, the stacked lithium secondary battery RB has a rectangular shape in plan view, and includes an electrode group 1 in which a positive electrode plate, a negative electrode plate, and a separator, each of which is rectangular, are stacked. Moreover, it accommodates in the battery can 10 comprised from the exterior case 11 and the cover member 12 which are provided with the bottom part 11a and the side parts 11b-11e, and is made into a box shape, and the side surface (for example, side part 11b, 11c is configured to perform charging / discharging from external terminals 11f (corresponding to the positive electrode external terminals 6Aa and 6Ba and the negative electrode external terminals 6Ab and 6Bb described above) provided on two opposing side surfaces of 11c.

電極群1は、正極板と負極板とをセパレータを介して複数層積層した構成であって、図7に示すように、正極集電体2b(例えば、アルミニウム箔)の両面に正極活物質からなる正極活物質層2aが形成された正極板2と、負極集電体3b(例えば、銅箔)の両面に負極活物質からなる負極活物質層3aが形成された負極板3とがセパレータ4を介して積層されている。   The electrode group 1 has a configuration in which a plurality of layers of a positive electrode plate and a negative electrode plate are laminated via a separator. As shown in FIG. 7, the positive electrode current collector 2b (for example, an aluminum foil) is coated with a positive electrode active material on both surfaces. The positive electrode plate 2 having the positive electrode active material layer 2a formed thereon and the negative electrode plate 3 having the negative electrode active material layer 3a formed of the negative electrode active material formed on both surfaces of the negative electrode current collector 3b (for example, copper foil) It is laminated through.

セパレータ4により、正極板2と負極板3との絶縁が図られているが、外装ケース11に充填される電解液を介して正極板2と負極板3との間でリチウムイオンの移動が可能となっている。   Although the separator 4 insulates the positive electrode plate 2 and the negative electrode plate 3 from each other, lithium ions can be transferred between the positive electrode plate 2 and the negative electrode plate 3 through the electrolyte filled in the outer case 11. It has become.

ここで、正極板2の正極活物質としては、リチウムが含有された酸化物(LiCoO2,LiNiO2,LiFeO2,LiMnO2,LiMn24など)や、その酸化物の遷移金属の一部を他の金属元素で置換した化合物などが挙げられる。なかでも、通常の使用において、正極板2が保有するリチウムの80%以上を電池反応に利用し得るものを正極活物質として用いれば、過充電などの事故に対する安全性を高めることができる。このような正極活物質としては、例えば、LiMn24のようなスピネル構造を有する化合物、および、LiMPO4(Mは、Co、Ni、Mn、Feから選択される少なくとも1種以上の元素)で表されるオリビン構造を有する化合物などが挙げられる。なかでも、MnおよびFeの少なくとも一方を含む正極活物質がコストの観点から好ましい。さらに、安全性の観点からは、LiFePO4を用いるのが好ましい。 Here, as the positive electrode active material of the positive electrode plate 2, oxides of lithium is contained (such as LiCoO 2, LiNiO 2, LiFeO 2 , LiMnO 2, LiMn 2 O 4) or a part of the transition metal in the oxide And a compound in which is substituted with other metal elements. Among these, in a normal use, if a material that can use 80% or more of lithium held in the positive electrode plate 2 for the battery reaction is used as the positive electrode active material, safety against accidents such as overcharge can be improved. Examples of such a positive electrode active material include a compound having a spinel structure such as LiMn 2 O 4 and LiMPO 4 (M is at least one element selected from Co, Ni, Mn, and Fe). The compound etc. which have the olivine structure represented by these are mentioned. Especially, the positive electrode active material containing at least one of Mn and Fe is preferable from a viewpoint of cost. Furthermore, it is preferable to use LiFePO 4 from the viewpoint of safety.

また、負極板3の負極活物質としては、リチウムが含有された物質やリチウムの挿入/離脱が可能な物質が用いられる。特に、高いエネルギー密度を持たせるためには、リチウムの挿入/離脱電位が金属リチウムの析出/溶解電位に近いものを用いるのが好ましい。その典型例は、粒子状(鱗片状、塊状、繊維状、ウィスカー状、球状および粉砕粒子状など)の天然黒鉛もしくは人造黒鉛である。   Further, as the negative electrode active material of the negative electrode plate 3, a material containing lithium or a material capable of inserting / removing lithium is used. In particular, in order to have a high energy density, it is preferable to use a lithium insertion / extraction potential close to the deposition / dissolution potential of metallic lithium. A typical example is natural graphite or artificial graphite in the form of particles (scale-like, lump-like, fibrous, whisker-like, spherical and pulverized particles).

なお、正極板2の正極活物質に加えて、また、負極板3の負極活物質に加えて、導電材、増粘材および結着材などが含有されていてもよい。導電材は、正極板2や負極板3の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、グラファイト(天然黒鉛、人造黒鉛)、炭素繊維などの炭素質材料や導電性金属酸化物などを用いることができる。   In addition to the positive electrode active material of the positive electrode plate 2, and in addition to the negative electrode active material of the negative electrode plate 3, a conductive material, a thickener, a binder, and the like may be contained. The conductive material is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode plate 2 or the negative electrode plate 3. For example, carbon black, acetylene black, ketjen black, graphite (natural graphite, artificial graphite) ), Carbonaceous materials such as carbon fibers, conductive metal oxides, and the like can be used.

増粘材としては、例えば、ポリエチレングリコール類、セルロース類、ポリアクリルアミド類、ポリN−ビニルアミド類、ポリN−ビニルピロリドン類などを用いることができる。結着材は、活物質粒子および導電材粒子を繋ぎとめる役割を果たすものであり、ポリフッ化ビニリデン、ポリビニルピリジン、ポリテトラフルオロエチレンなどのフッ素系ポリマーや、ポリエチレン、ポリプロピレンなどのポリオレフィン系ポリマーや、スチレンブタジエンゴムなどを用いることができる。   As the thickener, for example, polyethylene glycols, celluloses, polyacrylamides, poly N-vinyl amides, poly N-vinyl pyrrolidones and the like can be used. The binder serves to hold the active material particles and the conductive material particles together, and includes a fluorine-based polymer such as polyvinylidene fluoride, polyvinyl pyridine and polytetrafluoroethylene, a polyolefin polymer such as polyethylene and polypropylene, Styrene butadiene rubber or the like can be used.

また、セパレータ4としては、微多孔性の高分子フィルムを用いることが好ましい。具体的には、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテンなどのポリオレフィン高分子からなるフィルムが使用可能である。   Moreover, as the separator 4, it is preferable to use a microporous polymer film. Specifically, films made of a polyolefin polymer such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, polybutene can be used.

また、電解液としては、有機電解液を用いることが好ましい。具体的には、有機電解液の有機溶媒として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ―ブチロラクトンなどのエステル類、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、ジオキソラン、ジエチルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタンなどのエーテル類、さらに、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチルなどが使用可能である。なお、これらの有機溶媒は、単独で使用してもよいし、2種類以上を混合して使用してもよい。   Moreover, it is preferable to use an organic electrolytic solution as the electrolytic solution. Specifically, as an organic solvent of the organic electrolyte, esters such as ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, dioxolane , Diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, and other ethers, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, and methyl acetate can be used. These organic solvents may be used alone or in combination of two or more.

さらに、有機溶媒には電解質塩が含まれていてもよい。この電解質塩としては、過塩素酸リチウム(LiClO4)、ホウフッ化リチウム、六フッ化リン酸リチウム、トリフルオロメタンスルホン酸(LiCF3SO3)、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウムおよび四塩化アルミン酸リチウムなどのリチウム塩が挙げられる。なお、これらの電解質塩は、単独で使用してもよいし、2種類以上を混合して使用してもよい。 Further, the organic solvent may contain an electrolyte salt. Examples of the electrolyte salt include lithium perchlorate (LiClO 4 ), lithium borofluoride, lithium hexafluorophosphate, trifluoromethanesulfonic acid (LiCF 3 SO 3 ), lithium fluoride, lithium chloride, lithium bromide, and iodide. And lithium salts such as lithium and lithium tetrachloroaluminate. In addition, these electrolyte salts may be used independently and may be used in mixture of 2 or more types.

電解質塩の濃度は特に限定されないが、約0.5〜約2.5mol/Lであれば好ましく、約1.0〜2.2mol/Lであればより好ましい。なお、電解質塩の濃度が約0.5mol/L未満の場合には、電解液中においてキャリア濃度が低くなり、電解液の抵抗が高くなる虞がある。一方、電解質塩の濃度が約2.5mol/Lよりも高い場合には、塩自体の解離度が低くなり、電解液中のキャリア濃度が上がらない虞がある。   The concentration of the electrolyte salt is not particularly limited, but is preferably about 0.5 to about 2.5 mol / L, and more preferably about 1.0 to 2.2 mol / L. When the concentration of the electrolyte salt is less than about 0.5 mol / L, the carrier concentration in the electrolytic solution is lowered, and the resistance of the electrolytic solution may be increased. On the other hand, when the concentration of the electrolyte salt is higher than about 2.5 mol / L, the dissociation degree of the salt itself is lowered, and there is a possibility that the carrier concentration in the electrolytic solution does not increase.

電池缶10は、外装ケース11と蓋部材12とを備え、鉄、ニッケルメッキされた鉄、ステンレススチール、およびアルミニウムなどからなる。また、本実施形態では、図8に示すように、電池缶10は、外装ケース11と蓋部材12とが組み合わされたときに、外形形状が実質的に扁平角型形状となるように形成されている。   The battery can 10 includes an outer case 11 and a lid member 12, and is made of iron, nickel-plated iron, stainless steel, aluminum, or the like. Further, in the present embodiment, as shown in FIG. 8, the battery can 10 is formed so that the outer shape is substantially a flat rectangular shape when the outer case 11 and the lid member 12 are combined. ing.

