JP2012139645A - Method for producing hydrogen water for drinking fillable into pet bottle - Google Patents

Method for producing hydrogen water for drinking fillable into pet bottle Download PDF

Info

Publication number
JP2012139645A
JP2012139645A JP2010294410A JP2010294410A JP2012139645A JP 2012139645 A JP2012139645 A JP 2012139645A JP 2010294410 A JP2010294410 A JP 2010294410A JP 2010294410 A JP2010294410 A JP 2010294410A JP 2012139645 A JP2012139645 A JP 2012139645A
Authority
JP
Japan
Prior art keywords
water
hydrogen
weight
solution
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010294410A
Other languages
Japanese (ja)
Other versions
JP4881472B1 (en
Inventor
Yoshiaki Koike
吉昭 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010294410A priority Critical patent/JP4881472B1/en
Application granted granted Critical
Publication of JP4881472B1 publication Critical patent/JP4881472B1/en
Publication of JP2012139645A publication Critical patent/JP2012139645A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing hydrogen water for drinking fillable into a PET bottle in which hydrogen hardly comes out from the PET bottle even when being filled into the PET bottle.SOLUTION: Calcium carbonate, calcium hydroxide and magnesium oxide are mixed with purified water to prepare a cloudy dispersion. Further, the cloudy dispersion is admixed with a phosphoric acid aqueous solution obtained by mixing phosphoric acid and purified water to obtain a mixed solution. The mixed solution is admixed with a citric acid aqueous solution obtained by mixing citric acid and purified water so as to be a colloidal acid aqueous solution. On the other hand, the acid aqueous solution is mixed with an alkali aqueous solution obtained by mixing potassium hydroxide, sodium hydroxide and purified water to produce a mixed solution whose pH lies in the range of 5 to 8. The mixed solution is further electrolyzed till the oxidation-reduction potential of cathode water reaches ≤-500 mV to produce the stock solution of hydrogen water. Thereafter, the stock solution of hydrogen water is diluted by 80-120 times with mineral water.

Description

本発明は、ペットボトルに充填しても、該ペットボトルから水素の分子がほとんど抜け出ることのないペットボトルに充填可能な飲用水素水の製造方法に関するものである。 The present invention relates to a method for producing potable hydrogen water that can be filled into a PET bottle that hardly leaks hydrogen molecules from the PET bottle even when the PET bottle is filled.

近年、水素が生体内の代表的な活性酸素であるヒドロキシルラジカル(・OH)を直接分解し安定な水にすることが判り、それ以来、特に水素水が注目されている。我が国では、40年以上も前にアルカリイオン整水器、あるいはアルカリイオン(水)生成器が、医療用具として当時の厚生省の認可を得ている。しかしながら、これまで、アルカリイオン水中の何が医療的な各種効果の基になっているのか、明確な答えを見出せないできたのが実状である。ところが、最近電解で生成したアルカリイオン水中の水素が、その主要な成分の一つではないかと考えられるようになってきている。これまで、ペットボトル入りの水素水が数多く販売されてきたが、水素は分子が最も小さいため、ペットボトルから容易に抜け出てしまい、水素水の意味をなさなくなっていた。このため、水素水はアルミパウチ等のアルミ容器入りでないと無理で、然も前記アルミが薄いと長持ちしないということが業界の常識になっていた。 In recent years, it has been found that hydrogen directly decomposes hydroxyl radical (.OH), which is a typical active oxygen in a living body, into stable water. Since then, hydrogen water has attracted attention. In Japan, alkali ion water conditioners or alkali ion (water) generators have been approved by the Ministry of Health at that time as medical devices over 40 years ago. However, until now, it has been impossible to find a clear answer as to what causes various medical effects in alkaline ionized water. However, hydrogen in alkali ion water recently generated by electrolysis is considered to be one of the main components. Until now, a lot of hydrogen water in PET bottles has been sold, but since hydrogen has the smallest molecule, it easily escapes from PET bottles, making it meaningless. For this reason, it was impossible for hydrogen water to be contained in an aluminum container such as an aluminum pouch, and it has become common knowledge in the industry that the aluminum does not last long if the aluminum is thin.

前記のように、ペットボトルに、水に水素ガスを溶解した水素水や水を電解して生成した水素水を充填しても、水素の分子がペットボトルから容易に抜け出してしまうため、例えば、下記特許文献1において開示されているように、水素発生粒子を袋体に充填した水素発生体を、ボトルのキャップに取付け、飲用直前に水と接触させて水素水を生成する手段が公知である。 As described above, even when hydrogen water in which hydrogen gas is dissolved in water or hydrogen water generated by electrolyzing water is filled in a PET bottle, hydrogen molecules easily escape from the PET bottle. As disclosed in the following Patent Document 1, a means for generating hydrogen water by attaching a hydrogen generator filled with hydrogen generating particles in a bag to a cap of a bottle and bringing it into contact with water immediately before drinking is known. .

前記のように、従来は水素水をペットボトルに充填しても、水素の分子が該ペットボトルから容易に抜け出してしまうために、アルミ容器に充填しなければならず、従って高価な水素水を飲用しなければならないという課題があった。 As described above, conventionally, even when hydrogen water is filled into a PET bottle, hydrogen molecules easily escape from the PET bottle, so the aluminum container must be filled. There was a problem of having to drink.

また、特許文献1記載のものは、飲用時に水素発生体を水に浸漬して水素水を生成するが、水素水がどれ位の時間で生成されるのか不明であって、直ちに飲用することはできないという課題があった。 Moreover, although the thing of patent document 1 immerses a hydrogen generating body in water at the time of drinking and produces | generates hydrogen water, it is unknown how long hydrogen water is produced | generated, and it can drink immediately. There was a problem that it was not possible.

特開2004−344783号公報JP 2004-344783 A

本発明は、前記課題を解決すべくなされたもので、水素を水中に固定することにより、ペットボトルに充填して、遊離した水素がペットボトルから抜け出すことがあっても、前記水中に固定した水素は安定して水中に滞留し、前記ペットボトルから抜け出すことのない飲用水素水の製造方法を提供しようとするものである。 The present invention has been made to solve the above-mentioned problem, and by fixing hydrogen in water, it was filled in a plastic bottle, and even when free hydrogen escaped from the plastic bottle, it was fixed in the water. An object of the present invention is to provide a method for producing potable hydrogen water that stably stays in water and does not escape from the PET bottle.

本発明は、前記課題を解決するために、請求項1記載の発明において、
炭酸カルシウム0.5〜3.0重量%、水酸化カルシウム5.0〜10.0重量%および酸化マグネシウム0.5〜3.0重量%と精製水84.0〜94.0重量%とを混合して白濁分散液を調製すると共に、該白濁分散液にリン酸35.0〜55.0重量%と精製水45.0〜65.0重量%を混合したリン酸水溶液を添加混合して得られた混合溶液に、クエン酸5.0〜13.0重量%と精製水87.0〜95.0重量%を混合したクエン酸水溶液を添加混合してコロイド状の酸性水溶液とする第1工程と、
前記第1工程で製造されたコロイド状の酸性水溶液と、水酸化カリウム3.0〜7.0重量%、水酸化ナトリウム2.0〜6.0重量%および精製水87.0〜95.0重量%を混合して得られたアルカリ水溶液とを混合して、pHが5〜8の範囲である混合溶液を製造する第2工程と、
前記第2工程で製造した混合溶液を、陰極水の酸化還元電位が−500mV以下になるまで電気分解して水素水原液を製造する第3工程と、
前記第3工程により製造された水素水原液を、ミネラルウォーターで80〜120倍希釈して、水素含有量を0.01〜0.8mg/lの範囲の飲用水素水を製造する第4工程とにより製造するという方法を採用し、または、
請求項2記載の発明において、
酸化マグネシウム4.0〜10.0重量%と精製水90.0〜96.0重量%とを混合して白濁分散液を調製すると共に、該白濁分散液にリン酸30.0〜50.0重量%に精製水50.0〜70.0重量%を混合したリン酸水溶液を添加混合して得られた混合溶液に、クエン酸6.0〜13.0重量%に精製水87.0〜94.0重量%を混合したクエン酸水溶液を添加混合してコロイド状の酸性水溶液とする第1工程と、
前記第1工程で製造されたコロイド状の酸性水溶液と、水酸化カリウム2.0〜6.0重量%、水酸化ナトリウム1.5〜5.5重量%に精製水88.5〜96.5重量%を混合して得られたアルカリ水溶液とを混合して、pHが5〜8の範囲である混合溶液を製造する第2工程と、
前記第2工程で製造した混合溶液を、陰極水の酸化還元電位が−500mV以下になるまで電気分解して水素水原液を製造する第3工程と、
前記第3工程により製造された水素水原液を、ミネラルウォーターで80〜120倍希釈して水素含有量を0.01〜0.8mg/lの範囲の飲用水素水を製造する第4工程とにより製造するという手段、
を採用することにより、上記課題を解決した。
In order to solve the above-mentioned problems, the present invention provides the invention according to claim 1,
Calcium carbonate 0.5-3.0 wt%, calcium hydroxide 5.0-10.0 wt% and magnesium oxide 0.5-3.0 wt%, and purified water 84.0-94.0 wt% A white turbid dispersion is prepared by mixing, and an aqueous phosphoric acid solution prepared by mixing 35.0 to 55.0% by weight of phosphoric acid and 45.0 to 65.0% by weight of purified water is added to and mixed with the white turbid dispersion. To the obtained mixed solution, a citric acid aqueous solution in which 5.0 to 13.0% by weight of citric acid and 87.0 to 95.0% by weight of purified water are mixed is added to form a colloidal acidic aqueous solution. Process,
The colloidal acidic aqueous solution prepared in the first step, potassium hydroxide 3.0 to 7.0% by weight, sodium hydroxide 2.0 to 6.0% by weight and purified water 87.0 to 95.0 A second step of producing a mixed solution having a pH in the range of 5 to 8, by mixing with an alkaline aqueous solution obtained by mixing wt%;
A third step of producing a hydrogen water stock solution by electrolyzing the mixed solution produced in the second step until the redox potential of cathodic water is -500 mV or less;
Fourth step of producing potable hydrogen water having a hydrogen content in the range of 0.01 to 0.8 mg / l by diluting the hydrogen water stock solution produced in the third step with mineral water 80 to 120 times. Adopt the method of manufacturing by, or
In the invention of claim 2,
A white turbid dispersion is prepared by mixing 4.0 to 10.0% by weight of magnesium oxide and 90.0 to 96.0% by weight of purified water, and phosphoric acid 30.0 to 50.0 is added to the turbid dispersion. A mixed solution obtained by adding and mixing an aqueous solution of phosphoric acid in which 50.0% to 70.0% by weight of purified water is mixed with 5% by weight to 6.0% to 13.0% by weight of citric acid and 87.0% of purified water. A first step of adding an aqueous citric acid solution mixed with 94.0% by weight to form a colloidal acidic aqueous solution;
The colloidal acidic aqueous solution prepared in the first step, potassium hydroxide 2.0 to 6.0 wt%, sodium hydroxide 1.5 to 5.5 wt% and purified water 88.5 to 96.5 A second step of producing a mixed solution having a pH in the range of 5 to 8, by mixing with an alkaline aqueous solution obtained by mixing wt%;
A third step of producing a hydrogen water stock solution by electrolyzing the mixed solution produced in the second step until the redox potential of cathodic water is -500 mV or less;
A fourth step of producing potable hydrogen water having a hydrogen content in the range of 0.01 to 0.8 mg / l by diluting the hydrogen water stock solution produced in the third step with mineral water 80 to 120 times; By means of manufacturing,
The above-mentioned problem was solved by adopting.

本発明によれば、ペットボトルに充填しても、水中に水素が固定されているため、経時的に一部遊離して水に溶解した水素以外はペットボトルから抜け出ることがないペットボトルに充填可能な飲用水素水の製造方法を提供することができる。また、本発明製造方法によって得られる飲用水素水は、水素が水中に安定して固定されているため、加熱殺菌しても水素濃度が低下しないという効果も奏する。 According to the present invention, even when filling a PET bottle, hydrogen is fixed in the water, so that it fills the PET bottle that does not escape from the PET bottle except for hydrogen that is partially released over time and dissolved in water. A possible method for producing potable hydrogen water can be provided. In addition, the potable hydrogen water obtained by the production method of the present invention has an effect that the hydrogen concentration does not decrease even when heat-sterilized because hydrogen is stably fixed in the water.

本発明の実施例1の製造工程で製造された水素水原液を、ミネラルウォーターで100倍希釈、200倍希釈および300倍希釈したときの水素発生量の変化を日単位で測定したデータを示したグラフである。The hydrogen water stock solution manufactured in the manufacturing process of Example 1 of the present invention is shown by data obtained by measuring the change in hydrogen generation amount in daily units when diluted 100-fold, 200-fold and 300-fold with mineral water. It is a graph. 本発明の実施例1の製造工程で製造された水素水原液を、ミネラルウォーターで100倍希釈して、6ヶ月間室内で自然放置して、6ヶ月後の水素発生量の変化を日単位で測定したデータを示したグラフである。The hydrogen water stock solution produced in the production process of Example 1 of the present invention was diluted 100 times with mineral water and allowed to stand naturally in a room for 6 months. Changes in the amount of hydrogen generated after 6 months were measured on a daily basis. It is the graph which showed the measured data. 本発明の実施例1の製造工程で製造された水素水原液を、ミネラルウォーターで100倍希釈して、製造後3日目から水素発生量の変化を日単位で測定したデータを示したグラフである。In the graph which showed the data which diluted the hydrogen water stock solution manufactured at the manufacturing process of Example 1 of this invention 100 times with mineral water, and measured the change of hydrogen generation amount by the day from the 3rd day after manufacture. is there. 本発明の実施例1の製造工程で製造された水素水原液を、ミネラルウォーターで100倍希釈、90倍希釈および80倍希釈したときの水素発生量Hydrogen generation amount when the hydrogen water stock solution produced in the production process of Example 1 of the present invention was diluted 100-fold, 90-fold and 80-fold with mineral water

本発明のペットボトルに充填可能な飲用水素水の製造方法における実施例1について詳細に説明する。本発明実施例1に係るペットボトルに充填可能な飲用水素水の製造方法は、以下の第1工程〜第4工程により製造される。すなわち、本発明のペットボトルに充填可能な飲用水素水の製造方法は、
炭酸カルシウム0.5〜3.0重量%、水酸化カルシウム5.0〜10.0重量%および酸化マグネシウム0.5〜3.0重量%と精製水84.0〜94.0重量%とを混合して白濁分散液を調製すると共に、該白濁分散液にリン酸35.0〜55.0重量%と精製水45.0〜65.0重量%を混合したリン酸水溶液を添加混合して得られた混合溶液に、クエン酸5.0〜13.0重量%と精製水87.0〜95.0重量%を混合したクエン酸水溶液を添加混合してコロイド状の酸性水溶液とする第1工程と、
前記第1工程で製造されたコロイド状の酸性水溶液と、水酸化カリウム3.0〜7.0重量%、水酸化ナトリウム2.0〜6.0重量%および水87.0〜95.0重量%を混合して得られたアルカリ水溶液とを混合して、pHが5〜8の範囲である混合溶液を製造する第2工程と、
前記第2工程で製造した混合溶液を、陰極水の酸化還元電位が−500mV以下になるまで電気分解して水素水原液を製造する第3工程と、
前記第3工程により製造された水素水原液を、ミネラルウォーターで80〜120倍希釈して、水素含有量を0.01〜0.8mg/lの範囲の飲用水素水を製造する第4工程とより成る。以下、前記各工程を詳細に説明する。
Example 1 in the manufacturing method of the drinking hydrogen water which can be filled in the PET bottle of this invention is demonstrated in detail. The method for producing potable hydrogen water that can be filled in a PET bottle according to Example 1 of the present invention is produced by the following first to fourth steps. That is, the method for producing potable hydrogen water that can be filled in the PET bottle of the present invention is as follows.
Calcium carbonate 0.5-3.0 wt%, calcium hydroxide 5.0-10.0 wt% and magnesium oxide 0.5-3.0 wt%, and purified water 84.0-94.0 wt% A white turbid dispersion is prepared by mixing, and an aqueous phosphoric acid solution prepared by mixing 35.0 to 55.0% by weight of phosphoric acid and 45.0 to 65.0% by weight of purified water is added to and mixed with the white turbid dispersion. To the obtained mixed solution, a citric acid aqueous solution in which 5.0 to 13.0% by weight of citric acid and 87.0 to 95.0% by weight of purified water are mixed is added to form a colloidal acidic aqueous solution. Process,
The colloidal acidic aqueous solution prepared in the first step, 3.0 to 7.0% by weight of potassium hydroxide, 2.0 to 6.0% by weight of sodium hydroxide and 87.0 to 95.0% by weight of water. A second step of producing a mixed solution having a pH in the range of 5 to 8, by mixing with an aqueous alkali solution obtained by mixing the
A third step of producing a hydrogen water stock solution by electrolyzing the mixed solution produced in the second step until the redox potential of cathodic water is -500 mV or less;
Fourth step of producing potable hydrogen water having a hydrogen content in the range of 0.01 to 0.8 mg / l by diluting the hydrogen water stock solution produced in the third step with mineral water 80 to 120 times. It consists of. Hereafter, each said process is demonstrated in detail.

[第1工程]
本発明における第1工程では、炭酸カルシウム(CaCO)、水酸化カルシウム(Ca(OH))、および酸化マグネシウム(MgO)と精製水と混合して白濁分散液を調製すると共に、該白濁分散液にリン酸(HPO)と精製水とを混合したリン酸水溶液を添加混合して得られた混合溶液に、クエン酸と精製水を混合したクエン酸水溶液を添加混合してコロイド状の酸性水溶液を製造する。
[First step]
In the first step of the present invention, a white turbid dispersion is prepared by mixing calcium carbonate (CaCO 3 ), calcium hydroxide (Ca (OH) 2 ), and magnesium oxide (MgO) with purified water. A mixed solution obtained by adding and mixing a phosphoric acid aqueous solution in which phosphoric acid (H 3 PO 4 ) and purified water are mixed to the solution is added to and mixed with a citric acid aqueous solution in which citric acid and purified water are mixed to form a colloid An acidic aqueous solution of

なお、前記酸性水溶液を製造するに当って、炭酸カルシウム、水酸化カルシウム、および酸化マグネシウム並びに精製水の混合比(重量%)は、好ましくは、炭酸カルシウム0.5〜3.0重量%、水酸化カルシウム5.0〜10.0重量%、酸化マグネシウム0.5〜3.0重量%および精製水84.0〜94.0重量%とすることが推奨され、特に好ましくは炭酸カルシウム1.0〜2.0重量%、水酸化カルシウム7.0〜9.0重量%、酸化カルシウム1.0〜2.0重量%および精製水87.0〜91.0重量%とすることが推奨される。そして、前記炭酸カルシウム、水酸化カルシウム、酸化マグネシウムおよび精製水とを前記混合比率により混合して白濁分散液を調製する。 In producing the acidic aqueous solution, the mixing ratio (% by weight) of calcium carbonate, calcium hydroxide, magnesium oxide and purified water is preferably 0.5 to 3.0% by weight of calcium carbonate, water. It is recommended to use 5.0 to 10.0% by weight of calcium oxide, 0.5 to 3.0% by weight of magnesium oxide, and 84.0 to 94.0% by weight of purified water. -2.0 wt%, calcium hydroxide 7.0-9.0 wt%, calcium oxide 1.0-2.0 wt% and purified water 87.0-91.0 wt% are recommended . Then, the calcium carbonate, calcium hydroxide, magnesium oxide and purified water are mixed at the mixing ratio to prepare a cloudy dispersion.

前記白濁分散液に混合するリン酸水溶液は、好ましくは、リン酸35.0〜55.0重量%および精製水45.0〜65.0重量%とすることが推奨され、特に好ましくは、リン酸40.0〜50.0重量%、精製水50.0〜60.0重量%とすることが推奨される。 It is recommended that the phosphoric acid aqueous solution mixed in the cloudy dispersion is preferably 35.0 to 55.0% by weight of phosphoric acid and 45.0 to 65.0% by weight of purified water, particularly preferably phosphorous. It is recommended that the acid be 40.0 to 50.0% by weight and purified water be 50.0 to 60.0% by weight.

そして、前記炭酸カルシウム、水酸化カルシウム、酸化マグネシウムおよび精製水の白濁分散液にリン酸水溶液を混合し、更にクエン酸水溶液を添加して酸性水溶液を製造するが、前記クエン酸水溶液は、好ましくは、クエン酸5.0〜13.0重量%および精製水87.0〜95.0重量%とすることが推奨され、特に好ましくは、クエン酸8.0〜11.0重量%および精製水89.0〜92.0重量%として製造することが推奨される。本第1工程は、カルシウム−マグネシウム−リン酸−クエン酸複合体に水素を固定すると共に、透明溶液にするための工程である。 Then, an aqueous phosphoric acid solution is mixed with the white dispersion of calcium carbonate, calcium hydroxide, magnesium oxide and purified water, and an aqueous citric acid solution is added to produce an acidic aqueous solution. The aqueous citric acid solution is preferably , Citric acid 5.0-13.0 wt% and purified water 87.0-95.0 wt% are recommended, and citric acid 8.0-11.0 wt% and purified water 89 are particularly preferable. It is recommended to produce as 0 to 92.0% by weight. This first step is a step for fixing hydrogen to the calcium-magnesium-phosphate-citrate complex and making it a transparent solution.

[第2工程]
本発明における第2工程は、前記第1工程で製造した酸性水溶液とアルカリ水溶液を混合して、pHが5〜8の範囲である混合溶液を製造する工程である。前記混合溶液のpHは、pH試験紙で測定することが、共存イオンの影響を排除して正確なpHを測定できるという観点から適当である。前記溶液系では、ガラス電極を用いた通常のpHメーターでは測定不能であることがあり、pH試験紙での測定が適当である。第2工程において製造される混合溶液は、pHが6.5〜8の範囲であることが、飲料として提供するという観点から好ましい。
[Second step]
The second step in the present invention is a step of producing a mixed solution having a pH in the range of 5 to 8 by mixing the acidic aqueous solution and the alkaline aqueous solution produced in the first step. It is appropriate that the pH of the mixed solution is measured with a pH test paper from the viewpoint that an accurate pH can be measured without the influence of coexisting ions. In the solution system, measurement may not be possible with a normal pH meter using a glass electrode, and measurement with a pH test paper is appropriate. It is preferable from the viewpoint that the mixed solution manufactured in the second step has a pH in the range of 6.5 to 8 as a beverage.

前記第1工程において製造した酸性水溶液に添加混合するアルカリ水溶液は、水酸化カリウム、水酸化ナトリウムおよび精製水を混合して得られ、その混合比率は、好ましくは、水酸化カリウム3.0〜7.0重量%、水酸化ナトリウム2.0〜6.0重量%および精製水87.0〜95.0重量%とすることが推奨され、特に好ましくは、水酸化カリウム4.0〜6.0重量%、水酸化ナトリウム3.0〜5.0重量%、精製水89.0〜93.0重量%とすることが推奨される。 The alkaline aqueous solution added and mixed with the acidic aqueous solution produced in the first step is obtained by mixing potassium hydroxide, sodium hydroxide and purified water, and the mixing ratio is preferably 3.0 to 7 potassium hydroxide. It is recommended to be 0.0 wt%, sodium hydroxide 2.0 to 6.0 wt% and purified water 87.0 to 95.0 wt%, particularly preferably potassium hydroxide 4.0 to 6.0. It is recommended that the content be 10% by weight, 3.0 to 5.0% by weight of sodium hydroxide, and 89.0 to 93.0% by weight of purified water.

[第3工程]
本発明における第3工程は、前記第2工程で製造した混合溶液を電気分解して水素水原液を得る工程である。第3工程における電気分解は、前記第2工程で製造した混合溶液に陰極および陽極を浸漬して行う。陰極および陽極は、不活性な電極を用いれば良く、例えば白金や炭素電極を用いることが推奨される。陰極および陽極の電圧は、水の電気分解に適した値に設定すれば良い。電流は、電極の面積や溶液量等を考慮して適宜設定できる。電解時間は、溶液量および溶液中の成分量、電解後の水素含有量等を考慮して適宜設定できる。
[Third step]
The third step in the present invention is a step for obtaining a hydrogen water stock solution by electrolyzing the mixed solution produced in the second step. The electrolysis in the third step is performed by immersing the cathode and the anode in the mixed solution produced in the second step. As the cathode and the anode, inert electrodes may be used. For example, it is recommended to use platinum or carbon electrodes. The voltage of the cathode and the anode may be set to a value suitable for water electrolysis. The current can be appropriately set in consideration of the area of the electrode, the amount of solution, and the like. The electrolysis time can be appropriately set in consideration of the amount of solution, the amount of components in the solution, the hydrogen content after electrolysis, and the like.

第3工程における電気分解は、陰極水の酸化還元電位が−500mV以下になるまで行う。陰極水の酸化還元電位が−500mV以下になるまで行うことで、所定量の水素含有量を含む水素水原液を得ることができる。 The electrolysis in the third step is performed until the redox potential of the cathode water becomes −500 mV or less. By carrying out until the redox potential of the cathode water becomes −500 mV or less, a hydrogen water stock solution containing a predetermined amount of hydrogen content can be obtained.

なお、前記第3工程で得られた水素水原液の水素含有量(濃度)の測定は、市販されている測定器、例えば、共栄電子研究所製KM2100DH(方式は隔膜式ポーラロ方式、溶存水素を定量的に測定できる)を用いて測定することができる。 The hydrogen content (concentration) of the hydrogen water stock solution obtained in the third step is measured using a commercially available measuring instrument, for example, KM2100DH (manufactured by Kyoei Denshi Laboratories). Can be measured quantitatively).

[第4工程]
前記第3工程で製造した水素水原液は、比較的高濃度の水素含有量であると共に、高濃度のため味もまずく、飲用には適さない。本発明における第4工程は、水素水原液を飲用できるようにするために、ミネラルウォーターで80〜120倍に希釈して、水素含有量が0.01〜0.8mg/lの範囲の飲用水素水を製造する工程である。
[Fourth process]
The hydrogen water stock solution produced in the third step has a relatively high concentration of hydrogen content and also has a poor taste due to its high concentration, and is not suitable for drinking. In the fourth step of the present invention, in order to be able to drink the hydrogen water stock solution, it is diluted 80 to 120 times with mineral water to have a hydrogen content in the range of 0.01 to 0.8 mg / l. This is a process for producing raw water.

また、第4工程において水素水原液を、ミネラルウォーターで80〜120倍に希釈しても、水素含有量が0.01〜0.8mg/lの範囲に入らない場合は、再度電気分解を行い、水素含有量が0.01〜0.8mg/lの範囲の飲用水素水を得るようにする。前記再度の電気分解における電圧および電流値の条件は、第4工程における電気分解と同様にすることができるが、時間は短時間で良く、例えば、1〜10分間とすることができる。また、飲用とするために、前記希釈後に衛生法で定められた加熱殺菌(例えば、85℃×40分間)をすることもでき、加熱殺菌の前または後に、前記再度の電気分解を行うことができる。本発明製造方法で得られる飲用水素水は、前記加熱殺菌を行っても、水素含有量が大きく低下することがないという特徴も有する。 If the hydrogen content does not fall within the range of 0.01 to 0.8 mg / l even if the hydrogen water stock solution is diluted 80 to 120 times with mineral water in the fourth step, electrolysis is performed again. The hydrogen content is in the range of 0.01 to 0.8 mg / l. The conditions of the voltage and current value in the second electrolysis can be the same as those in the electrolysis in the fourth step, but the time can be short, for example, 1 to 10 minutes. Moreover, in order to make it drinkable, the heat sterilization (for example, 85 degreeC x 40 minutes) prescribed | regulated by the sanitary law after the said dilution can also be performed, and the said electrolysis is performed before or after heat sterilization. it can. The potable hydrogen water obtained by the production method of the present invention also has a feature that the hydrogen content does not greatly decrease even when the heat sterilization is performed.

次に、本発明の実施例1に係るペットボトルに充填可能な飲用水素水の製造方法を用いて飲用水素水を製造したテストの一例につき詳細に説明する。なお、以下の操作は全て室温で行った。 Next, an example of a test for producing potable hydrogen water using the method for producing potable hydrogen water that can be filled in a PET bottle according to Example 1 of the present invention will be described in detail. The following operations were all performed at room temperature.

下記の(A)で示す成分からなる白濁分散液を調製した。この分散液に下記の(B)で示す成分からなるリン酸(HPO)水溶液を混合し、反応させた。混合すると溶液は一時的に透明になるが、最終的に白濁状態になり、極めて細かな粒子の分散状態の混合溶液を得た(1000g)。更に、下記の(C)で示す成分からなるクエン酸水溶液を、前記(A)と(B)の混合溶液に添加すると、白濁液は透明なコロイド液になった。コロイド液の総計(A+B+C)は5000g(以下、「1液」という)であった。なお、以下の(A)〜(D)の白濁分散液、リン酸水溶液、クエン酸水溶液およびアルカリ水溶液を製造する各素材の重量は、前記好ましい配合比率に記載の範囲内である。 A cloudy dispersion liquid comprising the components shown in the following (A) was prepared. To this dispersion, a phosphoric acid (H 3 PO 4 ) aqueous solution composed of the following component (B) was mixed and reacted. When mixed, the solution temporarily became transparent, but finally became cloudy, and a mixed solution in which very fine particles were dispersed (1000 g) was obtained. Furthermore, when a citric acid aqueous solution composed of the following component (C) was added to the mixed solution of (A) and (B), the cloudy liquid became a transparent colloidal solution. The total amount of colloidal liquid (A + B + C) was 5000 g (hereinafter referred to as “one liquid”). In addition, the weight of each raw material which manufactures the cloudy dispersion liquid of the following (A)-(D), phosphoric acid aqueous solution, citric acid aqueous solution, and alkaline aqueous solution is in the range as described in the said preferable mixture ratio.

(A)白濁分散液
CaCO 8.5g
Ca(OH) 40.0g
MgO 8.5g
精製水 443.0g
小計 500g
(A) 8.5 g of white turbid dispersion CaCO 3
Ca (OH) 2 40.0 g
MgO 8.5g
443.0 g of purified water
Subtotal 500g

(B)リン酸水溶液
PO 220.0g
精製水 280.0g
小計 500g
(B) 220.0 g of phosphoric acid aqueous solution H 3 PO 4
Purified water 280.0g
Subtotal 500g

(C)クエン酸水溶液
クエン酸 390.0g
精製水 3610.0g
小計 4000g
(C) Citric acid aqueous solution Citric acid 390.0 g
3610.0 g of purified water
Subtotal 4000g

次いで、下記(D)で示す成分からなるアルカリ水溶液に、前記1液を少量添加すると、白濁の分散液になり直ちに透明液になる。続けて前記1液を更に添加して、pH6.5(pH試験紙)になるまで添加をした。結果的に、1液を5000g添加したところで、pH6.5(pH試験紙)になった。得られた水溶液(以下、「2液」という)の総合計は、10000gであった。 Next, when a small amount of the one liquid is added to an alkaline aqueous solution composed of the components shown in the following (D), it becomes a cloudy dispersion and immediately becomes a transparent liquid. Subsequently, the solution 1 was further added until the pH reached 6.5 (pH test paper). As a result, when 5000 g of 1 liquid was added, it became pH 6.5 (pH test paper). The total amount of the obtained aqueous solution (hereinafter referred to as “two liquids”) was 10,000 g.

(D)アルカリ水溶液
KOH 200.0g
NaOH 180.0g
精製水 4620.0g
小計 5000g
(D) Alkaline aqueous solution KOH 200.0 g
NaOH 180.0g
4620.0 g of purified water
Subtotal 5000g

次いで、前記2液に、5〜15Vで10Aの直流を流して、電気分解を100分間行った。 Next, a direct current of 10 A was applied to the two liquids at 5 to 15 V, and electrolysis was performed for 100 minutes.

前記電気分解では、陰極で発生したHは、溶液中に存在するコロイド粒子に収着して、粒子全体を覆っているものと推察される。更に、陽極で発生したプロトン(H)が前記コロイド粒子に吸着して、コロイド粒子全体がプラスの電荷を持つ一方、クエン酸のマイナス基が付着して、所謂電気2重層を形成しているものと推察される。分散媒は水酸化物イオン(OH-)であり、プラスの電荷を持つコロイド粒子と相互作用し電気二重層による効果で、陰極で発生したマイナスイオンである水酸化イオンで覆われるものと推察される。従って、沈殿もなく透明性のある水素水原液
が得られた。
In the electrolysis, it is presumed that H 2 generated at the cathode sorbs on the colloidal particles present in the solution and covers the entire particles. Further, protons (H + ) generated at the anode are adsorbed on the colloidal particles, and the entire colloidal particles have a positive charge, while negative groups of citric acid are attached to form a so-called electric double layer. Inferred. Dispersion media hydroxide ion (OH -) and is, in effect by interaction with the electric double layer and the colloidal particles having a positive charge, is presumed to be covered by the hydroxide ion is a negative ions generated at the cathode The Therefore, a transparent hydrogen water stock solution without precipitation was obtained.

前記電解前の水溶液(2液)の水素含有量と、電解後の水素水原液中の水素含有量を、共栄電子研究所製KM2100DH(方式は隔膜式ポーラロ方式、溶存水素を定量的に測定できる)を用いて測定した結果、電解前の水素含有量は、0.02mg/lであったのに対し、電解後の水素含有量は、0.8mg/lであった。なお、通電100分で水素含有量はほぼ飽和状態となった。 The hydrogen content of the aqueous solution (2 liquids) before the electrolysis and the hydrogen content in the hydrogen water stock solution after the electrolysis are KM2100DH manufactured by Kyoei Denshi Laboratories (method is a diaphragm-type polaro method, and dissolved hydrogen can be measured quantitatively. As a result, the hydrogen content before electrolysis was 0.02 mg / l, whereas the hydrogen content after electrolysis was 0.8 mg / l. In addition, the hydrogen content was almost saturated after 100 minutes of energization.

そして、前記電解後の水素水原液(溶存水素量0.7mg/l)をミネラルウォーターで100倍希釈して飲用水素水を得た。得られた100倍希釈の飲用水素水の溶存水素量は0.4mg/lであった。 And the hydrogen water stock solution after electrolysis (dissolved hydrogen amount 0.7 mg / l) was diluted 100 times with mineral water to obtain drinking hydrogen water. The amount of dissolved hydrogen in 100-fold diluted hydrogen water obtained was 0.4 mg / l.

前記水素水原液を岐阜県の奥長良川で採水したミネラルウォーターで100倍、200倍および300倍希釈して得られたた飲用水素水の溶存水素量の変化を経時的に示したグラフを図1に示す。図中「100A」・「100B」という表示は、100倍希釈飲用水素水を500mlの2本のペットボトルに充填したものを、それぞれ測定したことを示すもので、「200A」・「200B」・「300A」・「300B」も同様である。これらの溶存水素量の測定は、毎日、共栄電子研究所製の溶存水素計の測定セルに水素水を入れ、磁気スタラ―で、10〜15分程度撹拌しながら測定したものである。前記測定後は前記測定済みの各飲用水素水をペットボトルに戻した。そして、同様操作の繰り返しにより9日間測定した。 A graph showing changes over time in the amount of dissolved hydrogen in potable hydrogen water obtained by diluting the hydrogen water stock solution with mineral water sampled at Okunagara River in Gifu Prefecture 100 times, 200 times and 300 times As shown in FIG. In the figure, the indications “100A” and “100B” indicate that two 500 ml PET bottles filled with 100-fold diluted hydrogen water were measured, respectively, “200A” and “200B”. The same applies to “300A” and “300B”. The measurement of these dissolved hydrogen amounts is carried out every day by putting hydrogen water into a measurement cell of a dissolved hydrogen meter manufactured by Kyoei Denshi Laboratory and stirring with a magnetic stirrer for about 10 to 15 minutes. After the measurement, each of the measured drinking hydrogen water was returned to the plastic bottle. And it measured for 9 days by repeating the same operation.

図1は、平成22年2月12日に前記テスト例に示す混合比率により製造された水素水原液に、同年5月19日に前記奥長良川で採水したミネラルウォーターを前記各希釈倍率で希釈して、直ちにペットボトルに充填した飲用水素水について、溶存水素量の変化を日単位で測定したものである。図1において、溶存水素量が初めは増加し、ピークを打って減少するのは、初期は発生水素量がペットボトルを抜けての飛散水素量より多く、発生量と飛散量が等しくなったところでピークを打ち、逆に溶存水素の発生量より飛散量が多くなり減少すると推測される。 FIG. 1 shows a dilute mineral water sampled at the Okunagara River on May 19, 2010 at the dilution ratio described above, in the hydrogen water stock solution produced at the mixing ratio shown in the test example on February 12, 2010. The change in the amount of dissolved hydrogen was measured on a daily basis for the drinking hydrogen water immediately filled in the PET bottle. In FIG. 1, the amount of dissolved hydrogen initially increases and then decreases after peaking when the amount of generated hydrogen is initially larger than the amount of scattered hydrogen after passing through the PET bottle, and the amount of generated hydrogen is equal to the amount of scattered. On the contrary, it is presumed that the amount of scattering will be larger than the amount of dissolved hydrogen generated and will decrease.

図1に示す測定結果から、前記飲用水素水をペットボトルに充填した日(5月19日)から2日間(5月21日)までは、各飲用水素水とも水素発生量はほとんど0に近かった。ところが3日目の5月22日になると、100倍希釈倍率の飲用水素水が急激に水素発生量が増加した。その他の200倍、300倍希釈飲用水素水は水素発生量が多少増加したが余り増えなかった。そして、溶存水素量は、5月22日をピークとしてその後は漸減して、200倍希釈飲用水素水は5月26日〜27日には0になったが、100倍希釈飲用水素水は5月28日に0になった。すなわち、前記測定結果から、水素発生量は希釈倍率が小さいほど多いということが確認できた。 From the measurement results shown in FIG. 1, the hydrogen generation amount is almost 0 for each drinking hydrogen water from the day (May 19) to the second day (May 21) after filling the bottled water with the drinking water. It was close to. However, on May 22nd on the third day, the amount of hydrogen generated by the 100-fold dilution of drinking hydrogen water increased abruptly. The other 200-fold and 300-fold diluted hydrogen water produced a slight increase in hydrogen generation but did not increase much. And the amount of dissolved hydrogen gradually decreased after peaking on May 22, and the 200-fold diluted drinking hydrogen water became zero from May 26 to 27, but the 100-fold diluted drinking hydrogen water. Became 0 on May 28th. That is, from the measurement results, it was confirmed that the amount of hydrogen generation was larger as the dilution factor was smaller.

図2は、平成21年12月18日に前記テスト例に示す混合比率により製造された水素水原液を、前記奥長良川で採水したミネラルウォーターで100倍希釈の飲用水素水(溶存水素量0.56mg/l)500mlを、500mlの2本のペットボトルに充填して、室内に6ヶ月間自然放置した後の平成22年6月21日から7月2日にかけて、発生水素量の変化を日単位で測定したデータを示すグラフである。図中、「12/18A」・「12/18B」という表示は、前記12月18日に製造した前記飲用水素水を500mlの2本のペットボトルに充填して、それぞれ測定したことを示す。そして、前記各ペットボトルの飲用水素水を前記の溶存水素計で測定したところ、6ヶ月後でも溶存水素量は0.55mg/lであった。すなわち、水素がほとんどペットボトルから抜け出ていないことの確認ができた。 FIG. 2 shows a hydrogen water stock solution produced by the mixing ratio shown in the test example on December 18, 2009, with 100 times diluted drinking water (mineral hydrogen content) with mineral water sampled at the Okunagara River. 0.56mg / l) Change in the amount of hydrogen generated from June 21 to July 2, 2010 after 500ml was filled into two 500ml PET bottles and left in the room for 6 months It is a graph which shows the data which measured day by day. In the figure, the indications “12 / 18A” and “12 / 18B” indicate that the drinking hydrogen water produced on December 18 was filled in two 500 ml PET bottles and measured respectively. . And when the drinking hydrogen water of each said PET bottle was measured with the said dissolved hydrogen meter, the amount of dissolved hydrogen was 0.55 mg / l even six months later. That is, it was confirmed that almost no hydrogen escaped from the PET bottle.

本発明者は、前記図1および図4に示すように、計測し始めて最初の2〜3日間は水素発生量が0に近いという理由は、磁気スタラ―の磁気エネルギーを前記飲用水素水が吸収してある程度の時間(2〜3日間)、すなわち誘導時間が経過しないと、水素が発生しないからであると判断した。 As shown in FIG. 1 and FIG. 4, the present inventor is that the hydrogen generation amount is close to zero for the first two to three days after starting measurement, because the drinking hydrogen water uses the magnetic energy of the magnetic stirrer. It was judged that hydrogen was not generated after a certain period of time (2 to 3 days) after absorption, that is, when the induction time had not elapsed.

更に、図3は、平成22年7月23日に製造した100倍希釈の飲用水素水(溶存水素量0.6mg/l)を、500mlの2本のペットボトルに充填して、同7月26日から8月3日にかけて、残存水素量の変化を日単位で測定したデータを示したグラフである。図中、「7/23(1)」・「7/23(2)」という表示は、前記7月23日に製造した前記飲用水素水を500mlの2本のペットボトルに充填して、それぞれ測定したことを示す。 Furthermore, FIG. 3 shows that 100-fold diluted drinking water produced on July 23, 2010 (dissolved hydrogen amount 0.6 mg / l) was filled into two 500 ml PET bottles. It is the graph which showed the data which measured the change of the amount of residual hydrogen per day from the month 26 to August 3rd. In the figure, the indications “7/23 (1)” and “7/23 (2)” are filled with two 500 ml PET bottles with the drinking water produced on July 23, It shows that it measured, respectively.

図3に示す測定結果を見ると、前記飲用水素水をペットボトルに充填した日(7月23日)から3日目(7月26日)の第1回目の測定においては、約約8μg/lでであったものが2回目の7月27日には0に下がり、3日目(7月28日)より水素発生量が急増加し、その後徐々に減少して行き、8月3日には0〜5μg/lまで減少した。 Referring to the measurement results shown in FIG. 3, in the first measurement from the day (July 23) to the third day (July 26) from the day when the drinking hydrogen water was filled in the PET bottle, about 8 μg. / L was reduced to 0 on July 27, the second time, and the hydrogen generation increased rapidly from the third day (July 28), and then gradually decreased. On days, it decreased to 0-5 μg / l.

図4は、平成22年2月12日に製造した水素水原液を、前記奥長良川で採水したミネラルウォーターで、100倍、90倍および80倍希釈して得られた飲用水素水の溶存水素量の変化を日単位で測定したデータを示すグラフである。図中「100A」・「100B」という表示は、100倍希釈飲用水素水を500mlの2本のペットボトルに充填して、それぞれ測定したことを示すもので、「90A」・「90B」・「80A」・「80B」も同様である。 Fig. 4 shows the dissolution of potable hydrogen water obtained by diluting the hydrogen water stock solution produced on February 12, 2010 with mineral water collected from the Okunagara River, 100 times, 90 times and 80 times. It is a graph which shows the data which measured the change of the hydrogen amount by the day unit. In the figure, the indications “100A” and “100B” indicate that two 500 ml PET bottles were filled with 100-fold diluted hydrogen water and measured, and “90A”, “90B”, The same applies to “80A” and “80B”.

図4に示す測定結果を見ると、前記飲用水素水をペットボトルに充填した日(2月12日)から4日目(2月16日)の第1回目の測定時には、約8μg/lの溶存水素量が認められたが、その後3日間は徐々に溶存水素量が減少して行き、4日目の2月19日には、2〜3μg/l程度にまで低下し、その後6日目の2月22日には最大の溶存水素が発生し、その後徐々に減少して行き、3月4日には0〜0.5μg/lになった。 When the measurement result shown in FIG. 4 is seen, at the time of the 1st measurement on the 4th day (February 16) from the day (February 12) which filled the drinking hydrogen water into the PET bottle, it is about 8 μg / l. However, the amount of dissolved hydrogen gradually decreased for 3 days thereafter, and decreased to about 2-3 μg / l on February 19th on the 4th day, and then 6 days later. The maximum dissolved hydrogen was generated on February 22nd, and then gradually decreased and reached 0 to 0.5 μg / l on March 4.

本発明者は、前記図1〜図4に示す各測定結果から、ミネラルウォーターの100倍希釈が飲用水素水として最適であると共に、100倍希釈前後の80〜120倍希釈までの希釈割合であれば、飲用水素水として飲用できると判断した。 From the measurement results shown in FIG. 1 to FIG. 4, the present inventor found that a 100-fold dilution of mineral water is optimal as potable hydrogen water, and at a dilution ratio from 80 to 120-fold dilution before and after 100-fold dilution. If there is, it was judged that it can be drunk as drinking hydrogen water.

本発明者が種々テストした結果、飲用水素水として重要なことは次の3点であり、且つ重要性の順序はこの順であると判断した。すなわち、
1)美味しいこと。
2)透明なこと。水に濁りがないこと。
3)水素含有量が多いこと。
As a result of various tests by the present inventor, the following three points are important as drinking hydrogen water, and the order of importance is determined in this order. That is,
1) Delicious.
2) Be transparent. There is no turbidity in the water.
3) High hydrogen content.

味の点からは、水素水原液中のCaとMgの割合が重要であり、可能な限りMgよりCaが多い方がよい。一方、濁りが出にくいものにするには、可能な限りCaよりMgが多い方がよいことが判った。先ず、味の点から、この両者を勘案して、水素水原液の希釈倍率を求めるために、80倍、90倍、100倍、120倍希釈で比較検討すると、100倍希釈程度が望ましいという結果になった。 From the point of taste, the ratio of Ca and Mg in the hydrogen water stock solution is important, and it is better to have more Ca than Mg as much as possible. On the other hand, in order to make it less turbid, it has been found that it is better to have Mg as much as possible. First, from the viewpoint of taste, in order to obtain the dilution ratio of the hydrogen water stock solution in consideration of both, a comparison of 80, 90, 100, and 120 dilutions shows that a dilution of about 100 times is desirable. Became.

一方、濁りが出にくいという点からは、100倍希釈程度でCaよりMgが可能な限り多い方がよいという結果になった。最終的には、Caが軟水レベルのものになったが、味の点でも80倍〜120倍程度の希釈であれば、希釈するミネラルウォーターのもつ本来の美味しさが保持できた。 On the other hand, from the point that turbidity does not easily occur, the result is that it is better to have Mg as much as possible than Ca at about 100 times dilution. Eventually, Ca reached a soft water level, but the original taste of the diluted mineral water could be maintained if the dilution was about 80 to 120 times in terms of taste.

また、図1に示すように、水素の発生量は希釈倍率が高いほど発生量が少なく、希釈倍率が低くなると水素発生量が多くなることが判った。更に、pHの水素発生に対する影響では、pH2やpH12というように、pHが低すぎても、また高過ぎても水素は発生せず、pH5〜9くらいが水素の発生に適していることが判明した。 Further, as shown in FIG. 1, it was found that the generation amount of hydrogen is smaller as the dilution factor is higher, and the hydrogen generation amount is increased as the dilution factor is lower. Furthermore, in terms of the effect of pH on hydrogen generation, it has been found that, even at pH 2 and pH 12, hydrogen is not generated even if the pH is too low or too high, and pH of 5 to 9 is suitable for generating hydrogen. did.

本発明者は、前記実施例1の第1工程の白濁分散液の調製工程において使用している炭酸カルシウムおよび水酸化カルシウムを使用することなく、単に酸化マグネシウムと精製水を使用しても、白濁分散液を調製できることを確認した。以下、これを実施例2として説明する。 The present inventor does not use the calcium carbonate and calcium hydroxide used in the white turbid dispersion preparation step of the first step of Example 1, but simply uses magnesium oxide and purified water. It was confirmed that a dispersion could be prepared. Hereinafter, this will be described as a second embodiment.

本発明のペットボトルに充填可能な飲用水素水の製造方法における実施例2について詳細に説明する。本発明の実施例2に係るペットボトルに充填可能な飲用水素水の製造方法は、以下の第1工程〜第4工程により製造される。すなわち、本発明のペットボトルに充填可能な飲用水素水の製造方法は、
酸化マグネシウム4.0〜10.0重量%と精製水90.0〜96.0重量%とを混合して白濁分散液を調製すると共に、該白濁分散液にリン酸30.0〜50.0重量%に精製水50.0〜70.0重量%を混合したリン酸水溶液を添加混合して得られた混合溶液に、クエン酸6.0〜13.0重量%に精製水87.0〜94.0重量%を混合したクエン酸水溶液を添加混合してコロイド状の酸性水溶液とする第1工程と、
前記第1工程で製造されたコロイド状の酸性水溶液と、水酸化カリウム2.0〜6.0重量%、水酸化ナトリウム1.5〜5.5重量%に精製水88.5〜96.5重量%を混合して得られたアルカリ水溶液とを混合して、pHが5〜8の範囲である混合溶液を製造する第2工程と、
前記第2工程で製造した混合溶液を、陰極水の酸化還元電位が−500mV以下になるまで電気分解して水素水原液を製造する第3工程と、
前記第3工程により製造された水素原液を、ミネラルウォーターで80〜120倍希釈して水素含有量を0.01〜0.8mg/lの範囲の飲用水素水を製造する第4工程とより成る。なお、前記各工程は、前記実施例1とほぼ同一であるので詳細な説明は省略する。
Example 2 in the manufacturing method of the drinking hydrogen water which can be filled in the PET bottle of this invention is demonstrated in detail. The manufacturing method of the drinking hydrogen water which can be filled in the PET bottle which concerns on Example 2 of this invention is manufactured by the following 1st processes-4th processes. That is, the method for producing potable hydrogen water that can be filled in the PET bottle of the present invention is as follows.
A white turbid dispersion is prepared by mixing 4.0 to 10.0% by weight of magnesium oxide and 90.0 to 96.0% by weight of purified water, and phosphoric acid 30.0 to 50.0 is added to the turbid dispersion. A mixed solution obtained by adding and mixing an aqueous solution of phosphoric acid in which 50.0% to 70.0% by weight of purified water is mixed with 5% by weight to 6.0% to 13.0% by weight of citric acid and 87.0% of purified water. A first step of adding an aqueous citric acid solution mixed with 94.0% by weight to form a colloidal acidic aqueous solution;
The colloidal acidic aqueous solution prepared in the first step, potassium hydroxide 2.0 to 6.0 wt%, sodium hydroxide 1.5 to 5.5 wt% and purified water 88.5 to 96.5 A second step of producing a mixed solution having a pH in the range of 5 to 8, by mixing with an alkaline aqueous solution obtained by mixing wt%;
A third step of producing a hydrogen water stock solution by electrolyzing the mixed solution produced in the second step until the redox potential of cathodic water is -500 mV or less;
From the fourth step, the hydrogen stock solution produced in the third step is diluted 80 to 120 times with mineral water to produce a potable hydrogen water having a hydrogen content in the range of 0.01 to 0.8 mg / l. Become. The respective steps are substantially the same as those in the first embodiment, and a detailed description thereof will be omitted.

次に、本発明の実施例2に係るペットボトルに充填可能な飲用水素水の製造方法を用いて飲用水素水を製造したテストの一例につき詳細に説明する。なお、以下の操作は全て室温で行った。 Next, an example of a test for producing potable hydrogen water using the method for producing potable hydrogen water that can be filled in a PET bottle according to Example 2 of the present invention will be described in detail. The following operations were all performed at room temperature.

下記の(A)で示す成分からなる白濁分散液を調製した。この分散液に下記の(B)で示す成分からなるリン酸(HPO)水溶液を混合し、反応させた。混合すると溶液は一時的に透明になるが、最終的に白濁状態になり、極めて細かな粒子の分散状態の混合溶液を得た(1000g)。更に、下記の(C)で示す成分からなるクエン酸水溶液を、前記(A)と(B)の混合溶液に添加すると、白濁液は透明なコロイド液になった。コロイド液の総計(A+B+C)は5000g(以下、「3液」という)であった。なお、以下の(A)〜(D)の白濁分散液、リン酸水溶液、クエン酸水溶液およびアルカリ水溶液を製造する各素材の重量は、前記好ましい配合比率に記載の範囲内である。 A cloudy dispersion liquid comprising the components shown in the following (A) was prepared. To this dispersion, a phosphoric acid (H 3 PO 4 ) aqueous solution composed of the following component (B) was mixed and reacted. When mixed, the solution temporarily became transparent, but finally became cloudy, and a mixed solution in which very fine particles were dispersed (1000 g) was obtained. Furthermore, when a citric acid aqueous solution composed of the following component (C) was added to the mixed solution of (A) and (B), the cloudy liquid became a transparent colloidal solution. The total amount of colloidal liquid (A + B + C) was 5000 g (hereinafter referred to as “3 liquids”). In addition, the weight of each raw material which manufactures the cloudy dispersion liquid of the following (A)-(D), phosphoric acid aqueous solution, citric acid aqueous solution, and alkaline aqueous solution is in the range as described in the said preferable mixture ratio.

(A)白濁分散液
MgO 36.0g
精製水 464.0g
小計 500g
(A) White turbid dispersion MgO 36.0 g
464.0 g of purified water
Subtotal 500g

(B)リン酸水溶液
PO 200.0g
精製水 300.0g
小計 500g
(B) Phosphoric acid aqueous solution H 3 PO 4 200.0 g
300.0 g of purified water
Subtotal 500g

(C)クエン酸水溶液
クエン酸 360.0g
精製水 3640.0g
小計 4000g
(C) Citric acid aqueous solution Citric acid 360.0 g
3640.0 g of purified water
Subtotal 4000g

次いで、下記(D)で示す成分からなるアルカリ水溶液に、前記3液を少量添加すると、白濁の分散液になり直ちに透明液になる。続けて前記3液を更に添加して、pH6.5(pH試験紙)になるまで添加をした。結果的に、3液を5000g添加したところで、pH6.5(pH試験紙)になった。得られた水溶液(以下、「4液」という)の総合計は、10000gであった。 Next, when a small amount of the three liquids is added to an alkaline aqueous solution composed of the components shown in the following (D), it becomes a cloudy dispersion and immediately becomes a transparent liquid. Subsequently, the three liquids were further added until the pH reached 6.5 (pH test paper). As a result, when 5000 g of the third solution was added, the pH became 6.5 (pH test paper). The total amount of the obtained aqueous solution (hereinafter referred to as “four liquids”) was 10,000 g.

(D)アルカリ水溶液
KOH 170.0g
NaOH 130.0g
精製水 4700.0g
小計 5000g
(D) Alkaline aqueous solution KOH 170.0 g
NaOH 130.0g
4700.0 g of purified water
Subtotal 5000g

前記4液に、5〜15Vで、10Aの直流を流して電気分解を100分間行った。前記4液の水素含有量および電解後の溶液中の水素含有量を、実施例1と同様に測定した結果、電解前の水素含有量は0.01mg/lであったのに対し、電解後の水素含有量は、0.56mg/lであった。 The four solutions were subjected to electrolysis for 100 minutes by flowing a direct current of 10 A at 5 to 15 V. As a result of measuring the hydrogen content of the four liquids and the hydrogen content in the solution after electrolysis in the same manner as in Example 1, the hydrogen content before electrolysis was 0.01 mg / l, whereas The hydrogen content of was 0.56 mg / l.

そして、電解後の水素水原液(水素含有量0.56mg/l)をミネラルウォーターで100倍希釈した。得られた100倍希釈液(溶存水素量0.006mg/l)に対して、5〜15V、10Aの通電を15分間行ったところ、溶存水素量は0.6mg/lであった。 And the hydrogen water stock solution after electrolysis (hydrogen content 0.56 mg / l) was diluted 100 times with mineral water. When the obtained 100-fold diluted solution (dissolved hydrogen amount 0.006 mg / l) was energized with 5 to 15 V and 10 A for 15 minutes, the dissolved hydrogen amount was 0.6 mg / l.

また、前記水素水原液(水素含有量0.56mg/l)をミネラルウォーターで100倍希釈した。得られた100倍希釈飲用水素水(溶存水素量0.006mg/l)を85℃、40分間加熱した後に、5〜15V、10Aの通電を15分間行ったところ、溶存水素量は0.56mg/lであった。 Further, the hydrogen water stock solution (hydrogen content 0.56 mg / l) was diluted 100 times with mineral water. The obtained 100-fold diluted drinking hydrogen water (dissolved hydrogen amount 0.006 mg / l) was heated at 85 ° C. for 40 minutes, and then energized with 5 to 15 V and 10 A for 15 minutes. 56 mg / l.

前記飲用水素水(溶存水素量0.5mg/l)500mlを、500mlのペットボトルに充填して、室内に自然放置した。その結果、6ヶ月後でも残存水素量は0.49mg/lであった。 500 ml of the potable hydrogen water (dissolved hydrogen amount 0.5 mg / l) was filled in a 500 ml PET bottle and allowed to stand naturally in the room. As a result, the residual hydrogen amount was 0.49 mg / l even after 6 months.

なお、実施例2によって製造された水素水原液をミネラルウォーターで希釈した結果についての測定データは示していない。実施例1によって製造された水素水原液と、実施例2によって製造された水素水原液との違いは、実施例2が前記実施例1の第1工程の白濁分散液の調製工程において使用している炭酸カルシウムおよび水酸化カルシウムを使用することなく、単に酸化マグネシウムと精製水を使用して水素水原液を製造している点である。そして、前記実施例2によって製造された水素水原液も最終製品としては、ミネラルウォーターで希釈するものである。前記ミネラルウォーターには当然カルシウム分が含まれているので、前記実施例2によって製造された水素水原液をミネラルウォーターで希釈すると、前記実施例1によって製造された水素水原液をミネラルウォーターで希釈したものと同一の飲用水素水となる。従って、前記図1〜図4に示す測定データは、実施例2によって製造された水素水原液をミネラルウォーターで希釈して得られた飲用水素水にも適用できるものであると考える。 In addition, the measurement data about the result of having diluted the hydrogen water stock solution manufactured by Example 2 with mineral water is not shown. The difference between the hydrogen water stock solution produced in Example 1 and the hydrogen water stock solution produced in Example 2 is that Example 2 uses in the white turbid dispersion preparation step of the first step of Example 1 above. This is the point that a hydrogen water stock solution is produced simply using magnesium oxide and purified water without using calcium carbonate and calcium hydroxide. And the hydrogen water stock solution manufactured by the said Example 2 is also diluted with mineral water as a final product. Since the mineral water naturally contains calcium, when the hydrogen water stock solution prepared in Example 2 is diluted with mineral water, the hydrogen water stock solution prepared in Example 1 is diluted with mineral water. It becomes the same potable hydrogen water. Therefore, it is considered that the measurement data shown in FIGS. 1 to 4 can also be applied to potable hydrogen water obtained by diluting the hydrogen water stock solution produced in Example 2 with mineral water.

水素水は、最近注目されてきている代表的な機能水の1種であるが、水素収着成分の可溶化に関わっていると推測される添加クエン酸は、生体内でのクエン酸サイクルの重要な成分であり、且つクエン酸健康法の主要成分であることから、本発明方法によって得られた水素水は単なる水素水ではなく、次世代の機能水といえるものである。 Hydrogen water is one of the typical functional waters that has been attracting attention recently, but the added citric acid, which is presumed to be involved in the solubilization of the hydrogen sorption component, is the in vivo citrate cycle. Since it is an important component and the main component of the citric acid health method, the hydrogen water obtained by the method of the present invention is not a mere hydrogen water, but a next-generation functional water.

そして、本発明者らは、前記実施例2によって得られた飲用水素水を被験者に飲用してもらい、それらの飲用が生体にどう影響するかを、飲用前後の皮膚のインピーダンス変化を測定し求めた。 Then, the inventors have the subject drink the drinking hydrogen water obtained in Example 2 and determine how the drinking affects the living body by measuring the skin impedance change before and after drinking. Asked.

測定法
前記飲用水素水を飲用する前、飲用した後の皮膚の変化をプリケアナディー(ミサワ製の皮膚インピーダンス測定装置AMI−100〈医療用具製造承認番号(04B)0768〉)を用いて測定(以後AMI測定と呼ぶ)し、生体の状態を観察する。具体的には手足に電極を装着し、ごく短時間3Vの電圧を加え、そのとき電極間に流れる電流を測定し、生体の反応を次の3つのパラメーターで評価する。これらのパラメーターの中でもBP平均値が最も重要である。
BP平均値:体液循環および気の流れのパラメーター
IQ平均値:生体の防衛機能―免疫力のパラメーター
AP平均値:自律神経系のパラメーター
Measurement method Changes in skin after drinking hydrogen water before and after drinking using pre-care nady (Misawa skin impedance measuring device AMI-100 <medical device manufacturing approval number (04B) 0768>) (Hereinafter referred to as AMI measurement) and observe the state of the living body. Specifically, electrodes are attached to the limbs, a voltage of 3 V is applied for a very short time, the current flowing between the electrodes is measured at that time, and the reaction of the living body is evaluated with the following three parameters. Among these parameters, the BP average value is the most important.
BP average value: body fluid circulation and air flow parameter IQ average value: defense function of living body-immunity parameter AP average value: autonomic nervous system parameter

前記測定は、再現性を見るため、日時を変えて被験者の男性1人を2回測定した。測定データは、A(58歳)、A´(58歳)として表示した。また、前記と同様に、日時を変えて被験者の女性1人を2回測定した。測定データは、H(56歳)、H´(56歳)として表示した。更に、女性の被験者1人を1回のみ測定した。その測定データは、Y(84歳)として表示した。被験者は述べ5人である。前記測定は、飲用する前、飲用した直後、5分後、10分後にそれぞれ測定を行った。1回に飲用する水素水の量はコップ1杯(180ml)とした。 In order to see the reproducibility, the measurement was performed twice for one male subject by changing the date and time. The measurement data was displayed as A (58 years old) and A ′ (58 years old). In the same manner as described above, one female subject was measured twice with different dates. The measurement data was displayed as H (56 years old) and H ′ (56 years old). In addition, one female subject was measured only once. The measurement data was displayed as Y (84 years old). There are five test subjects. The measurement was performed before drinking, immediately after drinking, after 5 minutes, and after 10 minutes. The amount of hydrogen water to be drunk at one time was 1 cup (180 ml).

測定結果
(1)被験者A(男58歳)
表1に結果をまとめた。BP平均値が、飲用直後にやや上昇し、5分後さらに上昇し、10分後はやや下った。IQ平均値は、上昇する傾向を示した。しかし、AP平均値には顕著な変化は認められない。
Measurement result (1) Subject A (male 58 years old)
Table 1 summarizes the results. The BP average value slightly increased immediately after drinking, further increased after 5 minutes, and decreased slightly after 10 minutes. The IQ average value showed a tendency to increase. However, there is no significant change in the AP average value.

Figure 2012139645
Figure 2012139645

(2)被験者A´(男58歳)
表2に結果をまとめた。BP平均値およびIQ平均値並びにAP平均値が、時間の経過とともに上昇する傾向を示した。
(2) Subject A '(male 58 years old)
Table 2 summarizes the results. The BP average value, IQ average value, and AP average value tended to increase with the passage of time.

Figure 2012139645
Figure 2012139645

(3)被験者H(女56歳)
表3に結果をまとめた。BP平均値は飲用後一旦上昇したが、その後少し下がり、再び上昇した。IQ平均値は飲用後顕著に上昇したが、その後少し下がり、再び上昇した。AP平均値には顕著な変化は認められない。
(3) Subject H (female 56 years old)
Table 3 summarizes the results. The BP average value once increased after drinking, but then decreased slightly and increased again. The IQ average value rose remarkably after drinking, but then decreased slightly and increased again. There is no significant change in the AP average value.

Figure 2012139645
Figure 2012139645

(4)被験者H´(女56歳)
表4に結果をまとめた。BP平均値は飲用後一旦上昇したが、その後徐々に下がった。BP平均値は飲用前より下がった。IQ平均値およびもAP平均値には顕著な変化は認められない。
(4) Subject H '(Female 56 years old)
Table 4 summarizes the results. The BP average value once increased after drinking, but then gradually decreased. The BP average value was lower than before drinking. There is no significant change in the IQ average or AP average.

Figure 2012139645
Figure 2012139645

(5)被験者Y(女84歳)
表5に結果をまとめた。BP平均値、IQ平均値およびAP平均値とも、10分経過後は飲用前に比べてかなり上昇した。
(5) Subject Y (female 84 years old)
Table 5 summarizes the results. The BP average value, IQ average value, and AP average value increased considerably after 10 minutes from before drinking.

Figure 2012139645
Figure 2012139645

以上の測定結果から、体液循環及び気の流れを表すBP平均値と、生体の防衛機能を表すIQ平均値が、飲用水素水を飲用後で10分経過後では5人中5人とも上昇傾向を示した。この結果は、水素水が体液の循環をスムーズにし、気の流れを良くする効果を持つこと、更に防衛機能を促進する効果をうかがわせる。特に、被験者Y(女84歳)では影響が顕著であることから、高年令等で体力の衰えた人には特に効果があると思われる。 From the above measurement results, the BP average value representing the body fluid circulation and the air flow and the IQ average value representing the defense function of the living body increased in 5 out of 5 people after 10 minutes passed after drinking the drinking water. Showed a trend. This result shows that hydrogen water has the effect of smoothing the circulation of body fluids and improving the flow of air, and further promoting the defense function. In particular, since the influence is remarkable in the subject Y (female 84 years old), it seems to be particularly effective for a person whose physical strength has declined due to age.

前記インピーダンス変化の測定結果から判断して、本発明製造方法によって得られた飲用水素水は、健康飲料水として効果が大いに期待できると共に、ペットボトルにも充填可能なため、高価なアルミ容器を使用する必要がないので安価に提供できる。 Judging from the measurement result of the impedance change, the potable hydrogen water obtained by the production method of the present invention can be expected to have a great effect as a health drink and can be filled into a plastic bottle. Since it is not necessary to use it, it can be provided at low cost.

Claims (2)

炭酸カルシウム0.5〜3.0重量%、水酸化カルシウム5.0〜10.0重量%および酸化マグネシウム0.5〜3.0重量%と精製水84.0〜94.0重量%とを混合して白濁分散液を調製すると共に、該白濁分散液にリン酸35.0〜55.0重量%と精製水45.0〜65.0重量%を混合したリン酸水溶液を添加混合して得られた混合溶液に、クエン酸5.0〜13.0重量%と精製水87.0〜95.0重量%を混合したクエン酸水溶液を添加混合してコロイド状の酸性水溶液とする第1工程と、
前記第1工程で製造されたコロイド状の酸性水溶液と、水酸化カリウム3.0〜7.0重量%、水酸化ナトリウム2.0〜6.0重量%および精製水87.0〜95.0重量%を混合して得られたアルカリ水溶液とを混合して、pHが5〜8の範囲である混合溶液を製造する第2工程と、
前記第2工程で製造した混合溶液を、陰極水の酸化還元電位が−500mV以下になるまで電気分解して水素水原液を製造する第3工程と、
前記第3工程により製造された水素水原液を、ミネラルウォーターで80〜120倍希釈して、水素含有量を0.01〜0.8mg/lの範囲の飲用水素水を製造する第4工程とにより製造することを特徴とするペットボトルに充填可能な飲用水素水の製造方法。
Calcium carbonate 0.5-3.0 wt%, calcium hydroxide 5.0-10.0 wt% and magnesium oxide 0.5-3.0 wt%, and purified water 84.0-94.0 wt% A white turbid dispersion is prepared by mixing, and an aqueous phosphoric acid solution prepared by mixing 35.0 to 55.0% by weight of phosphoric acid and 45.0 to 65.0% by weight of purified water is added to and mixed with the white turbid dispersion. To the obtained mixed solution, a citric acid aqueous solution in which 5.0 to 13.0% by weight of citric acid and 87.0 to 95.0% by weight of purified water are mixed is added to form a colloidal acidic aqueous solution. Process,
The colloidal acidic aqueous solution prepared in the first step, potassium hydroxide 3.0 to 7.0% by weight, sodium hydroxide 2.0 to 6.0% by weight and purified water 87.0 to 95.0 A second step of producing a mixed solution having a pH in the range of 5 to 8, by mixing with an alkaline aqueous solution obtained by mixing wt%;
A third step of producing a hydrogen water stock solution by electrolyzing the mixed solution produced in the second step until the redox potential of cathodic water is -500 mV or less;
Fourth step of producing potable hydrogen water having a hydrogen content in the range of 0.01 to 0.8 mg / l by diluting the hydrogen water stock solution produced in the third step with mineral water 80 to 120 times. The manufacturing method of the drinking hydrogen water which can be filled with the PET bottle characterized by manufacturing by these.
酸化マグネシウム4.0〜10.0重量%と精製水90.0〜96.0重量%とを混合して白濁分散液を調製すると共に、該白濁分散液にリン酸30.0〜50.0重量%に精製水50.0〜70.0重量%を混合したリン酸水溶液を添加混合して得られた混合溶液に、クエン酸6.0〜13.0重量%に精製水87.0〜94.0重量%を混合したクエン酸水溶液を添加混合してコロイド状の酸性水溶液とする第1工程と、
前記第1工程で製造されたコロイド状の酸性水溶液と、水酸化カリウム2.0〜6.0重量%、水酸化ナトリウム1.5〜5.5重量%に精製水88.5〜96.5重量%を混合して得られたアルカリ水溶液とを混合して、pHが5〜8の範囲である混合溶液を製造する第2工程と、
前記第2工程で製造した混合溶液を、陰極水の酸化還元電位が−500mV以下になるまで電気分解して水素水原液を製造する第3工程と、
前記第3工程により製造された水素水原液を、ミネラルウォーターで80〜120倍希釈して水素含有量を0.01〜0.8mg/lの範囲の飲用水素水を製造する第4工程とにより製造することを特徴とするペットボトルに充填可能な飲用水素水の製造方法。








A white turbid dispersion is prepared by mixing 4.0 to 10.0% by weight of magnesium oxide and 90.0 to 96.0% by weight of purified water, and phosphoric acid 30.0 to 50.0 is added to the turbid dispersion. A mixed solution obtained by adding and mixing an aqueous solution of phosphoric acid in which 50.0% to 70.0% by weight of purified water is mixed with 5% by weight to 6.0% to 13.0% by weight of citric acid and 87.0% of purified water. A first step of adding an aqueous citric acid solution mixed with 94.0% by weight to form a colloidal acidic aqueous solution;
The colloidal acidic aqueous solution prepared in the first step, potassium hydroxide 2.0 to 6.0 wt%, sodium hydroxide 1.5 to 5.5 wt% and purified water 88.5 to 96.5 A second step of producing a mixed solution having a pH in the range of 5 to 8, by mixing with an alkaline aqueous solution obtained by mixing wt%;
A third step of producing a hydrogen water stock solution by electrolyzing the mixed solution produced in the second step until the redox potential of cathodic water is -500 mV or less;
A fourth step of producing potable hydrogen water having a hydrogen content in the range of 0.01 to 0.8 mg / l by diluting the hydrogen water stock solution produced in the third step with mineral water 80 to 120 times; The manufacturing method of the drinking hydrogen water which can be filled with the PET bottle characterized by manufacturing by the above.








JP2010294410A 2010-12-29 2010-12-29 Method for producing potable hydrogen water that can be filled in PET bottles Active JP4881472B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010294410A JP4881472B1 (en) 2010-12-29 2010-12-29 Method for producing potable hydrogen water that can be filled in PET bottles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010294410A JP4881472B1 (en) 2010-12-29 2010-12-29 Method for producing potable hydrogen water that can be filled in PET bottles

Publications (2)

Publication Number Publication Date
JP4881472B1 JP4881472B1 (en) 2012-02-22
JP2012139645A true JP2012139645A (en) 2012-07-26

Family

ID=45851228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010294410A Active JP4881472B1 (en) 2010-12-29 2010-12-29 Method for producing potable hydrogen water that can be filled in PET bottles

Country Status (1)

Country Link
JP (1) JP4881472B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212498A (en) * 2012-03-07 2013-10-17 Tatehiko Ogawa Reduction powder, and method of producing the same
JP5907448B1 (en) * 2015-09-03 2016-04-26 奥長良川名水株式会社 Method for producing hydrogen-containing water
JP2016079128A (en) * 2014-10-17 2016-05-16 株式会社 ナチュラル Skin lotion containing hydrogen water
JP2017047409A (en) * 2016-01-21 2017-03-09 奥長良川名水株式会社 Hydrogen-containing water
JP2018035130A (en) * 2016-02-04 2018-03-08 株式会社ardesign Hydrogen generation method
KR20200032234A (en) * 2017-08-16 2020-03-25 더 코카콜라 컴파니 Beverage dispensing system for sports drinks with personalized hydration solutions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3818493A4 (en) 2018-07-06 2022-03-30 The Coca-Cola Company Beverage dispenser network and profile management
JP7449830B2 (en) 2020-09-15 2024-03-14 株式会社東海理化電機製作所 holding device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408394B2 (en) * 1996-08-27 2003-05-19 株式会社日本トリム Method for producing electrolytic hydrogen dissolved water and apparatus for producing the same
JP2002361250A (en) * 2001-06-12 2002-12-17 San Waaku:Kk Method for producing water containing activated hydrogen
JP2006181507A (en) * 2004-12-28 2006-07-13 Machin Maintenance Service:Kk Method for producing deaerating water for drinking
JP4696178B1 (en) * 2010-09-16 2011-06-08 吉昭 小池 Method for producing hydrogen-containing water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212498A (en) * 2012-03-07 2013-10-17 Tatehiko Ogawa Reduction powder, and method of producing the same
JP2016079128A (en) * 2014-10-17 2016-05-16 株式会社 ナチュラル Skin lotion containing hydrogen water
JP5907448B1 (en) * 2015-09-03 2016-04-26 奥長良川名水株式会社 Method for producing hydrogen-containing water
JP2017047409A (en) * 2016-01-21 2017-03-09 奥長良川名水株式会社 Hydrogen-containing water
JP2018035130A (en) * 2016-02-04 2018-03-08 株式会社ardesign Hydrogen generation method
KR20200032234A (en) * 2017-08-16 2020-03-25 더 코카콜라 컴파니 Beverage dispensing system for sports drinks with personalized hydration solutions
KR102625185B1 (en) * 2017-08-16 2024-01-16 더 코카콜라 컴파니 Beverage dispensing system for sports drinks with personalized hydration solutions

Also Published As

Publication number Publication date
JP4881472B1 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4881472B1 (en) Method for producing potable hydrogen water that can be filled in PET bottles
JP3602773B2 (en) Anode electrolyzed water and method for producing the same
JP5479361B2 (en) Method for enriching water with oxygen by electrolysis, oxygen-enriched water or beverage and use thereof
Goncharuk et al. The use of redox potential in water treatment processes
EP3054919B1 (en) Redox signaling gel formulation
JP4696178B1 (en) Method for producing hydrogen-containing water
WO2015061753A1 (en) Redox signaling gel formulation
JP5907448B1 (en) Method for producing hydrogen-containing water
JP3325855B2 (en) Mineral water obtained by electrolyzing deep ocean water and health drink containing it
JP6328403B2 (en) Functional water production apparatus and functional water production method
TW201802040A (en) Industrial method of preparing alkaline water with sea mineral
JP2016079128A (en) Skin lotion containing hydrogen water
JP6086165B1 (en) Hydrogen-containing water
Kim Development of a mouthwash alternative using a low-level hypochlorous acid solution with macroporous platinum electrodes and its application to oral health.
TWI723601B (en) Monobasic hypochlorous acid disinfectant and its production method
CN105668894A (en) Preparation process of small molecular group weakly alkaline negative-hydrogen healthy water
JP2007319083A (en) Method for producing shochu (japanese white distilled liquor) using alkali reduced water
CN105725010A (en) Soda flavoring water with small molecular group water as water base and preparation method of soda flavoring water
JP2018083146A (en) Production method of drinkable water having bactericidal action and three chamber-type electrolysis apparatus for use in the method
JP3217546U (en) PET bottle with oral rehydration solution
JP6210521B1 (en) Hydrogen water
Popova NASCENT OXYGEN–ACTIVE COMPONENT OF ANOLYTE, OBTAINED BY MEANS
TWI270532B (en) Method for antioxidation and antioxidative functional water
Goncharuk et al. Impact of gases present in air on oxidation-reduction properties of drinking water
Ottensmann et al. Providing Bacteria-Free Water: Engineering Cost-Effective Treatment Solutions in Uganda

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R150 Certificate of patent or registration of utility model

Ref document number: 4881472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250