JP2012139787A - Shearing method and shearing facility for metal material - Google Patents

Shearing method and shearing facility for metal material Download PDF

Info

Publication number
JP2012139787A
JP2012139787A JP2010294613A JP2010294613A JP2012139787A JP 2012139787 A JP2012139787 A JP 2012139787A JP 2010294613 A JP2010294613 A JP 2010294613A JP 2010294613 A JP2010294613 A JP 2010294613A JP 2012139787 A JP2012139787 A JP 2012139787A
Authority
JP
Japan
Prior art keywords
shearing
shear
vertical
shear load
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010294613A
Other languages
Japanese (ja)
Other versions
JP5617629B2 (en
Inventor
Yuji Obara
祐司 小原
Hiromasa Hayashi
宏優 林
Hiroki Nagayoshi
弘樹 永吉
Yuichi Shinozaki
侑一 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010294613A priority Critical patent/JP5617629B2/en
Publication of JP2012139787A publication Critical patent/JP2012139787A/en
Application granted granted Critical
Publication of JP5617629B2 publication Critical patent/JP5617629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shearing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently carry out shearing of a metal material such as a thick steel plate by a small shear load by using a rolling cut shear.SOLUTION: When shearing the metal material in its longitudinal direction by plurally repeating shearing of the metal material by using upper and lower blades, a material position in a material feeding direction at shearing is controlled such that a vertical maximum shear load Pmax becomes a vertical target shear load Pa or less on the basis of a vertical shear load distribution P(x) in a material shear direction x measured at shearing of a first time of the metal material or a vertical shear load distribution Psu(x) calculated by an equation P(x)=Kt/tanθ(x) (wherein t: a plate thickness of the metal material, K: shear resistance of the metal material, θ(x): a relative rake angle distribution in the material shear direction x).

Description

本発明は、ローリングカットシャーによる金属材料の剪断方法及び剪断設備に関するもので、特にローリングカットシャーの剪断荷重を低減するための技術に関する。   The present invention relates to a method for shearing a metal material and a shearing equipment using a rolling cut shear, and more particularly to a technique for reducing the shear load of the rolling cut shear.

近年、厚鋼板の製造技術分野では、例えば、ラインパイプ材用にAPI規格X120鋼の商用試作生産が開始されるなど、鋼材の高強度化が進んでいる。
厚鋼板の製造工程では、所定の厚さに圧延された鋼板の形状を矩形とすべく、幅方向両端部をローリングカット式サイドシャー(ローリングカットシャー)で剪断後、長手方向両端部をダウンカット式クロップシャーで切り落としているが、鋼材の高強度化に伴い、剪断作業への負荷は増大する傾向にあり、シャーの剪断能力の向上が要望されている。
In recent years, in the field of manufacturing technology for thick steel plates, for example, commercial trial production of API standard X120 steel for line pipe materials has started, and the strength of steel materials has been increasing.
In the manufacturing process of thick steel plates, both ends in the width direction are sheared by rolling cut type side shears (rolling cut shears) so that the shape of the steel sheet rolled to a predetermined thickness is rectangular, and both end portions in the longitudinal direction are cut down. Although it is cut off by the type crop shear, the load on the shearing work tends to increase as the strength of the steel material increases, and there is a demand for improvement of the shearing capability of the shear.

図17にローリングカットシャーの構造を模式的に示す。このシャーは、被剪断材eが通過できるハウジング3の内側に、円弧状の刃先を持つ上刃1と直線状の刃先を持つ下刃2が配置され、下刃2はハウジング側に固定されている。一方、上刃1は、長手方向の前部(材料入側)を2つのリンク5a,5bからなるクランク機構6で、また後部(材料出側)を2つのリンク7a,7bからなるクランク機構8で、それぞれハウジング3に吊持されている。前記リンク5a,7aは、各一端部がハウジング3に設けられた駆動装置の回転軸(図示せず)に支持固定されており、この支持固定部を支点50,70として旋回駆動する。したがって、リンク5a,7aとこれを支持する回転軸はクランク軸を構成し、リンク5a,7aはそのクランク腕に相当する。また、リンク5a,リンク7aの各他端部は、下部側のリンク5b,リンク7bの各上端に回動可能に枢着51,71されている。また、下部側のリンク5b,リンク7bの各下端は、上刃1に回動可能に枢着52,72されている。クランク機構6,8を構成するリンクの長さは、リンク5a>リンク7a、リンク5b<リンク7bとなっている。このローリングカットシャーは、クランク軸のクランク腕に相当するリンク5a,リンク7aが駆動装置(図示せず)により図中矢印方向に回転(旋回)するが、前後部のクランク機構6,8を構成するリンクが上記のような長さであるため、上刃1が転動(ローリング)するように押し下げられ、下刃2との間で被剪断材eを設備の材料出側方向から材料入側に向けて剪断する。   FIG. 17 schematically shows the structure of a rolling cut shear. In this shear, an upper blade 1 having an arcuate blade edge and a lower blade 2 having a straight blade edge are arranged inside a housing 3 through which a material to be sheared e can pass, and the lower blade 2 is fixed to the housing side. Yes. On the other hand, the upper blade 1 has a crank mechanism 6 composed of two links 5a and 5b at the front part (material entry side) in the longitudinal direction and a crank mechanism 8 composed of two links 7a and 7b at the rear part (material exit side). Thus, each is suspended by the housing 3. Each of the links 5a and 7a is supported and fixed at a rotating shaft (not shown) of a driving device provided on the housing 3 at one end, and is pivotally driven with the supporting and fixing portions as fulcrums 50 and 70. Accordingly, the links 5a and 7a and the rotating shaft that supports the links 5a and 7a constitute a crankshaft, and the links 5a and 7a correspond to the crank arms. The other ends of the link 5a and the link 7a are pivotally attached 51 and 71 to the upper ends of the lower link 5b and the link 7b, respectively. The lower ends of the lower link 5b and link 7b are pivotally attached to the upper blade 1 so as to be rotatable. The lengths of the links constituting the crank mechanisms 6 and 8 are such that link 5a> link 7a and link 5b <link 7b. In this rolling cut shear, the links 5a and 7a corresponding to the crank arm of the crankshaft are rotated (turned) in the direction of the arrow in the figure by a drive device (not shown), but constitute the front and rear crank mechanisms 6 and 8. Since the length of the link to be operated is as described above, the upper blade 1 is pushed down so as to roll (roll), and the material to be sheared e is moved from the material outlet side of the equipment to the material inlet side with the lower blade 2. Shear toward

ローリングカットシャーによる被剪断材(厚鋼板)の剪断手順を図18(A)〜(H)(図18−1〜4)に示す。まず、図18(A)に示すように、剪断前は上刃1は上方に待機しており、上下刃間のクリアランスは被剪断材eの通板を妨げないように確保されている(=最大板厚+α)。図18(B)に示すように、被剪断材eをシャー前後に配置されたピンチロール(図示せず)によって所定位置まで前進、停止させる。次いで、図18(C)〜(F)に示すように、クランク機構6,8を作動させ(リンク5a,リンク7aをクランク腕とするクランク軸を回転させる)、上刃1を転動(ローリング)させるように押し下げて設備の材料出側方向から材料入側に向けて被剪断材eを剪断する。図18(G)に示すように、クランク機構6,8のリンク5a,リンク7aが1回転し終えることにより上刃1は元の待機位置に復帰し、1回の剪断動作が完了する。次いで、図18(H)に示すように、再びピンチロールによって次回剪断のための所定位置まで被剪断材eを前進させるとともに、剪断後の屑となるエッジ部を専用のナイフで剪断する(図示せず)。以下、被剪断材全長の剪断が完了するまで、図18(B)〜(H)を繰り返す。   The shearing procedure of a material to be sheared (thick steel plate) by a rolling cut shear is shown in FIGS. First, as shown in FIG. 18 (A), before shearing, the upper blade 1 is waiting upward, and the clearance between the upper and lower blades is ensured so as not to obstruct the plate of the material to be sheared e (= Maximum plate thickness + α). As shown in FIG. 18 (B), the material to be sheared e is advanced to a predetermined position and stopped by a pinch roll (not shown) arranged before and after the shear. Next, as shown in FIGS. 18C to 18F, the crank mechanisms 6 and 8 are operated (the crankshaft with the links 5a and 7a as the crank arm is rotated), and the upper blade 1 rolls (rolling). The material to be sheared e is sheared from the material exit side of the equipment toward the material entry side. As shown in FIG. 18G, when the links 5a and 7a of the crank mechanisms 6 and 8 have completed one rotation, the upper blade 1 returns to the original standby position, and one shearing operation is completed. Next, as shown in FIG. 18 (H), the material to be sheared e is advanced again to a predetermined position for the next shearing by a pinch roll, and the edge portion that becomes scrap after shearing is sheared with a dedicated knife (FIG. 18). Not shown). Hereinafter, FIGS. 18B to 18H are repeated until the shearing of the entire length of the material to be sheared is completed.

ローリングカットにおける剪断荷重P(N)は、一般には下記(i)式で求めることができる。
P=Kt/tanθ …(i)
θ=tan−1(t/L) …(ii)
但し t:被剪断材の板厚(mm)
K:被剪断材の剪断抵抗(=α・σTS)(MPa)
σTS:被剪断材の引張り強度(MPa)
θ:相対レーキ角(被剪断材と上刃とのなす角度)(deg)
L:剪断長(mm)
ここで、相対レーキ角θとは、図19に示すように、被剪断材e(金属材料)の剪断方向において、上刃1の円弧状の刃先100が被剪断材下面と交わる点をpとした場合、円弧状の刃先100の点pにおける接線fと、被剪断材長手方向と平行な直線とがなす角度を指す。
In general, the shear load P (N) in the rolling cut can be obtained by the following equation (i).
P = Kt 2 / tanθ (i)
θ = tan −1 (t / L) (ii)
Where t: Thickness of sheared material (mm)
K: Shear resistance of material to be sheared (= α · σTS) (MPa)
σTS: Tensile strength of material to be sheared (MPa)
θ: Relative rake angle (angle between material to be sheared and upper blade) (deg)
L: Shear length (mm)
Here, as shown in FIG. 19, the relative rake angle θ is a point where the arcuate cutting edge 100 of the upper blade 1 intersects the lower surface of the material to be sheared in the shearing direction of the material to be sheared e (metal material). In this case, it indicates an angle formed by a tangent line f at the point p of the arcuate cutting edge 100 and a straight line parallel to the longitudinal direction of the material to be sheared.