外装ケース11は、略長方形状の底面を持つ底部11aと、この底部11aから立設した4面の側部11b〜11eを有する箱型状とされ、この箱型状内部に電極群1を収容する。電極群1は、正極板の集電タブに連結される正極集電リードと、負極板の集電タブに連結される負極集電リードを備え、これらの集電タブと電気的に接続される外部端子11fが外装ケース11の側部にそれぞれ設けられている。外部端子11fは、例えば、対向する二側部11b、11cの二箇所に設けられる。また、10aは注液口であって、ここから電解液を注液する。   The outer case 11 is a box shape having a bottom portion 11a having a substantially rectangular bottom surface and four side portions 11b to 11e erected from the bottom portion 11a, and the electrode group 1 is accommodated inside the box shape. To do. The electrode group 1 includes a positive current collecting lead coupled to a current collecting tab of the positive electrode plate and a negative current collecting lead coupled to the current collecting tab of the negative electrode plate, and is electrically connected to these current collecting tabs. External terminals 11 f are provided on the sides of the outer case 11. The external terminal 11f is provided, for example, at two locations on the opposite two side portions 11b and 11c. Reference numeral 10a denotes a liquid injection port from which an electrolytic solution is injected.

外装ケース11に電極群1を収容し、それぞれの集電リードを外部端子に接続した後、蓋部材12を外装ケース11の開口縁に固定する。すると、外装ケース11の底部11aと蓋部材12との間に電極群1が挟持され、電池缶10の内部において電極群1が保持される。なお、外装ケース11に対する蓋部材12の固定は、例えば、レーザ溶接などによってなされる。また、集電リードと外部端子との接続は、超音波溶接やレーザ溶接、抵抗溶接などの溶接以外に、電解液によって侵されない場合は、導電性接着剤などを用いて行うこともできる。   After the electrode group 1 is accommodated in the outer case 11 and each current collecting lead is connected to an external terminal, the lid member 12 is fixed to the opening edge of the outer case 11. Then, the electrode group 1 is sandwiched between the bottom portion 11 a of the outer case 11 and the lid member 12, and the electrode group 1 is held inside the battery can 10. The lid member 12 is fixed to the exterior case 11 by, for example, laser welding. Further, the connection between the current collecting lead and the external terminal can be performed by using a conductive adhesive or the like in the case where the current collector lead is not attacked by the electrolytic solution other than welding such as ultrasonic welding, laser welding, and resistance welding.

上記したように、本実施形態に係る二次電池RBは、正極板2と負極板3とをセパレータ4を介して複数層積層した電極群1と、この電極群1を収容し電解液が充填される外装ケース11と、外装ケース11に設ける外部端子11fと、正負の極板と外部端子11fとを電気的に接続する正負の集電リードと、外装ケース11に装着される蓋部材12と、を備えた構成である。   As described above, the secondary battery RB according to this embodiment includes the electrode group 1 in which a plurality of layers of the positive electrode plate 2 and the negative electrode plate 3 are stacked via the separator 4, and the electrode group 1 is accommodated and filled with an electrolyte solution. An outer case 11 to be provided, an external terminal 11f provided on the outer case 11, positive and negative current collecting leads electrically connecting the positive and negative electrode plates and the external terminal 11f, and a lid member 12 attached to the outer case 11 It is the structure provided with.

外装ケース11に収容された電極群1は、例えば、図9に示すように、正極集電体2bの両面に正極活物質層2aが形成された正極板2と、負極集電体3bの両面に負極活物質層3aが形成された負極板3とがセパレータ4を介して積層され、さらに両端面にセパレータ4を配設している。また、両端面のセパレータ4に替えて、このセパレータ4と同じ材質の樹脂フィルムを巻回して、電極群1を絶縁性を有する樹脂フィルムで被覆する構成としてもよい。いずれにしても、積層電極群1の上面は、電解液浸透性および絶縁性を有する部材が積層される構成となる。そのために、この面に直接蓋部材12を当接させることができ、蓋部材を介して所定の圧で押さえ付けることも可能である。   For example, as shown in FIG. 9, the electrode group 1 accommodated in the outer case 11 includes a positive electrode plate 2 in which a positive electrode active material layer 2a is formed on both surfaces of a positive electrode current collector 2b, and both surfaces of a negative electrode current collector 3b. The negative electrode plate 3 on which the negative electrode active material layer 3a is formed is laminated via the separator 4, and the separator 4 is disposed on both end faces. Moreover, it is good also as a structure which replaces with the separator 4 of both end surfaces, and winds the resin film of the same material as this separator 4, and coat | covers the electrode group 1 with the resin film which has insulation. In any case, the upper surface of the laminated electrode group 1 has a configuration in which members having electrolyte permeability and insulating properties are laminated. Therefore, the lid member 12 can be brought into direct contact with this surface, and can be pressed with a predetermined pressure via the lid member.

また、複数の電極群を一つの電池缶内に収容する構成の二次電池では、電極群同士が接触しないように、それぞれを所定の位置に固定しておくことが好ましく、所定間隔離して設置するなどして、電極群同士を電気的に絶縁しておくことが好ましい。   In addition, in a secondary battery configured to accommodate a plurality of electrode groups in one battery can, it is preferable that each electrode group is fixed at a predetermined position so that the electrode groups do not contact each other, and installed at a predetermined interval. For example, it is preferable to electrically insulate the electrode groups from each other.

また、複数の電極群を一つの電池缶内に収容する構成であっても、電解液を充填する時間を短縮することが、製造コストを低減するために好ましいので、電解液が流れ易い状態に複数の電極群を配置することが肝要である。次に、複数の電極群1(1A、1B・・・)を備えた二次電池の構成例について、図1〜図5を用いて説明する。   Moreover, even in a configuration in which a plurality of electrode groups are accommodated in one battery can, it is preferable to reduce the time for filling the electrolyte solution in order to reduce the manufacturing cost, so that the electrolyte solution can easily flow. It is important to arrange a plurality of electrode groups. Next, a configuration example of a secondary battery including a plurality of electrode groups 1 (1A, 1B...) Will be described with reference to FIGS.

図1は、二個の電極群1A、1Bを備えた二次電池RB1を示している。また、電極群1Aは、複数の正極タブを一体に集束した正極集電リード5Aaに接続される正極外部端子6Aaと、複数の負極タブを一体に集束した負極集電リード5Abに接続される負極外部端子6Abに、電気的に接続されている。また、電極群1Bは、その正極集電リード5Baが正極外部端子6Baに接続され、負極集電リード5Bbが負極外部端子6Bbに接続されている。   FIG. 1 shows a secondary battery RB1 including two electrode groups 1A and 1B. The electrode group 1A includes a positive electrode external terminal 6Aa connected to a positive electrode current collecting lead 5Aa in which a plurality of positive electrode tabs are integrated and a negative electrode connected to a negative electrode current collecting lead 5Ab in which a plurality of negative electrode tabs are integrated. It is electrically connected to the external terminal 6Ab. In the electrode group 1B, the positive current collecting lead 5Ba is connected to the positive external terminal 6Ba, and the negative current collecting lead 5Bb is connected to the negative external terminal 6Bb.

つまり、電池缶10から外に突出して設けられるそれぞれの外部端子を介して、電極群の(すなわち蓄電要素の)充放電を行うことが可能な構成である。また、電極群1A、1Bがそれぞれ個別に外部端子を備える構成であるので、各電極群がそれぞれ独立した蓄電要素となる。   In other words, the electrode group (that is, the power storage element) can be charged / discharged through each external terminal provided so as to protrude outward from the battery can 10. In addition, since each of the electrode groups 1A and 1B includes an external terminal, each electrode group serves as an independent power storage element.

そのために、それぞれの蓄電要素を、それぞれ個別にも、直列に接続して同時にも使用可能な構成となって、それぞれの蓄電要素の有効利用を図ることが可能となる。すなわち、使い勝手がよく利便性の高い二次電池を得ることができる。   For this reason, each power storage element can be used individually or in series, and can be used at the same time, so that each power storage element can be used effectively. That is, a secondary battery that is convenient and highly convenient can be obtained.

また、それぞれの蓄電要素同士を電気的に絶縁しておくことが好ましいので、それぞれの電極群同士を所定間隔離間して設置している。また、この離間距離L1は、電解液を注液する際に、電解液の流動性を阻害しない、電解液が流れ易い離間距離であることが好ましい。   Moreover, since it is preferable to electrically insulate each electrical storage element from each other, the respective electrode groups are installed with a predetermined distance therebetween. In addition, the separation distance L1 is preferably a separation distance that does not impede the fluidity of the electrolytic solution when the electrolytic solution is injected and allows the electrolytic solution to flow easily.

同一の電池缶に収容する蓄電要素は二個以上の複数でもよく、例えば、図2に示すように、n個の蓄電要素を収容した二次電池RB2とする。この二次電池RB2はn個の蓄電要素を備えているので、電極群1A、1B、・・・1Nのn個の電極群と、n×2の外部端子を備えた構成となる。   Two or more power storage elements may be accommodated in the same battery can. For example, as illustrated in FIG. 2, the secondary battery RB <b> 2 that accommodates n power storage elements is used. Since the secondary battery RB2 includes n power storage elements, the secondary battery RB2 includes n electrode groups 1A, 1B,..., 1N, and n × 2 external terminals.

