JP2012140685A - Welded joint - Google Patents

Welded joint Download PDF

Info

Publication number
JP2012140685A
JP2012140685A JP2011000354A JP2011000354A JP2012140685A JP 2012140685 A JP2012140685 A JP 2012140685A JP 2011000354 A JP2011000354 A JP 2011000354A JP 2011000354 A JP2011000354 A JP 2011000354A JP 2012140685 A JP2012140685 A JP 2012140685A
Authority
JP
Japan
Prior art keywords
hardness
less
base material
weld
welded joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011000354A
Other languages
Japanese (ja)
Other versions
JP5633374B2 (en
Inventor
Noboru Yoda
登 誉田
Tomoya Fujiwara
知哉 藤原
Takayuki Kamimura
隆之 上村
Hideaki Yuki
英昭 幸
Kazuyuki Kajima
和幸 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2011000354A priority Critical patent/JP5633374B2/en
Publication of JP2012140685A publication Critical patent/JP2012140685A/en
Application granted granted Critical
Publication of JP5633374B2 publication Critical patent/JP5633374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a welded joint which can ameliorate the fatigue crack formation properties of a welded zone, can exhibit fatigue crack propagation resistance properties of a base material zone as well as is good in corrosion resistance in a high chloride environment.SOLUTION: The welded joint is formed by welding a base material which has a chemical composition containing, by mass%, 0.01-0.10% C, 0.04-0.60% Si, 0.50-2.00% Mn, 0.025 or less P, 0.020 or less S, 0.003-0.060% Al, 0.001-0.100% Ti, 0.03-0.50% Sn and 0.0020-0.0120% N, with the balance comprising Fe and impurities, has a composite structure composed of a base material as a hard part and a soft part dispersed in the base material, and has a hardness difference between the hard part and the soft part of 150 or more in terms of Vickers hardness. The welded joint is characterized in that the hardness of the weld heat-affected zone and the hardnesses of each of the base material and the weld metal satisfy a specified relationship, and the value of the work hardening coefficient of the weld heat-affected zone is 0.12 or less.

Description

本発明は、鋼構造物の疲労強度健全性を向上する技術に関するものである。特に、溶接部の疲労き裂発生特性を改善するとともに、疲労き裂がその後、成長し母材部に進入したときには、母材部で疲労き裂進展抵抗特性を発揮する溶接継手に関するものである。   The present invention relates to a technique for improving the fatigue strength soundness of a steel structure. In particular, the present invention relates to a welded joint that improves the fatigue crack generation characteristics of a welded part and exhibits fatigue crack propagation resistance characteristics in the base metal part when the fatigue crack grows and then enters the base metal part. .

建築、橋梁などの各種溶接鋼構造物や、船舶、自動車などの輸送用機械、さらには産業用機械、建築用機械などの各種機械には、多くの部位に構造部材として、鋼材が使われている。   Steel is used as a structural member in many parts in various welded steel structures such as buildings and bridges, transport machinery such as ships and automobiles, and industrial machinery and construction machinery. Yes.

このような鋼材が使用された構造物や機械(以下、「鋼構造物」と記す。)には通常、供用中に繰返し荷重が負荷される。そのため、鋼構造物の強度健全性を確保するためには、繰返し荷重に対する抵抗性、すなわち、疲労強度を向上させることが必要不可欠である。   Structures and machines using such steel materials (hereinafter referred to as “steel structures”) are usually subjected to repeated loads during service. Therefore, in order to ensure the strength and soundness of the steel structure, it is essential to improve the resistance to repeated loads, that is, the fatigue strength.

鋼構造物においては、一般に、溶接継手の溶接部が損傷の起点となることが多く、疲労強度を向上させるためには溶接継手の疲労特性を改善することが必要になる。溶接継手の疲労特性を改善するための設計面からの検討としては、例えば、FEM(有限要素法)などの応力解析コードを用いて構造的な応力集中を回避するような最適形状設計が行なわれている。また、適切な形状・位置にリブ等を設置し、補強によって応力を下げる工夫などが行なわれている。一方、施工面からの検討としては、グラインダー処理、化粧盛り溶接などによる余盛り止端形状の仕上げ加工が行われている。   In a steel structure, generally, a welded portion of a welded joint is often a starting point of damage, and in order to improve fatigue strength, it is necessary to improve the fatigue characteristics of the welded joint. As an examination from the design aspect to improve the fatigue characteristics of welded joints, for example, an optimum shape design that avoids structural stress concentration is performed using a stress analysis code such as FEM (finite element method). ing. In addition, a device has been devised in which a rib or the like is installed at an appropriate shape and position to reduce stress by reinforcement. On the other hand, as an examination from the construction side, finishing processing of the extra toe shape by grinder processing, decorative fill welding or the like is performed.

しかしながら、設計面からの改善効果は既に飽和状態に近づいており、設計面でのさらなる改善は望めない状況にある。また、上記のような仕上げ加工により疲労特性の改善効果は期待できるものの、膨大な工数が必要となり、製造コストが増加するという問題が生じる。そこで、上記のような設計面又は施工面からのアプローチとは別に、材料面からのアプローチによって溶接部の疲労特性を改善する試みも行われている。   However, the improvement effect from the design side is already close to saturation, and further improvement in the design side cannot be expected. Moreover, although the improvement effect of fatigue characteristics can be expected by the finishing process as described above, a huge man-hour is required, resulting in an increase in manufacturing cost. Therefore, in addition to the approach from the design surface or the construction surface as described above, an attempt to improve the fatigue characteristics of the welded portion by an approach from the material surface has also been made.

例えば、特許文献1には、変態温度を低くした特殊な溶接材料を用いる溶接施工方法が提案されている。この方法によれば、溶接部に発生する引張り残留応力を緩和でき、疲労寿命を向上させることができるとしている。   For example, Patent Document 1 proposes a welding method using a special welding material having a low transformation temperature. According to this method, the tensile residual stress generated in the welded portion can be relaxed, and the fatigue life can be improved.

また、材料面からの検討として、母材となる鋼板の改善も試みられている(例えば、特許文献2〜5参照)。   In addition, as a study from the viewpoint of materials, attempts have been made to improve a steel plate as a base material (see, for example, Patent Documents 2 to 5).

特開2003−290972号公報JP 2003-290972 A 特開2007−290032号公報JP 2007-290032 A 特開2008−255469号公報JP 2008-255469 A 特開2008−255468号公報JP 2008-255468 A 特開2008−248314号公報JP 2008-248314 A

しかしながら、特許文献1に記載の方法では、鋼構造物に要求される疲労強度レベルに応じて溶接材料を使い分ける必要があり利便性に優れない。また、変態温度の低い溶接材料は必然的に溶接性が悪くなるので、余盛り止端形状をなだらかにすることは極めて困難である。そのため、余盛り止端において応力集中が発生し易くなり、疲労強度を十分に向上させることができない。   However, in the method described in Patent Document 1, it is necessary to use different welding materials in accordance with the fatigue strength level required for the steel structure, which is not convenient. In addition, since a weld material having a low transformation temperature inevitably has poor weldability, it is extremely difficult to make the surplus toe shape gentle. For this reason, stress concentration tends to occur at the extra toe, and the fatigue strength cannot be sufficiently improved.

また、特許文献1に記載の方法により作製された溶接継手の品質を保証するためには、溶接部に発生している残留応力を測定する必要がある。しかしながら、溶接部の残留応力を非破壊で測定するためには多くの工数が必要である。したがって、特許文献1に記載の方法は、利便性に優れてなく、工業的に品質を保証する方法を如何に実現するかという点で大きな課題を残している。   Moreover, in order to guarantee the quality of the welded joint produced by the method described in Patent Document 1, it is necessary to measure the residual stress generated in the welded portion. However, many man-hours are required to measure the residual stress of the welded portion in a nondestructive manner. Therefore, the method described in Patent Document 1 is not convenient, and remains a major problem in how to realize a method for industrially guaranteeing quality.

特許文献2に記載の技術は、溶接部の疲労き裂発生特性に特化した技術であり、き裂が発生した後のことは考慮されておらず、き裂の進展を十分に阻止することができない。   The technique described in Patent Document 2 is a technique specialized in fatigue crack generation characteristics of a welded part, and does not take into account after the crack has occurred, and sufficiently prevents the crack from progressing. I can't.

特許文献3〜5に記載の技術は、母材部の疲労き裂進展特性に特化した技術であり、溶接部における疲労き裂の発生を十分に防止することができない。   The techniques described in Patent Documents 3 to 5 are techniques specialized in the fatigue crack growth characteristics of the base metal part, and cannot sufficiently prevent the occurrence of fatigue cracks in the welded part.

本発明は、上記のような問題点を解決するためになされたものであり、特別な設計および施工を行うことなく溶接部の疲労き裂発生特性を改善できかつ疲労き裂が母材部に進入したときには母材部で疲労き裂進展抵抗特性を発揮する溶接継手を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can improve the fatigue crack generation characteristics of a welded part without performing special design and construction, and the fatigue crack is formed in the base metal part. It is an object of the present invention to provide a welded joint that exhibits fatigue crack growth resistance characteristics at the base material portion when it enters.

具体的には、造船、建築構造物、橋梁、建設機械などの分野に用いられる疲労強度に優れた溶接継手、特に引張強さが490〜570MPa級の溶接継手を提供することを目的とする。   Specifically, an object is to provide a welded joint having excellent fatigue strength, particularly a welded joint having a tensile strength of 490 to 570 MPa, which is used in the fields of shipbuilding, building structures, bridges, construction machinery and the like.

本発明者らは、溶接継手としての利便性を重視し、母材の静的強度特性、破壊靱性、溶接性および溶接部の破壊靱性などにも留意を払い検討した。具体的には、種々の母材の組織観察、CT試験片を用いた疲労き裂進展試験、種々の溶接継手を用いた疲労試験および溶接熱履歴を再現した試験片を用いた引張試験を行った。その結果、次の知見を得た。   The inventors focused on convenience as a welded joint and paid attention to static strength characteristics, fracture toughness, weldability, fracture toughness of welds, and the like. Specifically, the microstructure observation of various base materials, fatigue crack growth tests using CT specimens, fatigue tests using various welded joints, and tensile tests using test specimens that reproduce welding heat history are performed. It was. As a result, the following knowledge was obtained.

(a)溶接継手の母材となる鋼板は、硬質部と軟質部の2種類の組織が複合形成されたものであればよい。この場合、硬質部と軟質部との界面近傍においてき裂進展の停留効果を得ることができる。   (A) The steel plate used as a base material of a welded joint should just be a thing by which two types of structure | tissues, a hard part and a soft part, were complex-formed. In this case, the retention effect of crack growth can be obtained in the vicinity of the interface between the hard part and the soft part.

(b)硬質部の硬度と軟質部の硬度との差は、ビッカース硬度(Hv)で150以上であればよい。この場合、き裂先端の転位の移動が軟質部と硬質部との界面で阻止されるとともに、バーガースベクトルが界面に直交する転位が、軟質部と硬質部との界面近傍の軟質部内に配列するため、傾角粒界が形成される。この傾角粒界は、粒界一次転位のみにより構成されるため、粒界凝集力が高く、破壊の抵抗となりやすい。さらに、形成された傾角粒界には転位が突入しにくいため、引続き繰り返し応力が作用する場合には、粒界に隣接する軟質部側に新しい傾角粒界が形成される。このような経過を繰返すことにより、大きな体積を有する傾角粒界の集合部が形成される。この集合部はき裂進展の抵抗となり、母材のき裂進展抑制特性を向上させることができる。   (B) The difference between the hardness of the hard portion and the hardness of the soft portion may be 150 or more in terms of Vickers hardness (Hv). In this case, dislocation movement at the crack tip is prevented at the interface between the soft part and the hard part, and the dislocation whose Burgers vector is orthogonal to the interface is arranged in the soft part near the interface between the soft part and the hard part. Therefore, an inclined grain boundary is formed. Since this tilt grain boundary is composed only of grain boundary primary dislocations, it has a high grain boundary cohesive force and tends to be a resistance to fracture. Furthermore, since dislocations are unlikely to enter the formed tilt boundary, a new tilt grain boundary is formed on the soft part side adjacent to the grain boundary when repeated stress continues to act. By repeating such a process, a tilted grain boundary aggregate having a large volume is formed. This gathering portion serves as a resistance to crack propagation, and can improve the crack propagation suppression characteristics of the base material.

(c)溶接部における疲労き裂の発生を防止するためには、疲労損傷領域の局所化をマクロ的およびミクロ的に避ける必要がある。疲労損傷領域の局所化をマクロ的に避けるためには、溶接継手の溶接部に応力集中が発生することを防止すればよい。溶接部において応力集中が発生することを防止するためには、溶接熱影響部(HAZ)、母材、溶接金属の3つの材料の硬度を近づけることができればよい。本発明者らは、数多くの鋼材から複数の溶接継手を作製し、硬度分布測定ならびに疲労試験を実施した。その結果、溶接熱影響部の硬度(HAZ硬度)が下記の不等式(1)式を満たすことにより、溶接継手の疲労特性が向上することが判明した。
{Min(母材硬度、溶接金属硬度)}×1.5≧(HAZ硬度の最大値)・・・(1)式
上記の(1)式において、Min(母材硬度、溶接金属硬度)とは、母材の硬度および溶接金属の硬度のうちの低い方の値を意味する。また、HAZ硬度の最大値とは、溶接熱影響部における硬度の最大値を意味する。
(C) In order to prevent the occurrence of fatigue cracks in the welded portion, it is necessary to avoid the localization of the fatigue damage region macroscopically and microscopically. In order to avoid macroscopic localization of the fatigue damage region, it is only necessary to prevent stress concentration from occurring in the welded portion of the welded joint. In order to prevent stress concentration from occurring in the welded portion, it is only necessary that the hardness of the three materials of the weld heat affected zone (HAZ), the base material, and the weld metal can be made closer. The present inventors made a plurality of welded joints from a number of steel materials and conducted hardness distribution measurement and fatigue tests. As a result, it has been found that the fatigue characteristics of the welded joint are improved when the hardness of the heat affected zone (HAZ hardness) satisfies the following inequality (1).
{Min (base material hardness, weld metal hardness)} × 1.5 ≧ (maximum value of HAZ hardness) (1) Formula In the above formula (1), Min (base material hardness, weld metal hardness) and Means the lower value of the hardness of the base metal and the hardness of the weld metal. Moreover, the maximum value of HAZ hardness means the maximum value of the hardness in a welding heat affected zone.

なお、溶接継手では、通常、溶接金属の強度を母材強度より高めに設定するオーバーマッチという思想に基づいて溶接金属が選定される。そのため、多くの場合は、(1)式中のMin(母材硬度、溶接金属硬度)は母材硬度を意味することになる。また、通常、溶接熱影響部はサブmmから数mm程度の領域に形成される。   In the welded joint, the weld metal is usually selected based on the concept of overmatching in which the strength of the weld metal is set higher than the base metal strength. Therefore, in many cases, Min (base metal hardness, weld metal hardness) in the formula (1) means the base material hardness. In general, the weld heat affected zone is formed in an area of sub mm to several mm.

(d)一方、疲労損傷領域の局所化をミクロ的に避けるためには、溶接余盛り止端近傍のできるだけ広い領域で溶接部に発生する応力を受け持たせることにより、溶接余盛り止端にのみ高い局所応力が発生することを防止すればよい。そのためには、溶接熱影響部の加工硬化係数が0.12以下になればよい。この場合、溶接余盛り止端近傍に高い応力が発生したとしても、溶接余盛り止端での加工硬化の進行が抑制されるので、溶接余盛り止端ではさらなる応力を受け持つことができない。そのため、溶接余盛り止端において受け持つことができない応力は溶接余盛り止端周辺の領域が受け持たざるを得ない状況となり、溶接余盛り止端に応力集中が発生することを防止することができる。   (D) On the other hand, in order to avoid localizing the fatigue damage region microscopically, by giving stress generated in the weld in the widest possible region near the weld surplus toe, It is only necessary to prevent the occurrence of high local stress. For this purpose, the work hardening coefficient of the weld heat affected zone may be 0.12 or less. In this case, even if a high stress is generated in the vicinity of the weld surplus toe, the progress of work hardening at the weld surplus toe is suppressed, so that the weld surplus toe cannot bear further stress. Therefore, the stress that cannot be handled at the weld surplus toe end is in a situation where the area around the weld surplus toe end must be handled, and it is possible to prevent stress concentration from occurring at the weld surplus toe end. .

なお、上記(d)の知見は、溶接熱影響部の引張特性に注目することにより見出されたものである。これまでは、溶接の実継手においては、溶接熱影響部の引張特性が疲労強度にどのように影響するかということについては検討されてこなかった。これは、実継手においては、溶接熱影響部がサブmmから数mm程度の領域しか形成されず、この部分の引張特性を評価することは困難であったためである。   The knowledge of (d) above has been found by paying attention to the tensile properties of the weld heat affected zone. Until now, in the actual joint of welding, it has not been examined how the tensile properties of the heat affected zone affect the fatigue strength. This is because in the actual joint, the weld heat affected zone is formed only in the sub-mm to several mm region, and it is difficult to evaluate the tensile properties of this portion.

そこで、本発明者らは、溶接熱影響部の引張特性を評価するために、種々の鋼材から複数の小型の供試材を作製し、熱サイクルシミュレータ装置を用いて各供試材に溶接熱履歴を再現した。そして、溶接熱履歴を再現した各供試材から精密加工により極微小引張試験片を切り出し、専用の超小型引張試験機を用いて引張試験を実施し、引張特性と疲労強度との関係を評価した。   Therefore, in order to evaluate the tensile properties of the weld heat affected zone, the present inventors made a plurality of small test materials from various steel materials, and used each of the test materials to heat the welding heat. The history was reproduced. Then, a very small tensile test piece was cut out from each specimen that reproduced the welding heat history by precision processing, and a tensile test was performed using a dedicated ultra-small tensile tester to evaluate the relationship between tensile properties and fatigue strength. did.

(e)さらに、本発明者等は、耐食性に関し、飛来塩分量の多い環境での腐食について検討した結果、飛来塩分量が多い環境下では、FeCl溶液の乾湿繰り返しが腐食の本質的な条件となり、Fe3+の加水分解によりpHが低下した状態で、かつFe3+が酸化剤として作用することによって腐食が加速されることを見出した。 (E) Furthermore, as a result of studying corrosion in an environment with a large amount of incoming salt, the present inventors have investigated the corrosion resistance, and in an environment with a large amount of incoming salt, repeated drying and wetting of the FeCl 3 solution is an essential condition for corrosion. next, in a state pH dropped by hydrolysis of Fe 3+, and Fe 3+ was found that corrosion is accelerated by acting as an oxidizing agent.

このときの腐食反応は、以下に示すとおりである。   The corrosion reaction at this time is as follows.

カソード反応としては、主として、次の反応が起こる。
Fe3++e→Fe2+ (Fe3+の還元反応)
As the cathode reaction, the following reaction mainly occurs.
Fe 3+ + e → Fe 2+ (reduction reaction of Fe 3+ )

そして、この反応以外にも、次のカソード反応も併発する。
2HO+O+2e→4OH
2H+2e→H
In addition to this reaction, the following cathode reaction also occurs.
2H 2 O + O 2 + 2e → 4OH ,
2H + + 2e → H 2

一方、上記のFe3+の還元反応に対して、次のアノード反応が起こる。
アノード反応:Fe→Fe2++2e (Feの溶解反応)
On the other hand, the following anodic reaction occurs with respect to the above Fe 3+ reduction reaction.
Anode reaction: Fe → Fe 2+ + 2e (Fe dissolution reaction)

従って、腐食の総括反応は、次の(2)式のとおりである。
2Fe3++Fe→3Fe2+・・・・・・(2)式
Therefore, the overall reaction of corrosion is as shown in the following equation (2).
2Fe 3+ + Fe → 3Fe 2+ (2)

上記(2)式の反応により生成したFe2+は、空気酸化によってFe3+に酸化され、生成したFe3+は再び酸化剤として作用し、腐食を加速する。この際、Fe2+の空気酸化の反応速度は低pH環境では一般に遅いが、濃厚塩化物溶液中では加速され、Fe3+が生成され易くなる。このようなサイクリックな反応のため、飛来塩分量が非常に多い環境では、Fe3+が常に供給され続け、鋼の腐食が加速され、耐食性が著しく劣化することになることが判明した。 Fe 2+ generated by the reaction of the above formula (2) is oxidized to Fe 3+ by air oxidation, and the generated Fe 3+ acts again as an oxidizing agent to accelerate corrosion. At this time, the reaction rate of air oxidation of Fe 2+ is generally slow in a low pH environment, but is accelerated in a concentrated chloride solution, and Fe 3+ is easily generated. It has been found that due to such a cyclic reaction, in an environment where the amount of incoming salt is very large, Fe 3+ is always supplied, corrosion of steel is accelerated, and corrosion resistance is significantly deteriorated.

そして、本発明者らは、このような塩分環境における腐食のメカニズムを基に、種々の合金元素の耐候性への影響について検討した結果、下記の(f)〜(g)に示す知見を得た。   And as a result of examining the influence on the weather resistance of various alloy elements based on the mechanism of corrosion in such a salinity environment, the present inventors obtained the knowledge shown in the following (f) to (g). It was.

(f)Snは、Sn2+として溶解し、2Fe3++Sn2+→2Fe2++Sn4+なる反応によりFe3+の濃度を低下させることで、(2)式の反応を抑制する。Snには、さらにアノード溶解を抑制するという作用もある。 (F) Sn dissolves as Sn 2+, by lowering the concentration of Fe 3+ by 2Fe 3+ + Sn 2+ → 2Fe 2+ + Sn 4+ comprising reaction, (2) inhibiting the reaction of equation. Sn also has an effect of suppressing anodic dissolution.

(g)Cuは、従来から飛来塩分量の多い環境において耐食性改善効果の基本とされていた元素であり、比較的濡れ時間が長い環境において耐食性改善効果は見られる。しかしながら、塩化物濃度がさらに大きくなり、局部的にpHが下がるような環境、例えば塩分が付着し、湿度が変化することにより乾湿が繰り返され、β−FeOOHが生成するような比較的ドライな環境では、Cuはむしろ腐食を促進することが判明した。   (G) Cu is an element that has conventionally been regarded as the basis for improving the corrosion resistance in an environment with a large amount of incoming salt. The effect of improving the corrosion resistance can be seen in an environment where the wet time is relatively long. However, an environment where the chloride concentration is further increased and the pH is locally lowered, for example, a relatively dry environment in which salt is attached and the humidity is changed, resulting in repeated drying and wetting to produce β-FeOOH. Then, it was found that Cu rather promotes corrosion.

本発明は、上記の知見を基礎として完成したものであって、その要旨は下記の溶接継手にある。   The present invention has been completed on the basis of the above knowledge, and the gist thereof is in the following welded joint.

(1)質量%で、
C:0.01〜0.10%、
Si:0.04〜0.60%、
Mn:0.50〜2.00%、
P:0.025%以下、
S:0.020%以下、
Al:0.003〜0.060%、
Ti:0.001〜0.100%、
Sn:0.03〜0.50%、
N:0.0020〜0.0120%を含有し、
残部はFeと不純物からなる化学組成を有し、硬質部の素地とこの素地中に分散した軟質部からなる複合組織を有し、硬質部と軟質部の硬度差がビッカース硬度で150以上である母材を溶接してなる溶接継手であって、溶接熱影響部の硬度が、母材、溶接金属の各々の硬度と下記の不等式(1)式の関係を満たすと共に、溶接熱影響部の加工硬化係数の値が0.12以下であることを特徴とする溶接継手。
{Min(母材硬度、溶接金属硬度)}×1.5≧(HAZ硬度の最大値)・・・(1)式
ただし、Min(母材硬度、溶接金属硬度)とは、母材の硬度および溶接金属の硬度のうちの低い方の値を意味する。HAZ硬度の最大値とは、溶接熱影響部における硬度の最大値を意味する。
(1) By mass%,
C: 0.01-0.10%,
Si: 0.04 to 0.60%,
Mn: 0.50 to 2.00%,
P: 0.025% or less,
S: 0.020% or less,
Al: 0.003-0.060%,
Ti: 0.001 to 0.100%,
Sn: 0.03-0.50%,
N: 0.0020 to 0.0120% is contained,
The balance has a chemical composition composed of Fe and impurities, and has a composite structure composed of a base of a hard part and a soft part dispersed in the base, and the hardness difference between the hard part and the soft part is 150 or more in terms of Vickers hardness. A welded joint formed by welding a base metal, wherein the hardness of the weld heat affected zone satisfies the relationship between the hardness of each of the base metal and the weld metal and the following inequality (1), and processing of the weld heat affected zone A welded joint having a hardening coefficient value of 0.12 or less.
{Min (base metal hardness, weld metal hardness)} × 1.5 ≧ (maximum value of HAZ hardness) (1) Formula However, Min (base metal hardness, weld metal hardness) is the hardness of the base metal And the lower value of the hardness of the weld metal. The maximum value of HAZ hardness means the maximum value of hardness in the weld heat affected zone.

(2)母材が、Feの一部に代えて、質量%で、
Cu:0.1%未満を含有し、Cu/Sn比が1.0以下であることを特徴とする上記(1)の溶接継手。
(2) The base material is mass% instead of part of Fe,
Cu: The weld joint according to (1) above, containing less than 0.1% and having a Cu / Sn ratio of 1.0 or less.

(3)母材が、Feの一部に代えて、質量%で、
Cr:2.0%以下、
Mo:1.0%以下、
Ni:1.5%以下のうちの1種以上を含有することを特徴とする上記(1)または(2)の溶接継手。
(3) The base material is mass% instead of part of Fe,
Cr: 2.0% or less,
Mo: 1.0% or less,
Ni: The weld joint according to (1) or (2) above, which contains one or more of 1.5% or less.

(4)母材が、Feの一部に代えて、質量%で、
Nb:0.1%以下、
V:0.1%以下のうちの1種以上を含有することを特徴とする上記(1)〜(3)のいずれかの溶接継手。
(4) The base material is mass% instead of part of Fe,
Nb: 0.1% or less,
V: The welded joint according to any one of (1) to (3) above, containing one or more of 0.1% or less.

(5)母材が、Feの一部に代えて、質量%で、
B:0.0030%以下を含有することを特徴とする上記(1)〜(4)のいずれかの溶接継手。
(5) The base material is mass% instead of part of Fe,
B: The welded joint according to any one of (1) to (4) above, containing 0.0030% or less.

本発明に係る溶接継手は、特別な設計および施工を行うことなく溶接部の疲労き裂発生特性を改善できかつ疲労き裂が母材部に進入したときには母材部で疲労き裂進展抵抗特性を発揮することができ、また、高塩化物環境における耐食性も良好である。より具体的には、従来通りの構造設計の下、溶接施工に関しては、特殊な溶接材料を使用することなく、また、溶接後の余盛り止端形状をグラインダーなどで形状処理を行うことなく、溶接継手の疲労強度健全性を高めることができる。   The welded joint according to the present invention can improve the fatigue crack generation characteristics of the welded part without special design and construction, and when the fatigue crack enters the base metal part, the fatigue crack propagation resistance characteristic at the base metal part Moreover, the corrosion resistance in a high chloride environment is also good. More specifically, under the conventional structural design, with respect to the welding construction, without using a special welding material, and without performing shape processing with a grinder or the like, the shape of the remaining toe after welding, The fatigue strength soundness of the welded joint can be increased.

溶接熱履歴を再現するための供試材を示す図である。It is a figure which shows the test material for reproducing a welding heat history. 溶接熱履歴の一例を示す図である。It is a figure which shows an example of a welding heat history. 引張試験片を示す図である。It is a figure which shows a tensile test piece. 引張試験結果の一例を示す図である。It is a figure which shows an example of a tension test result.

以下に、本発明の各要件について詳しく説明する。ここで、化学組成を表す「%」は、特に断らない限り、「質量%」を意味する。   Below, each requirement of this invention is demonstrated in detail. Here, “%” representing the chemical composition means “mass%” unless otherwise specified.

1.母材組成
以下、本発明に係る溶接継手の母材の化学組成の作用効果を、その含有量の限定理由とともに説明する。なお、含有量に関する「%」は「質量%」を意味する。
1. Base material composition Hereinafter, the effect of the chemical composition of the base material of the welded joint according to the present invention will be described together with the reason for limiting the content thereof. In addition, "%" regarding content means "mass%".

C:0.01〜0.10%
Cは、鋼の強度を高める成分である。C含有量が0.01%未満では、母材が鋼構造物に必要な強度を確保することが困難になる。したがって、母材が鋼構造物に必要な強度レベルを確保するために、C含有量は0.01%以上とする。一方、C含有量が0.10%を超えると溶接性が低下するので、C含有量の上限は0.10%とする。望ましいC含有量は0.03〜0.06%である。
C: 0.01 to 0.10%
C is a component that increases the strength of steel. If the C content is less than 0.01%, it becomes difficult for the base material to ensure the strength required for the steel structure. Therefore, the C content is set to 0.01% or more in order to ensure the strength level necessary for the base material for the steel structure. On the other hand, if the C content exceeds 0.10%, the weldability decreases, so the upper limit of the C content is 0.10%. The desirable C content is 0.03 to 0.06%.

Si:0.04〜0.60%
Siは、鋼の脱酸のために必要な成分である。Si含有量が0.04%未満では適切な脱酸効果を期待できない。一方、Si含有量が0.60%を超えると母材の靱性が損なわれ、構造用鋼としての適正を欠くおそれがある。したがって、Si含有量は、0.04〜0.60%とする。望ましいSi含有量は、0.20〜0.50%である。
Si: 0.04 to 0.60%
Si is a component necessary for deoxidation of steel. If the Si content is less than 0.04%, an appropriate deoxidation effect cannot be expected. On the other hand, if the Si content exceeds 0.60%, the toughness of the base material is impaired, and there is a risk of lack of suitability as structural steel. Therefore, the Si content is 0.04 to 0.60%. A desirable Si content is 0.20 to 0.50%.

Mn:0.50〜2.00%
Mnは、鋼の強度を向上させる成分である。Mn含有量が0.50%未満では鋼構造物に必要な強度を確保できなくなる。一方、Mn含有量が2.00%を超えると、溶接熱影響部(HAZ)が硬化し溶接割れが発生しやすくなる。したがって、Mn含有量は、0.50〜2.00%とする。望ましいMn含有量は、0.80〜1.60%である。
Mn: 0.50 to 2.00%
Mn is a component that improves the strength of steel. If the Mn content is less than 0.50%, the strength required for the steel structure cannot be secured. On the other hand, if the Mn content exceeds 2.00%, the weld heat-affected zone (HAZ) is cured and weld cracks are likely to occur. Therefore, the Mn content is 0.50 to 2.00%. A desirable Mn content is 0.80 to 1.60%.

P:0.025%以下
Pは、中心偏析を助長するなどして鋼の靭性を劣化させる成分である。そのため、Pの含有量は、0.025%以下とする。望ましいP含有量は、0.020%以下である。
P: 0.025% or less P is a component that deteriorates the toughness of steel by, for example, promoting central segregation. Therefore, the content of P is set to 0.025% or less. A desirable P content is 0.020% or less.

S:0.020%以下
Sは、溶接割れの原因となる成分であり、割れの起点となり得るMnS等の介在物を形成する。そのため、Sの含有量は、0.020%以下とする。溶接熱影響部の靭性を十分に確保するためには、S含有量は0.015%以下とすることが望ましい。
S: 0.020% or less S is a component that causes weld cracking, and forms inclusions such as MnS that can be a starting point of cracking. Therefore, the content of S is set to 0.020% or less. In order to sufficiently ensure the toughness of the weld heat affected zone, the S content is desirably 0.015% or less.

Al:0.003〜0.060%
Alは、鋼の脱酸のために必要な成分である。Al含有量が0.003%未満では適切な脱酸効果を期待できない。一方、Al含有量が0.060%を超えると母材の清浄度および靱性が損なわれるおそれがある。したがって、母材のAl含有量は0.003〜0.060%とする。
Al: 0.003-0.060%
Al is a component necessary for deoxidation of steel. If the Al content is less than 0.003%, an appropriate deoxidation effect cannot be expected. On the other hand, if the Al content exceeds 0.060%, the cleanliness and toughness of the base material may be impaired. Therefore, the Al content of the base material is set to 0.003 to 0.060%.

Ti:0.001〜0.100%
Tiは、炭化物を生成することにより、軟質部を細粒化して強化するため、疲労き裂進展抑制特性の改善に有効な成分である。この効果を得るためには、Tiを0.001%含有させる必要があるので、Ti含有量は0.001%以上とする。一方、Ti含有量が0.100%を超えると、疲労き裂進展抑制特性の改善効果が飽和するとともに、母材の強度が上昇しすぎ、靱性が損なわれるおそれがある。したがって、母材のTi含有量は0.001〜0.100%とする。望ましいTi含有量は、0.010〜0.030%である。
Ti: 0.001 to 0.100%
Ti is an effective component for improving the fatigue crack growth suppression characteristics because the soft part is refined and strengthened by generating carbides. In order to acquire this effect, since it is necessary to contain 0.001% of Ti, Ti content shall be 0.001% or more. On the other hand, if the Ti content exceeds 0.100%, the effect of improving fatigue crack growth suppression characteristics is saturated, the strength of the base material is excessively increased, and the toughness may be impaired. Therefore, the Ti content of the base material is set to 0.001 to 0.100%. A desirable Ti content is 0.010 to 0.030%.

Sn:0.03〜0.50%
Snは、Sn2+となって溶解し、酸性塩化物溶液中でのインヒビター作用により腐食を抑制する作用を有する。また、Fe3+を速やかに還元させ、酸化剤としてのFe3+濃度を低減する作用を有することにより、Fe3+の腐食促進作用を抑制するので、高飛来塩分環境における耐候性を向上させる。また、Snには鋼のアノード溶解反応を抑制し耐食性を向上させる作用がある。これらの作用は、Snを0.03%以上含有させることにより得られ、0.50%を超えると飽和する。したがって、Snの含有量は0.03〜0.50%とする。なお、Snの含有量の好ましい下限は0.05%であり、好ましい上限は0.30%である。
Sn: 0.03-0.50%
Sn dissolves as Sn 2+ and has an action of inhibiting corrosion by an inhibitor action in an acidic chloride solution. Further, rapidly to reduce the Fe 3+, by having an effect of reducing Fe 3+ concentration as oxidizing agent, since inhibit corrosion promoting effect of Fe 3+, thereby improving the weather resistance in high airborne salt environments. Moreover, Sn has the effect | action which suppresses the anodic dissolution reaction of steel and improves corrosion resistance. These effects are obtained by containing 0.03% or more of Sn, and are saturated when it exceeds 0.50%. Therefore, the Sn content is 0.03 to 0.50%. In addition, the minimum with preferable Sn content is 0.05%, and a preferable upper limit is 0.30%.

N:0.0020〜0.0120%
Nは、TiNを生成して、溶接熱影響部の物性に影響する重要な成分である。Nの含有量は、継手疲労特性を向上させるためには、0.0020%以上必要である。一方、Nを過剰に添加するとTiNを形成しないNが母材の靱性を損なうおそれがある。したがって、N含有量は0.0020〜0.0120%とする。望ましいN含有量は、0.0050〜0.0090%である。
N: 0.0020 to 0.0120%
N is an important component that generates TiN and affects the physical properties of the weld heat affected zone. The N content needs to be 0.0020% or more in order to improve joint fatigue characteristics. On the other hand, when N is added excessively, N that does not form TiN may impair the toughness of the base material. Therefore, the N content is set to 0.0020 to 0.0120%. A desirable N content is 0.0050 to 0.0090%.

本発明に係る溶接継手の母材は、上記の元素を有し、残部がFeおよび不純物からなる鋼材である。ここで、不純物とは、鋼材を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。   The base material of the welded joint according to the present invention is a steel material having the above-described elements, with the balance being Fe and impurities. Here, the impurities are components that are mixed due to various factors of the manufacturing process including raw materials such as ore and scrap when industrially manufacturing steel materials, and in a range that does not adversely affect the present invention. It means what is allowed.

本発明に係る溶接継手の母材は、上記の元素の他に、さらにCu、Cr、Mo、Ni、Nb、V、およびBよりなる群から選ばれた1種または2種以上を含有させてもよい。これらの元素を含有させてもよい理由とそのときの含有量は、次の通りである。   The base material of the welded joint according to the present invention contains, in addition to the above elements, one or more selected from the group consisting of Cu, Cr, Mo, Ni, Nb, V, and B. Also good. The reason why these elements may be contained and the contents at that time are as follows.

Cu:0.1%未満かつCu/Sn比 1.0以下
Cuは、必要に応じて含有させることができる。Cuを含有させると、靭性を劣化させずに強度を向上させることができる。しかしながら、その含有量が0.1%以上であるかまたはCu/Sn比が1.0を超えると、Snを含有する鋼では、Cuの含有による耐食性の低下が著しい、さらに、鋼板を製造する際に圧延割れの原因となる。このため、Cuを含有させる場合のCu含有量は0.1%未満とし、かつSn含有量に対するCu含有量の比、すなわち、Cu/Sn比を1.0以下とする。なお、Cuを含有させる場合のCu含有量の上限は、より好ましくは0.4%である。
Cu: Less than 0.1% and a Cu / Sn ratio of 1.0 or less Cu can be contained as necessary. When Cu is contained, the strength can be improved without deteriorating toughness. However, if the content is 0.1% or more or the Cu / Sn ratio exceeds 1.0, the steel containing Sn has a significant decrease in corrosion resistance due to the inclusion of Cu. It causes rolling cracks. For this reason, when Cu is contained, the Cu content is less than 0.1%, and the ratio of the Cu content to the Sn content, that is, the Cu / Sn ratio is 1.0 or less. In addition, the upper limit of Cu content in the case of containing Cu is more preferably 0.4%.

なお、Cuによる上記の効果を安定的に発現させるためには、Cuを0.01%以上含有させることが好ましい。Cuを含有させる場合のCu含有量の下限は、より好ましくは0.05%である。   In addition, in order to stably express the above-described effects due to Cu, it is preferable to contain 0.01% or more of Cu. The lower limit of the Cu content when Cu is contained is more preferably 0.05%.

Cr:2.0%以下
Crは、必要に応じて含有させることができる。含有させれば、耐食性を向上させるとともに腐食環境下での疲労き裂進展抑制特性の改善、軟質部の転位構造の制御および微視的塑性変形の抑制に効果がある。しかし、2.0%を超えて含有させても、これらの効果が飽和するとともに、母材の強度が上昇しすぎて、靱性が損なわれるおそれがある。したがって、含有させる場合のCr含有量は2.0%以下、望ましくは1.8%以下とする。なお、腐食環境下での疲労き裂進展抑制特性の改善、軟質部の転位構造の制御および微視的塑性変形の抑制の効果を安定的に得るためには、0.01%以上含有させることが望ましく、0.5%以上含有させることがより望ましい。
Cr: 2.0% or less Cr can be contained as necessary. If contained, it is effective in improving corrosion resistance, improving fatigue crack growth suppression characteristics in a corrosive environment, controlling the dislocation structure of the soft part, and suppressing microscopic plastic deformation. However, even if the content exceeds 2.0%, these effects are saturated, and the strength of the base material is excessively increased, which may impair toughness. Therefore, if Cr is included, the Cr content is 2.0% or less, preferably 1.8% or less. In addition, in order to stably obtain the effects of improving fatigue crack growth suppression characteristics in a corrosive environment, controlling the dislocation structure of the soft part, and suppressing microscopic plastic deformation, the content should be 0.01% or more. Is desirable, and more preferably 0.5% or more.

Mo:1.0%以下
Moは、必要に応じて含有させることができる。MoもCrと同様に、耐食性を向上させるとともに腐食環境下での疲労き裂進展抑制特性の改善、軟質部の転位構造の制御および微視的塑性変形の抑制に効果がある。しかし、1.0%を超えて含有させても、これらの効果が飽和するとともに、母材の強度が上昇しすぎて、靱性が損なわれるおそれがある。したがって、含有させる場合のMo含有量は1.0%以下、望ましくは0.8%以下とする。なお、腐食環境下での疲労き裂進展抑制特性の改善、軟質部の転位構造の制御および微視的塑性変形の抑制の効果を安定的に得るためには、0.05%以上含有させることが望ましく、0.10%以上含有させることがより望ましい。
Mo: 1.0% or less Mo can be contained as necessary. Mo, like Cr, is effective in improving corrosion resistance and improving fatigue crack growth suppression characteristics in a corrosive environment, controlling the dislocation structure of the soft part, and suppressing microscopic plastic deformation. However, even if the content exceeds 1.0%, these effects are saturated and the strength of the base material is excessively increased, which may impair toughness. Therefore, the Mo content when contained is 1.0% or less, desirably 0.8% or less. In order to stably obtain the effects of improving fatigue crack growth suppression characteristics in corrosive environments, controlling the dislocation structure of the soft part, and suppressing microscopic plastic deformation, the content should be 0.05% or more. Is desirable, and it is more desirable to make it contain 0.10% or more.

Ni:1.5%以下
Niは、必要に応じて含有させることができる。NiもCrおよびMoと同様に、耐食性を向上させるとともに腐食環境下での疲労き裂進展抑制特性の改善、軟質部の転位構造の制御および微視的塑性変形の抑制に効果がある。しかし、1.5%を超えて含有させても、これらの効果が飽和するとともに、母材の強度が上昇しすぎて、靱性が損なわれるおそれがある。したがって、含有させる場合のNi含有量は1.5%以下、望ましくは1.0%以下とする。なお、腐食環境下での疲労き裂進展抑制特性の改善、軟質部の転位構造の制御および微視的塑性変形の抑制の効果を安定的に得るためには、0.1%以上含有させることが望ましく、0.5%以上含有させることがより望ましい。
Ni: 1.5% or less Ni can be contained as necessary. Ni, like Cr and Mo, is effective in improving corrosion resistance and improving fatigue crack growth suppression characteristics in a corrosive environment, controlling the dislocation structure of the soft part, and suppressing microscopic plastic deformation. However, even if the content exceeds 1.5%, these effects are saturated and the strength of the base material is excessively increased, which may impair toughness. Therefore, the Ni content when contained is 1.5% or less, preferably 1.0% or less. In addition, in order to stably obtain the effects of improving fatigue crack growth suppression characteristics in a corrosive environment, controlling the dislocation structure of the soft part, and suppressing microscopic plastic deformation, the content should be 0.1% or more. Is desirable, and more preferably 0.5% or more.

Nb:0.1%以下
Nbは、必要に応じて含有させることができる。Nbは、炭化物を生成することにより、軟質部を細粒化して強化するため、腐食環境下での疲労き裂進展抑制特性の改善に効果がある。しかし、0.1%を超えて含有させても、この効果が飽和するとともに、母材の強度が上昇しすぎて、靱性が損なわれるおそれがある。したがって、含有させる場合のNb含有量は0.1%以下、望ましくは0.05%以下とする。なお、腐食環境下での疲労き裂進展抑制特性の改善の効果を安定的に得るためには、0.01%以上含有させることが望ましく、0.02%以上含有させることがより望ましい。
Nb: 0.1% or less Nb can be contained as necessary. Nb is effective in improving fatigue crack growth suppression characteristics in a corrosive environment because it forms carbide and refines and softens the soft part. However, even if the content exceeds 0.1%, this effect is saturated and the strength of the base material is excessively increased, which may impair the toughness. Therefore, the Nb content when contained is 0.1% or less, preferably 0.05% or less. In order to stably obtain the effect of improving the fatigue crack growth suppression characteristics in a corrosive environment, the content is preferably 0.01% or more, and more preferably 0.02% or more.

V:0.1%以下
Vは、必要に応じて含有させることができる。VもNbと同様に、炭化物を生成することにより、軟質部を細粒化して強化するため、腐食環境下での疲労き裂進展抑制特性の改善に効果がある。しかし、0.1%を超えて含有させても、この効果が飽和するとともに、母材の強度が上昇しすぎて、靱性が損なわれるおそれがある。したがって、含有させる場合のV含有量は0.1%以下、望ましくは0.07%以下とする。なお、腐食環境下での疲労き裂進展抑制特性の改善の効果を安定的に得るためには、0.005%以上含有させることが望ましく、0.01%以上含有させることがより望ましい。
V: 0.1% or less V can be contained as necessary. V also has the effect of improving fatigue crack growth suppression characteristics in a corrosive environment because the soft part is refined and strengthened by forming carbides in the same manner as Nb. However, even if the content exceeds 0.1%, this effect is saturated and the strength of the base material is excessively increased, which may impair the toughness. Therefore, when V is contained, the V content is 0.1% or less, preferably 0.07% or less. In order to stably obtain the effect of improving the fatigue crack growth suppression characteristics in a corrosive environment, 0.005% or more is preferable, and 0.01% or more is more preferable.

B:0.0030%以下
Bは、必要に応じて含有させることができる。Bは、焼入性を著しく高める作用があり、強度上昇と疲労き裂進展抵抗性を向上させる効果がある。しかし、0.0030%を超えて含有させると靱性が劣化するおそれがある。したがって、含有させる場合のB含有量は0.0030%以下とする。なお、強度上昇と疲労き裂進展抵抗性向上の効果を安定的に得るためには、0.0003%以上含有させることが望ましい。
B: 0.0030% or less B can be contained if necessary. B has the effect of significantly increasing hardenability, and has the effect of increasing strength and resistance to fatigue crack growth. However, if the content exceeds 0.0030%, the toughness may deteriorate. Therefore, the B content when contained is 0.0030% or less. In order to stably obtain the effects of increasing the strength and improving resistance to fatigue crack growth, it is desirable to contain 0.0003% or more.

2.母材の組織および硬度
本発明に係る溶接継手の母材は、硬質部の素地とこの素地中に分散した軟質部からなる複合組織を有するものである。硬質部はマルテンサイト、ベイナイト、パーライト、疑似パーライトおよび焼戻しマルテンサイトのうちの1種以上からなる組織であり、軟質部はフェライト組織である。母材を上記のように複合組織とするのは、硬質部と軟質部の2種類の組織を複合形成させて、硬質部と軟質部との界面近傍においてき裂進展の停留効果を得るためである。この効果は、硬質部と軟質部との存在比率(体積率)によっては、あまり影響を受けない。したがって、本発明に係る溶接継手の母材では、上記の存在比率は特に限定されない。
2. Base Material Structure and Hardness The base material of the welded joint according to the present invention has a composite structure composed of a base of a hard part and a soft part dispersed in the base. The hard part is a structure composed of one or more of martensite, bainite, pearlite, pseudo pearlite and tempered martensite, and the soft part is a ferrite structure. The reason why the base material is a composite structure as described above is to obtain a retention effect of crack growth near the interface between the hard part and the soft part by forming a composite of two types of structures, the hard part and the soft part. is there. This effect is not significantly affected by the abundance ratio (volume ratio) between the hard part and the soft part. Therefore, in the base material of the welded joint according to the present invention, the abundance ratio is not particularly limited.

本発明に係る溶接継手の母材において、硬質部の硬度と軟質部の硬度との差は、ビッカース硬度(以下、Hvという。)で150以上である。軟質部と硬質部との硬度差をHvで150以上にする理由は次のとおりである。硬度差が150以上になると、き裂先端の転位の移動が軟質部と硬質部との界面で阻止されるとともに、バーガースベクトルが界面に直交する転位が、軟質部と硬質部との界面近傍の軟質部内に配列するため、傾角粒界が形成される。この傾角粒界は、粒界一次転位のみにより構成されるため、粒界凝集力が高く、破壊の抵抗となりやすい。さらに、形成された傾角粒界には転位が突入しにくいため、引続き繰り返し応力が作用する場合には、粒界に隣接する軟質部側に新しい傾角粒界が形成される。このような経過を繰返すことにより、大きな体積を有する傾角粒界の集合部が形成される。この集合部はき裂進展の抵抗となり、母材のき裂進展抑制特性を向上させることができる。   In the base material of the welded joint according to the present invention, the difference between the hardness of the hard portion and the hardness of the soft portion is 150 or more in terms of Vickers hardness (hereinafter referred to as Hv). The reason why the hardness difference between the soft part and the hard part is 150 or more in terms of Hv is as follows. When the hardness difference is 150 or more, the movement of dislocations at the crack tip is prevented at the interface between the soft part and the hard part, and the dislocation whose Burgers vector is orthogonal to the interface is near the interface between the soft part and the hard part. In order to arrange in the soft part, an inclined grain boundary is formed. Since this tilt grain boundary is composed only of grain boundary primary dislocations, it has a high grain boundary cohesive force and tends to be a resistance to fracture. Furthermore, since dislocations are unlikely to enter the formed tilt boundary, a new tilt grain boundary is formed on the soft part side adjacent to the grain boundary when repeated stress continues to act. By repeating such a process, a tilted grain boundary aggregate having a large volume is formed. This gathering portion serves as a resistance to crack propagation, and can improve the crack propagation suppression characteristics of the base material.

3.溶接継手の硬度分布ならびに溶接熱影響部の加工硬化係数
溶接継手の疲労強度を向上させるためには、疲労損傷領域の局所化をマクロ的、ミクロ的に避けて、溶接部においてき裂が発生することを防止する必要がある。
3. Hardness distribution of welded joints and work hardening coefficient of weld heat affected zone In order to improve the fatigue strength of welded joints, cracks occur in welds by avoiding macro and micro localization of the fatigue damage area. It is necessary to prevent this.

まず、疲労損傷領域の局所化をマクロ的に回避する技術について述べる。   First, a technique for avoiding the localization of the fatigue damage area in a macro manner will be described.

一般に、溶接継手には、通常、溶接に伴い溶接余盛りが形成される。溶接余盛りは応力集中源となり、余盛り止端に大きな応力集中を生じさせる。この余盛り止端の形状に基づく応力集中を母材側で改善することは困難である。   In general, a weld surplus is usually formed in a welded joint during welding. The weld surplus becomes a stress concentration source, and causes a large stress concentration at the surplus toe. It is difficult to improve the stress concentration based on the shape of the surplus toe on the base material side.

ここで、溶接継手に応力集中を発生させる要因には、上記のような形状に起因する形状ノッチの他に、材質ノッチと呼ばれるものがある。材質ノッチとは、材料内の材質の変化・分布、すなわち、溶接継手の場合には、強度の変化・分布に基づく応力集中現象である。強度の変化・分布は硬度分布の測定で評価することができる。溶接継手は、溶接熱影響部(HAZ)、母材、溶接金属の3つの材料が連続して存在している。通常、これらの3つの材料の中では、溶接熱影響部の硬度が最も高い。材質ノッチの観点から応力集中を抑制するためには、上記の3つの材料の硬度がほぼ等しく、略均一な硬度分布となることが望ましい。言い換えると、最も硬度の高い溶接熱影響部の硬度を、母材および溶接金属の硬度(母材と溶接金属のうち硬度の低い材料の硬度)にできるだけ近づけることが望ましい。具体的には、上述した(1)式の関係を満たすように、母材、溶接金属および溶接熱影響部の硬度を規定することにより、溶接継手の疲労特性を向上させることができる。   Here, in addition to the shape notch due to the shape as described above, there is a factor called a material notch that causes stress concentration in the welded joint. The material notch is a stress concentration phenomenon based on a change / distribution of a material in the material, that is, a strength change / distribution in the case of a welded joint. The change and distribution of strength can be evaluated by measuring the hardness distribution. A welded joint has three materials in succession: a weld heat affected zone (HAZ), a base material, and a weld metal. Usually, among these three materials, the weld heat affected zone has the highest hardness. In order to suppress the stress concentration from the viewpoint of the material notch, it is desirable that the hardness of the above three materials is substantially equal and the hardness distribution is substantially uniform. In other words, it is desirable that the hardness of the weld heat-affected zone having the highest hardness be as close as possible to the hardness of the base material and the weld metal (the hardness of the material having the lower hardness of the base material and the weld metal). Specifically, the fatigue characteristics of the welded joint can be improved by defining the hardness of the base metal, the weld metal, and the weld heat affected zone so as to satisfy the relationship of the above-described formula (1).

次に、疲労損傷領域の局所化をミクロ的に回避する技術について述べる。   Next, a technique for microscopically avoiding localized fatigue damage regions will be described.

上述したように、溶接継手には溶接余盛り止端の形成が避けられず、溶接余盛り止端において応力が集中し、疲労き裂の発生起点となる。ミクロ的に応力集中を回避する技術とは、溶接余盛り止端にのみ高い局所応力が発生することを避けるために、溶接余盛り止端近傍のできるだけ広い領域で応力を受け持たせることである。   As described above, the formation of a weld surplus toe is unavoidable in the weld joint, and stress concentrates at the weld surplus toe, which becomes a starting point for fatigue cracks. The technology to avoid stress concentration microscopically is to provide stress in the widest possible area near the weld toe to prevent high local stress from being generated only at the weld toe. .

本発明者らは、上記の技術を可能にするために必要となる材料特性を種々検討した。その結果、溶接熱影響部の機械的特性を制御することによって、上記の技術が可能となることを新たに見出した。具体的には、溶接熱影響部の機械的特性のうち、塑性加工に伴う応力の上昇程度、つまり、加工硬化係数が重要であることを見出した。より具体的には、溶接熱影響部の加工硬化係数が0.12よりも大きい場合は、溶接余盛り止端において加工硬化が進み、高応力域が局在化してしまうことを見出した。一方、溶接熱影響部の加工硬化係数が0.12以下の場合には、溶接余盛り止端近傍に高い応力が発生したとしても、溶接余盛り止端での加工硬化の進行が抑制される。この場合、溶接余盛り止端ではさらなる応力を受け持つことができず、溶接余盛り止端において受け持つことができない応力は、溶接余盛り止端周辺の領域が受け持たざるを得ない状況となる。   The inventors of the present invention have studied various material properties necessary for enabling the above-described technique. As a result, the inventors have newly found that the above-described technique can be achieved by controlling the mechanical characteristics of the weld heat affected zone. Specifically, it has been found that, among the mechanical properties of the weld heat affected zone, the degree of increase in stress accompanying plastic working, that is, the work hardening coefficient is important. More specifically, it has been found that when the work hardening coefficient of the weld heat affected zone is larger than 0.12, work hardening proceeds at the weld surplus toe and the high stress region is localized. On the other hand, when the work hardening coefficient of the weld heat affected zone is 0.12 or less, even if a high stress is generated in the vicinity of the weld surplus toe, the progress of work hardening at the weld surplus toe is suppressed. . In this case, the stress that cannot be handled at the weld surplus toe cannot be handled by the extra weld toe, and the area around the weld surplus toe cannot be handled.

4.母材の製造
本発明の溶接継手の母材として使用する鋼板は、例えば、以下の手順により製造できる。
4). Manufacture of base material The steel plate used as a base material of the welding joint of the present invention can be manufactured by the following procedures, for example.

まず、上述の化学組成を有するスラブを900℃〜1250℃に加熱した後に熱間圧延を施すことにより鋼板を作製する。次いで、熱間圧延された鋼板を冷却する。その冷却工程においては、平均冷却速度が20℃/秒以上(好ましくは25℃/秒〜60℃/秒)の加速冷却でスラブを800℃から500℃まで冷却し、500℃以下(好ましくは450℃〜室温)で上記加速冷却を停止し、その後、鋼板表面における復熱温度幅が、加速冷却停止時の鋼板表面の温度の40%以下となるようにして冷却を終了する。ここで復熱温度幅とは、加速冷却を停止した直後の鋼板表面の温度と、冷却停止後に鋼板内部に蓄積された熱で再び鋼板表面の温度が上昇し、その上昇が安定した状態での鋼板表面の温度との差を意味する。   First, a slab having the above-described chemical composition is heated to 900 ° C. to 1250 ° C. and then hot-rolled to produce a steel plate. Next, the hot-rolled steel sheet is cooled. In the cooling step, the slab is cooled from 800 ° C. to 500 ° C. by accelerated cooling with an average cooling rate of 20 ° C./second or more (preferably 25 ° C./second to 60 ° C./second), and is 500 ° C. or less (preferably 450 ° C.). Then, the accelerated cooling is stopped, and then the cooling is finished so that the recuperated temperature width on the steel sheet surface becomes 40% or less of the temperature of the steel sheet surface when the accelerated cooling is stopped. Here, the recuperation temperature range means the temperature of the steel sheet surface immediately after the accelerated cooling is stopped, and the temperature of the steel sheet surface rises again due to the heat accumulated in the steel sheet after the cooling stop, and the rise is stable. It means the difference from the temperature of the steel sheet surface.

なお、スラブの加熱温度が900℃以上である場合には、鋼材のフェライト率が高くなり過ぎることが防止され、疲労き裂の進展抵抗特性が向上する。また、スラブの加熱温度が1250℃以下である場合には、結晶粒径が粗大になり過ぎることが防止され、鋼材の靱性が向上する。したがって、スラブの加熱温度は900℃〜1250℃であることが好ましい。また、上記の冷却工程において、鋼板を800℃から500℃まで冷却する際の平均冷却速度が20℃/秒以上である場合には、フェライトの析出が抑制され、疲労き裂の進展抵抗特性が向上する。したがって、冷却工程における平均冷却速度は20℃/秒以上であることが好ましい。このフェライトの析出を確実に防止するためのより好ましい冷却速度は、25℃/秒以上である。加速冷却を停止した後の復熱温度幅が加速冷却停止時の鋼板表面の温度の40%以下である場合には、鋼材中の初期転位密度の減少が防止され、鋼材の繰返し軟化特性を引き出すことができるので疲労特性が向上する。したがって、加速冷却を停止した後の復熱温度幅は、加速冷却停止時の鋼板表面の温度の40%以下であることが好ましい。加速冷却停止時の鋼板表面の温度が500℃以下の場合には、鋼材のフェライト率が高くなり過ぎることが防止され、疲労き裂進展抵抗特性が向上する。したがって、加速冷却停止時の鋼板表面の温度は500℃以下であることが好ましい。フェライト率が高くなり過ぎることを確実に防止するためのより好ましい加速冷却停止温度は、450℃以下である。   In addition, when the heating temperature of a slab is 900 degreeC or more, it is prevented that the ferrite rate of steel materials becomes high too much, and the propagation resistance characteristic of a fatigue crack improves. Moreover, when the heating temperature of a slab is 1250 degrees C or less, it is prevented that a crystal grain diameter becomes too coarse and the toughness of steel materials improves. Therefore, the heating temperature of the slab is preferably 900 ° C to 1250 ° C. Further, in the above cooling step, when the average cooling rate when cooling the steel sheet from 800 ° C. to 500 ° C. is 20 ° C./second or more, the precipitation of ferrite is suppressed, and the fatigue crack propagation resistance characteristic is improves. Therefore, the average cooling rate in the cooling step is preferably 20 ° C./second or more. A more preferable cooling rate for reliably preventing the precipitation of ferrite is 25 ° C./second or more. When the recuperated temperature range after stopping the accelerated cooling is 40% or less of the temperature of the steel sheet surface when the accelerated cooling is stopped, the initial dislocation density in the steel is prevented from being reduced, and the repeated softening characteristics of the steel are extracted. As a result, fatigue characteristics are improved. Therefore, it is preferable that the recuperation temperature range after stopping the accelerated cooling is 40% or less of the temperature of the steel sheet surface when the accelerated cooling is stopped. When the temperature of the steel sheet surface at the time of accelerated cooling stop is 500 ° C. or lower, the ferrite ratio of the steel material is prevented from becoming too high, and the fatigue crack growth resistance characteristics are improved. Therefore, it is preferable that the temperature of the steel sheet surface when the accelerated cooling is stopped is 500 ° C. or less. A more preferable accelerated cooling stop temperature for reliably preventing the ferrite rate from becoming too high is 450 ° C. or less.

5.溶接継手の製造
溶接継手の製造は、例えば、アーク溶接により行えばよい。なお、アーク溶接においては、一般に、大気ガス等のガス成分の溶接金属への溶け込みにより、溶接部の強度上昇や靭性の低下が生じる。このため、フラックスまたはガスによるシールド効果を期待して、被覆アーク溶接(SMAW溶接; Shielded Metal Arc Welding)、マグ溶接(MAG溶接; Metal Active Gas Arc Welding)または炭酸ガスアーク溶接(CO溶接)によって溶接を行うことが好ましい。ここで、フラックスまたはシールドガスの量が少ないと大気ガス成分の溶接金属への溶け込みが多くなり、HAZ硬度あるいはHAZの加工効果係数の値(n値)が大きくなる。また、溶接継手の製造工程では、一般に、溶接後、溶接継手は大気中において放冷される。このとき、HAZが急冷されると、HAZ硬度あるいは加工効果係数の値が大きくなる。そのため、溶接継手の製造する際には、十分なシールドを行い、HAZの熱管理を十分に行う必要がある。
5. Manufacture of a welded joint A welded joint may be manufactured by, for example, arc welding. In arc welding, generally, the strength of the welded portion and the toughness are lowered due to the penetration of gas components such as atmospheric gas into the weld metal. For this reason, with the expectation of a shielding effect by flux or gas, welding is performed by covering arc welding (SMAW welding; Shielded Metal Arc Welding), MAG welding (MAG welding; Metal Active Gas Arc Welding) or carbon dioxide arc welding (CO 2 welding). It is preferable to carry out. Here, if the amount of the flux or the shielding gas is small, the atmospheric gas component is increased in the weld metal, and the HAZ hardness or the HAZ processing effect coefficient value (n value) increases. Moreover, in the manufacturing process of a welded joint, generally, after welding, the welded joint is allowed to cool in the atmosphere. At this time, if the HAZ is rapidly cooled, the value of the HAZ hardness or the processing effect coefficient increases. Therefore, when manufacturing a welded joint, it is necessary to perform sufficient shielding and to perform sufficient heat management of the HAZ.

表1および2に示す化学組成の母材を、通常の溶製、鋳造により製造した。その後、表3に示す熱間圧延、冷却条件で供試材となる溶接継手の母材鋼板を製造した。なお、表1および2に示す製造条件のA〜Eは、表3に示す製造条件のA〜Eにそれぞれ対応している。   Base materials having chemical compositions shown in Tables 1 and 2 were produced by ordinary melting and casting. Then, the base metal steel plate of the welded joint used as a test material on the hot rolling and cooling conditions shown in Table 3 was manufactured. The manufacturing conditions A to E shown in Tables 1 and 2 correspond to the manufacturing conditions A to E shown in Table 3, respectively.

Figure 2012140685
Figure 2012140685

Figure 2012140685
Figure 2012140685

Figure 2012140685
Figure 2012140685

母材鋼板の組織調査と硬度の測定は、母材鋼板をエポキシ樹脂に埋め込み、切断、断面の研磨、エッチングを施して、顕微鏡観察および微小領域の硬度の測定をすることにより行った。表1および2には、各母材鋼板の金属組織を素地相と分散相に分け、各々の相が軟質相であるのか、硬質相であるのかを記載すると共に、硬質相のビッカース硬度から軟質相のビッカース硬度を差し引いた硬度差を記載した。硬度測定はJIS Z2244−2003に従って実施した。   The structural investigation and hardness measurement of the base steel plate were carried out by embedding the base steel plate in an epoxy resin, cutting, polishing the cross section, etching, and measuring the hardness of the microscopic region and the micro area. Tables 1 and 2 divide the metal structure of each base steel sheet into a base phase and a dispersed phase, and describe whether each phase is a soft phase or a hard phase, and from the Vickers hardness of the hard phase to the soft phase The hardness difference obtained by subtracting the Vickers hardness of the phase is described. The hardness measurement was performed according to JIS Z2244-2003.

表1および2に示す各母材鋼板に対し、疲労き裂進展試験を実施した。また、被覆アーク溶接(SMAW溶接)、マグ溶接(MAG溶接)および炭酸ガスアーク溶接(CO溶接)のうちのいずれかの溶接方法で、各母材鋼板を用いて溶接継手を作製し、各溶接継手に対して疲労試験を実施した。なお、溶接継手の疲労試験では、荷重非伝達型十字継手を採用した。また、溶接継手に対しては、HAZ、母材、溶接金属の硬度を各々測定し、(HAZ硬度の最大値)/{Min(母材硬度, 溶接金属硬度)}を算出した。算出した値を、HAZ硬度比と称して表1および2に記載した。硬度測定はJIS Z2244−2003に従って実施した。 A fatigue crack growth test was performed on each base steel sheet shown in Tables 1 and 2. In addition, a welded joint is prepared using each base steel plate by any one of cladding arc welding (SMAW welding), mag welding (MAG welding), and carbon dioxide arc welding (CO 2 welding), and each welding is performed. A fatigue test was performed on the joint. In the fatigue test of the welded joint, a load non-transmission type cross joint was adopted. For the welded joint, the hardnesses of HAZ, base metal, and weld metal were measured, and (maximum value of HAZ hardness) / {Min (base metal hardness, weld metal hardness)} was calculated. The calculated values are referred to as HAZ hardness ratio and listed in Tables 1 and 2. The hardness measurement was performed according to JIS Z2244-2003.

各溶接は、溶接材料メーカーの推奨条件で実施した。例えば、炭酸ガスアーク溶接(CO溶接)では、溶接材料として神戸製鋼所製のDW−100(ワイヤ径1.2mm)を用いて、溶接電圧250V、溶接電流26A、溶接速度26cm/minで溶接入熱量1.5kJ/mmとして実施した。被覆アーク溶接(SMAW溶接)では、溶接材料として神戸製鋼所製の被覆アーク溶接棒LB−52(棒径4.0mm)を用いて、溶接電圧25V、溶接電流160A、溶接速度16cm/minで溶接入熱量1.5kJ/mmとして実施した。マグ溶接(MAG溶接)では、溶接材料として神戸製鋼所製のDW−100(ワイヤ径1.2mm)を用いて、溶接電圧250V、溶接電流26A、溶接速度26cm/minで溶接入熱量1.5kJ/mmとして実施した。このとき、シールドガスをCO(20%)とアルゴン(80%)からなる混合ガスとし、流量を25 L/minに調節した。 Each welding was performed under the conditions recommended by the welding material manufacturer. For example, in carbon dioxide arc welding (CO 2 welding), welding is performed at a welding voltage of 250 V, a welding current of 26 A, and a welding speed of 26 cm / min, using DW-100 (wire diameter: 1.2 mm) manufactured by Kobe Steel. The heat amount was 1.5 kJ / mm. In covered arc welding (SMAW welding), welding is performed at a welding voltage of 25 V, a welding current of 160 A, and a welding speed of 16 cm / min using a coated arc welding rod LB-52 (rod diameter: 4.0 mm) manufactured by Kobe Steel. The heat input was 1.5 kJ / mm. In MAG welding (MAG welding), welding heat input is 1.5 kJ at a welding voltage of 250 V, a welding current of 26 A, a welding speed of 26 cm / min, using DW-100 (wire diameter: 1.2 mm) manufactured by Kobe Steel. / mm. At this time, the shielding gas was a mixed gas composed of CO 2 (20%) and argon (80%), and the flow rate was adjusted to 25 L / min.

疲労き裂進展試験および疲労試験においては、母材鋼板および溶接継手を、電気油圧式閉ループ型疲労試験機に装着し、荷重制御下で試験を実施した。なお、疲労き裂進展試験では動的荷重容量が±98kNの試験機を、溶接継手疲労試験では動的荷重容量が±490kNの試験機を各々使用した。   In the fatigue crack growth test and the fatigue test, the base steel plate and the welded joint were mounted on an electrohydraulic closed loop fatigue tester, and the test was performed under load control. In the fatigue crack growth test, a testing machine having a dynamic load capacity of ± 98 kN was used, and in a welded joint fatigue test, a testing machine having a dynamic load capacity of ± 490 kN was used.

母材鋼板の疲労き裂進展試験では、ASTM E−647に準拠したCT試験片を用い、応力拡大係数範囲ΔK(最大応力拡大係数と最小応力拡大係数との差)が20MPa・m1/2での疲労き裂進展速度を評価した。表1および2では、疲労き裂進展特性を、き裂進展速度が2.5×10−5mm/cycle以下の場合を“◎”、4.0×10−5mm/cycle以下の場合を“○”、4.0×10−5mm/cycleを超えた場合を“×”として記載した。 In the fatigue crack growth test of the base steel plate, a CT specimen according to ASTM E-647 is used, and the stress intensity factor range ΔK (difference between the maximum stress intensity factor and the minimum stress intensity factor) is 20 MPa · m 1/2. The fatigue crack growth rate was evaluated. In Tables 1 and 2, the fatigue crack growth characteristics are indicated by “◎” when the crack growth rate is 2.5 × 10 −5 mm / cycle or less, and when the crack growth rate is 4.0 × 10 −5 mm / cycle or less. The case where “◯” exceeded 4.0 × 10 −5 mm / cycle was described as “×”.

溶接継手の疲労試験では、応力振幅を試験条件として変化させ、応力振幅と疲労破断寿命との関係をSN線図で表し、疲労限度を導出した。この疲労試験において、荷重比(最小荷重を最大荷重で除した値)は0.1とした。また、疲労限度は5E6回(5×10回)疲労強度で定義した。なお、疲労破断寿命は、最大荷重時の変位(試験体に荷重を負荷するアクチュエータのシリンダーの変位)が、試験開始時に比べ1mm増した時点と定義したが、この時点で、疲労き裂は断面の5〜8割程度の面積まで成長していた。表1および2には、溶接継手の疲労強度を、5E6回疲労強度が100MPa以上の場合を“◎”、80MPa以上の場合を“○”、80MPa未満の場合を“×”として記載した。 In the fatigue test of the welded joint, the stress amplitude was changed as a test condition, the relationship between the stress amplitude and the fatigue rupture life was represented by an SN diagram, and the fatigue limit was derived. In this fatigue test, the load ratio (value obtained by dividing the minimum load by the maximum load) was set to 0.1. The fatigue limit was defined as 5E6 times (5 × 10 6 times) fatigue strength. The fatigue fracture life was defined as the point at which the displacement at the maximum load (displacement of the cylinder of the actuator that loads the specimen) increased by 1 mm compared to the start of the test. To an area of about 50 to 80%. Tables 1 and 2 show the fatigue strength of the welded joint as ““ ”when the 5E6 fatigue strength is 100 MPa or more,“ ◯ ”when it is 80 MPa or more, and“ x ”when it is less than 80 MPa.

耐食性評価は、得られた溶接継手から、100mm×60mm×3mm厚の形状の試験片で切り出して実施した。試験片は表面を平面状とし、溶接金属が試験片長手方向の中央になるようにすると共に溶接余盛り等を機械加工で削除して作製した。この試験片をSAE(Society of Automotive Engineers)J2334試験により評価した。SAE J2334試験は、湿潤:50℃、100%RH、6時間、塩分付着:0.5%NaCl、0.1%CaCl、0.075%NaHCO水溶液浸漬、0.25時間、乾燥:60℃、50%RH、17.75時間を1サイクル(合計24時間)とした加速試験であり、腐食形態が大気暴露試験に類似しているとされている(長野博夫、山下正人、内田仁著:環境材料学、共立出版(2004)、p.74)。なお、本試験は、飛来塩分量が1mddを超えるような厳しい腐食環境を模擬する試験である。 The corrosion resistance evaluation was performed by cutting out from the obtained welded joint with a test piece having a shape of 100 mm × 60 mm × 3 mm thickness. The test piece was prepared by making the surface flat and making the weld metal in the center in the longitudinal direction of the test piece, and removing the welding surplus etc. by machining. This test piece was evaluated by SAE (Society of Automotive Engineers) J2334 test. SAE J2334 test is wet: 50 ° C., 100% RH, 6 hours, salt adhesion: 0.5% NaCl, 0.1% CaCl 2 , 0.075% NaHCO 3 aqueous solution, 0.25 hour, dry: 60 It is an accelerated test with 1 cycle (total 24 hours) at ℃, 50% RH, 17.75 hours, and the corrosion form is said to be similar to the atmospheric exposure test (Hiroo Nagano, Masato Yamashita, Hitoshi Uchida) : Environmental Materials Science, Kyoritsu Shuppan (2004), p.74). This test is a test that simulates a severe corrosive environment in which the amount of incoming salt exceeds 1 mdd.

無塗装試験片をSAE J2334試験120サイクル終了後、各試験片の表面のさび層を除去し、板厚減少量を測定した。ここで、「板厚減少量」は、試験片の平均の板厚減少量であり、試験前後の重量減少と試験片の表面積を用いて算出したものである。   After 120 cycles of the SAE J2334 test for the uncoated test piece, the rust layer on the surface of each test piece was removed, and the thickness reduction amount was measured. Here, the “plate thickness reduction amount” is an average plate thickness reduction amount of the test piece, and is calculated using the weight reduction before and after the test and the surface area of the test piece.

また、耐塗装剥離性を調べるために、150×70mmの大きさの試験片にエアースプレーにより変性エポキシ塗料(バンノー200:中国塗料製)を乾燥膜厚で150μmになるように試験片を塗装し、鋼材素地に達する深さでクロスカットを入れてから、同じくSAE J2334試験により評価した。試験後は剥離部の被膜を剥がし、写真撮影したのち画像処理により剥離した表面積を算出し、試験片の表面積で割ることにより、剥離面積率を計算により得た。   In addition, in order to investigate the paint peel resistance, a test piece of 150 × 70 mm in size is coated with a modified epoxy paint (Banno 200: made in China) by air spray so that the dry film thickness is 150 μm. After making a crosscut at a depth reaching the steel substrate, the SAE J2334 test was also used. After the test, the peeled portion was peeled off and the surface area peeled off by image processing after taking a picture was calculated and divided by the surface area of the test piece to obtain the peeled area ratio.

なお、以上の耐食性試験では、板厚減少量が0.25mm以下、剥離面積率30%以下であることを目標とした。   In the corrosion resistance test described above, the target thickness reduction amount was 0.25 mm or less and the peel area ratio was 30% or less.

本実施例においては、さらに、各溶接継手の溶接熱影響部(HAZ)の加工硬化指数(n値)を求めるための試験を行った。   In the present Example, the test for calculating | requiring the work hardening index (n value) of the welding heat affected zone (HAZ) of each welded joint was further done.

具体的には、まず、図1に示すように、各母材鋼板から、厚み:11mm、長辺:60mm、短辺11mmの供試材を作製した。そして、各溶接継手(表1および2のNo.1〜No48に溶接継手)の溶接法および溶接条件にそれぞれ合致するよう、熱サイクルシミュレータ装置(富士電波工機製、15kW高周波加熱、Heガス冷却)を用いて各供試材に溶接熱履歴を再現した。図2に、溶接熱履歴の一例として、CO溶接法で溶接入熱1.5kJ/mmに対応した熱履歴を示す。なお、このシミュレーター装置は、供試材に装着された熱電対の出力を基に、設定された加熱速度および高温保持をインダクション・ヒータで、設定された冷却速度を液体窒素で制御できるようになっている。 Specifically, as shown in FIG. 1, first, test materials having a thickness of 11 mm, a long side of 60 mm, and a short side of 11 mm were prepared from each base steel plate. And a thermal cycle simulator device (manufactured by Fuji Electric Koki Co., Ltd., 15 kW high-frequency heating, He gas cooling) so as to match the welding method and welding conditions of each welded joint (No. 1 to No. 48 in Tables 1 and 2). The welding heat history was reproduced for each specimen using FIG. 2 shows a heat history corresponding to a welding heat input of 1.5 kJ / mm by the CO 2 welding method as an example of the welding heat history. This simulator device can control the set heating rate and high temperature holding with an induction heater and the set cooling rate with liquid nitrogen based on the output of the thermocouple attached to the specimen. ing.

上記のシミュレーター装置により溶接熱履歴が再現された各供試材(以下、再現材と称する。)から、精密加工により、図3に示す引張試験片(厚みt:0.5mm、平行部の長さ:3.8mm)をそれぞれ採取した。なお、溶接熱履歴の再現材の極表層部は特異な組織となっている可能性があるため、図1に示すように、再現材の表面から1mmの部分が引張試験片の板厚方向における中心となるように引張試験片が採取されている。このようにして作製された各引張試験片を、荷重容量4.9kNの引張試験機に予ひずみが付与されないように特殊治具を用いて取り付けた。   From each sample material (hereinafter referred to as a reconstructed material) in which the welding heat history is reproduced by the simulator device, the tensile test piece (thickness t: 0.5 mm, length of the parallel portion) shown in FIG. Sa: 3.8 mm) was collected. Since the extreme surface layer portion of the reproduced material of the welding heat history may have a unique structure, a portion 1 mm from the surface of the reproduced material is in the thickness direction of the tensile test piece as shown in FIG. Tensile specimens are collected so as to be in the center. Each tensile test piece produced in this way was attached to a tensile tester with a load capacity of 4.9 kN using a special jig so that pre-strain was not applied.

本実施例においては、上記の各引張試験片の引張試験結果からHAZの加工硬化係数を求めた。以下、加工硬化係数の導出方法を具体的に説明する。図4は、引張試験結果の一例を示す図である。図4において、横軸は真塑性ひずみを対数で示し、縦軸は真応力を対数で示している。本実施例では、まず、各引張試験片について真応力と真塑性ひずみとの関係を多数導出し、その導出した関係を図4に示すように両対数グラフにプロットした。次に、真塑性ひずみが10−4から2×10−3の範囲を評価対象として上記の複数のプロットを直線で近似した。本実施例では、この直線の傾きを溶接継手のHAZの加工硬化係数(n値)として表1および2に記載した。なお、真塑性ひずみが10−4から2×10−3の範囲では、真応力と真塑性ひずみの関係は、下記(3)式で近似される。
σ=C×(εp) ・・・(3)式
上記(3)式において、σは真応力、εpは真塑性ひずみ、Cは材料定数を示す。
In the present Example, the work hardening coefficient of HAZ was calculated | required from the tension test result of each said tensile test piece. Hereinafter, a method for deriving the work hardening coefficient will be specifically described. FIG. 4 is a diagram illustrating an example of a tensile test result. In FIG. 4, the horizontal axis indicates the true plastic strain in logarithm, and the vertical axis indicates the true stress in logarithm. In this example, first, many relationships between the true stress and the true plastic strain were derived for each tensile test piece, and the derived relationships were plotted on a log-log graph as shown in FIG. Next, the above-mentioned plurality of plots were approximated by straight lines with a true plastic strain in the range of 10 −4 to 2 × 10 −3 as an evaluation target. In this example, the slope of this straight line is shown in Tables 1 and 2 as the work hardening coefficient (n value) of the HAZ of the welded joint. When the true plastic strain is in the range of 10 −4 to 2 × 10 −3 , the relationship between the true stress and the true plastic strain is approximated by the following equation (3).
σ = C × (εp) n (3) In the above equation (3), σ is a true stress, εp is a true plastic strain, and C is a material constant.

表1に示すように、本発明例(No.1〜No.24)では、母材鋼板の疲労き裂進展特性および溶接継手の疲労強度が優れており、耐食性も良好であることが分かる。一方、表2に示すように、本発明の要件を満足しない比較例(No.25〜No.48)は、母材鋼材の疲労き裂進展特性、溶接継手の疲労強度および耐食性のうちの少なくとも一つは優れていないことが分かる。   As shown in Table 1, it can be seen that in the inventive examples (No. 1 to No. 24), the fatigue crack growth characteristics of the base steel plate and the fatigue strength of the welded joint are excellent, and the corrosion resistance is also good. On the other hand, as shown in Table 2, the comparative examples (No. 25 to No. 48) that do not satisfy the requirements of the present invention include at least the fatigue crack growth characteristics of the base steel, the fatigue strength of the welded joint, and the corrosion resistance. It turns out that one is not good.

具体的には、No.25〜No.38では、本発明で規定する母材鋼材の組成を満足せず、かつ一部のものについては母材組織、硬質・軟質相の硬度差、HAZ硬度比またはHAZのn値(加工硬化係数)が本願発明の規定を満足しなかったため、母材鋼材の疲労き裂進展特性または溶接継手の疲労強度が優れなかった。   Specifically, No. 25-No. No. 38 does not satisfy the composition of the base steel material defined in the present invention, and for some, the base material structure, the hardness difference between the hard and soft phases, the HAZ hardness ratio, or the HAZ n value (work hardening coefficient) However, the fatigue crack growth characteristics of the base steel material or the fatigue strength of the welded joint were not excellent because the provisions of the present invention were not satisfied.

No.39〜No.42では、本発明で規定する母材鋼材の組成を満足するものの、製造条件が好ましくなかった。具体的には、表1および2に示すように、No.39では冷却停止温度が高く、No.40および41では、復熱温度幅が大きく、No.42では、平均冷却速度が低くかつ冷却停止温度が高かった。そのため、母材組織または硬質・軟質相の硬度差が本発明の規定を満足せず、母材鋼材の疲労き裂進展特性または溶接継手の疲労強度が優れなかった。   No. 39-No. In No. 42, although the composition of the base steel material defined in the present invention was satisfied, the production conditions were not preferable. Specifically, as shown in Tables 1 and 2, no. No. 39 has a high cooling stop temperature. In Nos. 40 and 41, the recuperation temperature range is large. In No. 42, the average cooling rate was low and the cooling stop temperature was high. For this reason, the hardness difference between the base metal structure or the hard / soft phase does not satisfy the provisions of the present invention, and the fatigue crack growth characteristics of the base steel and the fatigue strength of the welded joint are not excellent.

No.43〜No.46においては、母材鋼材が本発明で規定する組成を満足し、母材組織および硬質・軟質相の硬度差を満足している。しかし、溶接継手を適切に製造できなかったため、溶接継手の疲労強度が優れなかった。具体的にはNo.43〜No.45の溶接継手はシールドガスの量を少なくしたため、また、No.46の溶接継手は1パス目の溶接を行った直後に2パス目の溶接を行ったため、溶接継手の疲労強度が優れなかった。   No. 43-No. In No. 46, the base steel material satisfies the composition specified by the present invention, and satisfies the hardness difference between the base material structure and the hard / soft phase. However, since the welded joint could not be manufactured properly, the fatigue strength of the welded joint was not excellent. Specifically, No. 43-No. Since the welded joint of No. 45 reduced the amount of shielding gas, and the welded joint of No. 46 was welded in the second pass immediately after the first pass was welded, the fatigue strength of the welded joint was not excellent. .

No.47および48においては、母材鋼材が本発明で規定する組成を満足している。しかし、製造方法が好ましくなかった。具体的には、表1および2に示すように、No.47では平均冷却速度が低く、No.48では平均冷却速度が低くかつ冷却停止温度が高かった。そのため、母材組織または硬質・軟質相の硬度差が本発明の規定を満足せず、HAZ硬度比またはn値(加工効果係数)も本発明の規定を満足しなかったため、母材鋼材の疲労き裂進展特性および溶接継手の疲労強度が優れなかった。   In Nos. 47 and 48, the base steel material satisfies the composition defined in the present invention. However, the production method was not preferable. Specifically, as shown in Tables 1 and 2, No. 47 had a low average cooling rate, and No. 48 had a low average cooling rate and a high cooling stop temperature. For this reason, the hardness difference of the base metal structure or the hard / soft phase does not satisfy the provisions of the present invention, and the HAZ hardness ratio or n value (processing effect coefficient) does not satisfy the provisions of the present invention. The crack growth characteristics and fatigue strength of welded joints were not excellent.

No.49においては、Sn含有量が少量であって、本発明で規定する範囲を満足しなかった。このため、板厚減少量が1.06mmであって、十分な耐食性を有しなかった。また、No.50においては、Cu/Sn比が1.0を超えたため、圧延時に割れが生じたので、引張特性などの測定をしなかった。   In No. 49, the Sn content was small and did not satisfy the range defined in the present invention. For this reason, the thickness reduction amount was 1.06 mm, and it did not have sufficient corrosion resistance. No. In No. 50, since the Cu / Sn ratio exceeded 1.0, cracking occurred during rolling, and thus tensile properties and the like were not measured.

本発明に係る溶接継手は、特別な設計および施工を行うことなく溶接部の疲労き裂発生特性を改善できかつ疲労き裂が母材部に進入したときには母材部で疲労き裂進展抵抗特性を発揮することができ、また、高塩化物環境における耐食性も良好である。より具体的には、従来通りの構造設計の下、溶接施工に関しては、特殊な溶接材料を使用することなく、また、溶接後の余盛り止端形状をグラインダーなどで形状処理を行うことなく、溶接継手の疲労強度健全性を高めることができる。   The welded joint according to the present invention can improve the fatigue crack generation characteristics of the welded part without special design and construction, and when the fatigue crack enters the base metal part, the fatigue crack propagation resistance characteristic at the base metal part Moreover, the corrosion resistance in a high chloride environment is also good. More specifically, under the conventional structural design, with respect to the welding construction, without using a special welding material, and without performing shape processing with a grinder or the like, the shape of the remaining toe after welding, The fatigue strength soundness of the welded joint can be increased.

Claims (5)

質量%で、
C:0.01〜0.10%、
Si:0.04〜0.60%、
Mn:0.50〜2.00%、
P:0.025%以下、
S:0.020%以下、
Al:0.003〜0.060%、
Ti:0.001〜0.100%、
Sn:0.03〜0.50%、
N:0.0020〜0.0120%
を含有し、
残部はFeと不純物からなる化学組成を有し、
硬質部の素地とこの素地中に分散した軟質部からなる複合組織を有し、硬質部と軟質部の硬度差がビッカース硬度で150以上である母材を溶接してなる溶接継手であって、
溶接熱影響部の硬度が、母材、溶接金属の各々の硬度と下記の(1)式の関係を満たすと共に、溶接熱影響部の加工硬化係数の値が0.12以下であることを特徴とする溶接継手。
{Min(母材硬度、溶接金属硬度)}×1.5≧(HAZ硬度の最大値) ・・・(1)式
ただし、Min(母材硬度、溶接金属硬度)とは、母材の硬度および溶接金属の硬度のうちの低い方の値を意味する。HAZ硬度の最大値とは、溶接熱影響部における硬度の最大値を意味する。
% By mass
C: 0.01-0.10%,
Si: 0.04 to 0.60%,
Mn: 0.50 to 2.00%,
P: 0.025% or less,
S: 0.020% or less,
Al: 0.003-0.060%,
Ti: 0.001 to 0.100%,
Sn: 0.03-0.50%,
N: 0.0020 to 0.0120%
Containing
The balance has a chemical composition consisting of Fe and impurities,
A welded joint formed by welding a base material having a hard part base material and a soft part dispersed in the base material, wherein a hardness difference between the hard part and the soft part is 150 or more in Vickers hardness,
The hardness of the weld heat affected zone satisfies the relationship between the hardness of each of the base metal and the weld metal and the following formula (1), and the value of the work hardening coefficient of the weld heat affected zone is 0.12 or less. Welded joint.
{Min (base metal hardness, weld metal hardness)} × 1.5 ≧ (maximum value of HAZ hardness) (1) where Min (base metal hardness, weld metal hardness) is the hardness of the base metal And the lower value of the hardness of the weld metal. The maximum value of HAZ hardness means the maximum value of hardness in the weld heat affected zone.
母材が、Feの一部に代えて、質量%で、
Cu:0.1%未満を含有し、Cu/Sn比が1.0以下であることを特徴とする請求項1に記載の溶接継手。
Instead of part of Fe, the base material is mass%,
The weld joint according to claim 1, containing Cu: less than 0.1% and having a Cu / Sn ratio of 1.0 or less.
母材が、Feの一部に代えて、質量%で、
Cr:2.0%以下、
Mo:1.0%以下、
Ni:1.5%以下、
のうちの1種以上を含有することを特徴とする請求項1または2に記載の溶接継手。
Instead of part of Fe, the base material is mass%,
Cr: 2.0% or less,
Mo: 1.0% or less,
Ni: 1.5% or less,
The welded joint according to claim 1, comprising at least one of the above.
母材が、Feの一部に代えて、質量%で、
Nb:0.1%以下、
V:0.1%以下
のうちの1種以上を含有することを特徴とする請求項1から3までのいずれかに記載の溶接継手。
Instead of part of Fe, the base material is mass%,
Nb: 0.1% or less,
The weld joint according to any one of claims 1 to 3, characterized by containing one or more of V: 0.1% or less.
母材が、Feの一部に代えて、質量%で、
B:0.0030%以下を含有することを特徴とする請求項1から4までのいずれかに記載の溶接継手。
Instead of part of Fe, the base material is mass%,
B: It contains 0.0030% or less, The welded joint in any one of Claim 1 to 4 characterized by the above-mentioned.
JP2011000354A 2011-01-05 2011-01-05 Welded joint Active JP5633374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011000354A JP5633374B2 (en) 2011-01-05 2011-01-05 Welded joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000354A JP5633374B2 (en) 2011-01-05 2011-01-05 Welded joint

Publications (2)

Publication Number Publication Date
JP2012140685A true JP2012140685A (en) 2012-07-26
JP5633374B2 JP5633374B2 (en) 2014-12-03

Family

ID=46677239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000354A Active JP5633374B2 (en) 2011-01-05 2011-01-05 Welded joint

Country Status (1)

Country Link
JP (1) JP5633374B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037589A (en) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal High-tensile steel plate having excellent arrestability of surface layer and manufacturing method thereof
CN107177793A (en) * 2017-04-07 2017-09-19 江阴兴澄特种钢铁有限公司 A kind of special thick structural steel and iron of the low-alloy of 610mm of thickness 400 and its manufacture method
CN107385328A (en) * 2017-06-30 2017-11-24 江阴兴澄特种钢铁有限公司 The low-alloy super-thick steel plate with superior internal quality, low-temperature impact toughness and anti-lamellar tearing performance of two base laminating productions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115352A (en) * 1988-10-21 1990-04-27 Nippon Steel Corp Worked parts having weld zone excellent in strength characteristic
JPH07242992A (en) * 1994-03-09 1995-09-19 Sumitomo Metal Ind Ltd Steel plate having fatigue crack arresting effect
JP2006169602A (en) * 2004-12-17 2006-06-29 Sumitomo Metal Ind Ltd Welded joint superior in fatigue characteristic
JP2008163374A (en) * 2006-12-27 2008-07-17 Sumitomo Metal Ind Ltd Steel for bridge
JP2009046751A (en) * 2007-08-22 2009-03-05 Jfe Steel Kk Corrosion-resistant steel material for ship and manufacturing method therefor
JP2009127076A (en) * 2007-11-22 2009-06-11 Sumitomo Metal Ind Ltd Corrosion resistant steel product for cargo oil tank
JP2011025270A (en) * 2009-07-23 2011-02-10 Sumitomo Metal Ind Ltd Weld joint
JP2012077378A (en) * 2010-09-09 2012-04-19 Jfe Steel Corp Welded joint excellent in corrosion resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115352A (en) * 1988-10-21 1990-04-27 Nippon Steel Corp Worked parts having weld zone excellent in strength characteristic
JPH07242992A (en) * 1994-03-09 1995-09-19 Sumitomo Metal Ind Ltd Steel plate having fatigue crack arresting effect
JP2006169602A (en) * 2004-12-17 2006-06-29 Sumitomo Metal Ind Ltd Welded joint superior in fatigue characteristic
JP2008163374A (en) * 2006-12-27 2008-07-17 Sumitomo Metal Ind Ltd Steel for bridge
JP2009046751A (en) * 2007-08-22 2009-03-05 Jfe Steel Kk Corrosion-resistant steel material for ship and manufacturing method therefor
JP2009127076A (en) * 2007-11-22 2009-06-11 Sumitomo Metal Ind Ltd Corrosion resistant steel product for cargo oil tank
JP2011025270A (en) * 2009-07-23 2011-02-10 Sumitomo Metal Ind Ltd Weld joint
JP2012077378A (en) * 2010-09-09 2012-04-19 Jfe Steel Corp Welded joint excellent in corrosion resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037589A (en) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal High-tensile steel plate having excellent arrestability of surface layer and manufacturing method thereof
CN107177793A (en) * 2017-04-07 2017-09-19 江阴兴澄特种钢铁有限公司 A kind of special thick structural steel and iron of the low-alloy of 610mm of thickness 400 and its manufacture method
CN107177793B (en) * 2017-04-07 2019-07-19 江阴兴澄特种钢铁有限公司 A kind of thick structural steel and iron of low-alloy spy and its manufacturing method of thickness 400-610mm
CN107385328A (en) * 2017-06-30 2017-11-24 江阴兴澄特种钢铁有限公司 The low-alloy super-thick steel plate with superior internal quality, low-temperature impact toughness and anti-lamellar tearing performance of two base laminating productions
CN107385328B (en) * 2017-06-30 2019-02-12 江阴兴澄特种钢铁有限公司 The low-alloy super-thick steel plate with superior internal quality, low-temperature impact toughness and anti-lamellar tearing performance of two base laminating productions

Also Published As

Publication number Publication date
JP5633374B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
KR101584235B1 (en) Thick steel plate having thickness of 50mm or more with excellent long brittle crack arrestability, method for manufacturing the same and method and testing apparatus for evaluating long brittle crack arresting performance
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP5447310B2 (en) Steel for ballast tank
JP2005320619A (en) Steel plate excellent in fatigue crack propagation characteristic and method for production thereof
US9499873B2 (en) Steel plate having yield strength of 670 to 870 N/mm2 and tensile strength of 780 to 940 N/mm2
JP5641741B2 (en) High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance
US20220145435A1 (en) Weathering steel for solid-state welding, weathering steel material for solid-state welding, solid-state welded structure and solid-state welding method
JP6390818B2 (en) Hot-rolled steel sheet, steel material, and container
JP2016014168A (en) Wire rod for steel wire and steel wire
Alvaraes et al. Microstructural characterization of Inconel 625 nickel-based alloy weld cladding obtained by electroslag welding process
JP5633374B2 (en) Welded joint
JP5233867B2 (en) High strength steel and offshore structures with excellent corrosion resistance and weld toughness
JP7024798B2 (en) Steel plate, tailored blank, hot press molded product, steel pipe, hollow hardened molded product, steel plate manufacturing method, tailored blank manufacturing method, hot pressed molded product manufacturing method, steel pipe manufacturing method, and hollow hardened molded product. Manufacturing method
JP5407634B2 (en) Welded joint
JP2016216819A (en) Thick steel plate and welded joint
Eo et al. Heterostructure effect at the interface of maraging steel deposited upon carbon steel via directed energy deposition
JP5565322B2 (en) Welded joint
JP5833966B2 (en) Welded joint with excellent fatigue characteristics
JP6766576B2 (en) Manufacturing method of thick steel plate and welded joint
JPWO2012070359A1 (en) Electron beam welding joint, steel for electron beam welding, and manufacturing method thereof
WO2018088214A1 (en) High strength steel
JP5457938B2 (en) Steel sheet with excellent fatigue crack growth suppression properties and toughness
JP5056634B2 (en) Welded joint with excellent fatigue characteristics
Chatterjee et al. Design and development of galvannealed dual-phase steel: Microstructure, mechanical properties and weldability
JP5053652B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R151 Written notification of patent or utility model registration

Ref document number: 5633374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350