ローリングカットシャーの剪断能力は、上刃1の被剪断材eへの押し付け力と上刃1の相対レーキ角θに依存するが、相対レーキ角θはクランク機構による上刃1の移動軌跡と刃形状により決まる。
一般にローリングカットシャーでは、長手方向で均一な剪断能力、剪断品質を保証するため、図18(F)に示すように、上刃1の最下点到達時の上下刃ラップ代が長手方向にほぼ0〜10mm近傍で一定となるように設計されている(下刃は図示せず)。この場合、一般に上刃(刃先)形状は、曲率半径R6〜12m程度の下側に凸の円弧形状であって、相対レーキ角θが上刃長手方向で2.0〜5.0deg程度に構成される。ここで、剪断品質とは、残留応力による被剪断材の力学的特性の変化、曲がりを指す。
The shearing ability of the rolling cut shear depends on the pressing force of the upper blade 1 against the material to be sheared e and the relative rake angle θ of the upper blade 1. The relative rake angle θ is determined by the movement mechanism of the upper blade 1 by the crank mechanism and the blade. It depends on the shape.
In general, in a rolling cut shear, in order to guarantee uniform shearing ability and shearing quality in the longitudinal direction, as shown in FIG. It is designed to be constant in the vicinity of 0 to 10 mm (the lower blade is not shown). In this case, generally, the shape of the upper blade (blade edge) is an arc shape convex downward with a curvature radius of about R6 to 12 m, and the relative rake angle θ is configured to be about 2.0 to 5.0 deg in the longitudinal direction of the upper blade. Is done. Here, the shear quality refers to a change or bending of mechanical properties of the material to be sheared due to residual stress.

難剪断材料(例えば、硬くて厚い材料)を剪断する場合は、押し付け力を増大させるか、相対レーキ角θを大きくする必要がある。しかし、押し付け力の増大は、上刃1の駆動装置の増強やハウジング(門型フレーム)の補強が必要となり、大掛かりな設備工事となるため容易には実施できない。
一方、相対レーキ角θを大きくするには、上刃1の移動軌跡を決定しているクランク機構を改造する方法が考えられるが、これも大掛かりな設備工事となるため容易には実施できない。特許文献1には、ダウンカット方式におけるレーキ角の決定方法が記載されているが、これは、ダウンカット方式においては上下刃のなすレーキ角θが上刃形状に依ってのみ決定されることが前提となっており、本発明が対象とするようなローリングカット式の剪断設備への適用は困難である。
When shearing difficult-to-shear materials (for example, hard and thick materials), it is necessary to increase the pressing force or increase the relative rake angle θ. However, an increase in the pressing force is not easy because it requires an increase in the driving device of the upper blade 1 and reinforcement of the housing (gate frame), which is a large-scale facility work.
On the other hand, in order to increase the relative rake angle θ, a method of remodeling the crank mechanism that determines the movement locus of the upper blade 1 can be considered, but this is also a large-scale equipment construction and cannot be easily implemented. Patent Document 1 describes a method for determining a rake angle in the downcut method. In the downcut method, the rake angle θ formed by the upper and lower blades is determined only by the shape of the upper blade. It is a premise and it is difficult to apply to a rolling-cut type shearing equipment as the object of the present invention.

特開2009−78342号公報JP 2009-78342 A

したがって本発明の目的は、ローリングカットシャーによる金属材料の剪断方法及び剪断設備において、特別な設備的負担を要することなく、厚鋼板などの金属材料を小さい剪断荷重で効率的に剪断加工することができ、難剪断材料も容易に剪断加工することができる剪断方法および設備を提供することにある。   Accordingly, an object of the present invention is to efficiently shear a metal material such as a thick steel plate with a small shear load without requiring a special equipment load in a shearing method and a shearing facility for a metallic material using a rolling cut shear. An object of the present invention is to provide a shearing method and equipment capable of easily shearing difficult-to-shear materials.

本発明者らは、円弧状の刃先を有する上刃(下向きに凸状の円弧刃)を用い、被剪断材の送りと剪断を連続的に繰り返すローリングカットシャーによる剪断加工では、上刃の円弧状の刃先のうち、円弧極小点よりも材料入側方向では円弧極小点から離れるほど相対レーキ角θが増大し、剪断荷重が小さくなるという事実に着目し、送り量によって決定される被剪断材の長手方向位置を制御することにより、剪断を受け持つ上刃領域での相対レーキ角θを大きくすることができ、所望の剪断荷重で効率的な剪断加工を行うことができる、という着想を得た。
本発明はこのような着想の下になされたもので、以下を要旨とするものである。
The present inventors use an upper blade having an arcuate cutting edge (a downwardly convex arcuate blade), and in a shearing process using a rolling cut shear that continuously repeats feeding and shearing of a material to be sheared, Of the arcuate cutting edge, paying attention to the fact that the relative rake angle θ increases and the shear load decreases with increasing distance from the arc minimum point in the material entry direction from the arc minimum point, the material to be sheared determined by the feed amount The idea is that by controlling the position in the longitudinal direction, the relative rake angle θ in the upper blade region responsible for shearing can be increased, and efficient shearing can be performed with a desired shearing load. .
The present invention has been made under such an idea and has the following gist.

[1]ローリングカットシャーによる金属材料の剪断方法において、
上下刃による金属材料の剪断を複数回繰り返すことにより金属材料をその長手方向で剪断加工する際に、
下記(1)式により、金属材料を1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求め、
P(x)=Kt/tanθ(x) …(1)
但し P:剪断荷重(N)
t:金属材料の板厚(mm)
K:金属材料の剪断抵抗(MPa)
θ(x):材料剪断方向xでの相対レーキ角分布(deg)
金属材料の1回目の剪断時には、前記鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御し、
前記1回目の剪断時に、材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を測定し、2回目以降の剪断時には、前記鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御することを特徴とする金属材料の剪断方法。
[1] In a method of shearing a metal material using a rolling cut shear,
When shearing the metal material in its longitudinal direction by repeating the shearing of the metal material with the upper and lower blades multiple times,
The vertical shear load distribution P SU (x) in the material shear direction x when the metal material is sheared once by the following equation (1)
P (x) = Kt 2 / tanθ (x) (1)
Where P: Shear load (N)
t: Metal material thickness (mm)
K: Shear resistance of metal material (MPa)
θ (x): Relative rake angle distribution (deg) in material shear direction x
When the metal material is sheared for the first time, the material in the material feed direction at the time of shearing is set so that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa based on the vertical shear load distribution P SU (x). Control the position,
During the first shear, the vertical shear load distribution P JI (x) in the material shear direction x is measured, and during the second and subsequent shears, the vertical direction is determined based on the vertical shear load distribution P JI (x). A metal material shearing method comprising controlling a material position in a material feeding direction during shearing so that a maximum shear load Pmax is equal to or less than a vertical target shear load Pa.

[2]ローリングカットシャーによる金属材料の剪断方法において、
上下刃による金属材料の剪断を複数回繰り返すことにより金属材料をその長手方向で剪断加工する際に、
金属材料の1回目の剪断時に、材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を測定し、2回目以降の剪断時には、前記鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御することを特徴とする金属材料の剪断方法。
[2] In a method of shearing a metal material by a rolling cut shear,
When shearing the metal material in its longitudinal direction by repeating the shearing of the metal material with the upper and lower blades multiple times,
During the first shearing of the metal material, the vertical shear load distribution P JI (x) in the material shearing direction x is measured, and during the second and subsequent shearing, based on the vertical shear load distribution P JI (x), A method for shearing a metal material, comprising: controlling a material position in a material feeding direction during shearing so that a vertical maximum shear load Pmax is equal to or less than a vertical target shear load Pa.

[3]ローリングカットシャーによる金属材料の剪断方法において、
上下刃による金属材料の剪断を複数回繰り返すことにより金属材料をその長手方向で剪断加工する際に、
下記(1)式により、金属材料を1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求め、
P(x)=Kt/tanθ(x) …(1)
但し P:剪断荷重(N)
t:金属材料の板厚(mm)
K:金属材料の剪断抵抗(MPa)
θ(x):材料剪断方向xでの相対レーキ角分布(deg)
前記鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御することを特徴とする金属材料の剪断方法。
[3] In a method of shearing a metal material using a rolling cut shear,
When shearing the metal material in its longitudinal direction by repeating the shearing of the metal material with the upper and lower blades multiple times,
The vertical shear load distribution P SU (x) in the material shear direction x when the metal material is sheared once by the following equation (1)
P (x) = Kt 2 / tanθ (x) (1)
Where P: Shear load (N)
t: Metal material thickness (mm)
K: Shear resistance of metal material (MPa)
θ (x): Relative rake angle distribution (deg) in material shear direction x
Based on the vertical shear load distribution P SU (x), the material position in the material feed direction during shearing is controlled so that the maximum vertical shear load Pmax is equal to or less than the vertical target shear load Pa. A method for shearing metal materials.

[4]上記[1]〜[3]のいずれかの剪断方法において、材料位置の制御では、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paの80%以上となるよう、剪断時における材料送り方向での材料位置を制御することを特徴とする金属材料の剪断方法。
[5]上記[4]の剪断方法において、材料位置の制御では、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paとなるよう、剪断時における材料送り方向での材料位置を制御することを特徴とする金属材料の剪断方法。
[6]上記[1]〜[5]のいずれかの剪断方法において、材料位置の制御では、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求め、この位置補正量ΔXmから目標材料位置Xmaを決定することを特徴とする金属材料の剪断方法。
[4] In the shearing method according to any one of [1] to [3], in controlling the material position, the material at the time of shearing is set so that the vertical maximum shear load Pmax is 80% or more of the vertical target shear load Pa. A method of shearing a metal material, characterized by controlling a material position in a feeding direction.
[5] In the shearing method of the above [4], in the material position control, the material position in the material feeding direction at the time of shearing is controlled so that the vertical maximum shear load Pmax becomes the vertical target shear load Pa. A method for shearing a metal material.
[6] In the shearing method according to any one of [1] to [5], in the control of the material position, a position correction amount ΔXm with respect to the standard material position Xm of the metal material is obtained, and the target material position Xma is obtained from the position correction amount ΔXm. A method of shearing a metal material, characterized in that:

[7]ローリングカットシャーを備えた金属材料の剪断設備において、
金属材料の剪断時に上刃が受ける反力を検出し、この検出値から材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を求める剪断荷重測定手段(10)と、
下記(1)式により、金属材料を1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求める演算手段(11)と、
P(x)=Kt/tanθ(x) …(1)
但し P:剪断荷重(N)
t:金属材料の板厚(mm)
K:金属材料の剪断抵抗(MPa)
θ(x):材料剪断方向xでの相対レーキ角分布(deg)
前記鉛直方向剪断荷重分布PJI(x)またはPSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求める演算手段(12A)と、
前記位置補正量ΔXmから金属材料の目標材料位置Xmaを決定し、材料送り装置を制御する制御手段(13)を有することを特徴とする金属材料の剪断設備。
[7] In a metal material shearing facility equipped with a rolling cut shear,
A shear load measuring means (10) for detecting a reaction force received by the upper blade during shearing of the metal material and obtaining a vertical shear load distribution P JI (x) in the material shear direction x from the detected value;
An arithmetic means (11) for obtaining a vertical shear load distribution P SU (x) in the material shear direction x when the metal material is sheared once by the following equation (1):
P (x) = Kt 2 / tanθ (x) (1)
Where P: Shear load (N)
t: Metal material thickness (mm)
K: Shear resistance of metal material (MPa)
θ (x): Relative rake angle distribution (deg) in material shear direction x
Based on the vertical shear load distribution P JI (x) or P SU (x), the position correction amount for the standard material position Xm of the metal material such that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa. An arithmetic means (12A) for obtaining ΔXm;
A metal material shearing facility comprising control means (13) for determining a target material position Xma of a metal material from the position correction amount ΔXm and controlling a material feeding device.

[8]ローリングカットシャーを備えた金属材料の剪断設備において、
金属材料の剪断時に上刃が受ける反力を検出し、この検出値から材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を求める剪断荷重測定手段(10)と、
前記鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求める演算手段(12B)と、
前記位置補正量ΔXmから金属材料の目標材料位置Xmaを決定し、材料送り装置を制御する制御手段(13)を有することを特徴とする金属材料の剪断設備。
[8] In a shearing facility for metal materials equipped with a rolling cut shear,
A shear load measuring means (10) for detecting a reaction force received by the upper blade during shearing of the metal material and obtaining a vertical shear load distribution P JI (x) in the material shear direction x from the detected value;
Based on the vertical shear load distribution P JI (x), a calculation means for obtaining a position correction amount ΔXm with respect to the standard material position Xm of the metal material such that the maximum vertical shear load Pmax is equal to or less than the vertical target shear load Pa ( 12B)
A metal material shearing facility comprising control means (13) for determining a target material position Xma of a metal material from the position correction amount ΔXm and controlling a material feeding device.

[9]ローリングカットシャーを備えた金属材料の剪断設備において、
下記(1)式により、金属材料を1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求める演算手段(11)と、
P(x)=Kt/tanθ(x) …(1)
但し P:剪断荷重(N)
t:金属材料の板厚(mm)
K:金属材料の剪断抵抗(MPa)
θ(x):材料剪断方向xでの相対レーキ角分布(deg)
前記鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求める演算手段(12C)と、
前記位置補正量ΔXmから金属材料の目標材料位置Xmaを決定し、材料送り装置を制御する制御手段(13)を有することを特徴とする金属材料の剪断設備。
[9] In a metal material shearing facility equipped with a rolling cut shear,
An arithmetic means (11) for obtaining a vertical shear load distribution P SU (x) in the material shear direction x when the metal material is sheared once by the following equation (1):
P (x) = Kt 2 / tanθ (x) (1)
Where P: Shear load (N)
t: Metal material thickness (mm)
K: Shear resistance of metal material (MPa)
θ (x): Relative rake angle distribution (deg) in material shear direction x
Calculation means for obtaining a position correction amount ΔXm with respect to the standard material position Xm of the metal material such that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa based on the vertical shear load distribution P SU (x) ( 12C),
A metal material shearing facility comprising control means (13) for determining a target material position Xma of a metal material from the position correction amount ΔXm and controlling a material feeding device.

[10]上記[7]〜[9]のいずれかの剪断設備において、演算手段(12A)、(12B)または(12C)は、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paの80%以上となるような、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求めることを特徴とする金属材料の剪断設備。
[11]上記[10]の剪断設備において、演算手段(12A)、(12B)または(12C)は、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paとなるような、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求めることを特徴とする金属材料の剪断設備。
[10] In the shearing equipment according to any one of [7] to [9], the calculating means (12A), (12B) or (12C) is configured so that the vertical maximum shear load Pmax is 80% of the vertical target shear load Pa. A metal material shearing facility characterized by obtaining a position correction amount ΔXm with respect to a standard material position Xm of a metal material as described above.
[11] In the shearing equipment of [10] above, the computing means (12A), (12B) or (12C) is a standard material of a metal material in which the vertical maximum shear load Pmax becomes the vertical target shear load Pa A metal material shearing facility characterized in that a position correction amount ΔXm with respect to a position Xm is obtained.

本発明によれば、ローリングカットシャーによる金属材料の剪断加工において、特別な設備的負担を要することなく、金属材料を小さい剪断荷重で効率的に剪断することができる。このため、剪断時にハウジングや刃先に作用する反力が低下し、設備寿命と上刃寿命を延ばすことができるとともに、難剪断材料であっても容易に剪断加工することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the shearing process of the metal material by a rolling cut shear, a metal material can be efficiently sheared with a small shear load, without requiring a special installation burden. For this reason, the reaction force acting on the housing and the blade edge during shearing can be reduced, the equipment life and the upper blade life can be extended, and even a difficult-to-shear material can be easily sheared.

ローリングカットシャーによる1回の剪断での剪断初期において、材料剪断方向での相対レーキ角θ分布(x)を示すグラフGraph showing the relative rake angle θ distribution (x) in the material shear direction at the initial stage of shearing by one shearing by a rolling cut shear ローリングカットシャーによる1回の剪断での剪断後期において、材料剪断方向での相対レーキ角θ分布(x)を示すグラフA graph showing a relative rake angle θ distribution (x) in a material shear direction in a later stage of shearing by one shearing by a rolling cut shear. 被剪断材料をローリングカットシャーで剪断する際に、測定手段により実測された材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)と、(1)式で計算された材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を示すグラフWhen the material to be sheared is sheared by a rolling cut shear, the vertical shear load distribution P JI (x) in the material shearing direction x measured by the measuring means and the material shearing direction x calculated by the equation (1) Showing vertical shear load distribution P SU (x) of 鉛直方向剪断荷重分布PJI(x)の測定手段を構成する検出器(剪断時に上刃が受ける反力を検出する検出器)の一設置例であって、検出器として歪みゲージを用いた場合を示す説明図This is an example of installation of a detector (detector that detects the reaction force received by the upper blade during shearing) that constitutes the means for measuring the vertical shear load distribution P JI (x), and a strain gauge is used as the detector Explanatory drawing showing 図4の実施形態において、歪みゲージによる鉛直方向剪断荷重分布PJI(x)の測定原理を示す説明図FIG. 4 is an explanatory diagram showing the measurement principle of the vertical shear load distribution P JI (x) by the strain gauge in the embodiment of FIG. 図4の実施形態において、入側位置及び出側位置の歪みゲージの出力チャートの一例と、それから求められる鉛直方向剪断荷重分布PJI(x)を示すグラフIn the embodiment of FIG. 4, an example of an output chart of strain gauges at the entry side position and the exit side position, and a graph showing the vertical shear load distribution P JI (x) obtained therefrom 鉛直方向剪断荷重分布PJI(x)の測定手段を構成する検出器(剪断時に上刃が受ける反力を検出する検出器)の他の設置例であって、検出器としてロードセルを用いた場合を示す説明図This is another example of installation of a detector (detector for detecting the reaction force received by the upper blade during shearing) that constitutes a means for measuring the vertical direction shear load distribution P JI (x) when a load cell is used as the detector. Explanatory drawing showing 図7の実施形態において、ロードセルによる鉛直方向剪断荷重分布PJI(x)の測定原理を示す説明図FIG. 7 is an explanatory diagram showing the measurement principle of the vertical shear load distribution P JI (x) by the load cell in the embodiment of FIG. 図7の実施形態おけるロードセルの設置例を示す説明図Explanatory drawing which shows the installation example of the load cell in embodiment of FIG. 図7の実施形態において、入側位置及び出側位置のロードセルの出力チャートの一例と、それから求められる鉛直方向剪断荷重分布PJI(x)を示すグラフIn the embodiment of FIG. 7, an example of an output chart of the load cell at the entry side position and the exit side position, and a graph showing the vertical shear load distribution P JI (x) obtained therefrom 剪断時の鉛直方向剪断荷重Pの実測値に基づいて材料の位置制御を行う本発明法の実施に供される設備と制御フローを示す説明図Explanatory drawing which shows the equipment and control flow which are provided for implementation of the method of this invention which performs position control of material based on the measured value of the vertical direction shear load P at the time of shearing 剪断時の鉛直方向剪断荷重Pの計算値に基づいて材料の位置制御を行う本発明法の実施に供される設備と制御フローを示す説明図Explanatory drawing which shows the equipment and control flow which are provided for implementation of the method of the present invention for controlling the position of the material based on the calculated value of the vertical shear load P during shearing 金属材料の1回目の剪断時には、従来法通りに標準材料位置Xmで剪断するとともに、2回目以降の剪断時には、1回目の剪断時に測定された鉛直方向剪断荷重分布PJI(x)に基づき材料位置を制御した場合における、材料剪断方向xでの鉛直方向剪断荷重分布P(x)を示すグラフAt the time of the first shearing of the metal material, the material is sheared at the standard material position Xm as in the conventional method, and at the second and subsequent shearing, the material is based on the vertical shear load distribution P JI (x) measured at the first shearing. Graph showing vertical shear load distribution P (x) in material shear direction x when the position is controlled 剪断時の鉛直方向剪断荷重Pの実測値と計算値に基づいて材料の位置制御を行う本発明法の実施に供される設備と制御フローを示す説明図Explanatory drawing which shows the equipment and control flow which are provided for implementation of the method of this invention which performs position control of material based on the actual measurement value and calculation value of the vertical direction shear load P at the time of shear 実施例において、厚鋼板の高強度材を剪断加工した際の1回目及び2回目の剪断時の鉛直方向剪断荷重分布P(x)を示すグラフIn an Example, the graph which shows the vertical direction shearing load distribution P (x) at the time of the 1st time of shearing the high strength material of a thick steel plate, and the 2nd time 実施例において、厚鋼板の低強度材を剪断加工した際の1回目及び2回目の剪断時の鉛直方向剪断荷重分布P(x)を示すグラフIn an Example, the graph which shows the vertical direction shearing load distribution P (x) at the time of the 1st time of shearing the low strength material of a thick steel plate, and the 2nd time ローリングカットシャーの構造を模式的に示す説明図Explanatory drawing schematically showing the structure of the rolling cut shear ローリングカットシャーによる被剪断材の剪断手順を示す説明図Explanatory drawing which shows the shearing procedure of the material to be sheared by rolling cut shear ローリングカットシャーによる被剪断材の剪断手順を示す説明図Explanatory drawing which shows the shearing procedure of the material to be sheared by rolling cut shear ローリングカットシャーによる被剪断材の剪断手順を示す説明図Explanatory drawing which shows the shearing procedure of the material to be sheared by rolling cut shear ローリングカットシャーによる被剪断材の剪断手順を示す説明図Explanatory drawing which shows the shearing procedure of the material to be sheared by rolling cut shear 相対レーキ角θの定義を示す説明図Explanatory drawing showing the definition of relative rake angle θ

図1と図2は、ローリングカットシャーによる被剪断材(金属材料)の1回の剪断での剪断初期と剪断後期において、材料剪断方向(上刃長手方向)での相対レーキ角θ分布(x)を示したものである。円弧状の刃先を有する上刃(下向きに凸状の円弧刃)を用いるローリングカットシャーによる剪断加工では、上刃1を転動(ローリング)させるように押し下げて設備の材料出側方向から材料入側に向けて剪断するため、ローリング過程の中で、上刃1の円弧極小点kよりも材料出側の上刃領域で剪断する場合(図1に示す剪断初期)に較べ、円弧極小点kよりも材料入側の上刃領域で剪断する場合(図2に示す剪断後期)の方が相対レーキ角θは大きくなる。   FIG. 1 and FIG. 2 show the relative rake angle θ distribution (x in the material shear direction (upper blade longitudinal direction)) at the initial stage and the later stage of shearing of the material to be sheared (metal material) by a rolling cut shear. ). In shearing with a rolling cut shear using an upper blade having an arcuate cutting edge (a downwardly convex arcuate blade), the upper blade 1 is pushed down so as to roll (roll), and the material enters from the material exit side of the equipment. Since the shearing is performed in the rolling direction, the arc minimum point k is compared with the case of shearing in the upper cutting edge region of the material exit side with respect to the arc minimum point k of the upper blade 1 in the rolling process (in the initial stage of shearing shown in FIG. 1). Relative rake angle θ is greater when shearing is performed in the upper blade region on the material entry side (shearing period shown in FIG. 2).

被剪断材eの剪断前にあたる「送り」過程においては、上刃1は上方に待機しており、上下刃間のクリアランスは被剪断材eの通板を妨げないように確保されているため、ローリングカット式との呼称ではあるが、厳密には上刃1の鉛直方向の上下動を伴う。このため、上刃1の上下動を伴わない理想的なローリングカット(図示)に対し、上刃1の円弧状の刃先のうち、円弧極小点kよりも材料出側方向では、円弧極小点kから離れるほど相対レーキ角θが小さくなり、一方、円弧極小点kよりも材料入側方向では、円弧極小点kから離れるほど相対レーキ角θが大きくなる。ここで、円弧極小点とは、上刃が水平な状態で、円弧状の刃先の曲率中心からの鉛直線と刃先が交わる点のことである。また、上刃が水平な状態とは、上刃の上面が水平な状態を指す。   In the “feeding” process before the shearing material e is sheared, the upper blade 1 is waiting upward, and the clearance between the upper and lower blades is ensured so as not to interfere with the passage of the shearing material e. Strictly speaking, it is accompanied by vertical movement of the upper blade 1 in the vertical direction although it is called a rolling cut type. For this reason, with respect to an ideal rolling cut (not shown) that does not involve the vertical movement of the upper blade 1, among the arcuate cutting edges of the upper blade 1, the arc minimum point k is closer to the material exit side than the arc minimum point k. The relative rake angle θ decreases with increasing distance from the arc, while the relative rake angle θ increases with increasing distance from the arc minimum point k in the material entry side direction than the arc minimum point k. Here, the arc minimum point is a point where the cutting edge intersects the vertical line from the center of curvature of the arcuate cutting edge in a state where the upper blade is horizontal. Moreover, the state where the upper blade is horizontal refers to a state where the upper surface of the upper blade is horizontal.

図3に、ある被剪断材をローリングカットシャーで剪断する際に、測定手段により実測された材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)と、下記(1)式により計算された材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)の例を示す。
P(x)=Kt/tanθ(x) …(1)
但し P:剪断荷重(N)
t:金属材料の板厚(mm)
K:金属材料の剪断抵抗(MPa)
θ(x):材料剪断方向xでの相対レーキ角分布(deg)
図3によれば、材料剪断方向xでの鉛直方向剪断荷重分布P(x)は、実測値PJI(x)と計算値PSU(x)とがよい一致を示しており、材料剪断方向xでの相対レーキ角分布θ(x)にしたがい、上刃1の円弧状の刃先のうち円弧極小点kよりも材料入側方向では、円弧極小点kから離れるほど鉛直方向剪断荷重Pは減少している。
In FIG. 3, when a certain material to be sheared is sheared by a rolling cut shear, the vertical shear load distribution P JI (x) in the material shear direction x actually measured by the measuring means and the following equation (1) are calculated. An example of vertical shear load distribution P SU (x) in the material shear direction x is shown.
P (x) = Kt 2 / tanθ (x) (1)
Where P: Shear load (N)
t: Metal material thickness (mm)
K: Shear resistance of metal material (MPa)
θ (x): Relative rake angle distribution (deg) in material shear direction x
According to FIG. 3, the vertical direction shear load distribution P (x) in the material shear direction x shows a good agreement between the actual measurement value P JI (x) and the calculated value P SU (x). In accordance with the relative rake angle distribution θ (x) at x, the vertical direction shear load P decreases as the distance from the arc minimum point k increases in the material entry side of the arcuate cutting edge of the upper blade 1 relative to the arc minimum point k. is doing.

一般のローリングカットシャーは、被剪断材を剪断位置に順次送るための送り装置を有するとともに、材料位置の制御機構を有している。そこで本発明は、(i)被剪断材の長手方向位置を制御することにより、剪断を受け持つ上刃領域を選択する、(ii)その際、剪断時における材料剪断方向xでの鉛直方向剪断荷重分布の実測値又は計算値、すなわち、鉛直方向剪断荷重分布PJI(x)又は鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう(好ましくは目標剪断荷重Paの80%以上となるよう、特に好ましくは目標剪断荷重Paとなるよう)、剪断時における材料送り方向での材料位置を制御する、という方法を採るものである。 A general rolling cut shear has a feeding device for sequentially feeding a material to be sheared to a shearing position, and also has a material position control mechanism. Therefore, the present invention selects (i) the upper blade region responsible for shearing by controlling the longitudinal position of the material to be sheared. (Ii) At that time, the vertical shear load in the material shearing direction x during shearing Based on the measured or calculated value of the distribution, that is, the vertical shear load distribution P JI (x) or the vertical shear load distribution P SU (x), the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa. The material position in the material feed direction during shearing is controlled as described above (preferably 80% or more of the target shear load Pa, particularly preferably the target shear load Pa).

目標剪断荷重Paは、主に設備強度の面から設備に過剰な負担をかけない剪断荷重の上限値などを基準に設定される。したがって、本発明によれば、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう(好ましくは目標剪断荷重Paの80%以上となるよう、特に好ましくは目標剪断荷重Paとなるよう)、剪断時の材料位置が選択されることにより、設備に過剰な負担をかけない最大限の剪断荷重で効率的な剪断を行うことができる。そして、被剪断材が難剪断性のものであるほど、相対レーキ角θが大きい上刃領域で剪断が行われることになり、被剪断材の難剪断性の度合いに応じて最も効率的な剪断加工を行うことができる。   The target shear load Pa is set on the basis of an upper limit value of a shear load that does not place an excessive burden on the equipment mainly in terms of equipment strength. Therefore, according to the present invention, the vertical maximum shear load Pmax is less than or equal to the vertical target shear load Pa (preferably 80% or more of the target shear load Pa, and particularly preferably the target shear load Pa. ) By selecting the material position at the time of shearing, efficient shearing can be performed with the maximum shearing load that does not place an excessive burden on the equipment. As the material to be sheared is more difficult to shear, shearing is performed in the upper blade region where the relative rake angle θ is larger, and the most efficient shearing is performed according to the degree of shearing difficulty of the material to be sheared. Processing can be performed.

以下、本発明の剪断方法及び設備の詳細を説明する。
本発明による剪断方法の1つは、剪断時における鉛直方向剪断荷重Pの実測値、すなわち材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう(好ましくは目標剪断荷重Paの80%以上となるよう、特に好ましくは目標剪断荷重Paとなるよう)、剪断時における材料送り方向での材料位置を制御する方法である。すなわち、この剪断方法では、上下刃による金属材料(被剪断材)の剪断を複数回繰り返すことにより金属材料をその長手方向で剪断加工する際に、金属材料の1回目の剪断時に、材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を測定し、2回目以降の剪断時には、前記鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御する。
Details of the shearing method and equipment of the present invention will be described below.
One of the shearing methods according to the present invention is based on the measured value of the vertical shear load P during shearing, that is, the vertical shear load distribution P JI (x) in the material shear direction x. Method for controlling the material position in the material feed direction during shearing so that the direction target shear load Pa or less (preferably 80% or more of the target shear load Pa, particularly preferably the target shear load Pa) It is. That is, in this shearing method, when the metal material is sheared in the longitudinal direction by repeating the shearing of the metal material (the material to be sheared) by the upper and lower blades a plurality of times, the material shear direction at the first shearing of the metal material The vertical shear load distribution P JI (x) at x is measured. At the second and subsequent shears, the vertical maximum shear load Pmax is determined based on the vertical shear load distribution P JI (x). The material position in the material feeding direction at the time of shearing is controlled so as to be equal to or less than Pa.

図4及び図7は、上記鉛直方向剪断荷重分布PJI(x)の測定手段を構成する検出器(剪断時に上刃1が受ける反力を検出する検出器)の設置例を示すものである。
図4は、検出器としてハウジング3の入側位置と出側位置に歪みゲージ20A,20Bを貼り付け、剪断時に上刃1が受ける反力を簡易的に検出できるようにしたものである。図5は、歪みゲージ20A,20Bによる鉛直方向剪断荷重分布PJI(x)の測定原理を示す説明図である。上刃1と被剪断材eとの間に発生する鉛直方向剪断荷重Pは、最終的にはハウジング3の入側位置と出側位置の各部分でその反力を受け持つことになる。図に示すように、入側反力Pen及び出側反力Pdeと、鉛直方向剪断荷重Pの作用点から入側及び出側のハウジング部分までの距離Len、Ldeの間にはモーメントの釣り合い式が成り立つ。図6に、歪みゲージ20A(入側位置)と歪みゲージ20B(出側位置)の各出力チャートの一例と、それから求められる鉛直方向剪断荷重分布PJI(x)を示す。これによれば、剪断初期はLde<LenであるためPde>Penとなり、剪断中期はPde≒Pen、剪断後期はPde<Penとなる。そして、鉛直方向剪断荷重Pは、鉛直方向荷重の釣り合い式よりP=Pen+Pdeにより得られるので、Pen,Pdeに基づき図6に示すような鉛直方向剪断荷重分布PJI(x)が得られる。
4 and 7 show an installation example of a detector (detector for detecting the reaction force received by the upper blade 1 during shearing) that constitutes the means for measuring the vertical shear load distribution P JI (x). .
FIG. 4 is a diagram in which strain gauges 20A and 20B are attached to the entrance side and exit side positions of the housing 3 as detectors so that the reaction force received by the upper blade 1 during shearing can be easily detected. FIG. 5 is an explanatory diagram showing the measurement principle of the vertical shear load distribution P JI (x) by the strain gauges 20A and 20B. The vertical direction shear load P generated between the upper blade 1 and the material to be sheared e is finally responsible for the reaction force at each of the entrance side position and the exit side position of the housing 3. As shown in the figure, there is a balance of moments between the input reaction force Pen and the output reaction force Pde and the distances Len and Lde from the point of application of the vertical shear load P to the input and output housing parts. Holds. FIG. 6 shows an example of output charts of the strain gauge 20A (incoming position) and the strain gauge 20B (outgoing position), and the vertical direction shear load distribution P JI (x) obtained therefrom. According to this, since Lde <Len at the beginning of shearing, Pde> Pen, Pde≈Pen at the middle stage of shearing, and Pde <Pen at the later stage of shearing. Since the vertical shear load P is obtained by P = Pen + Pde from the vertical load balance formula, a vertical shear load distribution P JI (x) as shown in FIG. 6 is obtained based on Pen and Pde.

また、図7は、検出器として入側位置及び出側位置のクランク機構6,8とハウジング3の間にロードセル21A,21Bを設けたものである。図8は、ロードセル21A,21Bによる鉛直方向剪断荷重分布PJI(x)の測定原理を示す説明図である。この場合には、モーメント釣り合い及び鉛直方向荷重の釣り合い式(前出の図5の説明を参照)に基づき、入側及び出側のクランク機構6,8の支点部に作用する入側反力Pen及び出側反力Pdeを求めるものである。
図9は、図7のような実施形態におけるロードセル21A,21Bの設置例を示す説明図であり、クランク機構6,8の支点部となる各ハウジング部分には、クランク支持用ブロック22が設置され、これら各クランク支持用ブロック22に、リンク5a,7aの各一端部が支持固定される回転軸(図示せず)が配置され、リンク5a,7aの支点50,70が設けられる。各クランク支持用ブロック22は、ハウジング3に設けられた保持用の空間24内に上下スライド可能に保持され(図中の25は、クランク支持用ブロック22のスライド面)、その下面とハウジング部分との間にプリロード用スプリング23が設けられるとともに、上面とハウジング部分との間にロードセル21(21A,21B)が配置され、プリロード用スプリング23はクランク支持用ブロック22を上方に付勢し、ロードセル21に押しつけている。ここで、ロードセル21A,21Bでは、剪断荷重に基づく入側反力Pen及び出側反力Pdeとプリロード用スプリング23による押し付け力Ppre(プリロード荷重)の和が、入側反力Pen´と出側反力Pde´として検出される。したがって、入側反力Penと出側反力Pdeは、Pen=Pen´−Ppre、Pde=Pde´−Ppreで求められる。
FIG. 7 shows load cells 21A, 21B provided between the housings 3 and the crank mechanisms 6, 8 at the entry side position and the exit side position as detectors. FIG. 8 is an explanatory diagram showing the measurement principle of the vertical shear load distribution P JI (x) by the load cells 21A and 21B. In this case, the entry side reaction force Pen acting on the fulcrum portions of the inlet side and outlet side crank mechanisms 6 and 8 based on the moment balance and the vertical load balance formula (see the description of FIG. 5 above). And the outlet reaction force Pde.
FIG. 9 is an explanatory view showing an installation example of the load cells 21A and 21B in the embodiment as shown in FIG. The crank support block 22 is provided with a rotation shaft (not shown) on which one end portions of the links 5a and 7a are supported and fixed, and fulcrums 50 and 70 of the links 5a and 7a are provided. Each crank support block 22 is held in a holding space 24 provided in the housing 3 so as to be vertically slidable (25 in the figure is a slide surface of the crank support block 22). A preload spring 23 is provided between the upper surface and the housing portion, and a load cell 21 (21A, 21B) is disposed between the upper surface and the housing portion. The preload spring 23 urges the crank support block 22 upward. Is pressed against. Here, in the load cells 21A and 21B, the sum of the input side reaction force Pen and the output side reaction force Pde based on the shear load and the pressing force Ppre (preload load) by the preload spring 23 is the input side reaction force Pen ′ and the output side. It is detected as a reaction force Pde ′. Therefore, the entry-side reaction force Pen and the exit-side reaction force Pde are obtained by Pen = Pen′−Ppre and Pde = Pde′−Ppre.

図10に、ロードセル21A(入側位置)とロードセル21B(出側位置)の各出力チャートの一例と、それから求められる鉛直方向剪断荷重分布PJI(x)を示す。これによれば、図6と同様、剪断初期はLde<LenであるためPde>Penとなり、剪断中期はPde≒Pen、剪断後期はPde<Penとなる。そして、鉛直方向剪断荷重Pは、鉛直方向荷重の釣り合い式よりP=Pen+Pdeにより得られるので、Pen,Pdeに基づき図10に示されるような鉛直方向剪断荷重分布PJI(x)が得られる。
図4及び図7のいずれの場合においても、アンプを介して増幅させた信号について、入側と出側の出力値の和を演算することで、剪断時における上刃1と被剪断材eとの接触反力に応じた鉛直方向剪断荷重分布PJI(x)を測定することができる。
FIG. 10 shows an example of each output chart of the load cell 21A (incoming position) and the load cell 21B (outside position), and the vertical shear load distribution P JI (x) obtained therefrom. According to this, as in FIG. 6, since Lde <Len at the beginning of shearing, Pde> Pen, Pde≈Pen at the middle stage of shearing, and Pde <Pen at the later stage of shearing. Since the vertical shear load P is obtained by P = Pen + Pde from the vertical load balance formula, a vertical shear load distribution P JI (x) as shown in FIG. 10 is obtained based on Pen and Pde.
4 and 7, the upper blade 1 and the material to be sheared e at the time of shearing are calculated by calculating the sum of the output values on the input side and the output side of the signal amplified through the amplifier. It is possible to measure the vertical shear load distribution P JI (x) according to the contact reaction force.

図11は、剪断時の鉛直方向剪断荷重Pの実測値に基づいて材料の位置制御を行う方法の実施に供される設備と制御フローを示すものである。この設備は、被剪断材eの剪断時に上刃が受ける反力を検出し、この検出値から材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を求める剪断荷重測定段10と、前記鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような、被剪断材eの標準材料位置Xmに対する位置補正量ΔXmを求める演算手段12Bと、前記位置補正量ΔXmから被剪断材eの目標材料位置Xmaを決定し、材料送り装置14を制御する制御手段13を有する。 FIG. 11 shows the equipment and control flow used to implement the method for controlling the position of the material based on the measured value of the vertical shear load P during shearing. This equipment detects a reaction force applied to the upper blade when the material to be sheared e is sheared, and obtains a vertical shear load distribution P JI (x) in the material shear direction x from the detected value, Calculation for obtaining a position correction amount ΔXm for the standard material position Xm of the material to be sheared e such that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa based on the vertical shear load distribution P JI (x). Means 12B and control means 13 for determining the target material position Xma of the material to be sheared e from the position correction amount ΔXm and controlling the material feeding device 14.

前記剪断荷重測定段10では、例えば、図4や図7に示すような入側及び出側の検出器(歪みゲージ、ロードセルなど)の出力値の和を演算することで、剪断時における上刃1と被剪断材eとの接触反力に応じた鉛直方向剪断荷重分布PJI(x)を測定する。前記演算手段12Bでは、予め鉛直方向目標剪断荷重Paが設定されており、剪断荷重測定段10で測定された鉛直方向剪断荷重分布PJI(x)中の最大剪断荷重PJImaxと目標剪断荷重Paを差分演算し、その差分に制御ゲインを乗じて被剪断材eの標準材料位置Xmに対する位置補正量ΔXm、すなわち鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような位置補正量ΔXmを求める。前記制御手段13は、標準材料位置Xmと前記位置補正量ΔXmを和演算して目標材料位置Xmaを決定し、被剪断材eが目標材料位置Xmaに送られるように材料送り装置14(モータ)を制御する。 In the shear load measuring stage 10, for example, the upper blade at the time of shearing is calculated by calculating the sum of the output values of the input and output detectors (strain gauge, load cell, etc.) as shown in FIGS. A vertical shear load distribution P JI (x) corresponding to the contact reaction force between 1 and the material to be sheared e is measured. In the calculation means 12B, the vertical target shear load Pa is set in advance, and the maximum shear load P JI max and the target shear load in the vertical shear load distribution P JI (x) measured in the shear load measurement stage 10 are set. A difference calculation is performed on Pa, and the difference is multiplied by a control gain to obtain a position correction amount ΔXm with respect to the standard material position Xm of the material to be sheared e, that is, a position correction so that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa The quantity ΔXm is determined. The control means 13 calculates the sum of the standard material position Xm and the position correction amount ΔXm to determine the target material position Xma, and the material feeding device 14 (motor) so that the material to be sheared e is sent to the target material position Xma. To control.

本発明による剪断方法の他の1つは、剪断時における鉛直方向剪断荷重Pの計算値、すなわち材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう(好ましくは目標剪断荷重Paの80%以上となるよう、特に好ましくは目標剪断荷重Paとなるよう)、剪断時における材料送り方向での材料位置を制御する方法である。すなわち、この剪断方法では、上下刃による金属材料(被剪断材)の剪断を複数回繰り返すことにより金属材料をその長手方向で剪断加工する際に、下記(1)式により、金属材料を1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求め、
P(x)=Kt/tanθ(x) …(1)
但し P:剪断荷重(N)
t:金属材料の板厚(mm)
K:金属材料の剪断抵抗(MPa)
θ(x):材料剪断方向xでの相対レーキ角分布(deg)
前記鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御する。
Another one of the shearing methods according to the present invention is based on the calculated value of the vertical shear load P at the time of shearing, that is, the vertical shear load distribution P SU (x) in the material shear direction x. The material position in the material feed direction during shearing is controlled so that is less than or equal to the vertical target shear load Pa (preferably 80% or more of the target shear load Pa, particularly preferably the target shear load Pa). It is a method to do. That is, in this shearing method, when the metal material is sheared in the longitudinal direction by repeating shearing of the metal material (material to be sheared) by the upper and lower blades a plurality of times, the metal material is once processed by the following equation (1). Obtain the vertical shear load distribution P SU (x) in the material shear direction x when shearing,
P (x) = Kt 2 / tanθ (x) (1)
Where P: Shear load (N)
t: Metal material thickness (mm)
K: Shear resistance of metal material (MPa)
θ (x): Relative rake angle distribution (deg) in material shear direction x
Based on the vertical shear load distribution P SU (x), the material position in the material feed direction during shearing is controlled so that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa.

図12は、このような剪断時の鉛直方向剪断荷重Pの計算値に基づいて材料の位置制御を行う方法の実施に供される設備と制御フローを示すものである。この設備は、上記(1)式により、被剪断材eを1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求める演算手段11と、前記鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような、被剪断材eの標準材料位置Xmに対する位置補正量ΔXmを求める演算手段12Cと、前記位置補正量ΔXmから被剪断材eの目標材料位置Xmaを決定し、材料送り装置14を制御する制御手段13を有する。 FIG. 12 shows the equipment and control flow used for carrying out the method for controlling the position of the material based on the calculated value of the vertical shear load P during shearing. This equipment includes a calculation means 11 for obtaining a vertical shear load distribution P SU (x) in the material shear direction x when the material to be sheared e is sheared once by the above equation (1), and the vertical shear load. Based on the distribution P SU (x), the calculation means 12C for obtaining a position correction amount ΔXm with respect to the standard material position Xm of the material to be sheared e so that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa; Control means 13 for determining the target material position Xma of the material to be sheared e from the position correction amount ΔXm and controlling the material feeding device 14 is provided.

前記演算手段11では、被剪断材eの板厚t、被剪断材eの剪断抵抗K、材料剪断方向xでの相対レーキ角分布θ(x)が与えられ、上記(1)式により、被剪断材eを1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)が求められる。前記演算手段12Cでは、予め鉛直方向目標剪断荷重Paが設定されており、演算手段11で計算された鉛直方向剪断荷重分布PSU(x)中の最大剪断荷重PSUmaxと目標剪断荷重Paを差分演算し、その差分に制御ゲインを乗じて被剪断材eの標準材料位置Xmに対する位置補正量ΔXm、すなわち鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような位置補正量ΔXmを求める。前記制御手段13は、標準材料位置Xmと前記位置補正量ΔXmを和演算して目標材料位置Xmaを決定し、被剪断材eが目標材料位置Xmaに送られるように材料送り装置14(モータ)を制御する。 The computing means 11 is given a plate thickness t of the material to be sheared e, a shear resistance K of the material to be sheared e, and a relative rake angle distribution θ (x) in the material shear direction x. A vertical shear load distribution P SU (x) in the material shear direction x when the shear material e is sheared once is obtained. In the calculation means 12C, the vertical target shear load Pa is set in advance, and the maximum shear load P SU max and the target shear load Pa in the vertical shear load distribution P SU (x) calculated by the calculation means 11 are determined. The difference is calculated, and the difference is multiplied by a control gain to obtain a position correction amount ΔXm for the standard material position Xm of the material to be sheared e, that is, a position correction amount ΔXm such that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa. Ask for. The control means 13 calculates the sum of the standard material position Xm and the position correction amount ΔXm to determine the target material position Xma, and the material feeding device 14 (motor) so that the material to be sheared e is sent to the target material position Xma. To control.

さきに述べたように、目標剪断荷重Paは、主に設備強度の面から設備に過剰な負担をかけない剪断荷重の上限値などを基準に設定されるが、設備に過剰な負担をかけない最大限の剪断荷重Pで剪断を行うことが生産性の面から最も効率的であり、したがって、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paとなるよう上記位置補正量ΔXmを求め、剪断時における材料送り方向での材料位置を制御することが特に好ましい。
また、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paとならなくても、概ね鉛直方向目標剪断荷重Paの80%以上(好ましくは90%以上)であれば、生産性の面から一応効率的であると言えるので、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paの80%以上(好ましくは90%以上)となるよう、上記位置補正量ΔXmを求め、剪断時における材料送り方向での材料位置を制御してもよい。
As described above, the target shear load Pa is set based on the upper limit value of the shear load that does not place an excessive load on the equipment mainly from the viewpoint of the equipment strength, but does not place an excessive load on the equipment. It is most efficient in terms of productivity to perform shearing with the maximum shearing load P. Therefore, the position correction amount ΔXm is obtained so that the vertical maximum shearing load Pmax becomes the vertical target shearing load Pa, and the shearing is performed. It is particularly preferred to control the material position in the material feed direction at the time.
Further, even if the vertical maximum shear load Pmax is not equal to the vertical target shear load Pa, if the vertical target shear load Pa is approximately 80% or more (preferably 90% or more) of the vertical target shear load Pa, efficiency is improved from the viewpoint of productivity. Therefore, the position correction amount ΔXm is obtained so that the vertical maximum shear load Pmax is 80% or more (preferably 90% or more) of the vertical target shear load Pa, and the material feed direction during shearing is determined. The material position may be controlled.

本発明の剪断方法のなかで、剪断時における鉛直方向剪断荷重Pの実測値に基づいて材料位置を制御する方法は、複数回繰り返される剪断のうち2回目以降の剪断時に適用することができる。
図13に、被剪断材eの1回目の剪断時には、従来法通りに標準材料位置Xmで剪断するとともに、この1回目の剪断時に、材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を測定し、2回目以降の剪断時には、前記鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paとなるよう、剪断時における材料送り方向での材料位置を制御した場合における、鉛直方向剪断荷重分布P(x)の一例を示す。図中に示すように、被剪断材eを目標材料位置Xmaに位置制御することにより、鉛直方向最大剪断荷重Pmaxを鉛直方向目標剪断荷重Paとすることができている(図中、計算値PSU(x)は参考として示したものである)。
Among the shearing methods of the present invention, the method of controlling the material position based on the actual measurement value of the vertical shear load P during shearing can be applied during the second and subsequent shearing among a plurality of repeated shearing operations.
In FIG. 13, when the material to be sheared e is sheared for the first time, shearing is performed at the standard material position Xm as in the conventional method, and at the time of the first shearing, the vertical shear load distribution P JI (x ) And at the time of the second and subsequent shearing, based on the vertical shear load distribution P JI (x), the vertical maximum shear load Pmax becomes the vertical target shear load Pa in the material feed direction during shearing. An example of the vertical shear load distribution P (x) in the case where the material position is controlled is shown. As shown in the figure, the vertical maximum shear load Pmax can be made the vertical target shear load Pa by controlling the position of the material to be sheared e to the target material position Xma (in the figure, the calculated value P SU (x) is shown for reference).

本発明において特に好ましい剪断方法は、剪断時における鉛直方向剪断荷重Pの実測値と計算値、すなわち、材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)と鉛直方向剪断荷重分布PSU(x)を利用して、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう(好ましくは目標剪断荷重Paの80%以上となるよう、特に好ましくは目標剪断荷重Paとなるよう)、剪断時における材料送り方向での材料位置を制御する方法である。すなわち、この剪断方法では、上下刃による金属材料(被剪断材)の剪断を複数回繰り返すことにより金属材料をその長手方向で剪断加工する際に、下記(1)式により、金属材料を1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求め、
P(x)=Kt/tanθ(x) …(1)
但し P:剪断荷重(N)
t:金属材料の板厚(mm)
K:金属材料の剪断抵抗(MPa)
θ(x):材料剪断方向xでの相対レーキ角分布(deg)
金属材料の1回目の剪断時には、前記鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御し、前記1回目の剪断時に、材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を測定し、2回目以降の剪断時には、前記鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御する。
In the present invention, particularly preferred shearing methods are measured and calculated values of the vertical shear load P during shearing, that is, the vertical shear load distribution P JI (x) and the vertical shear load distribution P SU in the material shear direction x. Using (x), the vertical maximum shear load Pmax is set to be equal to or less than the vertical target shear load Pa (preferably 80% or more of the target shear load Pa, particularly preferably the target shear load Pa. ), A method of controlling the material position in the material feed direction during shearing. That is, in this shearing method, when the metal material is sheared in the longitudinal direction by repeating shearing of the metal material (material to be sheared) by the upper and lower blades a plurality of times, the metal material is once processed by the following equation (1). Obtain the vertical shear load distribution P SU (x) in the material shear direction x when shearing,
P (x) = Kt 2 / tanθ (x) (1)
Where P: Shear load (N)
t: Metal material thickness (mm)
K: Shear resistance of metal material (MPa)
θ (x): Relative rake angle distribution (deg) in material shear direction x
When the metal material is sheared for the first time, the material in the material feed direction at the time of shearing is set so that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa based on the vertical shear load distribution P SU (x). position controls, the during the first shearing, the material shearing direction x in the vertical shear load distribution P JI (x) is measured, when the second and subsequent shear, the vertical shear load distribution P JI (x) Based on the above, the material position in the material feeding direction at the time of shearing is controlled so that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa.

図14は、このような剪断時の鉛直方向剪断荷重Pの実測値と計算値に基づいて材料の位置制御を行う方法の実施に供される設備と制御フローを示すものである。この設備は、被剪断材eの剪断時に上刃が受ける反力を検出し、この検出値から材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を求める剪断荷重測定手段10と、上記(1)式により、被剪断材eを1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求める演算手段11と、前記鉛直方向剪断荷重分布PJI(x)又はPSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような、被剪断材eの標準材料位置Xmに対する位置補正量ΔXmを求める演算手段12Aと、前記位置補正量ΔXmから被剪断材eの目標材料位置Xmaを決定し、材料送り装置14を制御する制御手段13を有する。 FIG. 14 shows the equipment and control flow used to implement the method for controlling the position of the material based on the measured value and the calculated value of the vertical shear load P during such shearing. This equipment detects a reaction force applied to the upper blade when the material to be sheared e is sheared, and obtains a vertical shear load distribution P JI (x) in the material shear direction x from the detected value, According to the above equation (1), the calculation means 11 for obtaining the vertical shear load distribution P SU (x) in the material shear direction x when the material to be sheared e is sheared once, and the vertical shear load distribution P JI ( calculation means 12A for obtaining a position correction amount ΔXm for the standard material position Xm of the material to be sheared e so that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa based on x) or P SU (x) And a control means 13 for determining the target material position Xma of the material to be sheared e from the position correction amount ΔXm and controlling the material feeding device 14.

図12の設備と同様、前記演算手段11では、被剪断材eの板厚t、被剪断材eの剪断抵抗K、材料剪断方向xでの相対レーキ角分布θ(x)が与えられ、上記(1)式により、被剪断材eを1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)が求められる。また、図11の設備と同様、前記剪断荷重測定段10では、例えば、図4や図7に示すような入側及び出側の検出器(歪みゲージ、ロードセルなど)の出力値の和を演算することで、剪断時における上刃1と被剪断材eとの接触反力に応じた鉛直方向剪断荷重分布PJI(x)を測定する。前記演算手段12Aでは、予め鉛直方向目標剪断荷重Paが設定されており、「剪断荷重測定段10で測定された鉛直方向剪断荷重分布PJI(x)中の最大剪断荷重PJImax」又は「演算手段11で計算された鉛直方向剪断荷重分布PSU(x)中の最大剪断荷重PSUmax」と目標剪断荷重Paを差分演算し、その差分に制御ゲインを乗じて被剪断材eの標準材料位置Xmに対する位置補正量ΔXm、すなわち鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような位置補正量ΔXmを求める。前記制御手段13は、標準材料位置Xmと前記位置補正量ΔXmを和演算して目標材料位置Xmaを決定し、被剪断材eが目標材料位置Xmaに送られるように材料送り装置14(モータ)を制御する。 12, the calculation means 11 is provided with the thickness t of the material to be sheared e, the shear resistance K of the material to be sheared e, and the relative rake angle distribution θ (x) in the material shearing direction x. The vertical direction shear load distribution P SU (x) in the material shear direction x when the material to be sheared e is sheared once is obtained by the equation (1). 11, the shear load measurement stage 10 calculates, for example, the sum of output values of input and output detectors (strain gauges, load cells, etc.) as shown in FIGS. 4 and 7. Thus, the vertical shear load distribution P JI (x) corresponding to the contact reaction force between the upper blade 1 and the material to be sheared e during shearing is measured. In the calculation means 12A, the vertical target shear load Pa is set in advance, and “the maximum shear load P JI max in the vertical shear load distribution P JI (x) measured in the shear load measurement stage 10” or “ A difference between the maximum shear load P SU max in the vertical shear load distribution P SU (x) calculated by the calculation means 11 and the target shear load Pa is calculated, and the difference is multiplied by the control gain to obtain the standard of the material to be sheared e. A position correction amount ΔXm with respect to the material position Xm, that is, a position correction amount ΔXm such that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa is obtained. The control means 13 calculates the sum of the standard material position Xm and the position correction amount ΔXm to determine the target material position Xma, and the material feeding device 14 (motor) so that the material to be sheared e is sent to the target material position Xma. To control.

そして、この設備で行われる剪断方法では、1回目の剪断時には、演算手段11で計算された鉛直方向剪断荷重分布PSU(x)に基づき演算手段12Aで位置補正量ΔXmが求められ、この位置補正量ΔXmに基づき制御手段13による位置制御がなされ、2回目以降の剪断時には、1回目の剪断において剪断荷重測定段10で測定された鉛直方向剪断荷重分布PJI(x)に基づき演算手段12Aで位置補正量ΔXmが求められ、この位置補正量ΔXmに基づき制御手段13による位置制御がなされる。 In the shearing method performed in this facility, the position correction amount ΔXm is obtained by the computing means 12A based on the vertical shear load distribution P SU (x) calculated by the computing means 11 at the first shearing. The position is controlled by the control means 13 based on the correction amount ΔXm, and the calculation means 12A is calculated based on the vertical shear load distribution P JI (x) measured by the shear load measuring stage 10 in the first shear at the second and subsequent shears. Thus, a position correction amount ΔXm is obtained, and position control by the control means 13 is performed based on the position correction amount ΔXm.

図14のような剪断方法及び設備は、1回目の剪断時には、鉛直方向剪断荷重Pの実測値に基づく位置制御ができないため、鉛直方向剪断荷重Pの計算値に基づく位置制御を行い、2回目以降の剪断時には、鉛直方向剪断荷重Pの実測値に基づくより高精度な位置制御(上刃損耗などのような設備的要因により剪断荷重が変化する場合があり、このような変化は鉛直方向剪断荷重Pの計算値には十分に反映できない)を行うことができる。すなわち、剪断時の鉛直方向剪断荷重Pの実測値に基づく位置制御と、剪断時の鉛直方向剪断荷重Pの計算値に基づく位置制御とが互いの不利を補いあうことで、より高精度な位置制御が可能となる。   The shearing method and equipment as shown in FIG. 14 cannot perform position control based on the actual measurement value of the vertical direction shear load P at the first shearing, so the position control is performed based on the calculated value of the vertical direction shear load P. During subsequent shearing, more accurate position control based on the actual measurement value of the vertical shear load P (the shear load may change due to equipment factors such as upper blade wear). It cannot be sufficiently reflected in the calculated value of the load P). That is, the position control based on the actual measurement value of the vertical direction shear load P at the time of shearing and the position control based on the calculated value of the vertical direction shear load P at the time of shearing compensate for each other's disadvantages, thereby achieving a more accurate position. Control becomes possible.

本発明を適用できる金属材料に特別な制限はないが、特に厚鋼板の剪断に好適である。
また、本発明が対象とするローリングカットシャーは、実施形態に示したようなクランク機構により上刃を吊持・駆動する方式のものに限定されるものではなく、上刃が同じような態様の動きをするものであれば、例えば、油圧シリンダ或いは油圧シリンダと他の機械要素を組み合わせた機構により上刃を吊持・駆動する方式、スキッドとローラ機構を組み合わせた機構により上刃を吊持・駆動する方式など、種々の方式のものを対象とすることができる。
本発明によれば、既存設備に対して大幅な設備改造を行うことなく、剪断能力を大きく向上させることができる。例えば、既存設備の剪断能力では剪断困難であった高強度材についても剪断可能となり、大きな設備改造を伴うことなく、ラインパイプ材用にAPI規格X120鋼などの高強度材の安定生産が達成できるようになる。さらに、比較的低強度の被剪断材において、既存設備の剪断能力に余力が生ずる場合には、1回当たりの剪断量を増加させることが可能となり、設備的な負荷を増大させることなく、剪断能率を向上させることができる。
Although there is no special restriction | limiting in the metal material which can apply this invention, It is especially suitable for the shear of a thick steel plate.
Further, the rolling cut shear targeted by the present invention is not limited to the type in which the upper blade is suspended and driven by the crank mechanism as shown in the embodiment, and the upper blade has a similar mode. If it moves, for example, the upper blade is suspended and driven by a mechanism that combines a hydraulic cylinder or a hydraulic cylinder and other mechanical elements, and the upper blade is suspended by a mechanism that combines a skid and roller mechanism. Various systems such as a driving system can be targeted.
According to the present invention, the shearing capacity can be greatly improved without significantly modifying the existing equipment. For example, high-strength materials that were difficult to shear with existing equipment can be sheared, and stable production of high-strength materials such as API standard X120 steel for line pipe materials can be achieved without major equipment modifications. It becomes like this. Furthermore, in the case of a relatively low-strength material to be sheared, if there is a surplus in the shearing capacity of the existing equipment, it is possible to increase the amount of shear per operation, without increasing the equipment load. Efficiency can be improved.

図14に示す設備を用い、剪断時の鉛直方向剪断荷重Pの測定手段を構成する検出器として、図4に示すように、ハウジング3の入側位置と出側位置に歪みゲージ20A,20Bを貼り付け、剪断時に上刃が受ける反力を簡易的に検出できるようにした。
本発明の好ましい実施形態である、剪断時における鉛直方向剪断荷重Pの実測値と計算値を利用した被剪断材の位置制御を行った。すなわち、(1)式により、被剪断材を1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求め、被剪断材の1回目の剪断時には、前記鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paとなるよう、剪断時における材料送り方向での材料位置を制御し、前記1回目の剪断時に、材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を測定し、2回目以降の剪断時には、前記鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paとなるよう、剪断時における材料送り方向での材料位置を制御した。
As shown in FIG. 4, strain gauges 20 </ b> A and 20 </ b> B are installed at the entrance side position and the exit side position of the housing 3 as a detector that constitutes a means for measuring the vertical shear load P during shearing using the equipment shown in FIG. 14. The reaction force received by the upper blade during pasting and shearing can be easily detected.
As a preferred embodiment of the present invention, the position control of the material to be sheared was performed using the measured value and the calculated value of the vertical shear load P during shearing. That is, the vertical direction shear load distribution P SU (x) in the material shearing direction x when the material to be sheared is sheared once by the equation (1) is obtained, and the vertical direction is determined when the material to be sheared is sheared for the first time. Based on the shear load distribution P SU (x), the material position in the material feed direction during shearing is controlled so that the vertical maximum shear load Pmax becomes the vertical target shear load Pa. The vertical shear load distribution P JI (x) in the shear direction x is measured. At the second and subsequent shears, the vertical maximum shear load Pmax is determined based on the vertical shear load distribution P JI (x). The material position in the material feeding direction during shearing was controlled so that the shear load Pa was obtained.

図15に、厚鋼板の高強度材(高張力鋼板、板厚30mm、引張強さ780MPa)を剪断加工した際の1回目及び2回目の剪断時の鉛直方向剪断荷重分布P(x)を示すが、1回目の剪断から目標剪断荷重Paでの剪断が実施できたことが判る。
また、図16に、厚鋼板の低強度材(汎用鋼板、板厚30mm、引張強さ540MPa)を剪断加工した際の1回目及び2回目の剪断時の鉛直方向剪断荷重分布P(x)を示すが、高強度材の実施例と同様に、1回目の剪断から目標剪断荷重Paでの剪断が実施できたことが判る。
FIG. 15 shows the vertical shear load distribution P (x) during the first and second shearing when a high-strength steel plate (high-tensile steel plate, plate thickness 30 mm, tensile strength 780 MPa) is sheared. However, it can be seen that the shearing with the target shearing load Pa can be performed from the first shearing.
FIG. 16 shows the vertical shear load distribution P (x) during the first and second shearing when the low-strength steel plate (general steel plate, plate thickness 30 mm, tensile strength 540 MPa) is sheared. As shown, it can be seen that the shearing with the target shearing load Pa can be performed from the first shearing as in the example of the high-strength material.

1 上刃
2 下刃
3 ハウジング
5a,5b,7a,7b リンク
6,8 クランク機構
10 剪断荷重測定段
11 演算手段
12A,12B,12C 演算手段
13 制御手段
14 材料送り装置
20A,20B 歪みゲージ
21A,21B ロードセル
22 クランク支持用ブロック
23 プリロード用スプリング
24 空間
25 スライド面
51,52,71,72 枢着部
50,70 支点
100 刃先
e 被剪断材
DESCRIPTION OF SYMBOLS 1 Upper blade 2 Lower blade 3 Housing 5a, 5b, 7a, 7b Link 6,8 Crank mechanism 10 Shear load measurement stage 11 Calculation means 12A, 12B, 12C Calculation means 13 Control means 14 Material feeder 20A, 20B Strain gauge 21A, 21B Load cell 22 Crank support block 23 Preload spring 24 Space 25 Slide surface 51, 52, 71, 72 Pivot 50, 70 Support point 100 Cutting edge e Sheared material

Claims (11)

ローリングカットシャーによる金属材料の剪断方法において、
上下刃による金属材料の剪断を複数回繰り返すことにより金属材料をその長手方向で剪断加工する際に、
下記(1)式により、金属材料を1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求め、
P(x)=Kt/tanθ(x) …(1)
但し P:剪断荷重(N)
t:金属材料の板厚(mm)
K:金属材料の剪断抵抗(MPa)
θ(x):材料剪断方向xでの相対レーキ角分布(deg)
金属材料の1回目の剪断時には、前記鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御し、
前記1回目の剪断時に、材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を測定し、2回目以降の剪断時には、前記鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御することを特徴とする金属材料の剪断方法。
In the method of shearing a metal material by a rolling cut shear,
When shearing the metal material in its longitudinal direction by repeating the shearing of the metal material with the upper and lower blades multiple times,
The vertical shear load distribution P SU (x) in the material shear direction x when the metal material is sheared once by the following equation (1)
P (x) = Kt 2 / tanθ (x) (1)
Where P: Shear load (N)
t: Metal material thickness (mm)
K: Shear resistance of metal material (MPa)
θ (x): Relative rake angle distribution (deg) in material shear direction x
When the metal material is sheared for the first time, the material in the material feed direction at the time of shearing is set so that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa based on the vertical shear load distribution P SU (x). Control the position,
During the first shear, the vertical shear load distribution P JI (x) in the material shear direction x is measured, and during the second and subsequent shears, the vertical direction is determined based on the vertical shear load distribution P JI (x). A metal material shearing method comprising controlling a material position in a material feeding direction during shearing so that a maximum shear load Pmax is equal to or less than a vertical target shear load Pa.
ローリングカットシャーによる金属材料の剪断方法において、
上下刃による金属材料の剪断を複数回繰り返すことにより金属材料をその長手方向で剪断加工する際に、
金属材料の1回目の剪断時に、材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を測定し、2回目以降の剪断時には、前記鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御することを特徴とする金属材料の剪断方法。
In the method of shearing a metal material by a rolling cut shear,
When shearing the metal material in its longitudinal direction by repeating the shearing of the metal material with the upper and lower blades multiple times,
During the first shearing of the metal material, the vertical shear load distribution P JI (x) in the material shearing direction x is measured, and during the second and subsequent shearing, based on the vertical shear load distribution P JI (x), A method for shearing a metal material, comprising: controlling a material position in a material feeding direction during shearing so that a vertical maximum shear load Pmax is equal to or less than a vertical target shear load Pa.
ローリングカットシャーによる金属材料の剪断方法において、
上下刃による金属材料の剪断を複数回繰り返すことにより金属材料をその長手方向で剪断加工する際に、
下記(1)式により、金属材料を1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求め、
P(x)=Kt/tanθ(x) …(1)
但し P:剪断荷重(N)
t:金属材料の板厚(mm)
K:金属材料の剪断抵抗(MPa)
θ(x):材料剪断方向xでの相対レーキ角分布(deg)
前記鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるよう、剪断時における材料送り方向での材料位置を制御することを特徴とする金属材料の剪断方法。
In the method of shearing a metal material by a rolling cut shear,
When shearing the metal material in its longitudinal direction by repeating the shearing of the metal material with the upper and lower blades multiple times,
The vertical shear load distribution P SU (x) in the material shear direction x when the metal material is sheared once by the following equation (1)
P (x) = Kt 2 / tanθ (x) (1)
Where P: Shear load (N)
t: Metal material thickness (mm)
K: Shear resistance of metal material (MPa)
θ (x): Relative rake angle distribution (deg) in material shear direction x
Based on the vertical shear load distribution P SU (x), the material position in the material feed direction during shearing is controlled so that the maximum vertical shear load Pmax is equal to or less than the vertical target shear load Pa. A method for shearing metal materials.
材料位置の制御では、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paの80%以上となるよう、剪断時における材料送り方向での材料位置を制御することを特徴とする請求項1〜3のいずれかに記載の金属材料の剪断方法。   The material position is controlled by controlling the material position in the material feed direction during shearing so that the vertical maximum shear load Pmax is 80% or more of the vertical target shear load Pa. A method for shearing a metal material according to any one of the above. 材料位置の制御では、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paとなるよう、剪断時における材料送り方向での材料位置を制御することを特徴とする請求項4に記載の金属材料の剪断方法。   The material position is controlled in the material feed direction during shearing so that the vertical maximum shear load Pmax becomes the vertical target shear load Pa in the control of the material position. Shearing method. 材料位置の制御では、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求め、この位置補正量ΔXmから目標材料位置Xmaを決定することを特徴とする請求項1〜5のいずれかに記載の金属材料の剪断方法。   6. The material position control includes obtaining a position correction amount ΔXm of the metal material with respect to the standard material position Xm, and determining the target material position Xma from the position correction amount ΔXm. A method for shearing metal materials. ローリングカットシャーを備えた金属材料の剪断設備において、
金属材料の剪断時に上刃が受ける反力を検出し、この検出値から材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を求める剪断荷重測定手段(10)と、
下記(1)式により、金属材料を1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求める演算手段(11)と、
P(x)=Kt/tanθ(x) …(1)
但し P:剪断荷重(N)
t:金属材料の板厚(mm)
K:金属材料の剪断抵抗(MPa)
θ(x):材料剪断方向xでの相対レーキ角分布(deg)
前記鉛直方向剪断荷重分布PJI(x)またはPSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求める演算手段(12A)と、
前記位置補正量ΔXmから金属材料の目標材料位置Xmaを決定し、材料送り装置を制御する制御手段(13)を有することを特徴とする金属材料の剪断設備。
In a metal material shearing facility equipped with a rolling cut shear,
A shear load measuring means (10) for detecting a reaction force received by the upper blade during shearing of the metal material and obtaining a vertical shear load distribution P JI (x) in the material shear direction x from the detected value;
An arithmetic means (11) for obtaining a vertical shear load distribution P SU (x) in the material shear direction x when the metal material is sheared once by the following equation (1):
P (x) = Kt 2 / tanθ (x) (1)
Where P: Shear load (N)
t: Metal material thickness (mm)
K: Shear resistance of metal material (MPa)
θ (x): Relative rake angle distribution (deg) in material shear direction x
Based on the vertical shear load distribution P JI (x) or P SU (x), the position correction amount for the standard material position Xm of the metal material such that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa. An arithmetic means (12A) for obtaining ΔXm;
A metal material shearing facility comprising control means (13) for determining a target material position Xma of a metal material from the position correction amount ΔXm and controlling a material feeding device.
ローリングカットシャーを備えた金属材料の剪断設備において、
金属材料の剪断時に上刃が受ける反力を検出し、この検出値から材料剪断方向xでの鉛直方向剪断荷重分布PJI(x)を求める剪断荷重測定手段(10)と、
前記鉛直方向剪断荷重分布PJI(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求める演算手段(12B)と、
前記位置補正量ΔXmから金属材料の目標材料位置Xmaを決定し、材料送り装置を制御する制御手段(13)を有することを特徴とする金属材料の剪断設備。
In a metal material shearing facility equipped with a rolling cut shear,
A shear load measuring means (10) for detecting a reaction force received by the upper blade during shearing of the metal material and obtaining a vertical shear load distribution P JI (x) in the material shear direction x from the detected value;
Based on the vertical shear load distribution P JI (x), a calculation means for obtaining a position correction amount ΔXm with respect to the standard material position Xm of the metal material such that the maximum vertical shear load Pmax is equal to or less than the vertical target shear load Pa ( 12B)
A metal material shearing facility comprising control means (13) for determining a target material position Xma of a metal material from the position correction amount ΔXm and controlling a material feeding device.
ローリングカットシャーを備えた金属材料の剪断設備において、
下記(1)式により、金属材料を1回剪断した時の材料剪断方向xでの鉛直方向剪断荷重分布PSU(x)を求める演算手段(11)と、
P(x)=Kt/tanθ(x) …(1)
但し P:剪断荷重(N)
t:金属材料の板厚(mm)
K:金属材料の剪断抵抗(MPa)
θ(x):材料剪断方向xでの相対レーキ角分布(deg)
前記鉛直方向剪断荷重分布PSU(x)に基づき、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Pa以下となるような、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求める演算手段(12C)と、
前記位置補正量ΔXmから金属材料の目標材料位置Xmaを決定し、材料送り装置を制御する制御手段(13)を有することを特徴とする金属材料の剪断設備。
In a metal material shearing facility equipped with a rolling cut shear,
An arithmetic means (11) for obtaining a vertical shear load distribution P SU (x) in the material shear direction x when the metal material is sheared once by the following equation (1):
P (x) = Kt 2 / tanθ (x) (1)
Where P: Shear load (N)
t: Metal material thickness (mm)
K: Shear resistance of metal material (MPa)
θ (x): Relative rake angle distribution (deg) in material shear direction x
Calculation means for obtaining a position correction amount ΔXm with respect to the standard material position Xm of the metal material such that the vertical maximum shear load Pmax is equal to or less than the vertical target shear load Pa based on the vertical shear load distribution P SU (x) ( 12C),
A metal material shearing facility comprising control means (13) for determining a target material position Xma of a metal material from the position correction amount ΔXm and controlling a material feeding device.
演算手段(12A)、(12B)または(12C)は、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paの80%以上となるような、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求めることを特徴とする請求項7〜9のいずれかに記載の金属材料の剪断設備。   The computing means (12A), (12B) or (12C) calculates the position correction amount ΔXm with respect to the standard material position Xm of the metal material such that the vertical maximum shear load Pmax is 80% or more of the vertical target shear load Pa. The metal material shearing equipment according to any one of claims 7 to 9, wherein the equipment is obtained. 演算手段(12A)、(12B)または(12C)は、鉛直方向最大剪断荷重Pmaxが鉛直方向目標剪断荷重Paとなるような、金属材料の標準材料位置Xmに対する位置補正量ΔXmを求めることを特徴とする請求項10に記載の金属材料の剪断設備。   The computing means (12A), (12B) or (12C) is characterized in that a position correction amount ΔXm with respect to the standard material position Xm of the metal material is obtained such that the vertical maximum shear load Pmax becomes the vertical target shear load Pa. The metal material shearing equipment according to claim 10.
JP2010294613A 2010-12-30 2010-12-30 Metal material shearing method Active JP5617629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010294613A JP5617629B2 (en) 2010-12-30 2010-12-30 Metal material shearing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010294613A JP5617629B2 (en) 2010-12-30 2010-12-30 Metal material shearing method

Publications (2)

Publication Number Publication Date
JP2012139787A true JP2012139787A (en) 2012-07-26
JP5617629B2 JP5617629B2 (en) 2014-11-05

Family

ID=46676602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010294613A Active JP5617629B2 (en) 2010-12-30 2010-12-30 Metal material shearing method

Country Status (1)

Country Link
JP (1) JP5617629B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015104758A (en) * 2013-11-28 2015-06-08 Jfeスチール株式会社 Shear control method and shear control device
CN105127503A (en) * 2015-10-03 2015-12-09 岳睿 Blade exchangeable type metal thin plate cutting automatic equipment
EP2945766B1 (en) 2013-01-18 2016-09-21 Primetals Technologies, Limited A method and apparatus for operating a shear
CN106583832A (en) * 2016-12-08 2017-04-26 天水锻压机床(集团)有限公司 Gate type plate shearing machine tool rest double-displacement detection and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163010A (en) * 1981-03-24 1982-10-07 Kawasaki Steel Corp Shear-cut of thick plate
JPS5894908A (en) * 1981-11-30 1983-06-06 Kawasaki Steel Corp Reduction method for shear load of rolling cut shear

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163010A (en) * 1981-03-24 1982-10-07 Kawasaki Steel Corp Shear-cut of thick plate
JPS5894908A (en) * 1981-11-30 1983-06-06 Kawasaki Steel Corp Reduction method for shear load of rolling cut shear

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2945766B1 (en) 2013-01-18 2016-09-21 Primetals Technologies, Limited A method and apparatus for operating a shear
JP2015104758A (en) * 2013-11-28 2015-06-08 Jfeスチール株式会社 Shear control method and shear control device
CN105127503A (en) * 2015-10-03 2015-12-09 岳睿 Blade exchangeable type metal thin plate cutting automatic equipment
CN106583832A (en) * 2016-12-08 2017-04-26 天水锻压机床(集团)有限公司 Gate type plate shearing machine tool rest double-displacement detection and control method

Also Published As

Publication number Publication date
JP5617629B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5617629B2 (en) Metal material shearing method
US20090178457A1 (en) Rolling method and rolling apparatus for flat-rolled metal materials
CN201735640U (en) Stretch-bend straightening machine for metal bar stock
US9694403B2 (en) Reduction of the strip tension of rolling stock between two rolling units to a minimum
JP2007260775A (en) Method of and device for rolling metal plate
JP5811051B2 (en) Method for cold rolling metal plate and method for producing metal plate
WO2013035449A1 (en) Roller leveler and metal plate leveling method using same
CN101264486A (en) Swinging strip steel guiding conveying device
JP6269405B2 (en) Rolling cut shear shear blade
JP2013086195A (en) Facility and method for shearing metal material
JP4927008B2 (en) Method for predicting deformation resistance of metal strip and method for setting up cold tandem rolling mill
JP2009142879A (en) Temper rolling method
CN114632823B (en) Method for improving prediction precision of rolling force model of wide and thick plate
US8261590B2 (en) Roll position setting method of Sendzimir mill
JP2013223871A (en) Roll device
JP3485083B2 (en) Cold rolling equipment and cold rolling method
JP3636151B2 (en) Metal strip manufacturing method
JP2007190579A (en) Method and equipment for rolling metallic sheet
CN109794640B (en) Double-turning-point shearing method for mirror image variable-thickness plate
JP5631233B2 (en) Thickness control method of rolling mill
JP2006116569A (en) Method and apparatus for rolling metal plate
JP2902383B2 (en) Control method of elongation in temper rolling
JP7067541B2 (en) Rolling mill control method and control device
JP5000596B2 (en) Plate rolling machine and control method thereof
JP7103329B2 (en) Rolling mill control method and control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250