図に示すように、複数の蓄電要素を同一平面上に配設しているので、電極群の厚み方向に重ならず、電解液の電極群内部への浸透性を阻害せず、それぞれ同時に電解液を浸透させることができる。また、それぞれの電極群間の離間距離を電解液が流れ易い離間距離L1としておくことで、電極群の内部まで電解液を速やかに浸透させることができる。   As shown in the figure, since a plurality of power storage elements are arranged on the same plane, they do not overlap in the thickness direction of the electrode group, and do not impede the permeability of the electrolytic solution into the electrode group, and perform electrolysis at the same time. The liquid can be infiltrated. Further, by setting the separation distance between the respective electrode groups to the separation distance L1 at which the electrolyte solution easily flows, the electrolyte solution can be rapidly penetrated into the electrode group.

この二次電池RB2は、n個の蓄電要素がn個の正極外部端子とn個の負極外部端子を備えた構成となるので、それぞれを個別に使用する小電力多様使用型と、直列に連結して同時に使用する大電力単一使用型と、これらの中間の、複数の蓄電要素を組み合わせた、中電力タイプとの複数の用い方が可能である。すなわち、使い勝手がよく利便性の高い二次電池となって好ましい形態となる。   Since this secondary battery RB2 has a configuration in which n power storage elements are provided with n positive external terminals and n negative external terminals, they are connected in series with a low-power diverse use type that uses each individually. Thus, it is possible to use a plurality of methods of a high power single use type that is used at the same time and a medium power type that is a combination of a plurality of intermediate power storage elements. That is, it becomes a preferable form as a secondary battery that is convenient and highly convenient.

また、並設される蓄電要素同士の間に所定幅のスペーサを介装して、電解液が流れ易い離間距離L1を維持する構成としてもよい。また、スペーサを介装する際には、このスペーサは絶縁部材であることが好ましい。このように、並設される蓄電要素同士の間に、所定幅の絶縁部材を配設することで、蓄電要素間の短絡を確実に防止すると共に電解液が流れ易い離間距離L1を維持することができて好ましい。この絶縁部材を介装した一実施形態について図3A、図3Bを用いて説明する。   Moreover, it is good also as a structure which maintains the separation distance L1 where an electrolyte solution flows easily by interposing the spacer of predetermined width between the electrical storage elements arranged in parallel. Further, when the spacer is interposed, the spacer is preferably an insulating member. As described above, by disposing an insulating member having a predetermined width between the storage elements arranged in parallel, it is possible to reliably prevent a short circuit between the storage elements and maintain a separation distance L1 at which the electrolyte easily flows. Is preferable. An embodiment in which this insulating member is interposed will be described with reference to FIGS. 3A and 3B.

図3Aに示す二次電池RB3Aは、電池缶10内に、二個の電極群1A、1Bを備えた構成であり、これらの電極群間を所定の離間距離L1に維持するスペーサ7Aを介装したものである。   A secondary battery RB3A shown in FIG. 3A has a configuration in which two electrode groups 1A and 1B are provided in a battery can 10, and a spacer 7A that maintains a predetermined separation distance L1 between these electrode groups is interposed. It is what.

スペーサ7Aは、離間距離L1に相当する所定幅を有する平板状部材でもよいが、図示するような、所定幅部が凸状に突出する凸型として、電極群1A、1B間の離間距離だけでなく、電池缶の壁面からの距離も規定する形状が好ましい。この際に、外装ケース11の底部と接する面に電解液の通り道となる凹部を設けると、電解液を速やかに浸透させることができて好ましい。   The spacer 7A may be a flat plate member having a predetermined width corresponding to the separation distance L1. However, as shown in the figure, the spacer 7A has a convex shape in which the predetermined width portion protrudes in a convex shape, and only the separation distance between the electrode groups 1A and 1B. The shape which prescribes | regulates the distance from the wall surface of a battery can is also preferable. At this time, it is preferable to provide a recess that serves as a passage for the electrolytic solution on the surface in contact with the bottom of the outer case 11 so that the electrolytic solution can be rapidly permeated.

また、電池缶10の四隅にも、スペーサ7Bを介装して、電極群1A、1Bを電池缶内の所定位置に規定することが好ましい。これらの、スペーサ7A、7Bは、いずれも、絶縁部材からなることが好ましい。さらに、絶縁性に加えて、伸縮性と可撓性を備える発泡材からなることがより好ましい。また、これらの、スペーサ7A、7Bが一体型であれば、振動などの外力によって、スペーサが個別に移動しないので好ましい。   Further, it is preferable that the electrode groups 1A and 1B are defined at predetermined positions in the battery can by interposing spacers 7B at the four corners of the battery can 10 as well. Each of these spacers 7A and 7B is preferably made of an insulating member. Furthermore, it is more preferable that it is made of a foam material having stretchability and flexibility in addition to insulation. In addition, it is preferable that these spacers 7A and 7B are of an integrated type because the spacers do not move individually by an external force such as vibration.

絶縁部材からなるスペーサ7Aを介して、電極群1A、1B同士を電気的に確実に絶縁しておくことができる。また、このスペーサ7Aと同じく絶縁部材からなるスペーサ7Bを介して、電極群1A、1Bと電池缶10との電気的な絶縁を良好に図ることができる。   The electrode groups 1A and 1B can be electrically insulated reliably through the spacer 7A made of an insulating member. Moreover, the electrical insulation between the electrode groups 1A and 1B and the battery can 10 can be satisfactorily achieved through the spacer 7B made of an insulating member in the same manner as the spacer 7A.

図3Bに示す二次電池RB3Bは、電池缶10内に、二個の電極群1A、1Bを備え、並設される電極群(蓄電要素)の間、および、各電極群と電池缶10の内壁との間に、所定厚みの絶縁部材からなるスペーサを配設している。また、スペーサとして、電池缶10を構成する外装ケース11の電極群載置面に、つまり、蓄電要素の下面側に、スペーサ8Aを設け、蓋部材12の下側に、つまり、蓄電要素の上面側に、スペーサ8Bを介装して、これらの上下のスペーサを介して蓄電要素を圧接状態に挟持している。   A secondary battery RB3B shown in FIG. 3B includes two electrode groups 1A and 1B in the battery can 10, and between the electrode groups (storage elements) arranged in parallel and between each electrode group and the battery can 10. A spacer made of an insulating member having a predetermined thickness is disposed between the inner wall and the inner wall. Further, as a spacer, a spacer 8A is provided on the electrode group mounting surface of the outer case 11 constituting the battery can 10, that is, on the lower surface side of the power storage element, and on the lower side of the lid member 12, that is, the upper surface of the power storage element. On the side, a power storage element is sandwiched between the upper and lower spacers with a spacer 8B interposed therebetween.

この構成であれば、それぞれの蓄電要素を個別に、また、電池缶に対して、確実に絶縁状態に維持することができる。また、絶縁部材からなるスペーサ8A、8Bを介して蓄電要素を押し付けることで、電極同士の密着距離を所定の密着距離に維持して、所定の電池容量を維持することができる。   With this configuration, each power storage element can be reliably maintained in an insulated state individually and with respect to the battery can. Further, by pressing the power storage element through the spacers 8A and 8B made of an insulating member, the contact distance between the electrodes can be maintained at a predetermined contact distance, and a predetermined battery capacity can be maintained.

スペーサ8Aは、それぞれの蓄電要素の底面部に相当する面積を有する板状でよい。スペーサ8Bは、それぞれの蓄電要素の上側に嵌まり込む断面コの字状の枠状とされ、隣り合う蓄電要素にそれぞれスペーサ8Bを装着したときに、隣り合う蓄電要素間の離間距離L1を呈する部材厚みであることが好ましい。   The spacer 8A may be a plate having an area corresponding to the bottom surface of each power storage element. The spacer 8B has a U-shaped frame shape that fits on the upper side of each power storage element, and exhibits a separation distance L1 between adjacent power storage elements when the spacer 8B is mounted on each adjacent power storage element. The member thickness is preferable.

スペーサ8Bを嵌め込む深さは、蓄電要素間に、電解液が流れる溝9Aを形成する程度であればよい。また、電池缶10の内壁との間にも、電解液が流れる溝9Bを形成する形状であることが好ましい。   The depth into which the spacer 8B is fitted may be enough to form the groove 9A through which the electrolytic solution flows between the electricity storage elements. Moreover, it is preferable that it is the shape which forms the groove | channel 9B into which electrolyte solution flows between the inner walls of the battery can 10. FIG.

この構成であれば、複数の蓄電要素を備えた二次電池であっても、それぞれの蓄電要素が有する電極群の内部まで電解液を速やかに浸透させることができて好ましい。   With this configuration, even a secondary battery including a plurality of power storage elements is preferable because the electrolyte solution can rapidly penetrate into the electrode group of each power storage element.

スペーサ7A、7B、8A、8Bは、蓄電要素間および電池缶との絶縁が取れ、蓄電要素を位置固定するだけの機械的強度および電解液に溶け出さない材質であればよく、例えば、PTFE(ポリテトラフルオロエチレン)などを用いることができる。   The spacers 7A, 7B, 8A, and 8B may be made of any material that can be insulated from the power storage elements and from the battery can, has a mechanical strength sufficient to fix the position of the power storage elements, and does not dissolve in the electrolyte. Polytetrafluoroethylene) and the like can be used.

また、スペーサ7A、7B、8A、8Bは、電解液浸透性を有する素材からなるものであってもよい。電解液浸透性を有する素材からなるものであれば、電極群1(1A、1B)への電解液の浸透性がさらに良好となる。   Further, the spacers 7A, 7B, 8A, 8B may be made of a material having electrolyte permeability. If it consists of a raw material which has electrolyte solution permeability, the permeability of the electrolyte solution to the electrode group 1 (1A, 1B) will become still better.

次に、本実施形態に係る二次電池であれば、電解液を速やかに浸透させることができることを確認した実験について図4A、図4Bを用いて説明する。   Next, an experiment for confirming that the electrolytic solution can be rapidly infiltrated with the secondary battery according to the present embodiment will be described with reference to FIGS. 4A and 4B.

図4Aに示す二次電池RB4は、本実施形態に係る二次電池の一実施例であって、長手方向×短手方向×深さ、がそれぞれ内寸で、266mm×230mm×50mmの大きさの電池缶内に、長辺(W)200.5mm×短辺(2H)110mmの矩形の電極群1A、1Bを離間距離L1として5mm離して二個設置した構成である。この電極群1A、1Bの作製手順について以下説明する。   A secondary battery RB4 shown in FIG. 4A is an example of the secondary battery according to the present embodiment, and has a longitudinal direction × short direction × depth, and has an internal dimension of 266 mm × 230 mm × 50 mm. In this battery can, two rectangular electrode groups 1A and 1B having a long side (W) of 200.5 mm and a short side (2H) of 110 mm are installed with a separation distance L1 of 5 mm apart. A procedure for manufacturing the electrode groups 1A and 1B will be described below.

(実施例)
[正極板の作製]
正極活物質としてのLiFePO4(90重量部)と、導電材としてのアセチレンブラック(5重量部)と、結着材としてのポリフッ化ビニリデン(5重量部)と、を混合し、溶媒としてのN−メチル−2−ピロリドンを適宜加えて各材料を分散させてスラリーを調製し、このスラリーを正極集電体としてのアルミニウム箔(厚み20μm)の両面上に均一に塗布して乾燥させた後、ロールプレスで圧縮し、所定のサイズで切断して板状の正極板2を作製した。
(Example)
[Preparation of positive electrode plate]
LiFePO 4 (90 parts by weight) as a positive electrode active material, acetylene black (5 parts by weight) as a conductive material, and polyvinylidene fluoride (5 parts by weight) as a binder are mixed, and N as a solvent is mixed. -Methyl-2-pyrrolidone was added as appropriate to disperse each material to prepare a slurry, and this slurry was uniformly applied on both sides of an aluminum foil (thickness 20 μm) as a positive electrode current collector and dried. It compressed with the roll press and cut | disconnected by predetermined size, and produced the plate-shaped positive electrode plate 2. FIG.

また、作製した正極板のサイズは、185mm×105mm(未塗工部15mm×105mm含む)で、厚みは230μmであって、この正極板2を32枚用いた。   Moreover, the size of the produced positive electrode plate was 185 mm × 105 mm (including an uncoated part 15 mm × 105 mm), the thickness was 230 μm, and 32 positive electrode plates 2 were used.

[負極板の作製]
負極活物質としての天然黒鉛(90重量部)と、結着材としてのポリフッ化ビニリデン(10重量部)と、を混合し、溶媒としてのN−メチル−2−ピロリドンを適宜加えて各材料を分散させてスラリーを調製し、このスラリーを負極集電体としての銅箔(厚み16μm)の両面上に均一に塗布して乾燥させた後、ロールプレスで圧縮し、所定のサイズで切断して板状の負極板3を作製した。
[Preparation of negative electrode plate]
Natural graphite (90 parts by weight) as a negative electrode active material and polyvinylidene fluoride (10 parts by weight) as a binder are mixed, and N-methyl-2-pyrrolidone as a solvent is appropriately added to each material. A slurry is prepared by dispersing, and the slurry is uniformly applied on both sides of a copper foil (thickness 16 μm) as a negative electrode current collector and dried, then compressed by a roll press, and cut into a predetermined size. A plate-like negative electrode plate 3 was produced.

また、作製した負極板のサイズは、187mm×110mm(未塗工部14mm×110mm含む)で、厚みは146μmであって、この負極板2を33枚用いた。   Moreover, the size of the produced negative electrode plate was 187 mm × 110 mm (including an uncoated part 14 mm × 110 mm), the thickness was 146 μm, and 33 negative electrode plates 2 were used.

また、セパレータとして、サイズ177mm×110mmで、厚み25μmのポリエチレンフィルムを64枚作製した。   In addition, as a separator, 64 polyethylene films having a size of 177 mm × 110 mm and a thickness of 25 μm were produced.

[非水電解液の作製]
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、30:70の容積比で混合した混合液(溶媒)に、LiPF6を1mol/L溶解して非水電解液を調整した。
[Preparation of non-aqueous electrolyte]
A non-aqueous electrolyte was prepared by dissolving 1 mol / L of LiPF 6 in a mixed solution (solvent) in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 30:70.

[電池缶の作製]
電池缶を構成する外装ケースおよび蓋部材の材料としては、SUS304の板を用いてそれぞれ作製した。また、そのいずれもが、厚み0.8mmで、長手方向×短手方向×深さ、がそれぞれ内寸で、266mm×230mm×50mmの電池缶サイズで、注液口を具備した角型リチウム二次電池を作製した。また、蓋部材を電極群の上面に密着させるために、平板状ではなく、缶の内部に嵌まり込む皿型状の蓋部材を用いる構成とした。皿型状の蓋部材を用いると、蓋部材を溶接する際に動くのを防止できて、溶接作業が容易となる。また、皿型状の落ち込み量を変更することで、収容する電極群の厚みの変化に容易に対応できる。さらに、皿型状であれば、蓋部材の強度、および電池缶の強度を向上することが可能となって好ましい。
[Production of battery cans]
As materials for the outer case and the lid member constituting the battery can, SUS304 plates were used, respectively. In addition, each of them has a thickness of 0.8 mm, a longitudinal direction × a lateral direction × depth, and an internal size of 266 mm × 230 mm × 50 mm battery can size. A secondary battery was produced. Moreover, in order to make a lid member closely_contact | adhere to the upper surface of an electrode group, it was set as the structure which uses the plate-shaped lid member which fits in the inside of a can instead of flat form. When the dish-shaped lid member is used, it is possible to prevent the lid member from moving when welding the lid member, and the welding operation is facilitated. Moreover, it can respond easily to the change of the thickness of the electrode group to accommodate by changing the amount of depressions of a dish shape. Furthermore, a dish shape is preferable because the strength of the lid member and the strength of the battery can can be improved.

[二次電池の組立]
正極板と負極板とをセパレータを介して交互に積層する。その際に、正極板に対して負極板が外側に位置するように、正極版32枚、負極板33枚、セパレータ64枚を積層し、この積層体をセパレータと同じ厚み25μmのポリエチレンフィルムを用いて巻回する構成として、電極群1A、1Bを構築した。
[Assembly of secondary battery]
A positive electrode plate and a negative electrode plate are alternately laminated via a separator. At that time, 32 positive electrode plates, 33 negative electrode plates, and 64 separators were laminated so that the negative electrode plate was located outside the positive electrode plate, and this laminate was used a polyethylene film having the same thickness of 25 μm as the separator. Electrode groups 1A and 1B were constructed as a configuration for winding them.

正負の極板間に介装するセパレータの大きさは前述したように、サイズ177mm×110mmであり、正極活物質領域(170mm×105mm)、負極活物質領域(173mm×110mm)よりも少し大きなサイズである。これにより、正極板および負極板に形成された活物質層を確実に被覆することができる。また、正極の集電体露出部および負極の集電体露出部に、集電部材(集電リード)の接続片を接続した。   As described above, the size of the separator interposed between the positive and negative electrode plates is 177 mm × 110 mm, which is slightly larger than the positive electrode active material region (170 mm × 105 mm) and the negative electrode active material region (173 mm × 110 mm). It is. Thereby, the active material layer formed on the positive electrode plate and the negative electrode plate can be reliably coated. Moreover, the connection piece of the current collection member (current collection lead) was connected to the current collector exposed portion of the positive electrode and the current collector exposed portion of the negative electrode.

集電リードを接続した電極群1A、1Bを外装ケースに収容し、集電リードと外部端子とをそれぞれ接続し、蓋部材を取り付けて密封し、注液孔から非水電解液を減圧注液した。注液後に、注液孔を封口して、二次電池RB4を作製した。   The electrode groups 1A and 1B to which the current collecting leads are connected are accommodated in the outer case, the current collecting leads and the external terminals are connected to each other, the lid members are attached and sealed, and the nonaqueous electrolytic solution is injected under reduced pressure from the liquid injection hole. did. After the injection, the injection hole was sealed to produce a secondary battery RB4.

図4Bに示す二次電池RB5は、同じ容量の電池缶内に、長辺(W)200.5mm×短辺(4H)220mmの矩形の電極群1ABを一個設置した構成の比較例である。なお、それぞれの電極群を構成する正極板、負極板、セパレータの材質や厚みや積層枚数は同じであり、積層厚みは同一としている。ただ、面積が二倍となっている点が異なる。   A secondary battery RB5 shown in FIG. 4B is a comparative example in which one rectangular electrode group 1AB having a long side (W) of 200.5 mm × short side (4H) of 220 mm is installed in a battery can having the same capacity. In addition, the material, thickness, and the number of stacked layers of the positive electrode plate, the negative electrode plate, and the separator constituting each electrode group are the same, and the stacked thickness is the same. The only difference is that the area is doubled.

上記したように、実施例として用いた蓄電要素は、長辺Wが200.5mmで短辺2Hが110mmの矩形とされる。そのために、本実施形態に係る蓄電要素は、長辺部と短辺部を有する矩形の活物質領域を備え、該活物質領域は、長辺部の端部から短辺の二等分線までの 距離H(最短距離)が100mm以下に形成されているといえる。   As described above, the power storage element used as an example is a rectangle having a long side W of 200.5 mm and a short side 2H of 110 mm. Therefore, the power storage element according to this embodiment includes a rectangular active material region having a long side portion and a short side portion, and the active material region extends from the end of the long side portion to the bisector of the short side. It can be said that the distance H (shortest distance) is 100 mm or less.

このように、同じサイズの電池缶に、大きな面積の蓄電部材を一個収容した比較例1(二次電池RB5に相当)と、半分の面積の蓄電部材を二個所定距離離間して設置した実施例1(二次電池RB4に相当)と、における電解液の注液時間を測定し比較した。その結果を表1に示す。   As described above, the comparative example 1 (corresponding to the secondary battery RB5) in which one large-area power storage member is accommodated in a battery can of the same size and two power storage members having a half area separated from each other by a predetermined distance are installed. The electrolyte solution injection time in Example 1 (corresponding to the secondary battery RB4) was measured and compared. The results are shown in Table 1.

Figure 2012142095
Figure 2012142095

表1に示すように、比較例1では電解液の注液時間は8時間(8H)掛かるが、本実施形態に係る実施例1では、3時間(3H)で注液できることが明らかとなった。全体の電極板の面積は同じであるが、二分割式とし、これらを同一平面上で所定距離離間して設置することで、注液時間を1/2以下にできることが判った。   As shown in Table 1, in Comparative Example 1, the time for injecting the electrolyte took 8 hours (8H), but in Example 1 according to the present embodiment, it was revealed that the liquid can be injected in 3 hours (3H). . Although the area of the entire electrode plate is the same, it was found that the liquid injection time can be reduced to ½ or less by using a two-split type and setting them apart by a predetermined distance on the same plane.

このように、短辺が220mmの蓄電要素では電解液の注液時間が長くなってしまうので、一個の蓄電要素の大きさを、長辺部の端部から短辺の二等分線までの距離(最短距離)を100mm以下とすることで、電極群の中央部に電解液が浸透する時間が長くなり過ぎることを抑制し、電極群の内部まで電解液を速やかに浸透させることができる。すなわち、電解液が浸透するのは活物質領域であるので、この活物質領域は、長辺部の端部から短辺の二等分線までの距離(最短距離)が100mm以下であることが好ましいといえる。   In this way, in the electricity storage element having a short side of 220 mm, the time for injecting the electrolyte solution becomes long. Therefore, the size of one electricity storage element is changed from the end of the long side to the bisector of the short side. By setting the distance (shortest distance) to 100 mm or less, it is possible to prevent the electrolyte solution from penetrating excessively into the central portion of the electrode group, and to rapidly infiltrate the electrolyte solution into the electrode group. That is, since the electrolyte solution penetrates into the active material region, the distance (shortest distance) from the end of the long side to the bisector of the short side is 100 mm or less. It can be said that it is preferable.

次に、外部端子に電圧検出線を接続した実施形態について図5を用いて説明する。   Next, an embodiment in which a voltage detection line is connected to an external terminal will be described with reference to FIG.

図5には、電極群1Aが備える外部端子6Aa、6Ab、および、電極群1Bが備える外部端子6Ba、6Bbにそれぞれ電圧検出線22(22A、22B)を接続した二次電池RB6を示している。またこれらの電圧検出線22は制御部21に一括に入力される。   FIG. 5 shows the secondary battery RB6 in which the voltage detection lines 22 (22A and 22B) are connected to the external terminals 6Aa and 6Ab included in the electrode group 1A and the external terminals 6Ba and 6Bb included in the electrode group 1B, respectively. . These voltage detection lines 22 are input to the control unit 21 at once.

制御部21は、外部端子6Aa、6Abに接続された電圧検出線22(22A)を介して電極群1Aの電圧を検知して、発電量(放電容量)および蓄電量(充電容量)を推定し、外部端子6Ba、6Bbに接続された電圧検出線22(22B)を介して電極群1Bの電圧を検知して、発電量(放電容量)および蓄電量(充電容量)を推定する。   The control unit 21 detects the voltage of the electrode group 1A via the voltage detection line 22 (22A) connected to the external terminals 6Aa and 6Ab, and estimates the power generation amount (discharge capacity) and the storage amount (charge capacity). The voltage of the electrode group 1B is detected via the voltage detection line 22 (22B) connected to the external terminals 6Ba and 6Bb, and the power generation amount (discharge capacity) and the storage amount (charge capacity) are estimated.

また、制御部21は、外部端子と外部機器(電力使用部26)とを電気的に接続する接続部24の切り替えを制御する機能を有する。また、接続部24は、接続回路23を介して制御部21と接続され、接続回路25を介して電力使用部26と接続されている。そのために、それぞれの電圧検出線22(22A、22B)を介して、検出した電圧を基に、それぞれの蓄電要素の電池容量を推定することができ、予め定める電池容量を下回る蓄電要素を電気的に切り離す制御を行うことができる。   In addition, the control unit 21 has a function of controlling switching of the connection unit 24 that electrically connects the external terminal and the external device (power use unit 26). The connection unit 24 is connected to the control unit 21 via the connection circuit 23 and is connected to the power use unit 26 via the connection circuit 25. Therefore, the battery capacity of each power storage element can be estimated based on the detected voltage via each voltage detection line 22 (22A, 22B). It is possible to perform control to be disconnected.

このような構成であれば、制御部21を介して、それぞれの蓄電要素が正常な電池容量を発揮しているか否かを判定可能となり、正常な蓄電要素のみを組み合わせて使用して、所定の電力を発揮する制御を行うことができる。また、そのために、複数の蓄電要素を一体に収容した構成の二次電池において、ある蓄電要素が劣化したり故障したりして、正常な電池容量を発揮しなくなったとしても、正常な電池容量を発揮しているその他の蓄電要素を用いて外部機器を使用することが可能であるため、使い勝手がよく利便性の高い二次電池となる。   With such a configuration, it becomes possible to determine whether or not each power storage element exhibits a normal battery capacity via the control unit 21, and only a normal power storage element is used in combination, Control that exerts electric power can be performed. In addition, for this reason, in a secondary battery having a configuration in which a plurality of power storage elements are accommodated integrally, even if a certain power storage element deteriorates or fails and does not exhibit normal battery capacity, the normal battery capacity Since it is possible to use an external device using other power storage elements exhibiting the above, the secondary battery is easy to use and highly convenient.

このように、一つの電池缶に複数の蓄電要素を収容した構成であっても、異常が発生した蓄電要素を検知すると速やかに切り離す制御を行って、その他の正常な蓄電要素を使用することできるので、電池缶の使用可能な期間を延ばすことができ、二次電池としての寿命が長くなる効果を発揮する。   In this way, even in a configuration in which a plurality of power storage elements are accommodated in one battery can, it is possible to use other normal power storage elements by performing control to quickly disconnect when an abnormal power storage element is detected. Therefore, the usable period of the battery can can be extended, and the effect of extending the life of the secondary battery is exhibited.

次に、一つの電池缶内に二個の蓄電要素を平面上に所定距離離間して収容し、それぞれに外部端子を設け、電圧検出線を用いて制御部に接続した本実施形態品(実施例A1)と、一つの電池缶内に二個の蓄電要素を上下に重ね合わせて、それぞれに外部端子を設け、電圧検出線を用いて制御部に接続した比較品(比較例B1)と、一つの電池缶内に二個の蓄電要素を平面上に所定距離離間して収容し、共通の外部端子を設け、電圧検出線を用いて制御部に接続した比較品(比較例B2)と、一つの電池缶内に一個の大型の蓄電要素を収容し、外部端子を電圧検出線を用いて制御部に接続した比較品(比較例B3)と、を用いて、電池容量の保持率を測定した実験について説明する。   Next, the present embodiment product in which two power storage elements are accommodated in a single battery can at a predetermined distance on a plane, each provided with an external terminal, and connected to a control unit using a voltage detection line (implemented) Example A1), a comparative product (Comparative Example B1) in which two storage elements are stacked one above the other in one battery can, each provided with an external terminal, and connected to the control unit using a voltage detection line, A comparative product (Comparative Example B2) in which two storage elements are accommodated in a single battery can at a predetermined distance apart on a plane, provided with a common external terminal, and connected to the control unit using a voltage detection line; Measurement of battery capacity retention using a comparative product (Comparative Example B3) in which one large power storage element is accommodated in one battery can and the external terminal is connected to the control unit using a voltage detection line The experiment that was performed will be described.

実験は、前述した二次電池RB4が備える電極群1A、1Bを用いて、実施例A1、比較例B1、比較例B2を作製し、これらが備える二個の蓄電要素の一方に、短絡要因素子となる金属片(直径1mm、長さ10mmのアルミ棒)を混入して充放電を繰り返し、電池容量の保持率を測定してサイクル特性を調べる異物混入試験である。ただし、比較例B1は、下部の蓄電要素に金属片を混入している。また、比較例B3は、前述した二次電池RB5が備える電極群1ABを用いた一個の大型の蓄電要素内に同じ金属片を混入して実験を行った。   In the experiment, Example A1, Comparative Example B1, and Comparative Example B2 were prepared using the electrode groups 1A and 1B included in the secondary battery RB4 described above, and one of the two power storage elements included in these was connected to a short-circuit factor element. This is a foreign matter mixing test in which a metal piece (aluminum rod having a diameter of 1 mm and a length of 10 mm) is mixed and charge / discharge is repeated, and the battery capacity retention rate is measured to examine cycle characteristics. However, in Comparative Example B1, metal pieces are mixed in the lower storage element. In Comparative Example B3, an experiment was performed in which the same metal piece was mixed in one large power storage element using the electrode group 1AB included in the secondary battery RB5.

図10Aは実施例A1に相当する二次電池を用いた制御システムの概要(平面図)を示し、図10Bに比較例B1に相当する二次電池を用いた制御システムの概要(断面図)を示し、図10Cに比較例B2に相当する二次電池を用いた制御システムの概要(平面図)を示し、図10Dに比較例B3に相当する二次電池を用いた制御システムの概要(平面図)を示す。また、図11A〜図11Cに電池容量の保持率を測定した実験の結果を示す。   FIG. 10A shows an outline (plan view) of a control system using a secondary battery corresponding to Example A1, and FIG. 10B shows an outline (cross-sectional view) of a control system using a secondary battery corresponding to Comparative Example B1. 10C shows an outline (plan view) of a control system using a secondary battery corresponding to Comparative Example B2, and FIG. 10D shows an outline (plan view) of a control system using a secondary battery corresponding to Comparative Example B3. ). Moreover, the result of the experiment which measured the retention rate of the battery capacity to FIG. 11A-FIG. 11C is shown.

図10Aに示す実施例A1は、一つの電池缶内に二個の蓄電要素(電極群1A、1B)を平面上に所定距離離間して収容し、それぞれに外部端子を設け、電圧検出線22を用いて制御部21に接続している。図10Bに示す比較例B1は、一つの電池缶内に二個の蓄電要素(電極群1A、1B)を上下二重ね合わせて収容し、それぞれに外部端子を設け、電圧検出線22を用いて制御部21に接続している。図10Cに示す比較例B2は、一つの電池缶内に二個の蓄電要素(電極群1A、1B)を平面上に所定距離離間して収容し、共通の外部端子を設け、電圧検出線22を用いて制御部21に接続している。また、図10Dに示す比較例B3は、一つの電池缶内に一個の蓄電要素(電極群1AB)を収容し、外部端子に接続する電圧検出線22を介して制御部21に接続している。   In Example A1 shown in FIG. 10A, two battery elements (electrode groups 1A, 1B) are accommodated in a single battery can at a predetermined distance from each other, external terminals are provided for each, and voltage detection line 22 is provided. It connects to the control part 21 using. In Comparative Example B1 shown in FIG. 10B, two power storage elements (electrode groups 1A, 1B) are accommodated in a single battery can in a superposed manner, and external terminals are provided for each of them, and a voltage detection line 22 is used. It is connected to the control unit 21. In Comparative Example B2 shown in FIG. 10C, two power storage elements (electrode groups 1A, 1B) are accommodated in a single battery can at a predetermined distance apart from each other, provided with a common external terminal, and voltage detection line 22 It connects to the control part 21 using. Further, in Comparative Example B3 shown in FIG. 10D, one power storage element (electrode group 1AB) is accommodated in one battery can and connected to the control unit 21 via the voltage detection line 22 connected to the external terminal. .

それぞれの外部端子は、図5に記載した接続部24と接続回路25を介して充放電装置(図5の電力使用部に替えて設置される)に接続されており、充放電装置は接続回路23を介して制御部21に接続されている。そのために、接続回路25が充放電回路となり、この充放電装置と制御部21を介して充放電サイクルを繰り返しながら電池容量を測定し、短絡要因素子が混入された蓄電要素が、予め定める所定の容量保持率を下回ると、その蓄電要素を切り離す制御を行った。また、所定の容量保持率は、60%、70%、80%の三種類とした。   Each external terminal is connected to a charging / discharging device (installed in place of the power usage unit in FIG. 5) via the connecting portion 24 and the connecting circuit 25 shown in FIG. 5, and the charging / discharging device is connected to the connecting circuit. It is connected to the control unit 21 via 23. For this purpose, the connection circuit 25 becomes a charge / discharge circuit, and the battery capacity is measured while repeating the charge / discharge cycle via the charge / discharge device and the control unit 21, and the storage element mixed with the short-circuiting factor element is a predetermined predetermined value. When the capacity retention rate was exceeded, control was performed to disconnect the power storage element. Further, the predetermined capacity retention rates were set to three types of 60%, 70%, and 80%.

図11Aは、容量保持率80%を下回ると切り離す制御を行った実験結果であって、実施例A1は、容量保持率が80%以下となって異常と判断された一方の蓄電要素を切り離しても、その後1000サイクルまで45%の容量保持率を維持していることが判った。しかし、比較例B2、B3は、外部端子が1セットしかないため、蓄電システム全体が切断されたことを示している。   FIG. 11A shows the result of an experiment in which control is performed when the capacity retention rate falls below 80%. In Example A1, one storage element that is determined to be abnormal when the capacity retention rate is 80% or less is separated. After that, it was found that the capacity retention rate of 45% was maintained until 1000 cycles. However, Comparative Examples B2 and B3 indicate that the entire power storage system is disconnected because there is only one set of external terminals.

比較例B1は、600サイクル当りまでは、容量保持率40%を維持しているが、その後徐々に低下している。これは、二個の蓄電要素を重ね合わせた構成であるので、蓄電要素が厚い状態に相当して、上部の電解液が不足気味になる等して、サイクル特性が悪化しているものと思われる。   In Comparative Example B1, the capacity retention rate of 40% is maintained until about 600 cycles, but then gradually decreases. This is a configuration in which two power storage elements are overlapped. Therefore, it seems that the cycle characteristics are deteriorated due to the lack of the upper electrolyte, corresponding to the state where the power storage elements are thick. It is.

図11Bは、容量保持率70%を下回ると切り離す制御を行った実験結果であるが、この図からも明らかなように、実施例A1は、蓄電システムを長期間使用可能であることを示している。また、比較例B1は、ある程度の期間は使用可能であるが、実施例A1と比較して徐々に電池容量が低下しているのが判る。   FIG. 11B shows the result of an experiment in which the control is performed when the capacity retention rate falls below 70%. As is clear from this figure, Example A1 shows that the power storage system can be used for a long time. Yes. Moreover, although Comparative Example B1 can be used for a certain period of time, it can be seen that the battery capacity is gradually reduced as compared with Example A1.

図11Cは、容量保持率60%を下回ると切り離す制御を行った実験結果である。容量保持率が60%に低下するまで充放電を繰り返すと、異物を混入していない蓄電要素も徐々に劣化しているため、実施例A1、比較例B1でも容量保持率が低下傾向にある。しかし、実施例A1が長寿命化を図れることは明らかである。   FIG. 11C shows the result of an experiment in which separation control is performed when the capacity retention ratio falls below 60%. When charging / discharging is repeated until the capacity retention rate is reduced to 60%, the power storage elements not mixed with foreign matters are gradually deteriorated, and therefore, the capacity retention rate tends to decrease also in Example A1 and Comparative Example B1. However, it is clear that Example A1 can extend the life.

図11A〜図11Cに示す実験結果から、複数の蓄電要素を同一平面上に所定間隔離間して絶縁状態で並設し、それぞれの蓄電要素に対応して外部端子を設ける本実施形態に係る構成の二次電池は、長時間使用可能な蓄電システムを構築できることが判った。   From the experimental results shown in FIG. 11A to FIG. 11C, a configuration according to this embodiment in which a plurality of power storage elements are arranged in parallel in an insulated state at a predetermined interval on the same plane, and external terminals are provided corresponding to the respective power storage elements. The secondary battery was found to be able to build a power storage system that can be used for a long time.

また、実施例A1と比較例B3とで電解液注液後のインピーダンス測定による電解液浸み込み確認テストについて図12を用いて説明する。   Moreover, the electrolyte penetration check test by impedance measurement after electrolyte solution injection in Example A1 and Comparative Example B3 will be described with reference to FIG.

蓄電要素の電極間に電解液が十分浸透すると、電極間のインピーダンスが低下するので、外部端子を介して蓄電要素のインピーダンスを測定することで、蓄電要素の内部まで電解液が浸透しているか否かが判定できる。   If the electrolyte sufficiently penetrates between the electrodes of the storage element, the impedance between the electrodes decreases, so whether the electrolyte has penetrated to the inside of the storage element by measuring the impedance of the storage element via the external terminal Can be determined.

図12は、横軸に注液時間(比較例3で目標インピーダンスに到達するまでの注液時間を100%としている)を示し、縦軸に測定されたインピーダンス(単位mΩ)を示している。また、比較例3で測定したインピーダンスがほぼ一定となった値を目標インピーダンスと定め、この目標インピーダンスに到達した時間を実施例1の注液時間とした。   In FIG. 12, the horizontal axis indicates the injection time (the injection time until reaching the target impedance in Comparative Example 3 is 100%), and the vertical axis indicates the measured impedance (unit mΩ). Further, the value at which the impedance measured in Comparative Example 3 was substantially constant was determined as the target impedance, and the time when the target impedance was reached was defined as the liquid injection time of Example 1.

図中に示す比較例B3のインピーダンス曲線IP3は、時間T3で目標インピーダンスに到達している。すなわち時間T3が比較例B3の注液時間となる。実施例A1のインピーダンス曲線IP1は、時間T1で目標インピーダンスに到達している。すなわち時間T1が実施例A1の注液時間であって、時間T3の略40%程度の時間(前述した1/2以下に相当)であることが判る。   The impedance curve IP3 of Comparative Example B3 shown in the drawing reaches the target impedance at time T3. That is, the time T3 is the injection time of the comparative example B3. The impedance curve IP1 of Example A1 reaches the target impedance at time T1. That is, it can be seen that the time T1 is the injection time of Example A1, and is approximately 40% of the time T3 (corresponding to 1/2 or less).

このように、電池缶を構成する外装ケースの同一平面上に、所定サイズの複数の蓄電要素を所定間隔離間して並設する本実施形態によれば、電解液の注液時間を短縮可能であることが明らかとなった。   As described above, according to the present embodiment in which a plurality of power storage elements of a predetermined size are arranged side by side on the same plane of the outer case constituting the battery can, the time for injecting the electrolyte can be shortened. It became clear that there was.

上記した実施例A1で採用した本実施形態に係る二次電池の制御システムは、二次電池が備える複数の蓄電要素にそれぞれ設ける外部端子と外部機器とを電気的に接続する接続部24と、該接続部24の切り替えの制御と、外部端子に接続する電圧検出線22を介して蓄電要素の出力電圧を認識して当該蓄電要素の異常を検知する機能を有する制御部21と、を設け、制御部21が異常を検知したときに、当該蓄電要素の接続部24を電気的に切り離すようにしている。   The secondary battery control system according to the present embodiment employed in Example A1 described above includes a connection unit 24 that electrically connects an external terminal and an external device provided in each of a plurality of power storage elements included in the secondary battery, A control unit 21 having a function of controlling the switching of the connection unit 24 and recognizing the output voltage of the storage element via the voltage detection line 22 connected to the external terminal and detecting an abnormality of the storage element; When the control unit 21 detects an abnormality, the connection unit 24 of the power storage element is electrically disconnected.

このような制御システムであれば、制御部21を介して、各蓄電要素の正常・異常を確認することができ、異常と確認された蓄電要素を切り離すことで、安定した電池容量を得る制御を行うことが可能となって、複数の蓄電要素を効率よく使用可能とする二次電池の制御システムを得ることができる。   With such a control system, normality / abnormality of each power storage element can be confirmed via the control unit 21, and control for obtaining a stable battery capacity can be performed by disconnecting the power storage element confirmed to be abnormal. Therefore, it is possible to obtain a secondary battery control system that can efficiently use a plurality of power storage elements.

次に、図13を用いて、本実施形態に係る二次電池のリースシステムについて説明する。図13に示すように、制御部21に通信部27を接続している。通信部27はインターネット網28と通信可能な通信部であるので、制御部21の検知情報をインターネット網28を介して予め定める通信先(使用者29および管理会社30)に通知可能となる。   Next, the lease system for the secondary battery according to this embodiment will be described with reference to FIG. As shown in FIG. 13, a communication unit 27 is connected to the control unit 21. Since the communication unit 27 is a communication unit capable of communicating with the Internet network 28, the detection information of the control unit 21 can be notified to a predetermined communication destination (user 29 and management company 30) via the Internet network 28.

使用者29は二次電池管理会社30とこの二次電池のリース契約を結んでおり、二次電池管理情報として、物品毎の型番、リース費用、リース満了日などの基本情報の他に、充放電履歴情報を蓄積している。そのために、制御部21が、規定の容量以下となった蓄電要素を検知したときに、その旨(二次電池の異常情報)を、使用者29、および管理会社30に直ちに伝えることができる。また、二次電池管理会社30は、当該異常情報以外に二次電池管理情報を制御部21から受け、リース中の二次電池を交換するまでの間に使用可能な電池容量および充放電回数(二次電池利用日数)をユーザーに説明でき、当該物品の交換などの手配を行うことができる。   The user 29 has a secondary battery lease contract with the secondary battery management company 30. As secondary battery management information, in addition to basic information such as model number, lease cost, and lease expiration date for each article, the user 29 Discharge history information is accumulated. Therefore, when the control unit 21 detects a storage element that has become below a specified capacity, it can immediately notify the user 29 and the management company 30 of that fact (secondary battery abnormality information). In addition, the secondary battery management company 30 receives secondary battery management information from the control unit 21 in addition to the abnormality information, and the usable battery capacity and the number of charge / discharge cycles before the secondary battery being leased is replaced ( Secondary battery usage days) can be explained to the user and arrangements such as replacement of the article can be made.

このように、二次電池が備える複数の蓄電要素にそれぞれ設ける外部端子と外部機器とを電気的に接続する接続部と、該接続部の切り替えの制御と、前記外部端子に接続する電圧検出線を介して前記蓄電要素の出力電圧を認識して当該蓄電要素の異常を検知する機能を有する制御部21と、該制御部21に接続されインターネット網28と通信可能な通信部27とを設け、制御部21が異常を検知したときに、通信部27を介して、当該二次電池の使用者29にその異常情報を通知すると同時に、インターネット網28を経由して当該二次電池の管理会社30にその異常情報および管理情報を通知するリースシステムであれば、二次電池に不具合が生じて規定容量以下となった情報を使用者(ユーザー)に伝えると同時に、二次電池管理会社に伝えることで、管理が容易となって、使い勝手がよく利便性の高い二次電池のリースシステムを構築することができる。   As described above, the connection part that electrically connects the external terminal and the external device provided in each of the plurality of power storage elements included in the secondary battery, the switching control of the connection part, and the voltage detection line that is connected to the external terminal. A control unit 21 having a function of recognizing the output voltage of the power storage element via the connection and detecting an abnormality of the power storage element, and a communication unit 27 connected to the control unit 21 and capable of communicating with the Internet network 28, When the control unit 21 detects an abnormality, the abnormality information is notified to the user 29 of the secondary battery via the communication unit 27, and at the same time, the management company 30 of the secondary battery via the Internet network 28. If the leasing system notifies the abnormal information and management information to the secondary battery management company at the same time that the secondary battery has failed and the information below the specified capacity is reported to the user (user) It is to tell can manage it becomes easy to construct a leasing system usability often highly convenient rechargeable battery.

上記したように、本発明に係る二次電池によれば、外装ケースの同一平面上に、複数の蓄電要素を所定間隔離間して絶縁状態で並設し、それぞれの蓄電要素に対応する正負の外部端子をそれぞれ設けた構成としたので、複数の蓄電要素を備えた二次電池であっても、製造コストを低減し、それぞれの蓄電要素が有する電極群の内部まで電解液を速やかに浸透させることができ、使い勝手がよく利便性の高い二次電池を得ることができる。   As described above, according to the secondary battery of the present invention, on the same plane of the outer case, a plurality of power storage elements are arranged in parallel in an insulated state with a predetermined interval therebetween, and positive and negative corresponding to each power storage element Since each of the external terminals is provided, even in the case of a secondary battery having a plurality of power storage elements, the manufacturing cost is reduced and the electrolyte quickly penetrates into the electrode group of each power storage element. Therefore, it is possible to obtain a convenient and convenient secondary battery.

また、複数の蓄電要素を同一の電池缶に収容するので、電池缶の製造コストを低減でき、比較的小型に分割される蓄電要素のハンドリング性が良好となって短絡などの弊害が生じずに歩留まりが悪化しないことと併せて製造コストを低減することができる。   In addition, since a plurality of power storage elements are accommodated in the same battery can, the manufacturing cost of the battery can can be reduced, the handling performance of the power storage elements divided into relatively small sizes is improved, and there is no adverse effect such as a short circuit. The manufacturing cost can be reduced together with the fact that the yield does not deteriorate.

また、本発明に係る二次電池の制御システムによれば、外部端子に接続した電圧検出線を介してそれぞれの蓄電要素の異常を検知して、電気的に切り離す制御を行うことで、複数の蓄電要素を効率よく使用可能とする二次電池の制御システムを得ることができる。   Further, according to the control system for a secondary battery according to the present invention, a plurality of power storage elements are detected by detecting an abnormality of each power storage element via a voltage detection line connected to an external terminal and electrically disconnecting the plurality of storage elements. It is possible to obtain a control system for a secondary battery that can efficiently use the power storage element.

また、本発明に係る二次電池のリースシステムによれば、制御部をインターネット網と通信可能な通信部に接続することで、二次電池に不具合が生じて規定容量以下となった情報および二次電池管理情報を二次電池管理会社に伝えることで、管理することが容易となり、使い勝手がよく利便性の高い二次電池のリースシステムを構築することができる。   In addition, according to the secondary battery leasing system of the present invention, by connecting the control unit to a communication unit capable of communicating with the Internet network, the secondary battery malfunctions and becomes less than the specified capacity. By transmitting the secondary battery management information to the secondary battery management company, it becomes easy to manage, and it is possible to construct a secondary battery leasing system that is convenient and convenient.

そのために、本発明に係る二次電池、その制御システム、そのリースシステムは、大型化および性能安定化が求められる大容量の蓄電池、その制御システム、およびそのリースシステムに好適に利用可能となる。   Therefore, the secondary battery, its control system, and its leasing system according to the present invention can be suitably used for a large-capacity storage battery, its control system, and its leasing system that are required to be large and stable in performance.

1(1A、1B) 電極群(蓄電要素)
2 正極板
3 負極板
4 セパレータ
5 集電リード
6Aa〜6Bb 外部端子
7A、7B スペーサ
8A、8B スペーサ
10 電池缶
11 外装ケース
12 蓋部材
21 制御部
22(22A、22B) 電圧検出線
24 接続部
27 通信部
28 インターネット網
29 二次電池使用者(ユーザー)
30 二次電池管理会社
L1 離間距離(所定間隔)
RB、RB1〜RB6 二次電池
1 (1A, 1B) Electrode group (electric storage element)
2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Current collecting lead 6Aa-6Bb External terminal 7A, 7B Spacer 8A, 8B Spacer 10 Battery can 11 Exterior case 12 Lid member 21 Control unit 22 (22A, 22B) Voltage detection line 24 Connection unit 27 Communication unit 28 Internet network 29 Secondary battery user (user)
30 Secondary battery management company L1 Separation distance (predetermined interval)
RB, RB1-RB6 secondary battery

Claims (10)

電池缶内に、正極板と負極板とをセパレータを介して複数層積層した電極群を具備する蓄電要素を、複数一体に収容し電解液を充填した二次電池であって、
前記電池缶を構成する外装ケースの同一平面上に、複数の前記蓄電要素を所定間隔離間して並設し、それぞれの前記蓄電要素に対応する正負の外部端子をそれぞれ設けたことを特徴とする二次電池。
In a battery can, a secondary battery in which a plurality of power storage elements including an electrode group in which a plurality of positive electrode plates and negative electrode plates are laminated via a separator is contained and filled with an electrolyte solution,
A plurality of power storage elements are arranged side by side at a predetermined interval on the same plane of an outer case constituting the battery can, and positive and negative external terminals corresponding to the power storage elements are provided, respectively. Secondary battery.
前記所定間隔は、前記電解液の流動性を阻害しない程度の幅とされることを特徴とする請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the predetermined interval has a width that does not hinder the fluidity of the electrolytic solution. 並設される前記蓄電要素同士が電気的に絶縁されていることを特徴とする請求項1または2に記載の二次電池。 The secondary battery according to claim 1, wherein the storage elements arranged in parallel are electrically insulated from each other. 並設される前記蓄電要素同士の間に、所定幅の絶縁部材からなるスペーサを配設したことを特徴とする請求項1から3のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 3, wherein a spacer made of an insulating member having a predetermined width is disposed between the storage elements arranged in parallel. 並設される前記蓄電要素同士の間、および、各蓄電要素と前記電池缶の内壁との間に、所定厚みの絶縁部材からなるスペーサを配設したことを特徴とする請求項1から3のいずれかに記載の二次電池。 The spacer which consists of an insulation member of predetermined thickness was arrange | positioned between the said electrical storage elements arranged in parallel and between each electrical storage element and the inner wall of the said battery can. A secondary battery according to any one of the above. 前記蓄電要素の上面側と下面側とに前記スペーサを介装し、これらの上下のスペーサを介して前記蓄電要素を圧接状態に挟持することを特徴とする請求項5に記載の二次電池。 The secondary battery according to claim 5, wherein the spacer is interposed between an upper surface side and a lower surface side of the power storage element, and the power storage element is sandwiched between the upper and lower spacers. 前記蓄電要素は、長辺部と短辺部を有する矩形の活物質領域を備え、該活物質領域は、前記長辺部の端部から前記短辺の二等分線までの距離が100mm以下に形成されていることを特徴とする請求項1から6のいずれかに記載の二次電池。 The power storage element includes a rectangular active material region having a long side portion and a short side portion, and the active material region has a distance from an end portion of the long side portion to a bisector of the short side of 100 mm or less. The secondary battery according to claim 1, wherein the secondary battery is formed as described above. 前記外部端子に電圧検出線を接続し、それぞれの前記蓄電要素の電池容量を確認可能としたことを特徴とする請求項1から7のいずれかに記載の二次電池。 The secondary battery according to claim 1, wherein a voltage detection line is connected to the external terminal so that the battery capacity of each of the storage elements can be confirmed. 請求項1から8のいずれかに記載された二次電池の制御システムであって、前記二次電池が備える複数の蓄電要素にそれぞれ設ける外部端子と外部機器とを電気的に接続する接続部と、該接続部の切り替えの制御と、前記外部端子に接続する電圧検出線を介して前記蓄電要素の出力電圧を認識して当該蓄電要素の異常を検知する機能を有する制御部と、を設け、前記制御部が異常を検知したときに、当該蓄電要素の接続部を電気的に切り離すことを特徴とする二次電池の制御システム。 The secondary battery control system according to any one of claims 1 to 8, wherein an external terminal provided in each of a plurality of power storage elements included in the secondary battery is electrically connected to an external device; A control unit having a function of controlling the switching of the connecting unit and detecting an abnormality of the power storage element by recognizing an output voltage of the power storage element via a voltage detection line connected to the external terminal; A control system for a secondary battery, wherein when the control unit detects an abnormality, the connection portion of the power storage element is electrically disconnected. 請求項1から8のいずれかに記載された二次電池のリースシステムであって、前記二次電池が備える複数の蓄電要素にそれぞれ設ける外部端子と外部機器とを電気的に接続する接続部と、該接続部の切り替えの制御と、前記外部端子に接続する電圧検出線を介して前記蓄電要素の出力電圧を認識して当該蓄電要素の異常を検知する機能を有する制御部と、該接続部に接続されインターネット網と通信可能とされる通信部とを設け、前記制御部が異常を検知したときに、前記通信部を介して、当該二次電池の使用者にその異常情報を通知すると同時に、前記インターネット網を経由して当該二次電池の管理会社にその異常情報および管理情報を通知することを特徴とする二次電池のリースシステム。 The lease system for a secondary battery according to any one of claims 1 to 8, wherein an external terminal provided in each of a plurality of power storage elements included in the secondary battery is electrically connected to an external device; A control unit having a function of detecting switching of the connection unit, and detecting an output voltage of the power storage element through a voltage detection line connected to the external terminal to detect abnormality of the power storage element, and the connection unit And a communication unit that is communicable with the Internet network, and when the control unit detects an abnormality, simultaneously notifies the user of the secondary battery of the abnormality information via the communication unit. A secondary battery leasing system that notifies the secondary battery management company of the abnormality information and management information via the Internet network.
JP2010292060A 2010-12-28 2010-12-28 Secondary battery, secondary battery control system, secondary battery leasing system Expired - Fee Related JP5709517B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010292060A JP5709517B2 (en) 2010-12-28 2010-12-28 Secondary battery, secondary battery control system, secondary battery leasing system
PCT/JP2011/080100 WO2012090948A1 (en) 2010-12-28 2011-12-26 Rechargeable battery, rechargeable battery control system, and rechargeable battery leasing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010292060A JP5709517B2 (en) 2010-12-28 2010-12-28 Secondary battery, secondary battery control system, secondary battery leasing system

Publications (2)

Publication Number Publication Date
JP2012142095A true JP2012142095A (en) 2012-07-26
JP5709517B2 JP5709517B2 (en) 2015-04-30

Family

ID=46383048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010292060A Expired - Fee Related JP5709517B2 (en) 2010-12-28 2010-12-28 Secondary battery, secondary battery control system, secondary battery leasing system

Country Status (2)

Country Link
JP (1) JP5709517B2 (en)
WO (1) WO2012090948A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032873A (en) * 2012-08-03 2014-02-20 Sharp Corp Secondary battery
JP2018530133A (en) * 2015-10-22 2018-10-11 エルジー・ケム・リミテッド Pouch-type battery cell including unit electrode in which a plurality of electrode tabs are formed
JP2022513743A (en) * 2018-12-24 2022-02-09 アイ テン Battery manufacturing method and battery obtained by the method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100328A (en) * 2000-09-21 2002-04-05 Denso Corp Battery
JP2009199825A (en) * 2008-02-20 2009-09-03 Sumitomo Chemical Co Ltd Device with electrode group
JP2010135170A (en) * 2008-12-04 2010-06-17 Hitachi Vehicle Energy Ltd Lithium secondary battery, secondary battery module, and secondary battery pack

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5451315B2 (en) * 2009-10-28 2014-03-26 Necエナジーデバイス株式会社 Assembled battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100328A (en) * 2000-09-21 2002-04-05 Denso Corp Battery
JP2009199825A (en) * 2008-02-20 2009-09-03 Sumitomo Chemical Co Ltd Device with electrode group
JP2010135170A (en) * 2008-12-04 2010-06-17 Hitachi Vehicle Energy Ltd Lithium secondary battery, secondary battery module, and secondary battery pack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032873A (en) * 2012-08-03 2014-02-20 Sharp Corp Secondary battery
JP2018530133A (en) * 2015-10-22 2018-10-11 エルジー・ケム・リミテッド Pouch-type battery cell including unit electrode in which a plurality of electrode tabs are formed
US10784490B2 (en) 2015-10-22 2020-09-22 Lg Chem, Ltd. Pouch type of battery cell having unit electrode where a plurality of electrode tabs are formed
JP2022513743A (en) * 2018-12-24 2022-02-09 アイ テン Battery manufacturing method and battery obtained by the method

Also Published As

Publication number Publication date
JP5709517B2 (en) 2015-04-30
WO2012090948A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
KR101776885B1 (en) Prismatic Battery Cell Having Two or More Case Members
US10347906B2 (en) Secondary battery, battery pack, and vehicle
CN102810651B (en) Secondary battery and battery pack
CN102646844B (en) Rechargeable battery
KR101804707B1 (en) Battery module, battery pack and vehicle
CN102456856B (en) Secondary battery and assembled battery
WO2006118279A1 (en) Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
JPWO2014034708A1 (en) Electrode plate and secondary battery
KR101617423B1 (en) Hybrid Electrode Assembly of Stair-like Structure
JP2012114066A (en) Secondary battery
KR20170045564A (en) Battery Cell Comprising Inner Surface Coated with Electrical Insulating Material
KR102101905B1 (en) Battery Pack Having Multi-Stage Battery Modules
KR101707335B1 (en) Nonaqueous electrolyte secondary battery
JP5937969B2 (en) Non-aqueous secondary battery
JP5733915B2 (en) Lithium ion secondary battery
JP5603649B2 (en) Secondary battery and solar power generation system, wind power generation system, and vehicle equipped with the secondary battery
JP2013033688A (en) Secondary battery
JP5798050B2 (en) Secondary battery, storage battery system using the secondary battery, and maintenance method
JP6113972B2 (en) Secondary battery
KR101794939B1 (en) Battery Cell Comprising Electrode Assemblies of Different Size and Method for Preparing the Same
JP5709517B2 (en) Secondary battery, secondary battery control system, secondary battery leasing system
KR20160074209A (en) Can Type Curved Battery and Method for Manufacturing the Same
US20220223982A1 (en) Electrochemical device and electronic device containing the same
JP2013033687A (en) Storage battery module
KR20180065096A (en) Battery Module Comprising Cell Frames of Standardized Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R150 Certificate of patent or registration of utility model

Ref document number: 5709517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees