JP2012140926A - Exhaust heat exchange apparatus - Google Patents

Exhaust heat exchange apparatus Download PDF

Info

Publication number
JP2012140926A
JP2012140926A JP2011051032A JP2011051032A JP2012140926A JP 2012140926 A JP2012140926 A JP 2012140926A JP 2011051032 A JP2011051032 A JP 2011051032A JP 2011051032 A JP2011051032 A JP 2011051032A JP 2012140926 A JP2012140926 A JP 2012140926A
Authority
JP
Japan
Prior art keywords
passage
heat exchange
flow rate
exhaust
tubular member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011051032A
Other languages
Japanese (ja)
Other versions
JP5673228B2 (en
Inventor
Toru Fukami
徹 深見
Katsuya Mogi
克也 茂木
Hideaki Mizuno
秀昭 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011051032A priority Critical patent/JP5673228B2/en
Publication of JP2012140926A publication Critical patent/JP2012140926A/en
Application granted granted Critical
Publication of JP5673228B2 publication Critical patent/JP5673228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately adjusted a heat exchange amount according to an exhaust gas flow rate in spite of the simple configuration in which a movable part such as a valve member is not used.SOLUTION: An exhaust heat exchange apparatus 10 is configured so that an exhaust gas flows branched into a heat exchange passage 15 and a bypass passage 14. A cooling water passage 16 in which cooling water for heat exchange flows is disposed in the surrounding of the heat exchange passage 15. The bypass passage 14 is disposed inside the heat exchange passage 15 so as not to be adjacent to the cooling water passage 16. In a low and medium output region where the exhaust gas flow rate is low, excessive heat exchange is suppressed since the exhaust gas flows in the bypass passage 14 at a fixed flow rate, and in a high output region where the exhaust gas flow rate is high, the flow rate in the bypass passage 14 is restricted by a throttling section 40, and the exhaust temperature is decreased by the promotion of the heat exchange.

Description

本発明は、例えば車両用内燃機関の排気系に設けられ、排気ガスと冷媒(冷却水)との間で熱交換を行う排気熱交換装置に関する。   The present invention relates to an exhaust heat exchange device that is provided, for example, in an exhaust system of an internal combustion engine for a vehicle and performs heat exchange between an exhaust gas and a refrigerant (cooling water).

特許文献1には、排気熱を回収して、暖房や暖機時間の短縮を図る技術が記載されている。このものでは、排気ガスと熱交換用の冷却水(冷媒)との間で熱交換が行われるように、排気ガスが流れる排気通路として、冷却水が流れる冷却水通路に近接して配置された熱交換通路と、この冷却水通路を迂回するように配置されたバイパス通路と、を設け、排気ガスの流量に応じて両通路を切り換えている。つまり、バイパス通路を開閉する第1弁部材と、熱交換通路を開閉する第2弁部材と、を一体的に回動するように連結し、第1弁部材がバイパス通路を開放するのに伴い第2弁部材が熱交換通路を閉塞するようにしている。   Patent Document 1 describes a technique for recovering exhaust heat to shorten heating and warm-up time. In this configuration, the exhaust passage through which the exhaust gas flows is disposed close to the cooling water passage through which the cooling water flows so that heat exchange is performed between the exhaust gas and the cooling water (refrigerant) for heat exchange. A heat exchange passage and a bypass passage arranged to bypass the cooling water passage are provided, and both passages are switched according to the flow rate of the exhaust gas. That is, the first valve member that opens and closes the bypass passage and the second valve member that opens and closes the heat exchange passage are connected so as to rotate integrally, and as the first valve member opens the bypass passage. The second valve member closes the heat exchange passage.

特開2007−247638号公報JP 2007-247638 A

しかしながら、上記特許文献1のものでは、弁部材が必要であるために構成が複雑である。また、弁部材及びこの弁部材を回転可能に支持する支持機構などの可動部品が、常に高温な排気ガスに晒されるために、これら可動部品の耐久性・信頼性の確保が非常に困難である。更に、排気ガスの流量が多くなる高出力域では、積極的に熱交換を行って排気熱を回収し、排気温度、ひいては下流側に配置された触媒の温度を低下させることが望ましいが、この高出力域よりも排気ガスの流量が少ない中出力域では、熱交換が過剰に行われて冷媒が過熱すると、ラジエータなどの冷却系部品の過熱(オーバーヒート)を招くおそれがある。   However, in the thing of the said patent document 1, since a valve member is required, a structure is complicated. In addition, since movable parts such as a valve member and a support mechanism that rotatably supports the valve member are always exposed to high-temperature exhaust gas, it is very difficult to ensure the durability and reliability of these movable parts. . Furthermore, in a high output region where the exhaust gas flow rate increases, it is desirable to actively exchange heat to recover the exhaust heat, thereby lowering the exhaust temperature and thus the temperature of the catalyst disposed downstream, In the medium output range where the exhaust gas flow rate is lower than in the high output range, if the heat exchange is excessively performed and the refrigerant is overheated, there is a risk of overheating (overheating) of cooling system components such as a radiator.

本発明は、このような事情に鑑みてなされたものである。すなわち本発明に係る熱交換装置は、排気通路内を流れる排気ガスが、熱交換通路とバイパス通路とに分岐して流れるように構成されている。上記熱交換通路が、熱交換用の冷媒との間で熱交換が行われるように、上記冷媒に近接して配置される一方、上記バイパス通路が上記熱交換通路を迂回するように配置されている。そして、排気ガスの流量が多いとき、つまり、ある一定の流量を超えるときに、上記バイパス通路へ流入する排気ガスの流量が一定となるように、上記熱交換通路とバイパス通路とを含めた排気通路の通路形状が設定されている。   The present invention has been made in view of such circumstances. That is, the heat exchange device according to the present invention is configured such that the exhaust gas flowing in the exhaust passage flows in a branched manner into the heat exchange passage and the bypass passage. The heat exchange passage is arranged close to the refrigerant so that heat exchange is performed with the heat exchange refrigerant, while the bypass passage is arranged so as to bypass the heat exchange passage. Yes. When the exhaust gas flow rate is high, that is, when the exhaust gas flow rate exceeds a certain flow rate, the exhaust gas including the heat exchange passage and the bypass passage so that the flow rate of the exhaust gas flowing into the bypass passage is constant. The passage shape of the passage is set.

このような本発明によれば、低・中出力域では、排気ガスが所定の比率で熱交換通路とバイパス通路とに分配されることから、冷媒との過剰な熱交換・熱回収を防止し、ラジエータなどの冷却系部品の過熱を回避することができる。このとき、熱交換通路側には総流量に対して一定の流量比率の排気ガスが流れるために、過剰とならない範囲で排気熱を回収することができる。回収した熱エネルギーは、暖房装置や暖機促進に用いることができる他、例えば特開2010−77964号公報に記載のようにランキンサイクルに利用することも可能である。   According to the present invention, the exhaust gas is distributed to the heat exchange passage and the bypass passage at a predetermined ratio in the low / medium output range, thereby preventing excessive heat exchange / recovery with the refrigerant. In addition, overheating of cooling system parts such as a radiator can be avoided. At this time, exhaust gas having a constant flow rate ratio with respect to the total flow rate flows on the heat exchange passage side, so that exhaust heat can be recovered within a range that does not become excessive. The recovered thermal energy can be used for a heating device and warming-up promotion, and can also be used for a Rankine cycle as described in, for example, Japanese Patent Application Laid-Open No. 2010-77964.

また、排気ガスの流量が多い高出力域では、排気ガスの流量がある一定の流量を超えると、上記バイパス通路へ流入する排気ガスの流量が一定となり、その分、熱交換通路の流量が上記の一定の流量比率に対して更に増加するために、熱交換による排気熱の熱回収量が増大し、排気温度や排気通路に設けられた触媒温度の過度な上昇を抑制することができる。   Also, in a high output region where the exhaust gas flow rate is large, when the exhaust gas flow rate exceeds a certain flow rate, the flow rate of the exhaust gas flowing into the bypass passage becomes constant, and the flow rate of the heat exchange passage is increased accordingly. Therefore, the heat recovery amount of the exhaust heat by heat exchange increases, and an excessive increase in the exhaust temperature and the catalyst temperature provided in the exhaust passage can be suppressed.

つまり、本発明にあっては、排気ガスの流量が所定値よりも多くなると、バイパス通路側の流量を制限することで、相対的に熱交換通路の流量を増加させて、熱交換を促進して排気温度の低下を促進する一方、排気ガスの流量が比較的少ない低・中出力域では、バイパス側の流量を制限することなく、所定の流量比率でバイパス通路側に排気ガスを通流させることによって、過度な熱交換を抑制することができる。そして、このような作用効果を熱交換通路とバイパス通路とを含めた排気通路の通路形状によって実現している。このため、上記特許文献1のように、熱交換通路やバイパス通路を開閉する弁部材などの可動部品を高温化に晒される排気系に設ける必要がなく、信頼性・耐久性に優れるとともに、部品点数の削減やコスト削減を図ることができる。   In other words, in the present invention, when the flow rate of the exhaust gas exceeds a predetermined value, the flow rate on the bypass passage side is restricted, thereby relatively increasing the flow rate of the heat exchange passage to promote heat exchange. In the low / medium output range where the exhaust gas flow rate is relatively low, the exhaust gas is allowed to flow through the bypass passage at a predetermined flow rate ratio without limiting the flow rate on the bypass side. Therefore, excessive heat exchange can be suppressed. Such effects are realized by the shape of the exhaust passage including the heat exchange passage and the bypass passage. For this reason, unlike Patent Document 1, it is not necessary to provide a moving part such as a valve member for opening and closing a heat exchange passage or a bypass passage in an exhaust system that is exposed to high temperatures, and it is excellent in reliability and durability. The number of points and the cost can be reduced.

このように本発明によれば、弁部材等の可動部品を用いることのない簡素な構成でありながら、低・中出力域のように排気ガスの流量が比較的少ないときには、バイパス通路の流量を制限することなく、バイパス通路側へ所定の比率で排気ガスを通流させることによって、過剰な熱交換を防止し、ラジエータなどの冷却系部品の過熱を回避する一方、排気ガスの流量が多くなると、バイパス通路へ流入する排気ガスの流量を一定に制限することで、相対的に熱交換通路の流量を増大させて、排気ガスと冷媒との熱交換を促進して、排気温度の過度な上昇を抑制することができる。   As described above, according to the present invention, the flow rate of the bypass passage is reduced when the flow rate of the exhaust gas is relatively small, such as in the low / medium output range, although the configuration does not use a movable part such as a valve member. When exhaust gas flows at a predetermined ratio to the bypass passage without limitation, excessive heat exchange is prevented and overheating of cooling system parts such as a radiator is avoided, while the exhaust gas flow rate increases. By restricting the flow rate of the exhaust gas flowing into the bypass passage to a certain level, the flow rate of the heat exchange passage is relatively increased to promote the heat exchange between the exhaust gas and the refrigerant, and the exhaust temperature is excessively increased. Can be suppressed.

本発明に係る排気熱交換装置の一例を示す分解斜視図。1 is an exploded perspective view showing an example of an exhaust heat exchange device according to the present invention. 本発明の第1実施例に係る排気熱交換装置を示す断面図。1 is a cross-sectional view showing an exhaust heat exchange device according to a first embodiment of the present invention. 図2の排気熱交換装置の要部を拡大して示す断面図。Sectional drawing which expands and shows the principal part of the exhaust heat exchange apparatus of FIG. 上記第1実施例に係る通路構成を簡略的に示す構成図(a)及び各通路の流量の関係を示す特性図(b)。The block diagram (a) which shows simply the channel | path structure which concerns on the said 1st Example, and the characteristic view (b) which shows the relationship of the flow volume of each channel | path. 本発明の第2実施例に係る排気熱交換装置を示す断面図。Sectional drawing which shows the exhaust heat exchange apparatus which concerns on 2nd Example of this invention. 図5の排気熱交換装置の要部を拡大して示す断面図。Sectional drawing which expands and shows the principal part of the exhaust heat exchanger of FIG. 上記第2実施例に係る通路構成を簡略的に示す構成図(a)及び各通路の流量の関係を示す特性図(b)。The block diagram (a) which shows simply the channel | path structure which concerns on the said 2nd Example, and the characteristic view (b) which shows the relationship of the flow volume of each channel | path.

以下、本発明に係る排気熱交換装置の一実施例について図面を参照して説明する。この排気熱交換装置10は、車両用内燃機関の排気系に適用されて、排気通路の一部を構成するとともに、排気通路内を流れる排気ガスと熱交換用の冷媒としての冷却水との間で熱交換を行い、排気熱を回収するものであり、図2に示すように、上流側が内燃機関のシリンダヘッド1の排気側の側壁2に取り付けられ、下流側に排気管5(図3参照)が取り付けられる。排気熱交換装置10内の排気通路は、その上流側でシリンダヘッド側壁2に開口する3つの排気ポート3に連通するとともに、途中で合流して下流側の排気管5へと接続しており、後述する内側管状部材12によってバイパス通路14と熱交換通路15とに区画されている。   Hereinafter, an embodiment of an exhaust heat exchanger according to the present invention will be described with reference to the drawings. This exhaust heat exchange device 10 is applied to an exhaust system of an internal combustion engine for a vehicle and constitutes a part of an exhaust passage, and between exhaust gas flowing in the exhaust passage and cooling water as a refrigerant for heat exchange. As shown in FIG. 2, the upstream side is attached to the side wall 2 on the exhaust side of the cylinder head 1 of the internal combustion engine and the exhaust pipe 5 (see FIG. 3) on the downstream side. ) Is attached. The exhaust passage in the exhaust heat exchange device 10 communicates with the three exhaust ports 3 opened in the cylinder head side wall 2 on the upstream side, and joins in the middle and is connected to the exhaust pipe 5 on the downstream side. It is divided into a bypass passage 14 and a heat exchange passage 15 by an inner tubular member 12 described later.

図1及び図2を参照して、この排気熱交換装置10は、内側管状部材11と、この内側管状部材11を覆う中間管状部材12と、この中間管状部材12を覆うカバー状の外側管状部材13と、により大略構成されている。これらの通路形成体を構成する部品は、鉄あるいはアルミ合金等の耐熱性に優れた金属材料により形成されている。内側管状部材11の内部には排気ガスが通流するバイパス通路14が形成され、この内側管状部材11と中間管状部材12との隙間に、排気ガスが通流する熱交換通路15が形成され、この中間管状部材12と外側管状部材13との隙間に、熱交換用の冷媒である冷却水が通流するウォータジャケットとしての冷却水通路16が形成されている。   With reference to FIGS. 1 and 2, the exhaust heat exchanger 10 includes an inner tubular member 11, an intermediate tubular member 12 covering the inner tubular member 11, and a cover-like outer tubular member covering the intermediate tubular member 12. 13 is roughly constituted. Parts constituting these passage forming bodies are formed of a metal material having excellent heat resistance such as iron or aluminum alloy. A bypass passage 14 through which exhaust gas flows is formed inside the inner tubular member 11, and a heat exchange passage 15 through which exhaust gas flows is formed in a gap between the inner tubular member 11 and the intermediate tubular member 12, In the gap between the intermediate tubular member 12 and the outer tubular member 13, a cooling water passage 16 is formed as a water jacket through which cooling water that is a refrigerant for heat exchange flows.

図1に示すように、内側管状部材11は、上流側の3本の管状の内側ブランチ部17が下流側で1本の管状の内側合流部18に一体的に接続する枝管構造をなしている。各内側ブランチ部17の上流側端部には、その管部外周よりも大径なリング部19が4本の支持リブ部20を介して同心状に設けられている。これらのリング部19は、中間管状部材12の上流側の板状をなす入口フランジ部21に形成された環状溝部21Aに嵌合し、かつ、図2に示す組立後の状態にあっては、シリンダヘッド1の排気側の側壁2との間に挟み込まれることによって、内側管状部材11が中間管状部材12及びシリンダヘッド1に対して位置決めされた状態で支持・固定される。この固定状態にあっては、内側管状部材11の外周と中間管状部材12の内周との間に全周にわたって隙間が確保されており、この隙間が上記の熱交換通路15の一部を構成している。なお、排気ガスは、リング部19と支持リブ部20と管部外周との隙間22を通って熱交換通路15へ供給される。   As shown in FIG. 1, the inner tubular member 11 has a branch pipe structure in which three upstream tubular inner branch parts 17 are integrally connected to one tubular inner merging part 18 on the downstream side. Yes. A ring portion 19 having a diameter larger than the outer periphery of the pipe portion is provided concentrically at the upstream end portion of each inner branch portion 17 via four support rib portions 20. These ring portions 19 are fitted into an annular groove portion 21A formed in an inlet flange portion 21 having a plate shape on the upstream side of the intermediate tubular member 12, and in the assembled state shown in FIG. By being sandwiched between the exhaust-side side wall 2 of the cylinder head 1, the inner tubular member 11 is supported and fixed in a state of being positioned with respect to the intermediate tubular member 12 and the cylinder head 1. In this fixed state, a gap is secured over the entire circumference between the outer circumference of the inner tubular member 11 and the inner circumference of the intermediate tubular member 12, and this gap constitutes a part of the heat exchange passage 15. is doing. The exhaust gas is supplied to the heat exchange passage 15 through a gap 22 between the ring portion 19, the support rib portion 20, and the outer periphery of the pipe portion.

なお、この実施例では、内側管状部材11の入口側端部のみを中間管状部材12に対して嵌合・固定する構造としているが、これに限らず、例えば内側管状部材11の出口側端部にも入口側端部と同様の固定構造を適用し、内側管状部材11の入口側と出口側の両端を固定するようにしても良い。   In this embodiment, only the inlet side end of the inner tubular member 11 is fitted and fixed to the intermediate tubular member 12, but the present invention is not limited to this. For example, the outlet side end of the inner tubular member 11 is used. Alternatively, a fixing structure similar to that at the inlet side end may be applied to fix both the inlet side and the outlet side of the inner tubular member 11.

中間管状部材12は、内包する内側管状部材11と同様、3本の中間ブランチ部23が下流側で一本の中間合流部24に合流する枝管形状をなしており、中間ブランチ部23は上流側で上記の入口フランジ部21に一体的に接続している。また、中間管状部材12は、上記の入口フランジ部21,中間ブランチ部23及び中間合流部24を含めて、通路長手方向に沿って2つの分割部材25,26に2分割された半割構造をなしており、組立時には、一対の分割部材25,26により内側管状部材11を挟み込んだ状態で、各分割部材25,26のそれぞれが複数本の固定ボルト27(図4,図5参照)によってシリンダヘッド1側へ固定される。   The intermediate tubular member 12 has a branch pipe shape in which three intermediate branch portions 23 merge into one intermediate confluence portion 24 on the downstream side, like the inner tubular member 11 included therein, and the intermediate branch portion 23 is upstream. It is integrally connected to the inlet flange portion 21 on the side. The intermediate tubular member 12 has a half structure that is divided into two divided members 25 and 26 along the passage longitudinal direction, including the inlet flange portion 21, the intermediate branch portion 23, and the intermediate junction portion 24. At the time of assembly, the inner tubular member 11 is sandwiched between the pair of divided members 25 and 26, and each of the divided members 25 and 26 is a cylinder by a plurality of fixing bolts 27 (see FIGS. 4 and 5). It is fixed to the head 1 side.

外側管状部材13は、中間管状部材12の全体を覆うカバー状をなしており、図4,図5にも示すように、上流側のフランジ部28が、中間管状部材12の入口フランジ部21とともに、上記の固定ボルト27によってシリンダヘッド1の排気側の側壁2に共締め固定される。また、図1に示すように、この外側管状部材13の下流側の出口フランジ部29には、排気管5を接続するボルト(図示省略)が挿通するボルト孔31が形成されている。   The outer tubular member 13 has a cover shape that covers the entire intermediate tubular member 12, and the upstream flange portion 28 together with the inlet flange portion 21 of the intermediate tubular member 12, as shown in FIGS. 4 and 5. The fixing bolt 27 is fastened and fixed to the exhaust-side side wall 2 of the cylinder head 1 together. As shown in FIG. 1, a bolt hole 31 into which a bolt (not shown) for connecting the exhaust pipe 5 is inserted is formed in the outlet flange portion 29 on the downstream side of the outer tubular member 13.

このような構造の排気熱交換装置10にあっては、図2にも示すように、内側管状部材11によって、内部の排気通路がその全長にわたって外周側の熱交換通路15と内周側のバイパス通路14とに隔てられており、かつ、中間管状部材12によって、その全長にわたって外周側の冷却水通路16と内周側の熱交換通路15とに隔てられている。つまり、熱交換通路15がバイパス通路14と同心状に配置され、この熱交換通路15の周囲に冷却水通路16が形成されている。熱交換通路15内を流れる排気ガスと冷却水通路16内を流れる冷却水との間で熱交換が行われるように、熱交換通路15が冷却水通路16(つまり冷却水通路16内を流れる冷却水)と近接して配置され、具体的には中間管状部材12の壁部のみを挟んで配置されている。これに対し、バイパス通路14と冷却水通路16との間には熱交換通路15が介在しており、つまりバイパス通路14は、熱交換を抑制・回避するように、冷却水通路16から離間・迂回して配設されている。   In the exhaust heat exchange device 10 having such a structure, as shown in FIG. 2, the inner tubular member 11 causes the inner exhaust passage to have a heat exchange passage 15 on the outer peripheral side and a bypass on the inner peripheral side over its entire length. It is separated from the passage 14, and is separated by the intermediate tubular member 12 into an outer peripheral cooling water passage 16 and an inner peripheral heat exchange passage 15 over the entire length thereof. That is, the heat exchange passage 15 is disposed concentrically with the bypass passage 14, and the cooling water passage 16 is formed around the heat exchange passage 15. The heat exchange passage 15 is cooled in the cooling water passage 16 (that is, in the cooling water passage 16 so that heat exchange is performed between the exhaust gas flowing in the heat exchange passage 15 and the cooling water flowing in the cooling water passage 16. It is arranged close to water), specifically, it is arranged with only the wall portion of the intermediate tubular member 12 interposed therebetween. On the other hand, the heat exchange passage 15 is interposed between the bypass passage 14 and the cooling water passage 16, that is, the bypass passage 14 is separated from the cooling water passage 16 so as to suppress and avoid heat exchange. It is arranged by detour.

内燃機関の燃焼によりシリンダ4から排気ポート3へ排出された排気ガスは、排気熱交換装置10の入口部分において、バイパス通路14と熱交換通路15とに分岐し、それぞれの通路14,15内を流れた後、下流側の排気管5へと排出される。冷却水通路16は、ラジエータ等の冷却系部品を含む内燃機関の冷却水循環経路の一部を構成するもので、図示せぬ入口部及び出口部を介して冷却水が通流するようになっている。熱交換により冷媒としての冷却水に回収された排気熱は、暖房や暖機促進に用いられる他、上述したランキンサイクルに用いることも可能である。   Exhaust gas discharged from the cylinder 4 to the exhaust port 3 due to combustion of the internal combustion engine branches into a bypass passage 14 and a heat exchange passage 15 at the inlet portion of the exhaust heat exchange device 10, and the inside of each passage 14, 15 is divided. After flowing, it is discharged to the exhaust pipe 5 on the downstream side. The cooling water passage 16 constitutes a part of the cooling water circulation path of the internal combustion engine including cooling system parts such as a radiator, and the cooling water flows through an inlet portion and an outlet portion (not shown). Yes. Exhaust heat recovered in the cooling water as the refrigerant by heat exchange can be used for the above-mentioned Rankine cycle in addition to heating and warming-up promotion.

そして本実施例においては、バイパス通路14の途中に、部分的に縮径した絞り部(第1の絞り部)40が設けられている。この絞り部40は、バイパス通路14へ流入する排気ガスの流量が所定量以上となると、いわゆるチョークされた状態となって、排気ガスの流量を一定にする(音速と同等になり質量流量がそれ以上増加しなくなる)ように、その形状・寸法等が設定されている。図2及び図3に示すように、絞り部40は、通路断面積を通路長手方向に沿って徐々に変化させるように、滑らかに湾曲もしくは傾斜するベンチュリ型の形状をなしている。バイパス通路14における最小断面となる絞り部40の通路断面積は、熱交換通路15における最小断面積よりも小さく設定されている。   In the present embodiment, a throttle part (first throttle part) 40 having a partially reduced diameter is provided in the middle of the bypass passage 14. When the flow rate of the exhaust gas flowing into the bypass passage 14 exceeds a predetermined amount, the throttle unit 40 becomes a so-called choked state, and makes the flow rate of the exhaust gas constant (equal to the speed of sound and the mass flow rate is The shape, dimensions, and the like are set so that they no longer increase. As shown in FIGS. 2 and 3, the throttle portion 40 has a Venturi shape that is smoothly curved or inclined so as to gradually change the cross-sectional area of the passage along the longitudinal direction of the passage. The passage cross-sectional area of the throttle portion 40 that is the minimum cross section in the bypass passage 14 is set to be smaller than the minimum cross-sectional area in the heat exchange passage 15.

この絞り部40による作用効果について、図4を参照して説明する。なお、図4及び後述する第2実施例の図7において、上段(a)は通路構成を簡略的に示しており、(b)は、機関出力(機関回転速度)に対する排気ガスの流量を示す特性図である。(b)の符号Qeは熱交換通路15を通過した排気ガスの流量、符号Qbはバイパス通路14を通過した排気ガスの流量、符号Qaは、上記の流量Qeと流量Qbとをあわせた排気ガスの総流量を表している(Qa=Qe+Qb)。なお、このグラフに示す流量Qe,Qbは、熱交換通路15やバイパス通路14に流入する流量ではなく、熱交換通路15やバイパス通路14を通過した流量、つまり各通路14,15の出口部分の流量に相当する。また、符号L0は、ラジエータが許容し得る(オーバーヒートとならない)熱交換量の許容ラインに相当し、この許容ラインL0よりも上側の領域は、熱交換量が過剰となってラジエータがオーバーヒートするおそれがある領域に相当する。   The effect by this aperture part 40 is demonstrated with reference to FIG. In FIG. 4 and FIG. 7 of the second embodiment to be described later, the upper part (a) shows a simplified passage configuration, and (b) shows the flow rate of the exhaust gas with respect to the engine output (engine speed). FIG. The symbol Qe in (b) is the flow rate of the exhaust gas that has passed through the heat exchange passage 15, the symbol Qb is the flow rate of the exhaust gas that has passed through the bypass passage 14, and the symbol Qa is the exhaust gas that combines the flow rate Qe and the flow rate Qb. (Qa = Qe + Qb). Note that the flow rates Qe and Qb shown in this graph are not flow rates that flow into the heat exchange passage 15 or the bypass passage 14, but flow rates that have passed through the heat exchange passage 15 or the bypass passage 14, that is, the outlet portions of the passages 14 and 15. Corresponds to the flow rate. Further, the symbol L0 corresponds to a heat exchange amount allowable line that the radiator can tolerate (does not overheat), and in the region above the allowable line L0, the heat exchange amount becomes excessive and the radiator may overheat. Corresponds to a certain area.

内燃機関が燃焼により生じるエネルギーは、機関出力、冷却系への放熱、排気系への放熱、及びフリクション損失などへ分配されるが、その分配比率は発生エネルギーの大きさにかかわらず概ね一定である。従って、機関出力が大きくなるほど、冷却水の温度も上昇し、排気温度も上昇する。このため、機関出力が小さい低出力域では、機関回転速度が低く排気ガスの流量も少なく、冷却水や排気ガスの温度も低いので、熱回収量が許容ラインL0を上回るおそれはない。   The energy generated by combustion in an internal combustion engine is distributed to engine output, heat dissipation to the cooling system, heat dissipation to the exhaust system, friction loss, etc., but the distribution ratio is almost constant regardless of the amount of generated energy. . Therefore, as the engine output increases, the temperature of the cooling water increases and the exhaust temperature also increases. For this reason, in the low output region where the engine output is small, the engine rotational speed is low, the flow rate of the exhaust gas is small, and the temperatures of the cooling water and the exhaust gas are also low, so there is no possibility that the heat recovery amount exceeds the allowable line L0.

しかしながら、排気ガスの流量がある程度増加してくる中出力域では、機関出力の増大に応じて冷却水温度が上昇するためにラジエータが許容し得る熱交換量の許容ラインL0が低くなる一方、機関出力の増大に応じて機関回転速度や機関負荷が高くなって排気ガスの流量が多くなるために、排気ガスの流量の増大に伴って熱交換量が必然的に増加し、例えばバイパス通路のない通路構成の場合、排気ガスの総流量Qaが熱交換されることとなり、図中の領域αに示すように、熱交換量が許容ラインL0を上回るおそれがある。   However, in the medium power range where the flow rate of the exhaust gas increases to some extent, the cooling water temperature rises as the engine output increases, so the allowable line L0 of the heat exchange amount that the radiator can tolerate becomes low. As the engine output speed and engine load increase as the output increases and the exhaust gas flow rate increases, the amount of heat exchange inevitably increases as the exhaust gas flow rate increases. For example, there is no bypass passage. In the case of the passage configuration, the total flow rate Qa of the exhaust gas is subjected to heat exchange, and there is a possibility that the heat exchange amount exceeds the allowable line L0 as shown in a region α in the figure.

これに対して本実施例では、上述したようにバイパス通路14を設けたので、排気ガスは所定の流量比率でバイパス通路14と熱交換通路15とに分配され、バイパス通路14を流れる流量Qbの分、熱交換通路15の流量Qeが抑制される。これによって、バイパス通路を設けない場合に比して、熱交換量を抑制し、ラジエータの許容ラインL0を上回る事態を招くことを回避することができる。そして、熱交換通路15とバイパス通路14との流量比率を適切なものとすることで、過剰とならない範囲で熱交換を行い、排気熱を利用して冷却水温度を高めて暖房や暖機促進を図ることができる。   In contrast, in the present embodiment, since the bypass passage 14 is provided as described above, the exhaust gas is distributed to the bypass passage 14 and the heat exchange passage 15 at a predetermined flow rate ratio, and the flow rate Qb flowing through the bypass passage 14 is reduced. Therefore, the flow rate Qe of the heat exchange passage 15 is suppressed. As a result, compared with the case where no bypass passage is provided, it is possible to suppress the amount of heat exchange and avoid a situation in which the allowable line L0 of the radiator is exceeded. And by making the flow rate ratio between the heat exchange passage 15 and the bypass passage 14 appropriate, heat exchange is performed within a range that does not become excessive, and the cooling water temperature is increased using exhaust heat to promote heating and warm-up. Can be achieved.

上記の中出力域よりも更に機関出力(機関回転速度及び機関負荷)の大きい高出力域(t1〜t2)では、車速や風量の増加に伴い、ラジエータの許容ラインL0は高くなり、ラジエータがオーバーヒートとなるような過剰な熱交換を生じるおそれは低下する一方、機関出力の増加に伴って排気温度や排気通路に配設される触媒温度が過度に高くなるおそれがあり、熱交換を積極的に行って排気温度を低下することが望ましい。   In the high output range (t1 to t2) where the engine output (engine speed and engine load) is larger than the above medium output range, the allowable line L0 of the radiator increases as the vehicle speed and the air volume increase, and the radiator overheats. However, as the engine output increases, the exhaust temperature and the temperature of the catalyst disposed in the exhaust passage may become excessively high. It is desirable to go and reduce the exhaust temperature.

そこで本実施例においては、バイパス通路14に流入する流量Qbが所定値sQbに達すると、上記の絞り部40によって、バイパス通路14の流量Qbを、この所定値sQb以下に制限するようにしている。このため、図4(b)にも示すように、機関出力の増加に伴ってラジエータの許容ラインL0が高くなっていく高出力域では、排気ガスの総排出量Qaの増加に比例する形で熱交換通路15を流れる流量Qeが増加し、熱交換量の増加により排気温度及び触媒温度の低下を促進することができる。   Therefore, in this embodiment, when the flow rate Qb flowing into the bypass passage 14 reaches a predetermined value sQb, the flow rate Qb of the bypass passage 14 is limited to the predetermined value sQb or less by the throttle portion 40 described above. . For this reason, as shown in FIG. 4B, in a high output region where the allowable line L0 of the radiator increases as the engine output increases, the proportion is proportional to the increase in the total exhaust gas emission amount Qa. The flow rate Qe flowing through the heat exchange passage 15 is increased, and the decrease in the exhaust temperature and the catalyst temperature can be promoted by the increase in the heat exchange amount.

このように本実施例では、排気ガスの総流量Qaが比較的少ない低・中出力域ではバイパス通路14の流量Qbが制限されないので、過剰な熱交換を抑制することができ、かつ、排気温度の過度な上昇が問題となる高出力域では、バイパス通路14の流量Qbを所定値sQb以下に制限することで、相対的に熱交換通路15の流量Qeを増大させて、熱交換量の増加により排気温度、ひいては触媒温度の低下を促進することができる。また、弁部材等により熱交換通路15を遮断することがないので、通気抵抗が過度に高くなることもない。   Thus, in this embodiment, since the flow rate Qb of the bypass passage 14 is not limited in the low / medium output region where the total exhaust gas flow rate Qa is relatively small, excessive heat exchange can be suppressed, and the exhaust temperature In a high output region where excessive rise of the air current is a problem, the flow rate Qb of the bypass passage 14 is limited to a predetermined value sQb or less, thereby relatively increasing the flow rate Qe of the heat exchange passage 15 and increasing the heat exchange amount. As a result, it is possible to promote a decrease in the exhaust temperature, and hence the catalyst temperature. Further, since the heat exchange passage 15 is not blocked by the valve member or the like, the ventilation resistance is not excessively increased.

そして本実施例にあっては、上述したような作用効果を、熱交換通路15及びバイパス通路14を含めた排気通路の通路形状の設定によって実現しており、具体的には絞り部40を設けることによって実現しており、弁部材などの可動部品を必要としない。このように、高温下で使用される排気通路内に可動部品を設ける必要がないので、信頼性・耐久性に優れるとともに、部品点数の削減やコスト削減を図ることができ、製造も容易であるなど、実用上多大な効果が得られる。   In the present embodiment, the above-described effects are realized by setting the shape of the exhaust passage including the heat exchange passage 15 and the bypass passage 14, and specifically, the throttle portion 40 is provided. This eliminates the need for moving parts such as valve members. In this way, since there is no need to provide moving parts in the exhaust passage used at high temperatures, it is excellent in reliability and durability, can reduce the number of parts and reduce costs, and is easy to manufacture. A great effect in practical use can be obtained.

また、熱交換通路15が冷却水通路16の内側に内包されるとともに、この熱交換通路15の内側にバイパス通路14が内包されており、すなわち熱交換通路15の内側と外側にそれぞれバイパス通路14と熱交換通路15とが同心状に配置された3重の管構造をなしており、3つの通路14〜16を用途に応じて適切に配置しつつコンパクトに構成することができる。   The heat exchange passage 15 is included inside the cooling water passage 16 and the bypass passage 14 is included inside the heat exchange passage 15, that is, the bypass passage 14 is provided inside and outside the heat exchange passage 15, respectively. The heat exchange passage 15 has a triple pipe structure in which the heat exchange passages 15 are concentrically arranged, and the three passages 14 to 16 can be configured compactly while being appropriately arranged according to the application.

仮に中間管状部材12を、上記実施例のように2つの分割部材25,26に分割した構成とせず、一体の部品とした場合、その内部に配置される内側管状部材の形状の自由度が大幅に損なわれる。具体的には、内側管状部材を中間管状部材の上流側もしくは下流側の開口端から差し込む必要があるために、この内側管状部材を上記実施例のような複雑な枝管構造とすることができない。このため、例えば3つの内側ブランチ部17を短縮した上で別部材として上流側から差し込ませる構造とする必要があり、この場合、部品点数が増加するとともに、バイパス通路内を流れた排気ガスが途中で熱交換通路と合流して熱交換がなされるために、バイパス効率が低下する。   If the intermediate tubular member 12 is not divided into two divided members 25 and 26 as in the above-described embodiment, but is formed as an integral part, the degree of freedom of the shape of the inner tubular member disposed therein is greatly increased. Damaged. Specifically, since it is necessary to insert the inner tubular member from the upstream or downstream opening end of the intermediate tubular member, the inner tubular member cannot have a complicated branch pipe structure as in the above-described embodiment. . For this reason, for example, it is necessary to shorten the three inner branch parts 17 and insert them from the upstream side as separate members. In this case, the number of parts increases and the exhaust gas flowing in the bypass passage is in the middle. Since the heat exchange is performed by joining with the heat exchange passage, the bypass efficiency is lowered.

これに対して本実施例では、中間管状部材12を、内側管状部材11を挟み込む2つの分割部材25,26により構成しているために、内側管状部材11の形状の自由度が高く、要求に応じた適切な形状とすることができる。従って、上記実施例のように、内側管状部材11を3つのブランチ部17から一つの合流部18にわたって一体的に接続する構造とすることによって、その通路全長にわたってバイパス通路14を延長形成し、バイパス効率を向上することが可能となる。   On the other hand, in this embodiment, since the intermediate tubular member 12 is composed of the two divided members 25 and 26 sandwiching the inner tubular member 11, the degree of freedom of the shape of the inner tubular member 11 is high, which is required. An appropriate shape can be obtained. Therefore, as in the above-described embodiment, the inner tubular member 11 is integrally connected from the three branch portions 17 to the single junction portion 18, thereby extending the bypass passage 14 over the entire length of the passage, thereby bypassing the bypass passage 14. Efficiency can be improved.

また、図3に示すように、熱交換通路15とバイパス通路14とは下流側の排気管5内部の合流部5Aで合流することとなるが、この合流部5Aよりも冷却水通路16が上流側に配置されている。これにより、バイパス通路14を流れた排気ガスが合流部5Aで熱交換されることを抑制・防止して、バイパス効率の低下を抑制することができる。   Further, as shown in FIG. 3, the heat exchange passage 15 and the bypass passage 14 are joined at the joining portion 5A inside the exhaust pipe 5 on the downstream side, but the cooling water passage 16 is located upstream of the joining portion 5A. Arranged on the side. Thereby, it can suppress and prevent that the exhaust gas which flowed through the bypass channel | path 14 is heat-exchanged by 5 A of merge parts, and can suppress the fall of bypass efficiency.

次に、本発明の第2実施例を図5〜図7を参照して説明する。なお、第1実施例と同じ構成要素には同じ参照符号を付して重複する構成及び作用効果等の説明を適宜省略し、第1実施例と異なる部分について主に説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS. The same constituent elements as those in the first embodiment are denoted by the same reference numerals, and the description of overlapping configurations and operational effects will be omitted as appropriate, and differences from the first embodiment will be mainly described.

この第2実施例では、バイパス通路14に、このバイパス通路14を流れる排気ガスの流量を所定値以下に制限する第1絞り部40Aが設けられることに加え、熱交換通路15の途中にも、この熱交換通路15を流れる排気ガスの流量を所定値以下に制限する第2絞り部51が設けられている。この第2絞り部51は、第1絞り部40Aよりも排気ガスの流れ方向で下流側・排気管5側に配置されている。そして、通路長手方向に関して第1絞り部40Aと第2絞り部51との間に、熱交換通路15とバイパス通路14とを連通する連通路52が形成されている。   In the second embodiment, the bypass passage 14 is provided with the first throttle portion 40A for limiting the flow rate of the exhaust gas flowing through the bypass passage 14 to a predetermined value or less, and also in the middle of the heat exchange passage 15, A second throttle 51 is provided that limits the flow rate of the exhaust gas flowing through the heat exchange passage 15 to a predetermined value or less. The second throttle portion 51 is disposed on the downstream side / exhaust pipe 5 side in the exhaust gas flow direction with respect to the first throttle portion 40A. A communication passage 52 that connects the heat exchange passage 15 and the bypass passage 14 is formed between the first throttle portion 40A and the second throttle portion 51 in the longitudinal direction of the passage.

第1絞り部40Aは、上記の第1実施例と同様、内側管状部材11の上流側の端部付近に設けられ、その内面が滑らかに縮径するベンチュリ型の湾曲面をなしている。また、この第1絞り部40Aは、通路長手方向に関し、隣接する冷却水通路16の上流側端部付近、あるいは、この冷却水通路16よりも上流側に配置されている。これによって、第1絞り部40Aに至る前に熱交換が不用意に行われることがなく、熱交換量を適切に調整することができる。   Similar to the first embodiment, the first throttle portion 40A is provided in the vicinity of the upstream end portion of the inner tubular member 11 and has a Venturi-shaped curved surface whose inner surface is smoothly reduced in diameter. Further, the first throttle portion 40 </ b> A is disposed in the vicinity of the upstream end of the adjacent cooling water passage 16 or upstream of the cooling water passage 16 in the longitudinal direction of the passage. Thereby, heat exchange is not performed carelessly before reaching the first throttle portion 40A, and the heat exchange amount can be adjusted appropriately.

これらの第1絞り部40A及び第2絞り部51は、上記第1実施例の絞り部40と同様に、通路断面積を部分的に絞ることによって、流量が所定値以上となると、音速と同等になり質量流量がそれ以上増加しなくなるように、流量を所定値以下に制限する機能を有するものである。また、第2絞り部51は、圧力損失を低減するように、徐々に通路断面積を変化させるベンチュリ型の形状に形成されている。   Similar to the throttle unit 40 of the first embodiment, the first throttle unit 40A and the second throttle unit 51 are equivalent to the speed of sound when the flow rate exceeds a predetermined value by partially reducing the passage cross-sectional area. Therefore, the flow rate is limited to a predetermined value or less so that the mass flow rate does not increase any more. Moreover, the 2nd aperture | diaphragm | squeeze part 51 is formed in the venturi-type shape which changes a channel | path cross-sectional area gradually so that a pressure loss may be reduced.

次に、図7を参照して、この第2実施例の作用効果について説明する。この第2実施例では、排気ガスの総流量Qaの増加に伴い、熱交換通路15に流入する排気ガスの流量が所定値sQb以上となった時点t1で、先ず、第1絞り部40Aによって、バイパス通路14へ流入する流量が所定値sQbに制限される。但し、この第2実施例においては、熱交換通路15とバイパス通路14とが連通路52により連通しているために、第1絞り部40Aによる流量制限後も、総流量Qaの増加に伴って熱交換通路15の流量Qeが増加すると、その一部が連通路52を通して第1絞り部40Aよりも下流側のバイパス通路14側へ供給されるため、バイパス通路14の出口部分の流量Qbは僅かながら増加していく。   Next, the function and effect of the second embodiment will be described with reference to FIG. In the second embodiment, as the total flow rate Qa of the exhaust gas increases, at the time t1 when the flow rate of the exhaust gas flowing into the heat exchange passage 15 becomes equal to or greater than the predetermined value sQb, first, by the first throttle unit 40A, The flow rate flowing into the bypass passage 14 is limited to a predetermined value sQb. However, in the second embodiment, since the heat exchange passage 15 and the bypass passage 14 communicate with each other through the communication passage 52, the flow rate is limited by the first throttle 40A, and the total flow rate Qa increases. When the flow rate Qe of the heat exchange passage 15 increases, a part of the flow rate Qb is supplied to the bypass passage 14 side downstream of the first throttle portion 40A through the communication passage 52. While increasing.

更に排気ガスの総流量Qaが増加して、熱交換通路15に流入する排気ガスの流量が所定値sQeに達した時点t2で、第2絞り部51によりバイパス通路14を流れる排気ガスの流量Qeが所定値sQeに制限される。従って、この時点t2以降は、総流量Qaの増加に伴って、熱交換通路15を流れる流量が一定に制限される一方、熱交換通路15に流入した排気ガスのうち、所定値sQeを超える分は連通路52を通してバイパス通路14側へ流れ込むこととなり、このため、バイパス通路14を流れる流量は、総流量Qaの増加に比例する形で大きく増加していく。   Further, the total flow rate Qa of the exhaust gas increases, and the flow rate Qe of the exhaust gas flowing through the bypass passage 14 by the second throttle 51 at the time t2 when the flow rate of the exhaust gas flowing into the heat exchange passage 15 reaches the predetermined value sQe. Is limited to a predetermined value sQe. Therefore, after this time t2, as the total flow rate Qa increases, the flow rate flowing through the heat exchange passage 15 is limited to a constant value, while the exhaust gas flowing into the heat exchange passage 15 exceeds the predetermined value sQe. Flows into the bypass passage 14 side through the communication passage 52, and therefore, the flow rate flowing through the bypass passage 14 greatly increases in proportion to the increase in the total flow rate Qa.

このように第2実施例では、第1実施例と同様、低・中出力域(t0〜t1)においては、バイパス通路14側の流量が制限されず、排気ガスの総流量のうち、その一部が所定の流量比率でバイパス通路14側へ流れるために、熱交換通路15を流れる流量が抑制されて、その熱交換量が抑制される。この結果、ラジエータがオーバーヒートとなるような過剰な熱交換を回避することができる。また、排気温度の過度な上昇が問題となる所定の高出力域(t1〜t2)では、バイパス通路14の流量Qbを所定値sQb以下に制限することで、相対的に熱交換通路15の流量Qeを増大させて、熱交換量の増加により排気温度、ひいては触媒温度の低下を促進することができる。   As described above, in the second embodiment, as in the first embodiment, in the low / medium output range (t0 to t1), the flow rate on the bypass passage 14 side is not limited, and one of the total exhaust gas flow rates. Since the portion flows toward the bypass passage 14 at a predetermined flow rate ratio, the flow rate through the heat exchange passage 15 is suppressed, and the heat exchange amount is suppressed. As a result, excessive heat exchange that causes the radiator to overheat can be avoided. Further, in a predetermined high output region (t1 to t2) in which an excessive increase in the exhaust temperature is a problem, the flow rate of the heat exchange passage 15 is relatively limited by limiting the flow rate Qb of the bypass passage 14 to a predetermined value sQb or less. By increasing Qe, it is possible to promote a decrease in the exhaust gas temperature and consequently the catalyst temperature by increasing the heat exchange amount.

上記の高負荷域(t1〜t2)よりも更に高出力側の最高出力域(t2〜)においては、アルミ合金により形成される中間管状部材12や外側管状部材13等の部品保護の観点から、過度な熱交換を抑制することが望ましい。そこで、この第2実施例においては、このような最高出力域(t2〜)では、第2絞り部51によって熱交換通路15の流量Qeを一定値sQe以下に制限している。このため、熱交換通路15の流量Qeが一定値sQeに達した後、機関出力の増加に伴って排気ガスの総流量Qaが更に増加すると、連通路52を通して熱交換通路15からバイパス通路14へ流れる排気ガスの流量が増加し、総流量Qaの増加に比例する形でバイパス通路14の出口部分の流量Qbが増加することとなる。このように、最高出力域(t2〜)では、熱交換通路15を流れる流量を所定値sQeに制限することで、過剰な熱交換を防止することができる。   In the maximum output region (t2) on the higher output side than the high load region (t1 to t2), from the viewpoint of protecting parts such as the intermediate tubular member 12 and the outer tubular member 13 formed of an aluminum alloy, It is desirable to suppress excessive heat exchange. Therefore, in the second embodiment, the flow rate Qe of the heat exchange passage 15 is limited to a certain value sQe or less by the second throttle 51 in such a maximum output range (t2). For this reason, after the flow rate Qe of the heat exchange passage 15 reaches the constant value sQe, if the total exhaust gas flow rate Qa further increases as the engine output increases, the heat exchange passage 15 passes through the communication passage 52 to the bypass passage 14. The flow rate of the flowing exhaust gas increases, and the flow rate Qb at the outlet portion of the bypass passage 14 increases in proportion to the increase in the total flow rate Qa. Thus, in the maximum output range (t2), excessive heat exchange can be prevented by limiting the flow rate flowing through the heat exchange passage 15 to the predetermined value sQe.

ここで、図7に示すように、ラジエータの許容ラインL0は、低・中出力域(t0〜t1)の付近で最も低くなり、この低・中出力域よりも機関出力・機関回転速度の高い高出力域(t1〜t2)では、機関出力の増加に伴って、車速・風量が増加することなどから、逆に許容ラインL0が高くなっていく。従って、本実施例のように、高出力域(t2〜)において排気ガスの総流量Qaの増加にあわせて熱交換通路15の流量Qeを増加して熱交換量を増加させても、ラジエータがオーバーヒートとなるような事態を生じることはない。   Here, as shown in FIG. 7, the allowable line L0 of the radiator is the lowest in the vicinity of the low / medium output range (t0 to t1), and the engine output / engine speed is higher than the low / medium output range. In the high output range (t1 to t2), on the contrary, the allowable line L0 becomes higher because the vehicle speed and the air volume increase as the engine output increases. Therefore, even if the heat exchange amount is increased by increasing the flow rate Qe of the heat exchange passage 15 in accordance with the increase in the total exhaust gas flow rate Qa in the high output range (t2) as in the present embodiment, the radiator can be There will be no overheating.

つまり、この第2実施例においては、第1実施例と同様に、所定の低・中出力域(t1〜t2)では、バイパス通路14に流れる流量が制限されず、所定の比率でバイパス通路14に排気ガスを通流させることによって、過剰な熱交換を抑制・防止しつつ、この中出力域よりも機関出力の高い高出力域(t2〜)では、第1絞り部40によってバイパス通路14の流量Qbを一定値sQbに制限することで、排気ガスの総流量Qaの増加に伴って熱交換通路15の流量Qeを積極的に増加させて、排気温度の低下を促進することができる。   That is, in the second embodiment, similarly to the first embodiment, in the predetermined low / medium output range (t1 to t2), the flow rate flowing through the bypass passage 14 is not limited, and the bypass passage 14 is at a predetermined ratio. In the high output range (t2) where the engine output is higher than the intermediate output range, the first throttle 40 reduces the bypass passage 14 while suppressing and preventing excessive heat exchange. By restricting the flow rate Qb to the constant value sQb, the flow rate Qe of the heat exchange passage 15 can be actively increased as the exhaust gas total flow rate Qa increases, and the exhaust temperature can be lowered.

そして第1実施例と同様に、このような作用効果を、熱交換通路15及びバイパス通路14を含めた排気通路の通路形状の設定によって実現しており、具体的には第1絞り部40A,第2絞り部51及び連通路52等を設けることによって実現しており、弁部材などの可動部品を敢えて必要としないので、信頼性・耐久性に優れるとともに、部品点数の削減やコスト削減を図ることができる。   As in the first embodiment, such an operational effect is realized by setting the passage shape of the exhaust passage including the heat exchange passage 15 and the bypass passage 14, and specifically, the first throttle portion 40A, This is realized by providing the second restrictor 51, the communication passage 52, etc., and does not require moving parts such as a valve member. Therefore, it is excellent in reliability and durability, and reduces the number of parts and costs. be able to.

このような作用効果を実現するための具体的な通路構成について説明すると、上述したように、排気ガスの総流量Qaの増加に伴って、先ず、第1絞り部40Aによってバイパス通路14の流量Qbが所定値sQbに制限され、更に総流量Qaが増加すると、第2絞り部51によって熱交換通路15の流量Qeが所定値sQeに制限されるように、第1絞り部40Aと第2絞り部51との絞り径が設定されている。具体的には、第1絞り部40Aの絞り径が第2絞り部51の絞り径よりも小さく設定されており、また、第1絞り部40Aにより制限される流量sQbが、第2絞り部51により制限される流量sQeよりも小さく設定されている。   The specific passage configuration for realizing such an effect will be described. As described above, the flow rate Qb of the bypass passage 14 is first increased by the first restrictor 40A as the total flow rate Qa of the exhaust gas increases. Is limited to the predetermined value sQb, and when the total flow rate Qa further increases, the first throttle unit 40A and the second throttle unit are configured such that the second throttle unit 51 limits the flow rate Qe of the heat exchange passage 15 to the predetermined value sQe. An aperture diameter of 51 is set. Specifically, the aperture diameter of the first aperture section 40A is set smaller than the aperture diameter of the second aperture section 51, and the flow rate sQb limited by the first aperture section 40A is the second aperture section 51. Is set to be smaller than the flow rate sQe limited by.

更に、連通路52の通路断面積と第2絞り部51の通路断面積との総和が、少なくとも熱交換通路15の入口部分の通路断面積よりも大きく設定されている。これによって、第2絞り部51によって熱交換通路15の流量Qeが所定値sQeに制限されているときにも、連通路52を通して熱交換通路15からバイパス通路14へ排気ガスが流れ込むことで、圧力損失を抑制することができる。   Furthermore, the sum total of the passage sectional area of the communication passage 52 and the passage sectional area of the second throttle portion 51 is set to be larger than at least the passage sectional area of the inlet portion of the heat exchange passage 15. As a result, even when the flow rate Qe of the heat exchange passage 15 is limited to the predetermined value sQe by the second throttle 51, the exhaust gas flows from the heat exchange passage 15 into the bypass passage 14 through the communication passage 52. Loss can be suppressed.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、熱交換用の冷媒としては、上記実施例のような冷却水に限らず、適宜な液体あるいは気体を用いることができる。また、上記実施例では車両用内燃機関に本発明を適用しているが、これに限らず、排気ガスを生じる様々な燃焼装置に本発明を適用可能である。   As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes without departing from the spirit of the present invention. . For example, the refrigerant for heat exchange is not limited to the cooling water as in the above embodiment, and an appropriate liquid or gas can be used. In the above embodiment, the present invention is applied to an internal combustion engine for a vehicle. However, the present invention is not limited to this, and the present invention can be applied to various combustion apparatuses that generate exhaust gas.

10…排気熱交換装置
11…内側管状部材
12…中間管状部材
13…外側管状部材
14…バイパス通路
15…熱交換通路
16…冷却水通路
25,26…分割部材
40…絞り部(第1の絞り部)
40A…第1絞り部(第1の絞り部)
43…偏向部
51…第2絞り部(第2の絞り部)
52…連通路
DESCRIPTION OF SYMBOLS 10 ... Exhaust heat exchange apparatus 11 ... Inner tubular member 12 ... Intermediate tubular member 13 ... Outer tubular member 14 ... Bypass passage 15 ... Heat exchange passage 16 ... Cooling water passage 25, 26 ... Dividing member 40 ... Restriction part (1st restriction | contraction) Part)
40A ... 1st aperture (first aperture)
43 ... Deflection part 51 ... 2nd aperture | diaphragm | squeeze part (2nd aperture_diaphragm | restriction part)
52 ... Communication passage

Claims (10)

排気通路内を流れる排気ガスが、熱交換通路とバイパス通路とに分岐して流れるように構成され、上記熱交換通路が、熱交換用の冷媒との間で熱交換が行われるように、上記冷媒に近接して配置される一方、上記バイパス通路が上記熱交換通路を迂回するように配置された熱交換装置において、
排気ガスの流量が多いときに、上記バイパス通路へ流入する排気ガスの流量が一定となるように、上記熱交換通路とバイパス通路とを含めた排気通路の通路形状が設定されていることを特徴とする排気熱交換装置。
The exhaust gas flowing in the exhaust passage is configured to branch and flow into a heat exchange passage and a bypass passage, and the heat exchange passage performs heat exchange with the refrigerant for heat exchange. In the heat exchange device arranged close to the refrigerant while the bypass passage is arranged to bypass the heat exchange passage,
The shape of the exhaust passage including the heat exchange passage and the bypass passage is set so that the flow rate of the exhaust gas flowing into the bypass passage is constant when the flow rate of the exhaust gas is large. Exhaust heat exchange device.
排気ガスの流量が大きくなるほど、上記熱交換通路に対する上記バイパス通路の流量比率が小さくなるように、上記熱交換通路とバイパス通路とを含めた排気通路の通路形状が設定されていることを特徴とする請求項1に記載の排気熱交換装置。   The shape of the exhaust passage including the heat exchange passage and the bypass passage is set so that the flow rate ratio of the bypass passage to the heat exchange passage decreases as the exhaust gas flow rate increases. The exhaust heat exchanger according to claim 1. 排気ガスの流量が多いときにバイパス通路の流量が一定となるように、上記熱交換通路の途中に第1の絞り部が設けられていることを特徴とする請求項1又は2に記載の排気熱交換装置。   The exhaust according to claim 1 or 2, wherein a first throttle part is provided in the middle of the heat exchange passage so that the flow rate of the bypass passage is constant when the flow rate of the exhaust gas is large. Heat exchange device. 上記熱交換通路の周囲に、上記冷媒が通流する冷媒通路が配置され、上記冷媒通路は、上記熱交換通路とバイパス通路とが下流側で合流する合流部よりも上流側に配置されていることを特徴とする請求項1〜3のいずれかに記載の排気熱装置   A refrigerant passage through which the refrigerant flows is disposed around the heat exchange passage, and the refrigerant passage is disposed upstream of a joining portion where the heat exchange passage and the bypass passage merge on the downstream side. The exhaust heat apparatus according to any one of claims 1 to 3, 上記熱交換通路の周囲に、上記冷媒が通流する冷媒通路が配置され、
上記バイパス通路が、上記熱交換通路の内側に同心状に配置されていることを特徴とする請求項1〜4のいずれかに記載の排気熱交換装置。
A refrigerant passage through which the refrigerant flows is disposed around the heat exchange passage,
The exhaust heat exchange device according to any one of claims 1 to 4, wherein the bypass passage is disposed concentrically inside the heat exchange passage.
上記バイパス通路が内部に形成された内側管状部材と、
この内側管状部材を覆う中間管状部材と、
この中間管状部材を覆う外側管状部材と、を有し、
上記内側管状部材と中間管状部材との間に上記熱交換通路が形成され、
上記中間管状部材と外側管状部材との間に上記冷媒通路が形成されていることを特徴とする請求項5に記載の排気熱交換装置。
An inner tubular member having the bypass passage formed therein;
An intermediate tubular member covering the inner tubular member;
An outer tubular member covering the intermediate tubular member,
The heat exchange passage is formed between the inner tubular member and the intermediate tubular member,
6. The exhaust heat exchanger according to claim 5, wherein the refrigerant passage is formed between the intermediate tubular member and the outer tubular member.
上記中間管状部材は、上記内側管状部材を挟み込む一対の分割部材により構成されていることを特徴とする請求項6に記載の排気熱交換装置。   The exhaust heat exchanger according to claim 6, wherein the intermediate tubular member is constituted by a pair of divided members that sandwich the inner tubular member. 上記熱交換通路の途中に第2の絞り部が設けられ、この第2の絞り部は、第1の絞り部よりも下流側に配置されており、通路長手方向に関して上記第1の絞り部と第2の絞り部との間に、上記熱交換通路とバイパス通路とを連通する連通路が形成されていることを特徴とする請求項3に記載の排気熱交換装置。   A second constriction is provided in the middle of the heat exchange passage, and the second constriction is disposed downstream of the first constriction, and the first constriction and the first constriction in the longitudinal direction of the passage. The exhaust heat exchanger according to claim 3, wherein a communication passage that connects the heat exchange passage and the bypass passage is formed between the second throttle portion. 排気ガスの総流量が大きくなるときに、上記熱交換通路とバイパス通路のうち、上記バイパス通路が第1の絞り部により先に流量が制限されるように、第1の絞り部と第2の絞り部との絞り径が設定されていることを特徴とする請求項8に記載の排気熱交換装置。   When the total flow rate of the exhaust gas is increased, the first throttle unit and the second throttle unit are configured such that, of the heat exchange channel and the bypass channel, the flow rate of the bypass channel is limited first by the first throttle unit. The exhaust heat exchanger according to claim 8, wherein a throttle diameter with the throttle part is set. 上記連通路の通路断面積と第2の絞り部の通路断面積との総和が、少なくとも上記熱交換通路の入口部分の通路断面積よりも大きいことを特徴とする請求項8又は9に記載の排気熱交換装置。   The sum total of the passage cross-sectional area of the said communicating path and the passage cross-sectional area of a 2nd aperture | diaphragm | squeeze part is larger than the passage cross-sectional area of the inlet part of the said heat exchange passage at least. Exhaust heat exchanger.
JP2011051032A 2010-12-14 2011-03-09 Exhaust heat exchanger Expired - Fee Related JP5673228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011051032A JP5673228B2 (en) 2010-12-14 2011-03-09 Exhaust heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010277656 2010-12-14
JP2010277656 2010-12-14
JP2011051032A JP5673228B2 (en) 2010-12-14 2011-03-09 Exhaust heat exchanger

Publications (2)

Publication Number Publication Date
JP2012140926A true JP2012140926A (en) 2012-07-26
JP5673228B2 JP5673228B2 (en) 2015-02-18

Family

ID=46677430

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011051033A Expired - Fee Related JP5673229B2 (en) 2010-12-14 2011-03-09 Exhaust heat exchanger
JP2011051032A Expired - Fee Related JP5673228B2 (en) 2010-12-14 2011-03-09 Exhaust heat exchanger

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011051033A Expired - Fee Related JP5673229B2 (en) 2010-12-14 2011-03-09 Exhaust heat exchanger

Country Status (1)

Country Link
JP (2) JP5673229B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175286A (en) * 2014-03-14 2015-10-05 フタバ産業株式会社 Heat recovery device
WO2015151969A1 (en) * 2014-04-04 2015-10-08 日産自動車株式会社 Exhaust apparatus for engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156650B2 (en) * 2014-05-23 2017-07-05 マツダ株式会社 Exhaust device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280046A (en) * 1996-04-15 1997-10-28 Yutaka Giken Co Ltd Exhaust pipe structure for engine
JPH10110612A (en) * 1996-10-04 1998-04-28 Taga Seisakusho:Kk Exhauster
JP2001065340A (en) * 1999-08-30 2001-03-13 Calsonic Kansei Corp Exhauster of straight four-cylinder engine
JP2007247638A (en) * 2006-03-17 2007-09-27 Sango Co Ltd Exhaust heat recovery device
JP2007270702A (en) * 2006-03-31 2007-10-18 Toyota Motor Corp Exhaust heat recovery device with muffling function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245127A (en) * 2003-02-13 2004-09-02 Calsonic Kansei Corp Exhaust cooling device for engine
JP2008069750A (en) * 2006-09-15 2008-03-27 Toyota Motor Corp Exhaust heat recovery device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280046A (en) * 1996-04-15 1997-10-28 Yutaka Giken Co Ltd Exhaust pipe structure for engine
JPH10110612A (en) * 1996-10-04 1998-04-28 Taga Seisakusho:Kk Exhauster
JP2001065340A (en) * 1999-08-30 2001-03-13 Calsonic Kansei Corp Exhauster of straight four-cylinder engine
JP2007247638A (en) * 2006-03-17 2007-09-27 Sango Co Ltd Exhaust heat recovery device
JP2007270702A (en) * 2006-03-31 2007-10-18 Toyota Motor Corp Exhaust heat recovery device with muffling function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175286A (en) * 2014-03-14 2015-10-05 フタバ産業株式会社 Heat recovery device
WO2015151969A1 (en) * 2014-04-04 2015-10-08 日産自動車株式会社 Exhaust apparatus for engine
JPWO2015151969A1 (en) * 2014-04-04 2017-04-13 日産自動車株式会社 Engine exhaust system

Also Published As

Publication number Publication date
JP5673229B2 (en) 2015-02-18
JP2012140927A (en) 2012-07-26
JP5673228B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP4281789B2 (en) Exhaust heat recovery device
JP5694712B2 (en) Oil cooler
US9664087B2 (en) Exhaust heat recovery system with bypass
JP4175340B2 (en) Heat exchanger
JP5696031B2 (en) Exhaust heat recovery device
JP2013113578A (en) Vehicle heat exchanger
US20140054008A1 (en) Structure of Exhaust Pipe for Exhaust Heat Recovery
JP2013113579A (en) Vehicle heat exchanger
JP2009506287A (en) Exhaust gas heat exchanger
JP2013122366A (en) Heat exchanger
JP5673228B2 (en) Exhaust heat exchanger
JP2015178807A (en) Cylinder head of engine
KR102114442B1 (en) Exhaust heat recovery and acoustic valve
JP2007247638A (en) Exhaust heat recovery device
JP2007285264A (en) Heat exchanger
US20150308319A1 (en) Exhaust Gas System with Thermoelectric Generator
JP2007239595A (en) Arrangement structure of exhaust system heat exchanger
JP5668318B2 (en) Vehicle cooling device
JP6576702B2 (en) Cooling water control device for vehicle internal combustion engine
JP6667488B2 (en) Turbine housing
JP2004353589A (en) Cooling mechanism for water-cooled turbocharger
US11486284B2 (en) Heat exchange device
JP2017155672A (en) Liquid circulation system of vehicle
JP2012241633A (en) Exhaust device of internal combustion engine
JP6171699B2 (en) Exhaust heat recovery unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees