JP2012140545A - Rubber composition and pneumatic tire - Google Patents

Rubber composition and pneumatic tire Download PDF

Info

Publication number
JP2012140545A
JP2012140545A JP2010294546A JP2010294546A JP2012140545A JP 2012140545 A JP2012140545 A JP 2012140545A JP 2010294546 A JP2010294546 A JP 2010294546A JP 2010294546 A JP2010294546 A JP 2010294546A JP 2012140545 A JP2012140545 A JP 2012140545A
Authority
JP
Japan
Prior art keywords
polymer gel
rubber
mass
polymer
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010294546A
Other languages
Japanese (ja)
Other versions
JP5649951B2 (en
Inventor
Hiroaki Oe
裕彰 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2010294546A priority Critical patent/JP5649951B2/en
Publication of JP2012140545A publication Critical patent/JP2012140545A/en
Application granted granted Critical
Publication of JP5649951B2 publication Critical patent/JP5649951B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the dispersibility of a polymer gel to attempt the improvement in the balance of physical properties.SOLUTION: The rubber composition comprises a polymer gel prepared by disposing graft chains on the surfaces of cross-linked dienic polymer particles having a toluene swelling index Qi of ≤10 and a glass transition temperature of -100 to 0°C, and a rubber component comprising a dienic rubber. The polymer gel has a ratio (η/η) of 2-30, wherein ηis the viscosity of a 5 mass% toluene solution before graft-modified, andη is the viscosity of the 5 mass% toluene solution after graft-modified.

Description

本発明は、ゴム組成物、及び、それを用いた空気入りタイヤに関するものである。   The present invention relates to a rubber composition and a pneumatic tire using the same.

ゴム材料の低発熱化や加工性改善といった問題は、各種材料の最適化等で改善はされるものの、その要求は年々高くなっている。例えば、ゴム製品であるタイヤの転がり抵抗と、湿潤路面でのグリップ性能(wetμ)の改良にあたっては、両者がトレードオフの関係にあることから、そのバランス改善の技術的ハードルは高い。また、近年、低燃費タイヤなどの環境に対応した商品へのニーズが大きいことから、その要求に対して大幅な改良が必要になっている。そのようなゴム製品に対する要求特性を満たすためには、何かしらのブレークスルーが必要である。   Although problems such as low heat generation and improved workability of rubber materials can be improved by optimizing various materials, the demand is increasing year by year. For example, in improving the rolling resistance of a tire, which is a rubber product, and the grip performance (wetμ) on a wet road surface, the technical hurdle for improving the balance is high because the two are in a trade-off relationship. In recent years, there has been a great need for products corresponding to the environment, such as fuel-efficient tires, and therefore, there has been a need for significant improvements in response to such demands. In order to satisfy the required properties for such rubber products, some breakthrough is necessary.

上記要求性能に対応するために、架橋されたポリマー粒子であるゴムゲル(ポリマーゲル)をゴム組成物に配合することが提案されている(例えば、下記特許文献1〜3参照)。しかしながら、これらのポリマーゲルはナノゲルとも称されるようにナノサイズの微粒子状のゲルであるため、ゴム組成物中で凝集しやすく、分散性については未だ改良の余地があり、更なる物性の改良が求められる。   In order to cope with the required performance, it has been proposed to blend a rubber gel (polymer gel), which is a crosslinked polymer particle, into a rubber composition (for example, see Patent Documents 1 to 3 below). However, since these polymer gels are nano-sized fine-particle gels, also called nanogels, they tend to aggregate in the rubber composition, and there is still room for improvement in dispersibility. Is required.

なお、下記特許文献4には、ポリスチレンからなるコアとスチレン−ブタジエン共重合体からなる表面層とを備えたポリマーナノ粒子を、スチレンブタジエンゴムに配合したゴム組成物が開示されている。しかしながら、該ポリマーナノ粒子は、コアのガラス転移温度が150〜600℃と高いものであるため、ヒステリシスロスが大きく、ゴム組成物の低発熱化を図ることはできない。   Patent Document 4 listed below discloses a rubber composition in which polymer nanoparticles having a core made of polystyrene and a surface layer made of styrene-butadiene copolymer are blended with styrene butadiene rubber. However, since the polymer nanoparticles have a high glass transition temperature of 150 to 600 ° C. in the core, the hysteresis loss is large and the heat generation of the rubber composition cannot be reduced.

特開平10−204217号公報Japanese Patent Laid-Open No. 10-204217 特開平06−057038号公報Japanese Patent Laid-Open No. 06-057038 特表2004−504465号公報Special table 2004-504465 gazette 特表2010−514854号公報Special table 2010-514854 gazette

本発明は、以上の点に鑑み、ポリマーゲルの粒子表面にグラフト鎖を設けることにより、ポリマーゲルの分散性を向上させて、物性バランスの更なる向上を図ることができるゴム組成物を提供することを目的とする。   In view of the above points, the present invention provides a rubber composition capable of improving the dispersibility of a polymer gel and further improving the balance of physical properties by providing a graft chain on the particle surface of the polymer gel. For the purpose.

本発明に係るゴム組成物は、ジエン系ゴムからなるゴム成分と、ポリマーゲルとを含み、該ポリマーゲルが、トルエン膨潤指数Qiが10以下かつガラス転移温度が−100〜0℃の架橋されたジエン系ポリマー粒子の粒子表面に、グラフト鎖を設けてなるものであって、グラフト変性前のポリマーゲルの5質量%トルエン溶液粘度ηに対するグラフト変性後のポリマーゲルの5質量%トルエン溶液粘度ηの比(η/η)が2〜30であることを特徴とする。本発明に係る空気入りタイヤは、該ゴム組成物を用いてなるゴム部分を有するものである。 The rubber composition according to the present invention includes a rubber component composed of a diene rubber and a polymer gel, and the polymer gel is crosslinked with a toluene swelling index Qi of 10 or less and a glass transition temperature of −100 to 0 ° C. A graft chain is provided on the particle surface of the diene polymer particle, and the 5% toluene solution viscosity η of the polymer gel after graft modification with respect to the 5% toluene solution viscosity η o of the polymer gel before graft modification. The ratio (η / η o ) is 2 to 30. The pneumatic tire according to the present invention has a rubber portion using the rubber composition.

本発明によれば、架橋されたジエン系ポリマー粒子であるポリマーゲルの表面に上記グラフト鎖を設けたことにより、ポリマーゲルの凝集を抑えて分散性を向上することができ、硬度や強度を維持しつつ、低発熱化などの物性向上を図ることができる。   According to the present invention, by providing the graft chain on the surface of the polymer gel, which is a crosslinked diene polymer particle, the dispersibility can be improved by suppressing the aggregation of the polymer gel, and the hardness and strength are maintained. However, physical properties such as low heat generation can be improved.

以下、本発明の実施に関連する事項について詳細に説明する。   Hereinafter, matters related to the implementation of the present invention will be described in detail.

実施形態に係るゴム組成物は、(A)ジエン系ゴムからなるゴム成分(但し、下記ポリマーゲルは除く。)と、(B)ポリマーゲルと、を含有するものであり、マトリックスとしてのゴム成分(A)に、分散相としてのポリマーゲル(B)が分散したものである。   The rubber composition according to the embodiment contains (A) a rubber component composed of a diene rubber (excluding the following polymer gel) and (B) a polymer gel, and the rubber component as a matrix The polymer gel (B) as a dispersed phase is dispersed in (A).

上記(A)のジエン系ゴムとしては、例えば、天然ゴム(NR)、ポリイソプレンゴム(IR)、スチレン−ブタジエンゴム(SBR)、ポリブタジエンゴム(BR)、スチレン−イソプレンゴム、ブタジエン−イソプレンゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、ニトリルゴムなどが挙げられ、これらはそれぞれ単独で用いても2種以上併用してもよい。上記の中でも、タイヤ用に用いる場合、天然ゴム、スチレン−ブタジエンゴム、ポリブタジエンゴムが好ましい。   Examples of the diene rubber (A) include natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene rubber (SBR), polybutadiene rubber (BR), styrene-isoprene rubber, butadiene-isoprene rubber, Examples thereof include styrene-isoprene-butadiene copolymer rubber and nitrile rubber, and these may be used alone or in combination of two or more. Among these, when used for tires, natural rubber, styrene-butadiene rubber, and polybutadiene rubber are preferable.

上記(B)のポリマーゲルとしては、トルエン膨潤指数Qiが10以下かつガラス転移温度が−100〜0℃の架橋されたジエン系ポリマー粒子の粒子表面に、グラフト鎖を結合させてなるものが用いられる。   As the polymer gel (B), a gel obtained by bonding a graft chain to the surface of a crosslinked diene polymer particle having a toluene swelling index Qi of 10 or less and a glass transition temperature of −100 to 0 ° C. is used. It is done.

かかるポリマーゲルは、その低いトルエン膨潤指数によりフィラーとしての性質を持つものであるが、それ自体はジエン系ポリマーからなり、上記(A)のジエン系ゴムと共通ないし類似しているので、従来のカーボンブラックやシリカ等のフィラーとは異なる優れた物性をゴム組成物に付与することができる。例えば、従来のフィラーに置換して配合することにより、硬度や強度を維持しつつ、低発熱化を図ることができ、また低温性能の改良や加工性の改良などを図ることができる。また、ポリマーゲルは、カーボンブラックやシリカに比べて比重が小さいので、ゴム製品の軽量化を図ることができる。また、ポリマーゲルは、通常ナノサイズの微粒子状ゲルであることからゴム組成物中で凝集しやすいが、その粒子表面をグラフト化することにより、分散性を向上させることができ、更なるゴム物性の改良を図ることができる。詳細には、ポリマーゲル表面に設けられたグラフト鎖により、立体構造的にポリマーゲルの凝集が抑えられ(ポリマーゲル同士が近づくのをグラフト鎖が立体的に妨げる。)、更にはゴム成分としてジエン系ゴムとの相溶性も良くなることから、物性の改良が図られるものと考えられる。   Such a polymer gel has properties as a filler due to its low toluene swelling index, but it itself comprises a diene polymer and is similar to or similar to the diene rubber of the above (A). Excellent physical properties different from fillers such as carbon black and silica can be imparted to the rubber composition. For example, by substituting and blending with conventional fillers, it is possible to reduce heat generation while maintaining hardness and strength, and to improve low temperature performance and workability. In addition, since the polymer gel has a specific gravity smaller than that of carbon black or silica, the weight of the rubber product can be reduced. In addition, polymer gels are usually nano-sized fine-particle gels, so they easily aggregate in the rubber composition. However, by dispersing the surface of the particles, the dispersibility can be improved and further rubber properties can be obtained. Can be improved. Specifically, the graft chains provided on the surface of the polymer gel suppress the aggregation of the polymer gel sterically (the graft chain sterically hinders the polymer gels from approaching each other), and diene as a rubber component. Since the compatibility with the rubber is improved, it is considered that the physical properties are improved.

該ポリマーゲルを構成するジエン系ポリマー粒子は、ゴム分散液を架橋することにより製造することができる。ゴム分散液としては、懸濁重合により製造されるゴムラテックス、溶液重合されたゴムを水中に乳化させて得られるゴム分散液などが挙げられ、また、架橋剤としては、有機ペルオキシド、硫黄系架橋剤など挙げられる。また、ゴム粒子の架橋は、ゴムの乳化重合中に、架橋作用を持つ多官能化合物との共重合によっても行うことができる。具体的には、例えば、特開平10−204225号公報、特表2004−504465号公報、特表2004−506058号公報、特表2004−530760号公報などに開示の方法を用いることができる。   The diene polymer particles constituting the polymer gel can be produced by crosslinking the rubber dispersion. Examples of the rubber dispersion include rubber latex produced by suspension polymerization, rubber dispersion obtained by emulsifying solution-polymerized rubber in water, and examples of the crosslinking agent include organic peroxides and sulfur-based crosslinking. Agents and the like. The rubber particles can also be crosslinked by copolymerization with a polyfunctional compound having a crosslinking action during the emulsion polymerization of the rubber. Specifically, for example, methods disclosed in JP-A-10-204225, JP-T 2004-504465, JP-T 2004-506058, JP-T 2004-530760, and the like can be used.

該ポリマーゲルを構成するジエン系ポリマーとしては、例えば、天然ゴム、ポリイソプレンゴム、スチレン−ブタジエンゴム、ポリブタジエンゴム、スチレン−イソプレンゴム、ブタジエン−イソプレンゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、ニトリルゴムなどが挙げられ、これらはそれぞれ単独で用いても2種以上併用してもよい。好ましくは、ポリブタジエンゴム、スチレンブタジエンゴムを主成分とするものである。   Examples of the diene polymer constituting the polymer gel include natural rubber, polyisoprene rubber, styrene-butadiene rubber, polybutadiene rubber, styrene-isoprene rubber, butadiene-isoprene rubber, styrene-isoprene-butadiene copolymer rubber, and nitrile. Examples thereof include rubbers, and these may be used alone or in combination of two or more. Preferably, polybutadiene rubber or styrene butadiene rubber is the main component.

該ジエン系ポリマー粒子のガラス転移温度(Tg)は−100〜0℃である。このようなガラス転移温度の低いポリマー粒子を用いることで損失係数(tanδ)を低くして低発熱性を改良することができる。ガラス転移温度が0℃よりも高いと、低発熱性を改良することは困難である。ガラス転移温度は、より好ましくは、−90〜−20℃であり、更に好ましくは−80〜−40℃である。該ジエン系ポリマー粒子のガラス転移温度は、ベースとなるジエン系ポリマーの種類と、その架橋度により調整することができる。ガラス転移温度は、JIS K7121に準拠して示差走査熱量測定(DSC)を用いて測定される値(昇温速度20℃/分)である。   The glass transition temperature (Tg) of the diene polymer particles is −100 to 0 ° C. By using such polymer particles having a low glass transition temperature, the loss factor (tan δ) can be lowered to improve the low heat generation. If the glass transition temperature is higher than 0 ° C., it is difficult to improve the low exothermic property. The glass transition temperature is more preferably −90 to −20 ° C., still more preferably −80 to −40 ° C. The glass transition temperature of the diene polymer particles can be adjusted by the type of the diene polymer used as a base and the degree of crosslinking thereof. The glass transition temperature is a value (temperature increase rate 20 ° C./min) measured using differential scanning calorimetry (DSC) in accordance with JIS K7121.

該ジエン系ポリマー粒子のトルエン膨潤指数Qiは10以下である。このようなトルエン膨潤指数Qiの小さいポリマー粒子を用いることにより、フィラーとしての補強効果を発揮することができる。すなわち、トルエン膨潤指数が大きすぎると、ポリマー粒子が柔らかくなり、補強効果が失われる。トルエン膨潤指数Qiは、より好ましくは1〜9であり、更に好ましくは2〜6である。トルエン膨潤指数Qiは、例えば、ジエン系ポリマー粒子の架橋度により調整することができる。   The toluene swelling index Qi of the diene polymer particles is 10 or less. By using such polymer particles having a small toluene swelling index Qi, a reinforcing effect as a filler can be exhibited. That is, if the toluene swelling index is too large, the polymer particles become soft and the reinforcing effect is lost. The toluene swelling index Qi is more preferably 1 to 9, and further preferably 2 to 6. The toluene swelling index Qi can be adjusted by, for example, the degree of crosslinking of the diene polymer particles.

ここで、トルエン膨潤指数Qiは、ジエン系ポリマー粒子をトルエンに膨潤させた後、乾燥させることにより測定される。すなわち、ジエン系ポリマー粒子250mgを、トルエン25mL中で、24時間、振とう下に膨潤させ、20000rpmで遠心分離してから、濡れ質量を秤量し、次いで70℃で質量一定まで乾燥させてから、乾燥質量を秤量する。トルエン膨潤指数は、Qi=(ポリマー粒子の濡れ質量)/(ポリマー粒子の乾燥質量)により求められる。   Here, the toluene swelling index Qi is measured by allowing the diene polymer particles to swell in toluene and then drying. That is, 250 mg of diene polymer particles were swollen under shaking in 25 mL of toluene for 24 hours, centrifuged at 20000 rpm, weighed mass, then dried to constant mass at 70 ° C., Weigh dry mass. The toluene swelling index is determined by Qi = (wet mass of polymer particles) / (dry mass of polymer particles).

該ジエン系ポリマー粒子の粒径は、平均粒子径(DIN 53 206によるDVN値)が5〜2000nmであることが好ましく、より好ましくは10〜500nmであり、更に好ましくは20〜200nmである。   The average particle diameter (DVN value according to DIN 53 206) of the diene polymer particles is preferably 5 to 2000 nm, more preferably 10 to 500 nm, and still more preferably 20 to 200 nm.

該ジエン系ポリマー粒子としては、官能基を有する変性ポリマー粒子を用いてもよい。官能基としては、例えば、カルボキシル基などのカルボン酸誘導体、ヒドロキシル基などのヒドロキシ系官能基、アミノ基、チオール基、スルホ基などのヘテロ原子を含むものが挙げられる。このような官能基は、ジエン系ポリマーの重合時に、官能基が導入されたモノマーを用いて合成してもよく、また重合後の活性末端に官能基を導入してなる末端変性ポリマーを用いることもできる。また、上記架橋によりポリマー粒子を作製した後に、その粒子表面のC=C二重結合に対して官能基を有する化合物を反応させることにより、粒子表面に官能基を組み込むこともできる。   As the diene polymer particles, modified polymer particles having a functional group may be used. Examples of the functional group include those containing a hetero atom such as a carboxylic acid derivative such as a carboxyl group, a hydroxy functional group such as a hydroxyl group, an amino group, a thiol group, and a sulfo group. Such a functional group may be synthesized using a monomer into which a functional group is introduced during polymerization of a diene polymer, or a terminal-modified polymer in which a functional group is introduced into an active terminal after polymerization is used. You can also. Moreover, after producing polymer particles by the above crosslinking, a functional group can be incorporated into the particle surface by reacting a compound having a functional group with the C═C double bond on the particle surface.

該ジエン系ポリマー粒子の粒子表面にグラフト鎖を設けてなるポリマーゲルは、グラフト鎖を設けることにより、元のジエン系ポリマー粒子に対して5質量%トルエン溶液粘度が高くなる。すなわち、ポリマー粒子は上記のようにトルエン中で溶解せず膨潤しており、グラフト変性したものも膨潤しているが、トルエンとグラフト鎖との作用により、グラフト変性したものは未変性のものに比べて溶液粘度が上昇する。そのため、かかるグラフト変性前後のトルエン溶液粘度を比較することにより、グラフト鎖のジエン系ゴムに及ぼす影響を捉えることができる。より詳細には、上記粒子表面に設けるグラフト鎖は、その分子量と組成によりポリマーゲルの物性に与える影響が大きいので、グラフト鎖の分子量と組成の影響を反映したトルエン溶液粘度を用いて、変性前後で比較することにより、物性改善につながるポリマーゲルの特定が可能となる。   The polymer gel in which the graft chain is provided on the particle surface of the diene polymer particle has a 5 mass% toluene solution viscosity higher than that of the original diene polymer particle by providing the graft chain. That is, the polymer particles are swollen without dissolving in toluene as described above, and the graft-modified ones are also swollen, but the graft-modified ones are unmodified by the action of toluene and graft chains. Compared with the solution viscosity increases. Therefore, by comparing the toluene solution viscosities before and after the graft modification, the influence of the graft chain on the diene rubber can be grasped. More specifically, since the graft chain provided on the particle surface has a large influence on the physical properties of the polymer gel due to its molecular weight and composition, the viscosity of the toluene solution reflecting the influence of the molecular weight and composition of the graft chain is used before and after modification. By comparing the above, it is possible to identify a polymer gel that leads to improvement of physical properties.

すなわち、ポリマーゲルとしては、グラフト変性前の5質量%トルエン溶液粘度ηに対するグラフト変性後の5質量%トルエン溶液粘度ηの比(η/η)が2〜30の範囲内にあるものを用いることが好ましい。この比η/ηは、より好ましくは上限が20以下、更に好ましくは15以下、特に好ましくは10以下であり、また、下限がより好ましくは4以上である。この比が低すぎるとポリマーゲルの分散に十分でなく、逆に高すぎるとゴム組成物の発熱が高くなる傾向にある。この比は、グラフト鎖を構成する重合体の種類(組成)や分子量などにより調整することができる。 That is, the polymer gel has a ratio (η / η o ) of 5 mass% toluene solution viscosity η after graft modification to 5 mass% toluene solution viscosity η o before graft modification in the range of 2-30. It is preferable to use it. This ratio η / η o has an upper limit of preferably 20 or less, more preferably 15 or less, particularly preferably 10 or less, and a lower limit of 4 or more. If this ratio is too low, it is not sufficient for dispersing the polymer gel. Conversely, if it is too high, the heat generation of the rubber composition tends to increase. This ratio can be adjusted by the type (composition) of the polymer constituting the graft chain, the molecular weight, and the like.

ここで、トルエン溶液粘度は、JIS Z8803に従い測定される。詳細には、グラフト変性前後のポリマーゲルのそれぞれについて、トルエン中5質量%に調整した溶液を24時間放置した後、B型回転粘度計(Brookfield DV−II +pro、スピンドル形状No.4)を用いて、温度25℃、回転速度20rpmにより、1分後の値を測定する。   Here, the toluene solution viscosity is measured according to JIS Z8803. Specifically, for each of the polymer gels before and after graft modification, a solution adjusted to 5% by mass in toluene was allowed to stand for 24 hours, and then a B-type rotational viscometer (Brookfield DV-II + pro, spindle shape No. 4) was used. Then, the value after 1 minute is measured at a temperature of 25 ° C. and a rotation speed of 20 rpm.

なお、グラフト変性後のポリマーゲルの5質量%トルエン溶液粘度ηは、特に限定するものではないが、1000〜10000mPa・sであることが好ましく、より好ましくは1500〜5000mPa・sである。   In addition, although the 5 mass% toluene solution viscosity (eta) of the polymer gel after graft modification is not specifically limited, It is preferable that it is 1000-10000 mPa * s, More preferably, it is 1500-5000 mPa * s.

該グラフト鎖を構成する単量体としては、ビニル系単量体が好ましく用いられる。ビニル系単量体としては、(メタ)アクリル酸エステル、芳香族アルケニル化合物、共役ジエン系化合物、オレフィン化合物、多官能ビニル化合物などが挙げられる。(メタ)アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸エチルヘキシル、アクリル酸デシル、アクリル酸ステアリル、及びこれらのメタクリル酸化合物などの炭素数1〜18のアルキル基を持つアクリル酸又はメタクリル酸脂肪族炭化水素が挙げられる。芳香族アルケニル化合物としては、例えば、スチレン、α−メチルスチレン、p−メチルスチレンなどが挙げられる。共役ジエン系化合物としては、例えば、ブタジエン、イソプレンなどが挙げられる。オレフィン化合物としては、例えば、エチレン、プロピレン、イソブチレンなどが挙げられる。多官能ビニル化合物としては、例えば、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどが挙げられる。これらは、それぞれ1種単独で用いても、2種以上を組みあわせて用いてもよい。これらの中でも、好ましくは(メタ)アクリル酸エステルを用いることであり、より好ましくは炭素数1〜4のアルキル基を持つ(メタ)アクリル酸エステルを用いることである。   As the monomer constituting the graft chain, a vinyl monomer is preferably used. Examples of vinyl monomers include (meth) acrylic acid esters, aromatic alkenyl compounds, conjugated diene compounds, olefin compounds, polyfunctional vinyl compounds, and the like. Examples of (meth) acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, octyl acrylate, ethyl hexyl acrylate, and decyl acrylate. , Stearyl acrylate, and acrylic acid or methacrylic acid aliphatic hydrocarbons having an alkyl group having 1 to 18 carbon atoms such as methacrylic acid compounds. Examples of the aromatic alkenyl compound include styrene, α-methylstyrene, p-methylstyrene, and the like. Examples of the conjugated diene compound include butadiene and isoprene. Examples of the olefin compound include ethylene, propylene, isobutylene and the like. Examples of the polyfunctional vinyl compound include polyethylene glycol dimethacrylate and trimethylolpropane triacrylate. Each of these may be used alone or in combination of two or more. Among these, Preferably it is using (meth) acrylic acid ester, More preferably, it is using (meth) acrylic acid ester which has a C1-C4 alkyl group.

該グラフト鎖としては、ジエン系ポリマー粒子の粒子表面に存在するジエン系ポリマーの主鎖に対して枝状に分岐して結合した構造を持つ重合体鎖であれば特に限定されず、例えば、予め重合した重合体をジエン系ポリマー粒子の粒子表面に結合させて形成されたものでもよく、あるいはまた、ジエン系ポリマー粒子の粒子表面から重合を開始させるグラフト重合により形成されたものでもよい。予め重合した重合体をジエン系ポリマー粒子の表面に結合させる場合、例えば、上記のように官能基を導入した変性ポリマー粒子を用いるとともに、グラフト鎖となる重合体に該官能基と反応できる官能基を導入しておいて、両者の反応により、該重合体を変性ポリマーゲルに結合させてもよい。一方、グラフト重合による場合、ジエン系ポリマー粒子の粒子表面の炭素−炭素二重結合などに対してグラフト重合可能なビニル系単量体を重合させることができる。グラフト重合方法としては、アゾ系開始剤などのラジカル重合開始剤を用いた溶液重合法や乳化重合法など、公知のラジカル重合法を適用することができる。   The graft chain is not particularly limited as long as it is a polymer chain having a structure in which the main chain of the diene polymer existing on the particle surface of the diene polymer particle is branched and bonded. The polymer may be formed by bonding the polymer to the particle surface of the diene polymer particle, or may be formed by graft polymerization that initiates polymerization from the particle surface of the diene polymer particle. When a polymer that has been polymerized in advance is bonded to the surface of a diene polymer particle, for example, a modified polymer particle into which a functional group is introduced as described above is used, and a functional group that can react with the functional group on a polymer that becomes a graft chain. The polymer may be bound to the modified polymer gel by the reaction of both. On the other hand, in the case of graft polymerization, a vinyl monomer that can be graft-polymerized to the carbon-carbon double bond on the particle surface of the diene polymer particles can be polymerized. As the graft polymerization method, a known radical polymerization method such as a solution polymerization method or an emulsion polymerization method using a radical polymerization initiator such as an azo initiator can be applied.

該グラフト鎖としては、変性されたものであってもよい。例えば、ゴム成分であるジエン系ゴムと相互作用するチオール基などの官能基をグラフト鎖に導入しておけば、グラフト鎖とジエン系ゴムとが反応して結合することにより、ポリマーゲルとジエン系ゴムとの結合による補強性を高めることができる。   The graft chain may be modified. For example, if a functional group such as a thiol group that interacts with a diene rubber, which is a rubber component, is introduced into the graft chain, the graft chain reacts with the diene rubber so that the polymer gel and the diene system are bonded. Reinforcing property by bonding with rubber can be enhanced.

該グラフト鎖の含有量(グラフト率)は、特に限定されないが、ベースとなるジエン系ポリマー粒子に対して、0.1〜30質量%であることが好ましく、より好ましくは1〜20質量%である。   The content (graft ratio) of the graft chain is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass with respect to the diene polymer particles as a base. is there.

該グラフト鎖を持つポリマーゲルの配合量は、上記ゴム成分100質量部に対して、1〜100質量部であることが好ましく、より好ましくは5〜70質量部であり、更に好ましくは5〜50質量部である。ポリマーゲルの配合量が少なすぎると、その添加効果が不十分となるおそれがある。逆に配合量が多すぎると、局所的な凝集塊に起因して、強度が低下し、低発熱性が損なわれるおそれがある。   The blending amount of the polymer gel having a graft chain is preferably 1 to 100 parts by mass, more preferably 5 to 70 parts by mass, and further preferably 5 to 50 parts by mass with respect to 100 parts by mass of the rubber component. Part by mass. If the amount of the polymer gel is too small, the effect of addition may be insufficient. On the other hand, if the amount is too large, the strength is lowered due to local agglomerates and the low heat build-up may be impaired.

本発明に係るゴム組成物には、カーボンブラックやシリカなどの無機充填剤を配合してもよい。かかる無機充填剤の配合量は、特に限定されないが、前記ゴム成分100質量部に対して、例えば、5〜100質量部であることが好ましく、より好ましくは10〜50質量部である。   You may mix | blend inorganic fillers, such as carbon black and a silica, with the rubber composition which concerns on this invention. Although the compounding quantity of this inorganic filler is not specifically limited, It is preferable that it is 5-100 mass parts with respect to 100 mass parts of said rubber components, More preferably, it is 10-50 mass parts.

カーボンブラックとしては、特に限定されず、例えば、SAFクラス(N100番台)、ISAFクラス(N200番台)、HAFクラス(N300番台)、FEF(N500番台)、GPF(N600番台)(ともにASTMグレード)のものなどが挙げられる。また、シリカとしても、特に限定されず、湿式シリカ、乾式シリカ、コロイダルシリカ、沈降シリカなどが挙げられ、そのうち含水珪酸を主成分とする湿式シリカを用いることが好ましい。なお、無機充填剤としてシリカを配合する場合、スルフィドシランやメルカプトシランなどのシランカップリング剤を併用することが好ましく、シランカップリング剤は、通常、シリカ100質量部に対して2〜25質量部にて用いることができる。   The carbon black is not particularly limited. For example, SAF class (N100 series), ISAF class (N200 series), HAF class (N300 series), FEF (N500 series), GPF (N600 series) (both ASTM grade) Things. Further, the silica is not particularly limited, and examples thereof include wet silica, dry silica, colloidal silica, and precipitated silica. Of these, wet silica containing hydrous silicic acid as a main component is preferably used. In addition, when mix | blending a silica as an inorganic filler, it is preferable to use together silane coupling agents, such as sulfide silane and mercaptosilane, and a silane coupling agent is 2-25 mass parts normally with respect to 100 mass parts of silica. Can be used.

カーボンブラック及びシリカ以外の無機充填剤としては、例えば、酸化チタン、クレー、タルク、炭酸カルシウムなどが挙げられる。なお、以上挙げたカーボンブラックやシリカ、更にはその他の無機充填剤は、いずれか一種を単独で用いてもよく、あるいはまた複数種の無機充填剤を組み合わせて用いてもよい。   Examples of inorganic fillers other than carbon black and silica include titanium oxide, clay, talc, and calcium carbonate. In addition, any one of the above-mentioned carbon black, silica, and other inorganic fillers may be used alone, or a plurality of inorganic fillers may be used in combination.

本発明に係るゴム組成物には、上記の成分の他に、軟化剤、可塑剤、老化防止剤、亜鉛華、ステアリン酸、加硫剤、加硫促進剤など、ゴム組成物において一般に使用される種々の添加剤を任意に配合することができる。特に限定するものではないが、加硫剤の配合量は、上記ゴム成分100質量部に対して0.1〜10質量部であることが好ましく、より好ましくは0.5〜5質量部である。また、加硫促進剤の配合量は、上記ゴム成分100質量部に対して0.1〜7質量部であることが好ましく、より好ましくは0.5〜5質量部である。   In addition to the above components, the rubber composition according to the present invention is generally used in rubber compositions such as softeners, plasticizers, anti-aging agents, zinc white, stearic acid, vulcanizing agents, and vulcanization accelerators. Various additives can be arbitrarily blended. Although it does not specifically limit, it is preferable that the compounding quantity of a vulcanizing agent is 0.1-10 mass parts with respect to 100 mass parts of said rubber components, More preferably, it is 0.5-5 mass parts. . Moreover, it is preferable that the compounding quantity of a vulcanization accelerator is 0.1-7 mass parts with respect to 100 mass parts of said rubber components, More preferably, it is 0.5-5 mass parts.

上記ゴム組成物の調製方法は、特に限定されず、通常に用いられるバンバリーミキサーやロール、ニーダー等の混合機を用いて混練することで調製され、所定形状に成形し加硫することで、タイヤ、防振ゴム、ベルトなどの各種ゴム製品を得ることができる。好ましくは、タイヤ用ゴム組成物して用いることであり、常法に従い、例えば140〜180℃で加硫成形することにより、空気入りタイヤのトレッドゴムやサイドウォールゴムなどの様々なゴム部分を形成することができる。   The method for preparing the rubber composition is not particularly limited. The rubber composition is prepared by kneading using a commonly used Banbury mixer, roll, kneader, or other such mixer, molded into a predetermined shape, and vulcanized to produce a tire. Various rubber products such as anti-vibration rubber and belt can be obtained. Preferably, it is used as a rubber composition for tires, and various rubber parts such as tread rubber and sidewall rubber of a pneumatic tire are formed by vulcanization molding at 140 to 180 ° C. according to a conventional method. can do.

以下、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

[ポリマーゲル1の作製](比較例)
日本ゼオン(株)製SBRラテックス「Nipol Lx110」177.8gと蒸留水182.2gを、攪拌手段を備えた反応器へ注ぎ、次いで、t−ブチルペルオキシラウレート1.44gを添加した。反応器内を2時間窒素置換した後、80℃で4時間攪拌し、反応器を室温に戻し、貧溶媒に注ぎ洗浄した。3回洗浄後、乾燥することでポリマーゲルを得た。得られたポリマーゲル1は、Tg=−50℃、Qi=3、平均粒子径=80nm、比重=0.94であった。
[Production of Polymer Gel 1] (Comparative Example)
177.8 g of SBR latex “Nipol Lx110” manufactured by Nippon Zeon Co., Ltd. and 182.2 g of distilled water were poured into a reactor equipped with stirring means, and then 1.44 g of t-butylperoxylaurate was added. The inside of the reactor was purged with nitrogen for 2 hours, and then stirred at 80 ° C. for 4 hours. The reactor was returned to room temperature, poured into a poor solvent and washed. After washing three times, the polymer gel was obtained by drying. The obtained polymer gel 1 had Tg = −50 ° C., Qi = 3, average particle diameter = 80 nm, and specific gravity = 0.94.

[ポリマーゲル2の作製]
日本ゼオン(株)製SBRラテックス「Nipol Lx110」177.8gと蒸留水182.2gを、攪拌手段を備えた反応器へ注ぎ、次いで、t−ブチルペルオキシラウレート1.44gを添加した。反応器内を2時間窒素置換した後、80℃で4時間攪拌し、反応器を室温に戻し、ポリマーゲルを得た。得られたポリマーゲルは、Tg=−50℃、Qi=3、平均粒子径=80nm、比重=0.94、5質量%トルエン溶液粘度η=386mPa・sであった。更に、該ポリマーゲルに対してグラフト重合を実施した。すなわち、上記水分を含むポリマーゲル200g、ドデシル硫酸ナトリウム0.6gを反応器に添加、窒素置換と攪拌を実施しながら昇温を開始し、60℃の時点で、メチルアクリレート10.2g、エチルアクリレート1.3g、t−ブチルハイドロパーオキサイド0.36gをゆっくりと添加し、その後80℃へ昇温、そのまま2時間保持した。終了後、反応溶液を貧溶媒へ注ぎ、3回洗浄後乾燥させ、所望のポリマーゲルを得た。得られたポリマーゲル2は、比重=0.96、グラフト率が11.5質量%、5質量%トルエン溶液粘度η=2120mPa・sであり、従って、溶液粘度の比η/η=5.5であった。
[Preparation of polymer gel 2]
177.8 g of SBR latex “Nipol Lx110” manufactured by Nippon Zeon Co., Ltd. and 182.2 g of distilled water were poured into a reactor equipped with stirring means, and then 1.44 g of t-butylperoxylaurate was added. After the inside of the reactor was purged with nitrogen for 2 hours, the reactor was stirred at 80 ° C. for 4 hours, and the reactor was returned to room temperature to obtain a polymer gel. The obtained polymer gel had Tg = −50 ° C., Qi = 3, average particle diameter = 80 nm, specific gravity = 0.94, 5 mass% toluene solution viscosity η o = 386 mPa · s. Further, graft polymerization was performed on the polymer gel. That is, 200 g of the above polymer gel containing water and 0.6 g of sodium dodecyl sulfate were added to the reactor, and the temperature was raised while performing nitrogen substitution and stirring. At 60 ° C., 10.2 g of methyl acrylate, ethyl acrylate 1.3 g and 0.36 g of t-butyl hydroperoxide were slowly added, and then the temperature was raised to 80 ° C. and maintained for 2 hours. After completion, the reaction solution was poured into a poor solvent, washed 3 times and dried to obtain a desired polymer gel. The obtained polymer gel 2 has a specific gravity = 0.96, a graft ratio of 11.5% by mass, and a 5% by mass toluene solution viscosity η = 2120 mPa · s, and thus the solution viscosity ratio η / η o = 5. It was 5.

[ポリマーゲル3の作製](比較例)
日本ゼオン(株)製SBRラテックス「Nipol Lx110」177.8gと蒸留水182.2gを、攪拌手段を備えた反応器へ注ぎ、次いで、t−ブチルペルオキシラウレート1.44gを添加した。反応器内を2時間窒素置換した後、80℃で4時間攪拌し、反応器を室温に戻し、ポリマーゲルを得た。得られたポリマーゲルは、Tg=−50℃、Qi=3、平均粒子径=80nm、比重=0.94、5質量%トルエン溶液粘度η=386mPa・sであった。更に、該ポリマーゲルに対してグラフト重合を実施した。すなわち、上記水分を含むポリマーゲル200g、ドデシル硫酸ナトリウム0.6gを反応器に添加、窒素置換と攪拌を実施しながら昇温を開始し、60℃の時点で、メチルアクリレート20.4g、エチルアクリレート2.6g、t−ブチルハイドロパーオキサイド0.73gをゆっくりと添加し、その後80℃へ昇温、そのまま4時間保持した。終了後、反応溶液を貧溶媒へ注ぎ、3回洗浄後乾燥させ、所望のポリマーゲルを得た。得られたポリマーゲル3は、比重=0.98、グラフト率が44.0質量%、5質量%トルエン溶液粘度η=15477mPa・sであり、従って、溶液粘度の比η/η=40.1であった。
[Production of Polymer Gel 3] (Comparative Example)
177.8 g of SBR latex “Nipol Lx110” manufactured by Nippon Zeon Co., Ltd. and 182.2 g of distilled water were poured into a reactor equipped with stirring means, and then 1.44 g of t-butylperoxylaurate was added. The inside of the reactor was purged with nitrogen for 2 hours, and then stirred at 80 ° C. for 4 hours, and the reactor was returned to room temperature to obtain a polymer gel. The obtained polymer gel had Tg = −50 ° C., Qi = 3, average particle diameter = 80 nm, specific gravity = 0.94, 5 mass% toluene solution viscosity η o = 386 mPa · s. Further, graft polymerization was performed on the polymer gel. That is, 200 g of the above polymer gel containing water and 0.6 g of sodium dodecyl sulfate were added to the reactor, and the temperature was raised while performing nitrogen substitution and stirring. At 60 ° C., 20.4 g of methyl acrylate, ethyl acrylate 2.6 g and 0.73 g of t-butyl hydroperoxide were slowly added, and then the temperature was raised to 80 ° C. and maintained for 4 hours. After completion, the reaction solution was poured into a poor solvent, washed 3 times and dried to obtain a desired polymer gel. The obtained polymer gel 3 has a specific gravity = 0.98, a grafting ratio of 44.0% by mass, and a 5% by mass toluene solution viscosity η = 15477 mPa · s. Therefore, the solution viscosity ratio η / η o = 40. 1

[ポリマーゲル4の作製](比較例)
日本ゼオン(株)製SBRラテックス「Nipol Lx415M」186.0gと蒸留水213.9gを、攪拌手段を備えた反応器へ注ぎ、次いで、t−ブチルペルオキシラウレート1.44gを添加した。反応器内を2時間窒素置換した後、80℃で4時間攪拌し、反応器を室温に戻し、ポリマーゲルを得た。得られたポリマーゲルは、Tg=27℃、Qi=3、平均粒子径=110nm、比重=0.93、5質量%トルエン溶液粘度η=441mPa・sであった。更に、該ポリマーゲルに対してグラフト重合を実施した。すなわち、上記水分を含むポリマーゲル200g、ドデシル硫酸ナトリウム0.5gを反応器に添加、窒素置換と攪拌を実施しながら昇温を開始し、60℃の時点で、メチルアクリレート10.2g、エチルアクリレート1.3g、t−ブチルハイドロパーオキサイド0.37gをゆっくりと添加し、その後80℃へ昇温、そのまま2時間保持した。終了後、反応溶液を貧溶媒へ注ぎ、3回洗浄後乾燥させ、所望のポリマーゲルを得た。得られたポリマーゲル4は、比重=0.94、グラフト率が13.2質量%、5質量%トルエン溶液粘度η=2775mPa・sであり、従って、溶液粘度の比η/η=6.3であった。
[Production of Polymer Gel 4] (Comparative Example)
186.0 g of SBR latex “Nipol Lx415M” manufactured by Nippon Zeon Co., Ltd. and 213.9 g of distilled water were poured into a reactor equipped with a stirring means, and then 1.44 g of t-butyl peroxylaurate was added. After the inside of the reactor was purged with nitrogen for 2 hours, the reactor was stirred at 80 ° C. for 4 hours, and the reactor was returned to room temperature to obtain a polymer gel. The obtained polymer gel had Tg = 27 ° C., Qi = 3, average particle size = 110 nm, specific gravity = 0.93, and 5 mass% toluene solution viscosity η o = 441 mPa · s. Further, graft polymerization was performed on the polymer gel. That is, 200 g of the above polymer gel containing water and 0.5 g of sodium dodecyl sulfate were added to the reactor, and the temperature was raised while performing nitrogen substitution and stirring. At 60 ° C., 10.2 g of methyl acrylate, ethyl acrylate 1.3 g and 0.37 g of t-butyl hydroperoxide were slowly added, and then the temperature was raised to 80 ° C. and maintained for 2 hours. After completion, the reaction solution was poured into a poor solvent, washed 3 times and dried to obtain a desired polymer gel. The obtained polymer gel 4 has a specific gravity = 0.94, a graft ratio of 13.2% by mass, and a 5% by mass toluene solution viscosity η = 2775 mPa · s. Therefore, the solution viscosity ratio η / η o = 6. 3.

[ポリマーゲル5の作製](比較例)
日本ゼオン(株)製SBRラテックス「Nipol Lx110」177.8gと蒸留水182.2gを、攪拌手段を備えた反応器へ注ぎ、次いで、t−ブチルペルオキシラウレート0.72gを添加した。反応器内を2時間窒素置換した後、80℃で1時間攪拌し、反応器を室温に戻し、ポリマーゲルを得た。得られたポリマーゲルは、Tg=−50℃、Qi=24、平均粒子径=100nm、比重=0.93、5質量%トルエン溶液粘度η=644mPa・sであった。更に、該ポリマーゲルに対してグラフト重合を実施した。すなわち、上記水分を含むポリマーゲル200g、ドデシル硫酸ナトリウム0.6gを反応器に添加、窒素置換と攪拌を実施しながら昇温を開始し、60℃の時点で、メチルアクリレート10.2g、エチルアクリレート1.3g、t−ブチルハイドロパーオキサイド0.36gをゆっくりと添加し、その後80℃へ昇温、そのまま2時間保持した。終了後、反応溶液を貧溶媒へ注ぎ、3回洗浄後乾燥させ、所望のポリマーゲルを得た。得られたポリマーゲル5は、比重=0.94、グラフト率が21.5質量%、5質量%トルエン溶液粘度η=8051mPa・sであり、従って、溶液粘度の比η/η=12.5であった。
[Production of Polymer Gel 5] (Comparative Example)
177.8 g of SBR latex “Nipol Lx110” manufactured by Nippon Zeon Co., Ltd. and 182.2 g of distilled water were poured into a reactor equipped with stirring means, and then 0.72 g of t-butyl peroxylaurate was added. The inside of the reactor was purged with nitrogen for 2 hours, and then stirred at 80 ° C. for 1 hour, and the reactor was returned to room temperature to obtain a polymer gel. The obtained polymer gel had Tg = −50 ° C., Qi = 24, average particle size = 100 nm, specific gravity = 0.93, 5 mass% toluene solution viscosity η o = 644 mPa · s. Further, graft polymerization was performed on the polymer gel. That is, 200 g of the above polymer gel containing water and 0.6 g of sodium dodecyl sulfate were added to the reactor, and the temperature was raised while performing nitrogen substitution and stirring. At 60 ° C., 10.2 g of methyl acrylate, ethyl acrylate 1.3 g and 0.36 g of t-butyl hydroperoxide were slowly added, and then the temperature was raised to 80 ° C. and maintained for 2 hours. After completion, the reaction solution was poured into a poor solvent, washed 3 times and dried to obtain a desired polymer gel. The obtained polymer gel 5 has a specific gravity = 0.94, a graft ratio of 21.5% by mass, and a 5% by mass toluene solution viscosity η = 8051 mPa · s, and thus the solution viscosity ratio η / η o = 12. It was 5.

[ポリマーゲル6の作製]
日本ゼオン(株)製SBRラテックス「Nipol Lx110」177.8gと蒸留水182.2gを、攪拌手段を備えた反応器へ注ぎ、次いで、t−ブチルペルオキシラウレート1.44gを添加した。反応器内を2時間窒素置換した後、80℃で4時間攪拌し、反応器を室温に戻し、ポリマーゲルを得た。得られたポリマーゲルは、Tg=−50℃、Qi=3、平均粒子径=80nm、比重=0.94、5質量%トルエン溶液粘度η=386mPa・sであった。更に、該ポリマーゲルに対してグラフト重合を実施した。すなわち、上記水分を含むポリマーゲル200g、ドデシル硫酸ナトリウム0.6gを反応器に添加、窒素置換と攪拌を実施しながら昇温を開始し、60℃の時点で、メチルメタクリレート12.1g、t−ブチルハイドロパーオキサイド0.41gをゆっくりと添加し、その後80℃へ昇温、そのまま2時間保持した。終了後、反応溶液を貧溶媒へ注ぎ、3回洗浄後乾燥させ、所望のポリマーゲルを得た。得られたポリマーゲル6は、比重=0.94、グラフト率が18.1質量%、5質量%トルエン溶液粘度η=3512mPa・sであり、従って、溶液粘度の比η/η=9.1であった。
[Preparation of polymer gel 6]
177.8 g of SBR latex “Nipol Lx110” manufactured by Nippon Zeon Co., Ltd. and 182.2 g of distilled water were poured into a reactor equipped with stirring means, and then 1.44 g of t-butylperoxylaurate was added. The inside of the reactor was purged with nitrogen for 2 hours, and then stirred at 80 ° C. for 4 hours, and the reactor was returned to room temperature to obtain a polymer gel. The obtained polymer gel had Tg = −50 ° C., Qi = 3, average particle diameter = 80 nm, specific gravity = 0.94, 5 mass% toluene solution viscosity η o = 386 mPa · s. Further, graft polymerization was performed on the polymer gel. That is, 200 g of the above polymer gel containing water and 0.6 g of sodium dodecyl sulfate were added to the reactor, and the temperature was increased while performing nitrogen substitution and stirring. At 60 ° C., 12.1 g of methyl methacrylate, t- 0.41 g of butyl hydroperoxide was slowly added, and then the temperature was raised to 80 ° C. and held there for 2 hours. After completion, the reaction solution was poured into a poor solvent, washed 3 times and dried to obtain a desired polymer gel. The obtained polymer gel 6 has a specific gravity = 0.94, a graft ratio of 18.1% by mass, and a 5% by mass toluene solution viscosity η = 3512 mPa · s. Therefore, the solution viscosity ratio η / η o = 9. 1

[ポリマーゲル7の作製]
日本ゼオン(株)製SBRラテックス「Nipol Lx110」177.8gと蒸留水182.2gを、攪拌手段を備えた反応器へ注ぎ、次いで、t−ブチルペルオキシラウレート1.44gを添加した。反応器内を2時間窒素置換した後、80℃で4時間攪拌し、反応器を室温に戻し、ポリマーゲルを得た。得られたポリマーゲルは、Tg=−50℃、Qi=3、平均粒子径=80nm、比重=0.94、5質量%トルエン溶液粘度η=386mPa・sであった。更に、該ポリマーゲルに対してグラフト重合を実施した。すなわち、上記水分を含むポリマーゲル200g、ドデシル硫酸ナトリウム0.6gを反応器に添加、窒素置換と攪拌を実施しながら昇温を開始し、60℃の時点で、スチレン12.4g、t−ブチルハイドロパーオキサイド0.42gをゆっくりと添加し、その後80℃へ昇温、そのまま2時間保持した。終了後、反応溶液を貧溶媒へ注ぎ、3回洗浄後乾燥させ、所望のポリマーゲルを得た。得られたポリマーゲル7は、比重=0.95、グラフト率が19.9質量%、5質量%トルエン溶液粘度η=4012mPa・sであり、従って、溶液粘度の比η/η=10.4であった。
[Preparation of polymer gel 7]
177.8 g of SBR latex “Nipol Lx110” manufactured by Nippon Zeon Co., Ltd. and 182.2 g of distilled water were poured into a reactor equipped with stirring means, and then 1.44 g of t-butylperoxylaurate was added. The inside of the reactor was purged with nitrogen for 2 hours, and then stirred at 80 ° C. for 4 hours, and the reactor was returned to room temperature to obtain a polymer gel. The obtained polymer gel had Tg = −50 ° C., Qi = 3, average particle diameter = 80 nm, specific gravity = 0.94, 5 mass% toluene solution viscosity η o = 386 mPa · s. Further, graft polymerization was performed on the polymer gel. That is, 200 g of the polymer gel containing water and 0.6 g of sodium dodecyl sulfate were added to the reactor, and the temperature was raised while performing nitrogen substitution and stirring. At 60 ° C., 12.4 g of styrene, t-butyl Hydroperoxide (0.42 g) was slowly added, and then the temperature was raised to 80 ° C. and held there for 2 hours. After completion, the reaction solution was poured into a poor solvent, washed 3 times and dried to obtain a desired polymer gel. The obtained polymer gel 7 has a specific gravity = 0.95, a grafting ratio of 19.9% by mass, and a 5% by mass toluene solution viscosity η = 4012 mPa · s. Therefore, the solution viscosity ratio η / η o = 10. 4.

[ポリマーゲル8の作製]
日本ゼオン(株)製SBRラテックス「Nipol Lx110」177.8gと蒸留水182.2gを、攪拌手段を備えた反応器へ注ぎ、次いで、t−ブチルペルオキシラウレート1.44gを添加した。反応器内を2時間窒素置換した後、80℃で2時間攪拌し、反応器を室温に戻し、ポリマーゲルを得た。得られたポリマーゲルは、Tg=−50℃、Qi=9、平均粒子径=90nm、比重=0.93、5質量%トルエン溶液粘度η=493mPa・sであった。更に、該ポリマーゲルに対してグラフト重合を実施した。すなわち、上記水分を含むポリマーゲル200g、ドデシル硫酸ナトリウム0.6gを反応器に添加、窒素置換と攪拌を実施しながら昇温を開始し、60℃の時点で、メチルアクリレート10.2g、エチルアクリレート1.3g、t−ブチルハイドロパーオキサイド0.36gをゆっくりと添加し、その後80℃へ昇温、そのまま2時間保持した。終了後、反応溶液を貧溶媒へ注ぎ、3回洗浄後乾燥させ、所望のポリマーゲルを得た。得られたポリマーゲル8は、比重=0.93、グラフト率が14.5質量%、5質量%トルエン溶液粘度η=3540mPa・sであり、従って、溶液粘度の比η/η=7.2であった。
[Preparation of polymer gel 8]
177.8 g of SBR latex “Nipol Lx110” manufactured by Nippon Zeon Co., Ltd. and 182.2 g of distilled water were poured into a reactor equipped with stirring means, and then 1.44 g of t-butylperoxylaurate was added. The inside of the reactor was purged with nitrogen for 2 hours, and then stirred at 80 ° C. for 2 hours. The reactor was returned to room temperature to obtain a polymer gel. The obtained polymer gel had Tg = −50 ° C., Qi = 9, average particle diameter = 90 nm, specific gravity = 0.93, 5 mass% toluene solution viscosity η o = 493 mPa · s. Further, graft polymerization was performed on the polymer gel. That is, 200 g of the above polymer gel containing water and 0.6 g of sodium dodecyl sulfate were added to the reactor, and the temperature was raised while performing nitrogen substitution and stirring. At 60 ° C., 10.2 g of methyl acrylate, ethyl acrylate 1.3 g and 0.36 g of t-butyl hydroperoxide were slowly added, and then the temperature was raised to 80 ° C. and maintained for 2 hours. After completion, the reaction solution was poured into a poor solvent, washed 3 times and dried to obtain a desired polymer gel. The obtained polymer gel 8 has a specific gravity = 0.93, a graft ratio of 14.5% by mass, and a 5% by mass toluene solution viscosity η = 3540 mPa · s, and thus a solution viscosity ratio η / η o = 7. 2.

[第1実施例]
バンバリーミキサーを使用し、下記表1に示す配合に従って、タイヤ用ゴム組成物を調製した。詳細には、第一混合段階で、硫黄と加硫促進剤を除く成分を添加混合し、次いで、得られた混合物に、最終混合段階で硫黄と加硫促進剤を添加混合して、ゴム組成物を調製した。表中の各成分、及び共通配合については以下の通りである。
[First embodiment]
Using a Banbury mixer, a tire rubber composition was prepared according to the formulation shown in Table 1 below. Specifically, in the first mixing stage, components other than sulfur and vulcanization accelerator are added and mixed, and then the resulting mixture is added and mixed with sulfur and vulcanization accelerator in the final mixing stage to obtain a rubber composition. A product was prepared. Each component in the table and the common formulation are as follows.

・天然ゴム:RSS#3
・カーボンブラック:N339、三菱化学(株)製(比重=1.8)
・オイル:株式会社ジャパンエナジー製「プロセスNC−140」
・ Natural rubber: RSS # 3
Carbon black: N339, manufactured by Mitsubishi Chemical Corporation (specific gravity = 1.8)
・ Oil: “Process NC-140” manufactured by Japan Energy Co., Ltd.

共通配合は、ゴム成分100質量部に対して、亜鉛華(三井金属鉱業(株)製「亜鉛華1号」)3質量部、老化防止剤(住友化学(株)製「アンチゲン6C」)2質量部、ステアリン酸(花王(株)製「ルナックS−20」)2質量部、ワックス(日本精鑞(株)製「OZOACE0355」)2質量部、硫黄(鶴見化学工業(株)製「5%油入微粉末硫黄」)1.5質量部、加硫促進剤1(住友化学(株)製「ソクシノールCZ」)1.8質量部、加硫促進剤2(大内新興化学工業(株)製「ノクセラーD」)2.0質量部とした。   Common blending is 3 parts by weight of zinc white ("Zinc Flower No. 1" manufactured by Mitsui Mining & Smelting Co., Ltd.) and 100% of anti-aging agent ("Antigen 6C" manufactured by Sumitomo Chemical Co., Ltd.). 2 parts by mass of stearic acid (“Lunac S-20” manufactured by Kao Corporation), 2 parts by mass of wax (“OZOACE0355” manufactured by Nippon Seiki Co., Ltd.), sulfur (“5 manufactured by Tsurumi Chemical Co., Ltd.) % Oil-filled fine powder sulfur ") 1.5 parts by mass, vulcanization accelerator 1 (" Soccinol CZ "manufactured by Sumitomo Chemical Co., Ltd.) 1.8 parts by mass, vulcanization accelerator 2 (Ouchi Shinsei Chemical Industry Co., Ltd.) “Noxeller D” manufactured by KK) was 2.0 parts by mass.

得られた各ゴム組成物について、ムーニー粘度を測定するとともに、160℃×30分で加硫して所定形状の試験片を作製し、得られた試験片を用いて、硬度、引張強度、tanδ、反発弾性率を測定した。各測定方法は以下の通りである。   About each obtained rubber composition, while measuring Mooney viscosity, it vulcanizes | cures at 160 degreeC x 30 minutes, and produces the test piece of a predetermined shape, Hardness, tensile strength, tan (delta) was used for the obtained test piece. The impact resilience was measured. Each measuring method is as follows.

・ムーニー粘度:混合後におけるゴム組成物の100℃でのムーニー粘度(ASTM D1646)を測定した。 Mooney viscosity: Mooney viscosity (ASTM D1646) at 100 ° C. of the rubber composition after mixing was measured.

・硬度:JIS K6253に準拠したタイプAデュロメータを使用し、23℃での硬度を測定した。 Hardness: A hardness at 23 ° C. was measured using a type A durometer according to JIS K6253.

・引張強度:JIS K6251に準拠して引張試験を行い(3号形ダンベル使用)、破断時引っ張り強さを測定した。 -Tensile strength: A tensile test was performed in accordance with JIS K6251 (using No. 3 dumbbell), and the tensile strength at break was measured.

・tanδ:動的粘弾性測定装置(上島製作所(株)製)を使用し、JIS K6394に準じて、周波数50Hz、静歪み10%、動歪み1.0%、温度50℃の条件で損失係数tanδを測定し、比較例1の値を100とした指数で表示した。指数が小さいほどtanδが小さく、発熱しにくい(即ち、低発熱性に優れる)ことを示す。 Tan δ: Loss coefficient using a dynamic viscoelasticity measuring device (manufactured by Ueshima Seisakusho Co., Ltd.) under the conditions of frequency 50 Hz, static strain 10%, dynamic strain 1.0%, temperature 50 ° C. Tan δ was measured and displayed as an index with the value of Comparative Example 1 being 100. The smaller the index, the smaller the tan δ, and the less the heat is generated (that is, the low heat buildup is excellent).

・反発弾性率:リュプケ式反発弾性試験機を使用し、JIS K6301に準じて、室温雰囲気下での反発弾性率(%)を測定し、反発弾性率の逆数について比較例1の値を100とした指数で表示した。指数が大きいほど、反発弾性率が低く、ウェットグリップ性に優れることを示す。

Figure 2012140545
-Rebound resilience: Using a Lüpke-type rebound resilience tester, measure the rebound resilience (%) in a room temperature atmosphere according to JIS K6301, and set the value of Comparative Example 1 to 100 for the reciprocal of the rebound resilience The index was displayed. A larger index indicates a lower impact resilience and better wet grip properties.
Figure 2012140545

結果は表1に示す通りであり、比較例2では、ポリマーゲルを配合したものの、その表面をグラフト化していないものであったため、比較例1に対し、低発熱化の効果は認められたものの、硬度及び引張強度が劣っていた。比較例3では、ポリマーゲルの表面をグラフト化したものの、トルエン溶液粘度の比η/ηが高すぎたため、グラフト鎖の絡み合いが高度に生起しており、そのため、低発熱性とウェットグリップ性が悪化しており、加工性も損なわれた。比較例4では、ポリマーゲルの表面をグラフト化したものの、ベースとなるジエン系ポリマー粒子のガラス転移温度が高すぎたため、低発熱性とウェットグリップ性、更には加工性についても改良効果は得られなかった。同様に比較例5では、ベースとなるジエン系ポリマー粒子の膨潤度Qiが高いため、十分な補強性を得ることができなかった。これに対し、実施例1〜6のように特定のガラス転移温度及び膨潤度を持つジエン系ポリマー粒子にグラフト鎖を付加させ、その溶液粘度の比η/ηを調整したものでは、補強性を十分に保ちつつ、低発熱性とウェットグリップ性が顕著に改善されており、また、ムーニー粘度が低く、加工性にも優れていた。 The results are as shown in Table 1. In Comparative Example 2, although the polymer gel was blended, the surface was not grafted. The hardness and tensile strength were inferior. In Comparative Example 3, although the surface of the polymer gel was grafted, the η / η o ratio of the toluene solution was too high, so that the entanglement of the graft chain occurred to a high degree. Deteriorated and processability was also impaired. In Comparative Example 4, although the surface of the polymer gel was grafted, the glass transition temperature of the diene polymer particles as the base was too high, so that an improvement effect was obtained with respect to low heat build-up, wet grip, and workability. There wasn't. Similarly, in Comparative Example 5, since the degree of swelling Qi of the diene polymer particles serving as the base is high, sufficient reinforcement could not be obtained. On the other hand, as in Examples 1 to 6, a graft chain is added to a diene polymer particle having a specific glass transition temperature and swelling degree, and the solution viscosity ratio η / η o is adjusted. In addition, the low heat build-up and wet grip properties were remarkably improved, and the Mooney viscosity was low and the processability was excellent.

[第2実施例]
バンバリーミキサーを使用し、下記表2に示す配合に従って、タイヤ用ゴム組成物を調製した。詳細には、第一混合段階で、硫黄と加硫促進剤を除く成分を添加混合し、次いで、得られた混合物に、最終混合段階で硫黄と加硫促進剤を添加混合して、ゴム組成物を調製した。表中のSBRは、スチレンブタジエンゴム(JSR(株)製「SBR1502」)であり、その他は表1と同じである。
[Second Embodiment]
Using a Banbury mixer, a tire rubber composition was prepared according to the formulation shown in Table 2 below. Specifically, in the first mixing stage, components other than sulfur and vulcanization accelerator are added and mixed, and then the resulting mixture is added and mixed with sulfur and vulcanization accelerator in the final mixing stage to obtain a rubber composition. A product was prepared. SBR in the table is styrene butadiene rubber (“SBR1502” manufactured by JSR Corporation), and the others are the same as in Table 1.

得られた各ゴム組成物について、第1実施例と同様に、ムーニー粘度、硬度、引張強度、tanδ、反発弾性率を測定した。tanδと反発弾性率については、比較例6の値を100とした指数で表示した。   About each obtained rubber composition, the Mooney viscosity, hardness, tensile strength, tan-delta, and impact resilience were measured similarly to 1st Example. The tan δ and the rebound resilience were expressed as an index with the value of Comparative Example 6 being 100.

結果は表2に示す通りであり、第1実施例と同様、実施例7〜11であると、ポリマーゲルのグラフト化による材料の低発熱化とウェットグリップ性のバランス向上、及び加工性の改善を示し、強度も保持されていた。

Figure 2012140545
The results are as shown in Table 2. As in the first example, in Examples 7 to 11, the heat generation of the material is reduced by the grafting of the polymer gel, the balance of wet grip property is improved, and the workability is improved. The strength was also maintained.
Figure 2012140545

本発明に係るゴム組成物は、タイヤ、防振ゴム、ベルトなどの各種ゴム製品に用いることができ、好ましくは、空気入りタイヤのトレッドやサイドウォールに用いることができる。   The rubber composition according to the present invention can be used for various rubber products such as tires, anti-vibration rubbers, and belts, and can be preferably used for treads and sidewalls of pneumatic tires.

Claims (5)

ジエン系ゴムからなるゴム成分と、
トルエン膨潤指数Qiが10以下かつガラス転移温度が−100〜0℃の架橋されたジエン系ポリマー粒子の粒子表面に、グラフト鎖を設けてなるポリマーゲルであって、グラフト変性前のポリマーゲルの5質量%トルエン溶液粘度ηに対するグラフト変性後のポリマーゲルの5質量%トルエン溶液粘度ηの比(η/η)が2〜30であるポリマーゲルと、
を含むゴム組成物。
A rubber component made of diene rubber;
A polymer gel in which a graft chain is provided on the surface of a crosslinked diene polymer particle having a toluene swelling index Qi of 10 or less and a glass transition temperature of −100 to 0 ° C. a polymer gel ratio of 5 wt% toluene solution viscosity of the polymer gel after graft modification η (η / η o) is 2 to 30 relative to the mass% toluene solution viscosity eta o,
A rubber composition comprising:
前記グラフト鎖が、前記粒子表面のジエン系ポリマーにグラフト共重合可能なビニル系単量体を重合してなることを特徴とする請求項1記載のゴム組成物。   2. The rubber composition according to claim 1, wherein the graft chain is obtained by polymerizing a vinyl monomer capable of being graft copolymerized with a diene polymer on the particle surface. 前記ビニル系単量体が、(メタ)アクリル酸エステル、芳香族アルケニル化合物、共役ジエン系化合物、オレフィン化合物及び多官能ビニル化合物からなる群より選択される少なくとも1種の化合物であることを特徴とする請求項2記載のゴム組成物。   The vinyl monomer is at least one compound selected from the group consisting of (meth) acrylic acid esters, aromatic alkenyl compounds, conjugated diene compounds, olefin compounds, and polyfunctional vinyl compounds. The rubber composition according to claim 2. 前記ゴム成分100質量部に対して、前記ポリマーゲルを1〜100質量部含有することを特徴とする請求項1〜3のいずれか1項に記載のゴム組成物。   The rubber composition according to any one of claims 1 to 3, wherein 1 to 100 parts by mass of the polymer gel is contained with respect to 100 parts by mass of the rubber component. 請求項1〜4のいずれか1項に記載のゴム組成物を用いてなるゴム部分を有する空気入りタイヤ。   The pneumatic tire which has a rubber part which uses the rubber composition of any one of Claims 1-4.
JP2010294546A 2010-12-29 2010-12-29 Rubber composition and pneumatic tire Expired - Fee Related JP5649951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010294546A JP5649951B2 (en) 2010-12-29 2010-12-29 Rubber composition and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010294546A JP5649951B2 (en) 2010-12-29 2010-12-29 Rubber composition and pneumatic tire

Publications (2)

Publication Number Publication Date
JP2012140545A true JP2012140545A (en) 2012-07-26
JP5649951B2 JP5649951B2 (en) 2015-01-07

Family

ID=46677157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010294546A Expired - Fee Related JP5649951B2 (en) 2010-12-29 2010-12-29 Rubber composition and pneumatic tire

Country Status (1)

Country Link
JP (1) JP5649951B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111601A1 (en) * 2017-12-07 2019-06-13 Toyo Tire株式会社 Rubber composition for tire and pneumatic tire using same
JP2021088624A (en) * 2019-12-02 2021-06-10 Toyo Tire株式会社 Rubber composition and pneumatic tire using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625366A (en) * 1992-07-08 1994-02-01 Asahi Chem Ind Co Ltd Impact-resistant polystyrene resin
JPH10204217A (en) * 1997-01-17 1998-08-04 Bayer Ag Rubber mixture containing sbr rubber gel
JP2008169314A (en) * 2007-01-12 2008-07-24 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2009051941A (en) * 2007-08-27 2009-03-12 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and pneumatic tire
JP2010116553A (en) * 2008-10-16 2010-05-27 Sumitomo Rubber Ind Ltd Rubber composition and studless tire using the same
JP2010215884A (en) * 2009-02-17 2010-09-30 Ube Ind Ltd Rubber composition for tire and tire using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625366A (en) * 1992-07-08 1994-02-01 Asahi Chem Ind Co Ltd Impact-resistant polystyrene resin
JPH10204217A (en) * 1997-01-17 1998-08-04 Bayer Ag Rubber mixture containing sbr rubber gel
JP2008169314A (en) * 2007-01-12 2008-07-24 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2009051941A (en) * 2007-08-27 2009-03-12 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and pneumatic tire
JP2010116553A (en) * 2008-10-16 2010-05-27 Sumitomo Rubber Ind Ltd Rubber composition and studless tire using the same
JP2010215884A (en) * 2009-02-17 2010-09-30 Ube Ind Ltd Rubber composition for tire and tire using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111601A1 (en) * 2017-12-07 2019-06-13 Toyo Tire株式会社 Rubber composition for tire and pneumatic tire using same
JP2019099765A (en) * 2017-12-07 2019-06-24 Toyo Tire株式会社 Tire rubber composition, and pneumatic tire including the same
JP2021088624A (en) * 2019-12-02 2021-06-10 Toyo Tire株式会社 Rubber composition and pneumatic tire using the same
JP7365876B2 (en) 2019-12-02 2023-10-20 Toyo Tire株式会社 Rubber composition and pneumatic tire using the same

Also Published As

Publication number Publication date
JP5649951B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5021968B2 (en) Rubber composition and method for producing the same
JP3606860B2 (en) Rubber composition and rubber cross-linked product
JP6385786B2 (en) Method for producing rubber composition
US10723866B2 (en) Rubber composition and pneumatic tire
JP2018095777A (en) Rubber composition for tire and pneumatic tire using the same
JP7319261B2 (en) Rubber composition, vulcanized rubber composition and pneumatic tire
JP6719366B2 (en) Rubber composition and pneumatic tire
JP5649951B2 (en) Rubber composition and pneumatic tire
JP5901994B2 (en) Rubber compounding agent and method for producing rubber composition
JP5649950B2 (en) Rubber composition and pneumatic tire
JP2000273240A (en) Rubber composition for tire tread
JP2004168813A (en) Method for producing rubber composition and rubber composition
JP5901995B2 (en) Rubber composition for tire and method for producing rubber composition for tire
JP5121300B2 (en) Rubber composition and pneumatic tire using the same
JP2019089968A (en) Rubber composition and tire
WO2021049377A1 (en) Polymer composition, crosslinked polymer and tire
JP6943754B2 (en) Rubber composition for tires and pneumatic tires using it
JP4649699B2 (en) Rubbery polymer composition
WO2020067414A1 (en) Rubber composition for tires, tire and molded body
JP2019206697A (en) Polymer composition and production method of the same, and tire
JP2002020543A (en) Rubber composition
JP5878037B2 (en) Method for producing rubber compounding agent and rubber composition
JP7365876B2 (en) Rubber composition and pneumatic tire using the same
JP7160473B2 (en) Conjugated diene-based copolymer composition, method for producing the same, and rubber composition containing the same
JP2014074136A (en) Oil master batch, rubber composition and pneumatic tire using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141112

R150 Certificate of patent or registration of utility model

Ref document number: 5649951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees