JP2012139142A - Hematopoietic stem cell separating material or method for separation - Google Patents

Hematopoietic stem cell separating material or method for separation Download PDF

Info

Publication number
JP2012139142A
JP2012139142A JP2010293005A JP2010293005A JP2012139142A JP 2012139142 A JP2012139142 A JP 2012139142A JP 2010293005 A JP2010293005 A JP 2010293005A JP 2010293005 A JP2010293005 A JP 2010293005A JP 2012139142 A JP2012139142 A JP 2012139142A
Authority
JP
Japan
Prior art keywords
hematopoietic stem
stem cell
cell separation
solution
stem cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010293005A
Other languages
Japanese (ja)
Inventor
Nobuhiko Sato
伸彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2010293005A priority Critical patent/JP2012139142A/en
Publication of JP2012139142A publication Critical patent/JP2012139142A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separating material capable of easily and efficiently separating hematopoietic stem cells from a bodily fluid containing hematopoietic stem cells; and a method for separation using the separating material.SOLUTION: The hematopoietic stem cell separating material is made of a non-woven fabric whose average fiber diameter is at least 3 micrometers and not more than 4 micrometers. The method for separating hematopoietic stem cells by using a hematopoietic stem cell separating device 2 filled with the hematopoietic stem cell separating material includes: (A) a step of capturing hematopoietic stem cells into the hematopoietic stem cell separating device by introducing the bodily fluid from an inlet side of the hematopoietic stem cell separating device and extracting the bodily fluid from an outlet side of the hematopoietic stem cell separating device; and (B) a step of introducing a solution for separating the hematopoietic stem cells captured inside the hematopoietic stem cell separating device from the outlet side of the hematopoietic stem cell separating device and extracting the solution from the inlet side of the device. According to the method, hematopoietic stem cells can be efficiently collected and a hematopoietic stem cell-containing liquid with a higher concentration factor can be obtained.

Description

本発明は、造血幹細胞を含む体液から簡便且つ効率的に造血幹細胞を分離することを可能とする造血幹細胞分離材、およびその分離材を用いた分離方法に関する。   The present invention relates to a hematopoietic stem cell separation material capable of easily and efficiently separating hematopoietic stem cells from a body fluid containing hematopoietic stem cells, and a separation method using the separation material.

近年、血液学や科学テクノロジーの急速な進歩に伴い、全血・骨髄・臍帯血・組織抽出物をはじめとする体液から必要な血液分画のみを分離して患者に投与することで治療効果をより高め、さらに、治療に必要のない分画は投与しないことで副作用をより抑制する、という治療スタイルが望まれる様になってきている。例えば、血液輸血もその1つである。赤血球製剤は、出血および赤血球が不足する状態、または赤血球の機能低下により酸素が欠乏している場合に使用される血液製剤である。そのため異常な免疫反応や移植片対宿主病(GVHD)などの副作用を誘導する白血球は不要であり、除去する必要がある。場合によっては白血球に加えて血小板も除去することもある。   In recent years, with rapid advances in hematology and scientific technology, only the necessary blood fractions are separated from body fluids such as whole blood, bone marrow, umbilical cord blood, and tissue extracts and administered to patients. Further, there is a demand for a treatment style that further suppresses side effects by not administering fractions that are not necessary for treatment. For example, blood transfusion is one of them. An erythrocyte product is a blood product that is used when bleeding and erythrocytes are deficient, or when oxygen is deficient due to reduced function of erythrocytes. Therefore, leukocytes that induce side effects such as abnormal immune responses and graft-versus-host disease (GVHD) are unnecessary and need to be removed. In some cases, platelets may be removed in addition to leukocytes.

一方、血小板製剤は、血液凝固因子の欠乏による出血ないし出血傾向にある患者に使用される血液製剤である。血小板製剤は、遠心分離により、血小板以外の不要な細胞や成分を除去することで採取されている。   On the other hand, a platelet preparation is a blood preparation used for patients who are bleeding or tend to bleed due to a lack of blood coagulation factors. Platelet preparations are collected by removing unnecessary cells and components other than platelets by centrifugation.

加えて近年、白血病や固形癌治療に向けた造血幹細胞移植が盛んに行われるようになり、治療に必要な細胞(造血幹細胞を含む白血球群)を分離し投与するようになってきた。造血幹細胞とは、CD34陽性の細胞、或いは造血因子を含む寒天様培地中でコロニーを形成可能な細胞のことを意味する。最近では、CD34陰性且つCD133陽性の細胞がより未分化な造血幹細胞であると考えられている。この造血幹細胞のソースとして、ドナーの負担が少ない、増殖能力が優れている等の利点から、骨髄や末梢血に加えて臍帯血も注目を浴びている。また近年、月経血中にも幹細胞が豊富に存在することが示唆され、これまで廃棄されていた月経血も貴重な幹細胞ソースとして利用される可能性がある。   In addition, in recent years, hematopoietic stem cell transplantation for leukemia and solid cancer treatment has been actively performed, and cells necessary for treatment (a group of leukocytes containing hematopoietic stem cells) have been separated and administered. A hematopoietic stem cell means a CD34-positive cell or a cell capable of forming a colony in an agar-like medium containing a hematopoietic factor. Recently, CD34 negative and CD133 positive cells are considered to be more undifferentiated hematopoietic stem cells. As a source of this hematopoietic stem cell, umbilical cord blood is attracting attention in addition to bone marrow and peripheral blood because of its advantages such as low burden on donors and excellent proliferation ability. In recent years, it has been suggested that there are abundant stem cells in menstrual blood, and menstrual blood that has been discarded may be used as a valuable source of stem cells.

骨髄や末梢血に関して、不要な細胞を除き白血球を分離・純化して投与することが望まれている一方で、臍帯血についても血縁者のためのバンキングが盛んになり、使用時まで凍結保存する必要性から、凍結保存による赤血球溶血を防ぐことを目的に白血球は分離・純化されている。   For bone marrow and peripheral blood, it is desirable to separate and purify leukocytes after removing unnecessary cells, but umbilical cord blood is also becoming popular for banking for relatives and is stored frozen until use. From the necessity, leukocytes are separated and purified for the purpose of preventing red blood cell hemolysis due to cryopreservation.

分離方法としてはフィコールを用いた比重液による遠心分離法や赤血球沈降剤であるヒドロキシエチルスターチを用いた遠心分離法が提案されているが、閉鎖系での処理が不可能であり異物や菌が混入すること、処理するのに要する時間が長いことなどの問題を有している。   As a separation method, a centrifugal separation method using a specific gravity liquid using Ficoll and a centrifugal separation method using hydroxyethyl starch, which is an erythrocyte sedimentation agent, have been proposed. There are problems such as mixing and a long time required for processing.

遠心分離法を用いない細胞分離方法として、最近では、赤血球と血小板は捕捉されず白血球のみを捕捉するフィルター材料を用いて白血球を回収する方法(特許文献1、特許文献2)、白血球及び赤血球を実質的に通過させることが可能である細胞分離材を用いた成体幹細胞分離方法(特許文献3)などが報告されている。   As a cell separation method not using a centrifugation method, recently, a method of collecting leukocytes using a filter material that captures only leukocytes without capturing red blood cells and platelets (Patent Document 1, Patent Document 2), leukocytes and red blood cells are collected. An adult stem cell separation method using a cell separation material that can be substantially passed (Patent Document 3) and the like have been reported.

ところが、最近になって造血幹細胞をより選択的に濃縮することが副作用が少なくより有効であると考えられるようになっており、バクスター社製の磁気細胞分離システムであるアイソレックスに代表されるCD34陽性細胞を選択的に分離する方法が開示されている。しかし、この分離方法は抗体を用いており費用と安全性の面で問題があると共に、造血幹細胞のうちCD34陽性細胞のみしか回収することが出来ず、現在議論されているCD34陰性のより未分化な造血幹細胞は回収することができないなど、様々な問題がある。   However, recently, it has been considered that selective enrichment of hematopoietic stem cells is more effective with fewer side effects, and CD34 represented by Isolex, a magnetic cell separation system manufactured by Baxter. A method for selectively separating positive cells is disclosed. However, this separation method uses an antibody and is problematic in terms of cost and safety, and can recover only CD34 positive cells among the hematopoietic stem cells, which is more undifferentiated than the currently discussed CD34 negative. There are various problems such as inability to collect hematopoietic stem cells.

特表2001−518792号公報JP-T-2001-518792 国際公開WO98/32840号International Publication WO 98/32840 特開2008−22822号公報JP 2008-22822 A

本発明の目的は、各血球成分を含む体液、或いはそれらを粗分離した体液から、高い収率で造血幹細胞を回収し濃縮することが出来る分離材と分離方法を提供することである。   An object of the present invention is to provide a separation material and a separation method capable of recovering and concentrating hematopoietic stem cells with high yield from a body fluid containing each blood cell component or a body fluid obtained by roughly separating them.

本発明者は、従来は容易に実現することが困難であった、高い収率で造血幹細胞を回収し濃縮することを可能とする分離材と分離方法に関して、鋭意検討を行った。   The present inventor has intensively studied a separation material and a separation method that can recover and concentrate hematopoietic stem cells in a high yield, which has been difficult to realize in the past.

その結果、特定の性質を持つ不織布を用いると、より造血幹細胞を効率的に回収し濃縮することが出来ることを見出し、本発明を完成するに至った。   As a result, it has been found that the use of a non-woven fabric having specific properties enables more efficient recovery and concentration of hematopoietic stem cells, leading to the completion of the present invention.

即ち本発明は、以下に記述した造血幹細胞を濃縮し回収することが出来る分離材とそれを用いた造血幹細胞の分離方法に関する。   That is, the present invention relates to a separation material capable of concentrating and collecting hematopoietic stem cells described below and a method for separating hematopoietic stem cells using the same.

(1)平均繊維径が3マイクロメートル以上、4マイクロメートル以下の不織布から成る造血幹細胞分離材。これによれば、造血幹細胞を効率的に回収し、濃縮することが出来る。   (1) A hematopoietic stem cell separation material comprising a nonwoven fabric having an average fiber diameter of 3 micrometers or more and 4 micrometers or less. According to this, hematopoietic stem cells can be efficiently recovered and concentrated.

(2)前記不織布を構成する材料がポリエステル樹脂であることを特徴とする(1)記載の造血幹細胞分離材。   (2) The hematopoietic stem cell separation material according to (1), wherein the material constituting the nonwoven fabric is a polyester resin.

(3)前記ポリエステル樹脂がポリブチレンテレフタレート樹脂であることを特徴とする(2)記載の造血幹細胞分離材。   (3) The hematopoietic stem cell separation material according to (2), wherein the polyester resin is a polybutylene terephthalate resin.

(4)前記分離材が親水性処理されていないことを特徴とする(1)から(3)のいずれか1項に記載の造血幹細胞分離材。   (4) The hematopoietic stem cell separating material according to any one of (1) to (3), wherein the separating material is not subjected to hydrophilic treatment.

(5)(1)から(4)に記載の分離材が入口と出口を有する容器に充填された造血幹細胞分離装置。   (5) A hematopoietic stem cell separation device in which the separation material according to (1) to (4) is filled in a container having an inlet and an outlet.

(6)(5)に記載の造血幹細胞分離装置の入口側に体液を収容する手段と、造血幹細胞分離装置の出口側に造血幹細胞分離装置を通過した溶液を収容する手段を備え、
さらに、造血幹細胞分離装置の出口側に造血幹細胞分離装置に捕捉された成分を脱離回収するために造血幹細胞分離装置に対し体液とは逆方向へ流すための溶液導入手段と、この際に造血幹細胞分離装置の入口側から排出された捕捉された成分を収容する手段を備えた、造血幹細胞分離回路。これによれば、体液の送液と捕捉成分の回収を容易に行うことができる。
(6) A means for containing body fluid on the inlet side of the hematopoietic stem cell separation device according to (5), and a means for containing the solution that has passed through the hematopoietic stem cell separation device on the outlet side of the hematopoietic stem cell separation device,
Furthermore, a solution introducing means for allowing the hematopoietic stem cell separator to flow in the direction opposite to the body fluid in order to desorb and collect the components captured by the hematopoietic stem cell separator on the outlet side of the hematopoietic stem cell separator; A hematopoietic stem cell separation circuit comprising means for containing captured components discharged from the inlet side of the stem cell separation device. According to this, liquid feeding of body fluid and recovery of the captured component can be easily performed.

(7)(5)に記載の造血幹細胞分離装置、或いは、(6)に記載の細胞分離回路を用いた造血幹細胞の分離方法であって、
(A)体液を造血幹細胞分離装置の入口側より導入し出口側より導出することにより造血幹細胞を造血幹細胞分離装置内に捕捉する工程、
(B)造血幹細胞分離装置内に捕捉された造血幹細胞を脱離するための溶液を造血幹細胞分離装置の出口側より導入し入口側より導出する工程
を含む造血幹細胞を分離方法。
(7) A hematopoietic stem cell separation device according to (5), or a hematopoietic stem cell separation method using the cell separation circuit according to (6),
(A) a step of capturing hematopoietic stem cells in the hematopoietic stem cell separator by introducing a body fluid from the inlet side of the hematopoietic stem cell separator and leading out from the outlet side;
(B) A method for separating hematopoietic stem cells, comprising a step of introducing a solution for detaching hematopoietic stem cells trapped in the hematopoietic stem cell separation apparatus from the outlet side of the hematopoietic stem cell separation apparatus and deriving from the inlet side.

(8)工程(A)の前にプライミングする工程を含む(7)記載の造血幹細胞を分離方法。   (8) The method for separating hematopoietic stem cells according to (7), comprising a step of priming before step (A).

この分離材、細胞分離装置、或いは細胞分離回路を用いると、従来より効率的に造血幹細胞を回収し、より濃縮することが可能となる。   When this separation material, cell separation device, or cell separation circuit is used, hematopoietic stem cells can be collected and concentrated more efficiently than before.

本発明によれば、末梢血、臍帯血、骨髄、組織抽出物、月経血など各血球成分を含む体液またはそれらを粗分離した体液中から造血幹細胞を効率的に回収し、他の細胞よりも高い濃縮率にすることが可能となり、再生医療などの分野への幅広い利用が期待される。   According to the present invention, hematopoietic stem cells are efficiently recovered from a body fluid containing each blood cell component such as peripheral blood, umbilical cord blood, bone marrow, tissue extract, menstrual blood, or a body fluid obtained by roughly separating them, and more than other cells. It is possible to achieve a high concentration rate, and it is expected to be widely used in fields such as regenerative medicine.

本発明の造血幹細胞分離回路の一例Example of hematopoietic stem cell separation circuit of the present invention

以下に本発明について詳細に説明するが、本発明は以下の特定の例に限定されるものではない。   The present invention is described in detail below, but the present invention is not limited to the following specific examples.

本発明における体液としては、全血、骨髄、臍帯血、月経血、組織抽出物を使用することができ、また、ここではそれらを粗分離したものも体液に含むものとする。また動物種に関しても制限は無く、ヒト、ウシ、マウス、ラット、ブタ、サル、イヌ、ネコなど哺乳動物であれば何であっても構わない。さらに体液の抗凝固剤の種類も問わず、ACD(acid-citrate-dextrose)液、CPD(citrate-phosphate-dextrose)液、CPDA(citrate-phosphate-dextrose-adenine)液などのクエン酸抗凝固であってもヘパリン、低分子ヘパリン、フサン(メチル酸ナファモスタット)、EDTAで抗凝固していても良い。各分画を使用する目的に応じて影響がなければ体液の保存条件も一切問わない。   As the body fluid in the present invention, whole blood, bone marrow, umbilical cord blood, menstrual blood, and tissue extract can be used. In this case, those roughly separated are also included in the body fluid. There are no restrictions on animal species, and any animal may be used as long as it is a mammal such as a human, cow, mouse, rat, pig, monkey, dog, or cat. In addition, regardless of the type of anticoagulant in body fluids, citrate anticoagulation such as ACD (acid-citrate-dextrose), CPD (citrate-phosphate-dextrose), and CPDA (citrate-phosphate-dextrose-adenine) It may be anticoagulated with heparin, low molecular weight heparin, fusan (nafamostat methyl acid) or EDTA. If there is no influence according to the purpose for which each fraction is used, the preservation conditions of the body fluid are not questioned at all.

本発明における造血幹細胞分離材としては、繊維径が3マイクロメートル以上、4マイクロメートル以下であることが、造血幹細胞の分離効率の点より好ましい。繊維径とは繊維軸に対して直角方向の繊維の幅であり、繊維径の測定は、不織布からなる分離材を走査型電子顕微鏡にて写真撮影し、写真に記載されたスケールから求めた繊維径の計算値を平均することにより求めることが出来る。つまり、本発明記載の繊維径とは、上記のように測定した繊維径の平均値を意味しており、50個以上、望ましくは100個以上の平均値である。但し、繊維が多数に重なりあった場合、他繊維が邪魔をしてその幅が測定できない場合、著しく直径の異なる繊維が混在している場合などは、そのデータは除いて繊維径を算出する。また、太さの大きく異なる、例えば7μm以上繊維径の異なる複数の繊維から構成される不織布の場合には、繊維径が細い方が分離効率への影響が大きいため、別々に繊維径を計算し、細い繊維径をその不織布の繊維径とする。   The hematopoietic stem cell separation material in the present invention preferably has a fiber diameter of 3 micrometers or more and 4 micrometers or less from the viewpoint of separation efficiency of hematopoietic stem cells. The fiber diameter is the width of the fiber in the direction perpendicular to the fiber axis, and the fiber diameter is measured by taking a photograph of a separating material made of a nonwoven fabric with a scanning electron microscope and obtaining it from the scale described in the photograph. It can be obtained by averaging the calculated diameters. That is, the fiber diameter described in the present invention means an average value of the fiber diameters measured as described above, and is an average value of 50 or more, desirably 100 or more. However, when a large number of fibers are overlapped, when other fibers are obstructed and the width cannot be measured, or when fibers having remarkably different diameters are mixed, the fiber diameter is calculated excluding the data. In addition, in the case of a nonwoven fabric composed of a plurality of fibers having greatly different thicknesses, for example, 7 μm or more, the fiber diameter is calculated separately because the smaller the fiber diameter, the greater the influence on the separation efficiency. The thin fiber diameter is defined as the fiber diameter of the nonwoven fabric.

本発明において、造血幹細胞分離装置に充填される造血幹細胞分離材を構成する材料は特に制限されないが、滅菌耐性や細胞への安全性の観点から、ポリエチレンテレフタート、ポリブチレンテレフタレート、ポリエチレン、高密度ポリエチレン、低密度ポリエチレン、ポリビニルアルコール、塩化ビニリデン、レーヨン、ビニロン、ポリプロピレン、アクリル(ポリメチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルニトリル、ポリアクリル酸、ポリアクリレート)、ナイロン、ポリイミド、アラミド(芳香族ポリアミド)、ポリアミド、キュプラ、カーボン、フェノール、ポリエステル、パルプ、麻、ポリウレタン、ポリスチレン、ポリカーボネートなどの合成高分子、アガロース、セルロース、セルロースアセテート、キトサン、キチンなどの天然高分子、ガラスなどの無機材料や金属等を使用することができる。   In the present invention, the material constituting the hematopoietic stem cell separator filled in the hematopoietic stem cell separator is not particularly limited, but from the viewpoint of sterilization resistance and cell safety, polyethylene terephthalate, polybutylene terephthalate, polyethylene, high density Polyethylene, low density polyethylene, polyvinyl alcohol, vinylidene chloride, rayon, vinylon, polypropylene, acrylic (polymethyl methacrylate, polyhydroxyethyl methacrylate, polyacrylonitrile, polyacrylic acid, polyacrylate), nylon, polyimide, aramid (aromatic polyamide) ), Synthetic polymers such as polyamide, cupra, carbon, phenol, polyester, pulp, hemp, polyurethane, polystyrene, polycarbonate, agarose, cellulose, cellulose Tate, may be used chitosan, natural polymers such as chitin, an inorganic material, metal or the like such as glass.

その中でも、特に本発明の造血幹細胞分離材を構成する材料として、ポリエステル樹脂を使用することが、造血幹細胞をより純化出来る点で好ましく、更にはポリブチレンテレフタレート樹脂であることがより好ましい。また、これらの分離材は、親水性コーティングや表面へのグラフト重合などによる親水性処理を実施しない方が、コーティング剤の剥離による人体への悪影響やグラフト重合による分離材強度の低下などの観点より、好ましい。また親水性処理をしない方が、造血幹細胞分離装置を製造する上で、手間が大幅に削減されることも利点である。   Among these, it is particularly preferable to use a polyester resin as a material constituting the hematopoietic stem cell separating material of the present invention from the viewpoint that hematopoietic stem cells can be further purified, and more preferably a polybutylene terephthalate resin. In addition, these separating materials are not subjected to hydrophilic treatment such as hydrophilic coating or graft polymerization on the surface, from the viewpoint of adverse effects on the human body due to peeling of the coating agent and reduction in strength of the separating material due to graft polymerization. ,preferable. In addition, it is also advantageous that the treatment without hydrophilic treatment greatly reduces labor in producing the hematopoietic stem cell separation device.

本発明における造血幹細胞分離材の使用形態は前記分離材を容器に入れず使用しても良いし、体液の入口と出口を備えた容器に造血幹細胞分離材を入れて使用しても良いが、実用性を考慮すると容器に入れて使用する後者の方が好ましい。また血球分離材は適当な大きさに切断した平板状で体液を処理しても良いし、またロール状に巻いた形状で処理しても良い。   The use form of the hematopoietic stem cell separator in the present invention may be used without putting the separator into a container, or the hematopoietic stem cell separator may be used in a container having an inlet and an outlet for body fluid, In consideration of practicality, the latter used in a container is preferred. Further, the blood cell separator may be treated with a body fluid in the form of a flat plate cut to an appropriate size, or may be treated in the form of a roll.

本発明の造血幹細胞分離材を充填する体液の入口と出口を供えた容器、及び本発明に記載した方法を遂行するための部材等について説明する。   A container provided with an inlet and an outlet for a body fluid filled with the hematopoietic stem cell separating material of the present invention, and members for performing the method described in the present invention will be described.

本発明の造血幹細胞分離材を体液の入口と出口を供えた容器に充填する際には、圧縮して容器に充填しても良いし、圧縮せずに容器充填しても良い。造血幹細胞分離材の材質等に応じて適宜選定すれば良い。造血幹細胞分離材の好ましい使用例としては、不織布から成る造血幹細胞分離材を適当な大きさに切断し、厚み1mmから200mm程度に、単層または積層状態で使用することが好ましい。各分画の分離効率の面から1.5mmから150mmがより好ましく、さらに好ましくは2mmから100mmである。また容器に充填した時の厚みは1mmから50mm程度に、単層または積層状態で使用することが好ましい。各分画の分離効率の面から1.5mmから40mmがより好ましく、さらに好ましくは2mmから35mmである。   When filling the hematopoietic stem cell separation material of the present invention into a container provided with an inlet and an outlet for body fluid, the container may be compressed and filled, or the container may be filled without being compressed. What is necessary is just to select suitably according to the material etc. of a hematopoietic stem cell isolation | separation material. As a preferred use example of the hematopoietic stem cell separating material, it is preferable to cut the hematopoietic stem cell separating material made of a non-woven fabric into an appropriate size and use it in a single layer or a laminated state in a thickness of about 1 mm to 200 mm. From the standpoint of separation efficiency of each fraction, 1.5 mm to 150 mm is more preferable, and 2 mm to 100 mm is more preferable. Further, when the container is filled, the thickness is preferably about 1 mm to 50 mm and used in a single layer or a laminated state. From the standpoint of separation efficiency of each fraction, 1.5 mm to 40 mm is more preferable, and further preferably 2 mm to 35 mm.

また造血幹細胞分離材をロール状に巻いて、容器に充填しても良い。ロール状で使用する場合、該ロールの内側から外側に向けて体液を処理することにより血球を分離しても良いし、或いはその逆に該ロールの外側から内側に向けて体液を処理しても良い。   Further, the hematopoietic stem cell separating material may be wound into a roll and filled into a container. When used in the form of a roll, blood cells may be separated by treating the body fluid from the inside to the outside of the roll, or conversely, the body fluid may be treated from the outside to the inside of the roll. good.

造血幹細胞分離材を充填する容器の形態、大きさ、材質は特に限定はない。容器の形態は、球、コンテナ、カセット、バッグ、チューブ、カラム等、任意の形態であって良い。好ましい具体例としては、例えば、容積約0.1mLから400mL程度、直径約0.1cmから15cm程度の半透明の筒状容器、一片の長さ0.1cmから20cm程度の長方形または正方形で、厚みが0.1cmから5cm程度の四角柱容器等が挙げられるが、本発明はこれらに限定されるものではない。   The form, size, and material of the container filled with the hematopoietic stem cell separating material are not particularly limited. The form of the container may be any form such as a sphere, a container, a cassette, a bag, a tube, or a column. Preferable specific examples include, for example, a translucent cylindrical container having a volume of about 0.1 mL to 400 mL and a diameter of about 0.1 cm to 15 cm, a rectangle or square having a length of about 0.1 cm to 20 cm, and a thickness. However, the present invention is not limited to these examples.

容器は任意の構造材料を使用して作製することが出来る。構造材料としては具体的には、非反応性ポリマー、生物親和性金属、合金、ガラス等が挙げられる。非反応性ポリマーとしては、アクリロニトリルブタジエンスチレンターポリマー等のアクリロニトリルポリマー、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、テトラフルオロエチレンとヘキサフルオロプロピレンのコポリマー、ポリ塩化ビニル等のハロゲン化ポリマー、ポリアミド、ポリイミド、ポリスルホン、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリビニルクロリドアクリルコポリマー、ポリカーボネートアクリロニトリルブタジエンスチレン、ポリスチレン、ポリメチルペンテン等が挙げられる。この中でも特に滅菌耐性を有する点で、ポリプロピレン、ポリ塩化ビニル、ポリエチレン、ポリイミド、ポリカーボネート、ポリスルホン、ポリメチルペンテン等が好ましい。   The container can be made using any structural material. Specific examples of the structural material include non-reactive polymers, biocompatible metals, alloys, and glass. Non-reactive polymers include acrylonitrile polymers such as acrylonitrile butadiene styrene terpolymer, polytetrafluoroethylene, polychlorotrifluoroethylene, copolymers of tetrafluoroethylene and hexafluoropropylene, halogenated polymers such as polyvinyl chloride, polyamide, polyimide , Polysulfone, polycarbonate, polyethylene, polypropylene, polyvinyl chloride acrylic copolymer, polycarbonate acrylonitrile butadiene styrene, polystyrene, polymethylpentene and the like. Of these, polypropylene, polyvinyl chloride, polyethylene, polyimide, polycarbonate, polysulfone, polymethylpentene, and the like are particularly preferable in that they have sterilization resistance.

一方、容器の構造材料として金属材料(生物親和性金属、合金)を使用する場合は、例えばステンレス鋼、チタン、白金、タンタル、金、およびそれらの合金、並びに金メッキ合金鉄、白金メッキ合金鉄、コバルトクロミウム合金、窒化チタン被覆ステンレス鋼等が挙げられる。   On the other hand, when a metal material (biocompatible metal, alloy) is used as the structural material of the container, for example, stainless steel, titanium, platinum, tantalum, gold, and alloys thereof, as well as gold-plated alloy iron, platinum-plated alloy iron, Examples thereof include cobalt chromium alloy and titanium nitride-coated stainless steel.

本発明の造血幹細胞分離回路に関しては、閉鎖系で簡便に体液の処理を行える点を考慮し、造血幹細胞分離装置2の入口側に体液を収容する手段3(体液を供給する手段)と、造血幹細胞分離装置2の出口側に造血幹細胞分離装置を通過した溶液を収容する手段5(回収する手段,但し、造血幹細胞分離装置を通過した溶液が必要ない場合は、そのまま廃棄することも可能で、その様な手段も含むものとする。)を備え、更に、造血幹細胞分離装置2の出口側に、造血幹細胞分離装置に捕捉された成分を脱離回収するために造血幹細胞分離装置に対し体液とは逆方向へ流すための溶液導入手段7と、この際に造血幹細胞分離装置2の入口側から排出された捕捉された成分を収容する手段6を備えている、という特徴を有することが好ましい。体液を収容する手段3、及び、造血幹細胞分離装置を通過した溶液を収容する手段5は、取り扱いやすさの点よりバッグ形状が好ましいが、本発明はこれらに限定されない。   Regarding the hematopoietic stem cell separation circuit of the present invention, in consideration of the fact that body fluid can be easily processed in a closed system, means 3 (means for supplying body fluid) containing body fluid on the inlet side of the hematopoietic stem cell separation device 2, and hematopoiesis Means 5 for storing the solution that has passed through the hematopoietic stem cell separator on the outlet side of the stem cell separator 2 (means for collecting, but if the solution that has passed through the hematopoietic stem cell separator is not required, it can be discarded as is, In addition, on the outlet side of the hematopoietic stem cell separation device 2, in order to desorb and collect the components captured by the hematopoietic stem cell separation device, the hematopoietic stem cell separation device is opposite to the body fluid. It is preferable to have a feature that a solution introduction means 7 for flowing in the direction and a means 6 for accommodating the captured components discharged from the inlet side of the hematopoietic stem cell separation device 2 at this time are provided. The means 3 for storing the body fluid and the means 5 for storing the solution that has passed through the hematopoietic stem cell separator are preferably bag-shaped from the viewpoint of ease of handling, but the present invention is not limited thereto.

また前記各収容手段はチューブなどによって接続されており、各チューブにはクランプ、二法活栓、三方活栓などの溶液の流れを制御できる手段が付属されていることが、使いやすさの点より好ましい。造血幹細胞分離装置2に捕捉された成分を脱離回収するために造血幹細胞分離装置に対し体液とは逆方向へ流すための溶液導入手段7とは、バッグなどに溶液を含ませる状態で提供しても良いし、シリンジに溶液を含ませる状態で提供されていても良い。この溶液導入手段7は、造血幹細胞分離装置2の出口側と造血幹細胞分離装置を通過した溶液を収容する手段5の間に三方活栓等を介して枝分かれを有して配置することが、使いやすさの観点から好ましい(但し、最初に体液を流した後に、造血幹細胞分離装置を通過した溶液を収容する手段5に置き換えて、溶液導入手段7を配置することも可能である。)。また、造血幹細胞分離装置2に捕捉された成分を脱離回収するために造血幹細胞分離装置に対し体液とは逆方向へ流す際に、造血幹細胞分離装置の入口側から排出された捕捉された成分を収容する手段6は、造血幹細胞分離装置2の入り口側と体液を収容する手段3の間に三方活栓等を介して枝分かれを有して配置することが好ましい(但し、最初に体液を流した後に、体液を収容する手段3に置き換えて、造血幹細胞分離装置の入口側から排出された捕捉された成分を収容する手段6を配置することも可能である。)。また、造血幹細胞分離装置の入口側から排出された捕捉された成分を収容する手段6は、容易に入手できること、更に操作後に取り扱いやすいことなどから、バッグ形状が好ましい。また、細胞培養可能なバック、凍結保存耐性を有するバック等を選択しても良い。図1に本発明の細胞分離回路を例示するが、本発明はこれらに限定されることはない。   In addition, it is preferable from the viewpoint of ease of use that each storage means is connected by a tube or the like, and each tube is provided with means capable of controlling the flow of the solution such as a clamp, a two-way stopcock, and a three-way stopcock. . The solution introducing means 7 for flowing the component captured by the hematopoietic stem cell separation device 2 in the direction opposite to the body fluid in order to desorb and collect the component is provided in a state where the solution is contained in a bag or the like. Alternatively, it may be provided in a state where the solution is contained in the syringe. It is easy to use the solution introducing means 7 with a branch through a three-way cock between the outlet side of the hematopoietic stem cell separating apparatus 2 and the means 5 for storing the solution that has passed through the hematopoietic stem cell separating apparatus. From this point of view, it is preferable (however, it is also possible to arrange the solution introducing means 7 in place of the means 5 for storing the solution that has passed through the hematopoietic stem cell separating apparatus after the body fluid is first flowed). Further, the trapped component discharged from the inlet side of the hematopoietic stem cell separation device when flowing in the direction opposite to the body fluid to the hematopoietic stem cell separation device in order to desorb and collect the component captured by the hematopoietic stem cell separation device 2 It is preferable that the means 6 for storing the blood flow is arranged between the inlet side of the hematopoietic stem cell separation device 2 and the means 3 for storing the body fluid with a branching through a three-way stopcock or the like (however, the body fluid was first flowed) Later, it is also possible to dispose the means 6 for containing the trapped components discharged from the inlet side of the hematopoietic stem cell separation device instead of the means 3 for containing the body fluid. In addition, the means 6 for storing the captured component discharged from the inlet side of the hematopoietic stem cell separation device is preferably in the shape of a bag because it can be easily obtained and is easy to handle after the operation. Further, a bag capable of cell culture, a bag having cryopreservation resistance, and the like may be selected. Although the cell separation circuit of this invention is illustrated in FIG. 1, this invention is not limited to these.

次に造血幹細胞の分離方法について説明する。   Next, a method for separating hematopoietic stem cells will be described.

本発明における造血幹細胞の分離方法とは、第一に体液を造血幹細胞分離装置の入口側より導入し出口側より導出することにより造血幹細胞を造血幹細胞分離装置内に捕捉する工程、第二に造血幹細胞分離装置内に捕捉された造血幹細胞を脱離するための溶液を造血幹細胞分離装置の出口側より導入し入口側より導出する工程、を含む造血幹細胞の分離方法である。造血幹細胞分離材に関しては上述したものを使用することができる。   The method for separating hematopoietic stem cells in the present invention includes a step of first capturing a hematopoietic stem cell in the hematopoietic stem cell separating apparatus by introducing a body fluid from the inlet side of the hematopoietic stem cell separating apparatus and deriving from the outlet side. A method for separating hematopoietic stem cells, comprising a step of introducing a solution for detaching hematopoietic stem cells trapped in the stem cell separation device from the outlet side of the hematopoietic stem cell separation device and leading out the solution from the inlet side. As the hematopoietic stem cell separating material, those described above can be used.

具体的には、第一の工程として、造血幹細胞分離装置に体液を入口側より注入し、造血幹細胞を造血幹細胞分離装置に捕捉させ、赤血球は造血幹細胞分離装置を通過させる。次に、必要に応じて、造血幹細胞分離装置内の洗浄操作を行う。この洗浄操作は必ずしも必要ないが、最終的に回収される造血幹細胞中の造血幹細胞以外の成分の混入を低減する上で行うことが好ましい。次いで第二の工程として、造血幹細胞の造血幹細胞分離装置の出口方向から、すなわち、体液や洗浄液の通液方向とは逆方向から、造血幹細胞分離装置内に捕捉された造血幹細胞を回収するために、溶液を導入し、造血幹細胞を高収率で回収し、濃縮することが出来る。   Specifically, as a first step, a body fluid is injected into the hematopoietic stem cell separation device from the inlet side, the hematopoietic stem cells are captured by the hematopoietic stem cell separation device, and the red blood cells pass through the hematopoietic stem cell separation device. Next, a washing operation in the hematopoietic stem cell separation device is performed as necessary. Although this washing operation is not always necessary, it is preferably performed to reduce contamination of components other than hematopoietic stem cells in the finally collected hematopoietic stem cells. Next, as a second step, in order to collect hematopoietic stem cells captured in the hematopoietic stem cell separation device from the outlet direction of the hematopoietic stem cell separation device, that is, from the direction opposite to the direction in which the body fluid or the washing solution is passed. The solution can be introduced, and hematopoietic stem cells can be collected and concentrated in a high yield.

以下、本発明の造血幹細胞の分離方法の各工程について、例を示して説明する。   Hereinafter, each step of the method for separating hematopoietic stem cells of the present invention will be described with examples.

1)体液送液工程
造血幹細胞分離材を充填した造血幹細胞分離装置の体液入口側より体液を通液する際には、体液を入れた容器から送液回路を通じて自然落下で送液しても、ポンプにより送液しても良い。また、体液を入れたシリンジを直接、該容器に接続し、手でシリンジを押しても良い。ポンプにより通液する場合には、送液速度が速過ぎると分離効率が落ち、遅過ぎると処理時間が掛かり過ぎることから、0.1mL/minから100mL/minが挙げられるが、これに限定されるものではない。
1) Body fluid feeding step When passing body fluid from the body fluid inlet side of the hematopoietic stem cell separator filled with hematopoietic stem cell separation material, even if it is sent by natural fall from the container containing the body fluid through the fluid feeding circuit, You may send liquid with a pump. Alternatively, a syringe containing body fluid may be directly connected to the container and the syringe pushed by hand. When the liquid is passed through the pump, the separation efficiency decreases if the liquid feeding speed is too fast, and the processing time is too long if the liquid feeding speed is too slow, and examples include 0.1 mL / min to 100 mL / min, but are not limited thereto. It is not something.

また体液送液工程の前処理として、生理食塩水や緩衝液で分離材を浸漬させる工程を実施しても良い。この操作は必ずしも必要ではないが、分離材の上記溶液への浸漬が分離効率の向上と血液流路確保に影響すると考えられるため、場合によっては実施することが好ましい。この前処理溶液としては各種溶液を用いることができるが、以下で説明する洗浄工程で用いる溶液と同一であれば溶液バックを共有できるため、回路システムの単純化と操作性の観点から同一であることが好ましい。前処理の液量としては、血球分離材が充填される容器の1倍から100倍程度が実用的であり好ましい。   Moreover, you may implement the process of immersing a separating material with a physiological saline or a buffer solution as pre-processing of a bodily fluid sending process. Although this operation is not always necessary, it is considered that the immersion of the separation material in the above solution may affect the improvement of the separation efficiency and the securing of the blood flow path. Various solutions can be used as this pretreatment solution, but the same solution solution can be shared as long as it is the same as that used in the cleaning process described below. It is preferable. The amount of the pretreatment liquid is practically and preferably about 1 to 100 times that of the container filled with the blood cell separator.

2)洗浄工程(洗浄操作は必ずしも必要な工程ではない)
洗浄液は、体液送液工程と同方向より回路を通じて、自然落下で送液しても、ポンプにより送液しても良い。ポンプにより送液する場合の流速は、体液送液工程と同程度であり、0.1mL/minから100mL/minが挙げられるが、これに限定されるものではない。洗浄量は容器の容量によって異なるが、洗浄量が少なすぎると容器に残存する赤血球成分が多くなり、洗浄量が多すぎると分離効率が落ちるとともに多大な時間を要することから、容器の0.5倍から100倍程度の容量で洗浄することが好ましい。
2) Cleaning process (cleaning operation is not always necessary)
The cleaning liquid may be sent by natural fall through the circuit from the same direction as the body fluid feeding process, or may be fed by a pump. The flow rate in the case of feeding with a pump is about the same as that in the body fluid feeding process, and is from 0.1 mL / min to 100 mL / min, but is not limited thereto. The amount of washing differs depending on the volume of the container. However, if the amount of washing is too small, the amount of red blood cell components remaining in the container increases, and if the amount of washing is too large, the separation efficiency is reduced and a great deal of time is required. It is preferable to wash with a volume of about 100 to 100 times.

使用できる洗浄液としては、赤血球を洗い流すことが可能であり、分離後の造血幹細胞含有液中における他血球の混入を抑制でき、造血幹細胞の捕捉状態を保持することができれば、どのような溶液を用いても構わないが、生理食塩水、リンゲル液、細胞培養に用いる培地、リン酸緩衝液等の一般的な緩衝液が好ましい。   As the cleaning solution that can be used, any solution can be used as long as it is possible to wash out red blood cells, suppress contamination of other blood cells in the hematopoietic stem cell-containing solution after separation, and maintain the trapped state of hematopoietic stem cells. Ordinary buffer solutions such as physiological saline, Ringer's solution, medium used for cell culture, and phosphate buffer are preferable.

3)造血幹細胞の脱離
造血幹細胞分離装置に体液の通液とは逆方向(体液流出側)より溶液を注入し、造血幹細胞を脱離させる。溶液を注入する際には、分離溶液を予めシリンジ等に入れておき、シリンジのプランジャーを手や機器を用いて勢い良く押し出すことにより実行できる。回収液量や流速は、容器の容量や処理量により異なるが、容器の0.3倍から100倍程度の容量で、流速0.5mL/secから20mL/secが好ましいが、これらに限定されるものではない。また自然落下で溶液を導入しても、シリンジポンプで溶液を導入しても構わない。
3) Desorption of hematopoietic stem cells A solution is injected into the hematopoietic stem cell separation device from the direction opposite to the flow of the body fluid (from the body fluid outflow side) to desorb the hematopoietic stem cells. When injecting the solution, the separation solution can be put in a syringe or the like in advance, and the plunger of the syringe can be pushed out vigorously using hands or equipment. The amount of recovered liquid and the flow rate vary depending on the capacity and processing amount of the container, but the capacity is about 0.3 to 100 times that of the container, and the flow rate is preferably 0.5 mL / sec to 20 mL / sec, but is not limited thereto. It is not a thing. Further, the solution may be introduced by natural fall or the solution may be introduced by a syringe pump.

この際に使用する溶液は低張液であれば特に限定されないが、生理的食塩水やリンゲル液などの注射用剤として使用実績があるものや、緩衝液、細胞培養用培地等が挙げられる。   The solution used in this case is not particularly limited as long as it is a hypotonic solution, and examples thereof include those that have been used as injections such as physiological saline and Ringer's solution, buffer solutions, cell culture media, and the like.

また捕捉された細胞の回収率を上げるために回収液の粘張度を上げても良い。そのために上記分離溶液にアルブミン、フィブリノゲン、グロブリン、デキストラン、ヒドロキシエチルスターチ、ヒドロキシエチルセルロース、コラーゲン、ヒアルロン酸、ゼラチン等を添加できるが、これらに限定されるものではない。   Further, the viscosity of the collected liquid may be increased in order to increase the collection rate of the captured cells. For this purpose, albumin, fibrinogen, globulin, dextran, hydroxyethyl starch, hydroxyethyl cellulose, collagen, hyaluronic acid, gelatin and the like can be added to the above-mentioned separation solution, but are not limited thereto.

以下、実施例において本発明に関して詳細に述べるが、本発明は以下の実施例のみに限定されるものではない。以下の実施例および比較例で用いた不織布は各々1枚当りの厚みが異なっているため、容器に充填される枚数が異なっている。しかしながら総枚数の厚み、或いは、圧縮率(=容器に充填された際の厚み/送枚数の厚み)を統一しており、同一の条件下で実施したものである。   EXAMPLES Hereinafter, although an Example demonstrates in detail regarding this invention, this invention is not limited only to a following example. Since the nonwoven fabrics used in the following examples and comparative examples have different thicknesses per sheet, the number of sheets filled in the containers is different. However, the thickness of the total number or the compression ratio (= thickness when filled in the container / thickness of the number of sheets to be fed) are standardized, and it is carried out under the same conditions.

(実施例1)
厚さ(内径)12mm、直径(内径)44mmの容器に、ポリブチレンテレフタレート製不織布(繊維径3.8μm、密度K1.3×10g/m)112枚を積層状態で充填し、細胞分離器を作成し、図1に示したような造血幹細胞分離装置を製造した。具体的には、細胞分離器の上流側に三方活栓を取り付け、チューブを介して血液バッグを(カワスミ社製、カワスミ血液分離用バッグ(容量200mL))接続し、細胞分離器の下流に三方活栓を取り付け、チューブを介して、細胞分離器を通過した溶液を回収するためのバッグを接続した。生理食塩水約100mLを血液バッグに導入し、生理食塩水が細胞分離器に流れるように三方活栓を調節した。血液バッグ中の生理食塩水が殆ど無くなったのを確認した後、細胞分離器上流の三方活栓を調整し、生理食塩水の流れを止めた。この時、血液バッグ中に僅かに生理食塩水が残るようにしエアがフィルター入らないように注意を払った。次に、ヒト末梢血(100mLをCPD28mLで抗凝固)を同じ血液バッグに導入した。同様に三方活栓を調整し、ヒト末梢血を細胞分離器に導入し、バッグに導出した。ヒト末梢血が血液バッグから無くなり、エアがフィルターに入る直前に、三方活栓を閉にした。細胞分離器から出口側の三方活栓以外を外した。4%ヒト血清アルブミン添加サリンヘス20mLをシリンジにとり、出口側の三方活栓より導入し、細胞分離器の入口側より導出し、遠沈管に回収した。処理前血液の血算、回収した溶液の血算を血球カウンター(シスメックス、K−4500)により測定し、白血球の回収率を算出した。さらに、処理前の血液、回収した溶液をFACS Lysing Solutionで溶血後、フローサイトメーター(BD FACSCanto)により単核球陽性率、顆粒球陽性率を求め、白血球数と各陽性率を掛けあわせて総単核球数及び総顆粒球数を算出した。回収した溶液中の総単核球数・総顆粒球数を処理前の総単核球数・総顆粒球数で割った割合を各々単核球回収率・顆粒球回収率とした。またISHAGEのガイドラインに準じて、CD34陽性細胞の細胞数をカウントし、同様にCD34陽性細胞の回収率を算出した。またコロニーアッセイによるコロニー数を測定し、コロニーの回収率を測定した。具体的には、白血球濃度2×10^6になるように調整し、メチルセルロース培地MethoCult H4034(StemCell Technologies社)3mLに対して0.3mLを添加した後、混合液1.1mLをペトリディッシュに分注し、37℃、5%CO2下で培養した。14日後に顕微鏡にて、赤血球系前駆細胞や白血球前駆細胞等の造血系幹細胞から成る各種コロニー数をカウントし、処理前と処理後の総コロニー数よりコロニー回収率を算出した。結果を表1に示した。
Example 1
A container having a thickness (inner diameter) of 12 mm and a diameter (inner diameter) of 44 mm is filled with 112 sheets of polybutylene terephthalate nonwoven fabric (fiber diameter 3.8 μm, density K1.3 × 10 5 g / m 3 ) in a laminated state, and cells A separator was prepared, and a hematopoietic stem cell separator as shown in FIG. 1 was produced. Specifically, a three-way stopcock is attached to the upstream side of the cell separator, a blood bag (manufactured by Kawasumi Corp., Kawasumi blood separation bag (capacity 200 mL)) is connected via a tube, and the three-way stopcock is connected downstream of the cell separator. And a bag for collecting the solution that passed through the cell separator was connected via a tube. About 100 mL of physiological saline was introduced into the blood bag, and the three-way stopcock was adjusted so that the physiological saline flowed to the cell separator. After confirming that the physiological saline in the blood bag almost disappeared, the three-way stopcock upstream of the cell separator was adjusted to stop the physiological saline flow. At this time, care was taken so that a slight amount of physiological saline remained in the blood bag and air did not enter the filter. Next, human peripheral blood (100 mL anticoagulated with 28 mL CPD) was introduced into the same blood bag. Similarly, the three-way stopcock was adjusted, and human peripheral blood was introduced into the cell separator and led to the bag. The three-way stopcock was closed immediately before human peripheral blood disappeared from the blood bag and air entered the filter. All but the three-way stopcock on the outlet side were removed from the cell separator. 20 mL of 4% human serum albumin-added sarinhes was taken in a syringe, introduced from a three-way stopcock on the outlet side, led out from the inlet side of the cell separator, and collected in a centrifuge tube. The blood count of the blood before treatment and the blood count of the collected solution were measured with a blood cell counter (Sysmex, K-4500), and the leukocyte recovery rate was calculated. Furthermore, the blood before treatment and the collected solution were hemolyzed with FACS Lysing Solution, then the mononuclear cell positive rate and granulocyte positive rate were obtained with a flow cytometer (BD FACSCanto), and the total number of white blood cells was multiplied by each positive rate. The number of mononuclear cells and the total number of granulocytes were calculated. The ratios obtained by dividing the total number of mononuclear cells and the total number of granulocytes in the collected solution by the total number of mononuclear cells and the total number of granulocytes before treatment were taken as the mononuclear cell recovery rate and granulocyte recovery rate, respectively. Further, according to the ISHAGE guidelines, the number of CD34 positive cells was counted, and the recovery rate of CD34 positive cells was calculated in the same manner. Moreover, the number of colonies by a colony assay was measured, and the recovery rate of colonies was measured. Specifically, the white blood cell concentration was adjusted to 2 × 10 ^ 6, 0.3 mL was added to 3 mL of methylcellulose medium MethoCult H4034 (StemCell Technologies), and then 1.1 mL of the mixed solution was dispensed into a Petri dish. Note and cultured at 37 ° C., 5% CO 2. After 14 days, the number of various colonies consisting of hematopoietic stem cells such as erythroid progenitor cells and leukocyte progenitor cells was counted with a microscope, and the colony recovery rate was calculated from the total number of colonies before and after treatment. The results are shown in Table 1.

Figure 2012139142
Figure 2012139142

(実施例2)
厚さ6mm直径18mmの容器に、ポリブチレンテレフタレート製不織布(繊維径3.8μm、密度K1.2×10g/m)28枚を積層状態で充填し、まず生理食塩水45mLを入口側よりシリンジを用いて手押しで通液した。次にCPD抗凝固の新鮮ヒト末梢血10mLを2.5mL/minを通液した。その後、通液とは逆方向より10%FBS添加MEM培地30mLをシリンジを用いて手押しで回収した。実施例1と同様に白血球回収率、単核球回収率、顆粒球回収率、CD34陽性細胞回収率、コロニー回収率を算出した。結果を表1に示した。
(Example 2)
A container with a thickness of 6 mm and a diameter of 18 mm is filled with 28 non-woven fabrics made of polybutylene terephthalate (fiber diameter 3.8 μm, density K1.2 × 10 5 g / m 3 ), and 45 mL of physiological saline is first introduced on the inlet side. Further, the solution was passed by hand using a syringe. Next, 10 mL of CPD anticoagulated fresh human peripheral blood was passed through 2.5 mL / min. Thereafter, 30 mL of 10% FBS-added MEM medium was collected manually by a syringe from the direction opposite to the flow direction. In the same manner as in Example 1, the leukocyte recovery rate, mononuclear cell recovery rate, granulocyte recovery rate, CD34 positive cell recovery rate, and colony recovery rate were calculated. The results are shown in Table 1.

(実施例3)
厚さ6mm直径18mmの容器に、ポリプロピレン製不織布(繊維径3.5μm、密度K8.3×10g/m)28枚を積層状態で充填し、まず生理食塩水45mLを入口側よりシリンジを用いて手押しで通液した。次にヒト臍帯血由来CD34陽性細胞を添加したCPD抗凝固の新鮮ヒト末梢血10mLを2.5mL/min、次に同方向より生理食塩水10mLを通液した。その後、通液とは逆方向より10%FBS添加MEM培地30mLをシリンジを用いて手押しで回収した。実施例1と同様に白血球回収率、単核球回収率、顆粒球回収率、CD34陽性細胞回収率、コロニー回収率を算出した。結果を表1に示した。
Example 3
A container having a thickness of 6 mm and a diameter of 18 mm is filled with 28 polypropylene non-woven fabrics (fiber diameter 3.5 μm, density K 8.3 × 10 4 g / m 3 ) in a laminated state. First, 45 mL of physiological saline is syringed from the inlet side. The solution was passed by hand using Next, 10 mL of CPD anticoagulated fresh human peripheral blood to which human umbilical cord blood-derived CD34 positive cells were added was passed through 2.5 mL / min, and then 10 mL of physiological saline from the same direction. Thereafter, 30 mL of 10% FBS-added MEM medium was collected manually by a syringe from the direction opposite to the flow direction. In the same manner as in Example 1, the leukocyte recovery rate, mononuclear cell recovery rate, granulocyte recovery rate, CD34 positive cell recovery rate, and colony recovery rate were calculated. The results are shown in Table 1.

(比較例1)
厚さ6mm直径18mmの容器に、ナイロン製不織布(繊維径5.0μm、密度K1.3×10g/m)36枚を積層状態で充填し、まず生理食塩水45mLを入口側よりシリンジを用いて手押しで通液した。次にヒト臍帯血由来CD34陽性細胞を添加したCPD抗凝固の新鮮ヒト末梢血10mLを2.5mL/min、次に同方向より生理食塩水10mLを通液した。その後、通液とは逆方向より10%FBS添加MEM培地30mLをシリンジを用いて手押しで回収した。実施例1と同様に白血球回収率、単核球回収率、顆粒球回収率、CD34陽性細胞回収率、コロニー回収率を算出した。結果を表1に示した。
(Comparative Example 1)
A container with a thickness of 6 mm and a diameter of 18 mm is filled with 36 nylon non-woven fabrics (fiber diameter 5.0 μm, density K1.3 × 10 5 g / m 3 ) in a laminated state. First, 45 mL of physiological saline is syringed from the inlet side. The solution was passed by hand using Next, 10 mL of CPD anticoagulated fresh human peripheral blood to which human umbilical cord blood-derived CD34 positive cells were added was passed through 2.5 mL / min, and then 10 mL of physiological saline from the same direction. Thereafter, 30 mL of 10% FBS-added MEM medium was collected manually by a syringe from the direction opposite to the flow direction. In the same manner as in Example 1, the leukocyte recovery rate, mononuclear cell recovery rate, granulocyte recovery rate, CD34 positive cell recovery rate, and colony recovery rate were calculated. The results are shown in Table 1.

(比較例2)
厚さ6mm直径18mmの容器に、ポリプロピレン製不織布(繊維径2.4μm、密度K7.5×10g/m)30枚を積層状態で充填し、まず生理食塩水45mLを入口側よりシリンジを用いて手押しで通液した。次にヒト臍帯血由来CD34陽性細胞を添加したCPD抗凝固の新鮮ヒト末梢血10mLを2.5mL/min、次に同方向より生理食塩水10mLを通液した。その後、通液とは逆方向より10%FBS添加MEM培地30mLをシリンジを用いて手押しで回収した。実施例1と同様に白血球回収率、単核球回収率、顆粒球回収率、CD34陽性細胞回収率、コロニー回収率を算出した。結果を表1に示した。
(Comparative Example 2)
A container with a thickness of 6 mm and a diameter of 18 mm is filled with 30 sheets of polypropylene non-woven fabric (fiber diameter 2.4 μm, density K7.5 × 10 4 g / m 3 ) in a laminated state. First, 45 mL of physiological saline is syringed from the inlet side. The solution was passed by hand using Next, 10 mL of CPD anticoagulated fresh human peripheral blood to which human umbilical cord blood-derived CD34 positive cells were added was passed through 2.5 mL / min, and then 10 mL of physiological saline from the same direction. Thereafter, 30 mL of 10% FBS-added MEM medium was collected manually by a syringe from the direction opposite to the flow direction. In the same manner as in Example 1, the leukocyte recovery rate, mononuclear cell recovery rate, granulocyte recovery rate, CD34 positive cell recovery rate, and colony recovery rate were calculated. The results are shown in Table 1.

(比較例3)
厚さ6mm直径18mmの容器に、ポリブチレンテレフタレート製不織布(繊維径1.8μm、密度K8.6×10g/m)84枚を積層状態で充填し、まず生理食塩水45mLを入口側よりシリンジを用いて手押しで通液した。次にヒト臍帯血由来CD34陽性細胞を添加したCPD抗凝固の新鮮ヒト末梢血10mLを2.5mL/min、次に同方向より生理食塩水10mLを通液した。その後、通液とは逆方向より10%FBS添加MEM培地30mLをシリンジを用いて手押しで回収した。実施例1と同様に白血球回収率、単核球回収率、顆粒球回収率、CD34陽性細胞回収率、コロニー回収率を算出した。結果を表1に示した。
(Comparative Example 3)
A container having a thickness of 6 mm and a diameter of 18 mm is filled with 84 sheets of non-woven fabric made of polybutylene terephthalate (fiber diameter 1.8 μm, density K8.6 × 10 4 g / m 3 ), and 45 mL of physiological saline is first introduced on the inlet side. Further, the solution was passed by hand using a syringe. Next, 10 mL of CPD anticoagulated fresh human peripheral blood to which human umbilical cord blood-derived CD34 positive cells were added was passed through 2.5 mL / min, and then 10 mL of physiological saline from the same direction. Thereafter, 30 mL of 10% FBS-added MEM medium was collected manually by a syringe from the direction opposite to the flow direction. In the same manner as in Example 1, the leukocyte recovery rate, mononuclear cell recovery rate, granulocyte recovery rate, CD34 positive cell recovery rate, and colony recovery rate were calculated. The results are shown in Table 1.

1 チャンバー
2 造血幹細胞分離材が充填された容器(造血幹細胞分離装置)
3 体液を収容するための手段
4 プライミング液を収容するための手段
5 造血幹細胞分離装置を通過した溶液を収容する手段
6 造血幹細胞を収容する手段
7 造血幹細胞分離装置内に捕捉された造血幹細胞を脱離するための溶液導入手段
8、9、10 三方活栓
11、12、13、14、15、16、17 回路
1 Chamber 2 Container filled with hematopoietic stem cell separator (hematopoietic stem cell separator)
3 Means for accommodating body fluid 4 Means for accommodating priming fluid 5 Means for accommodating solution that has passed through hematopoietic stem cell separator 6 Means for accommodating hematopoietic stem cell 7 Hematopoietic stem cells captured in hematopoietic stem cell separator Solution introduction means for desorption 8, 9, 10 Three-way stopcock 11, 12, 13, 14, 15, 16, 17 Circuit

Claims (8)

平均繊維径が3マイクロメートル以上、4マイクロメートル以下の不織布から成る造血幹細胞分離材。 A hematopoietic stem cell separation material comprising a nonwoven fabric having an average fiber diameter of 3 micrometers or more and 4 micrometers or less. 前記不織布を構成する材料がポリエステル樹脂であることを特徴とする請求項1記載の造血幹細胞分離材。 The hematopoietic stem cell separation material according to claim 1, wherein the material constituting the nonwoven fabric is a polyester resin. 前記ポリエステル樹脂がポリブチレンテレフタレート樹脂であることを特徴とする請求項2記載の造血幹細胞分離材。 The hematopoietic stem cell separator according to claim 2, wherein the polyester resin is a polybutylene terephthalate resin. 前記分離材が親水性処理されていないことを特徴とする請求項1から3のいずれか1項に記載の造血幹細胞分離材。 The hematopoietic stem cell separator according to any one of claims 1 to 3, wherein the separator is not hydrophilically treated. 請求項1から請求項4に記載の造血幹細胞分離材が入口と出口を有する容器に充填された造血幹細胞分離装置。 A hematopoietic stem cell separation device, wherein the hematopoietic stem cell separation material according to claim 1 is filled in a container having an inlet and an outlet. 請求項5に記載の造血幹細胞分離装置の入口側に体液を収容する手段と、造血幹細胞分離装置の出口側に造血幹細胞分離装置を通過した溶液を収容する手段を備え、
さらに、造血幹細胞分離装置の出口側に造血幹細胞分離装置に捕捉された成分を脱離回収するために造血幹細胞分離装置に対し体液とは逆方向へ流すための溶液導入手段と、この際に造血幹細胞分離装置の入口側から排出された捕捉された成分を収容する手段を備えた造血幹細胞分離回路。
Means for containing body fluid on the inlet side of the hematopoietic stem cell separator according to claim 5, and means for containing the solution that has passed through the hematopoietic stem cell separator on the outlet side of the hematopoietic stem cell separator,
Furthermore, a solution introducing means for allowing the hematopoietic stem cell separator to flow in the direction opposite to the body fluid in order to desorb and collect the components captured by the hematopoietic stem cell separator on the outlet side of the hematopoietic stem cell separator; A hematopoietic stem cell separation circuit comprising means for containing captured components discharged from the inlet side of the stem cell separation device.
請求項5に記載の造血幹細胞分離装置、或いは、請求項6に記載の造血幹細胞分離回路を用いた造血幹細胞の分離方法であって、
(A)体液を造血幹細胞分離装置の入口側より導入し出口側より導出することにより造血幹細胞を造血幹細胞分離装置内に捕捉する工程、
(B)造血幹細胞分離装置内に捕捉された造血幹細胞を脱離するための溶液を造血幹細胞分離装置の出口側より導入し入口側より導出する工程、
を含む造血幹細胞の分離方法。
A hematopoietic stem cell separation device according to claim 5, or a hematopoietic stem cell separation method using the hematopoietic stem cell separation circuit according to claim 6,
(A) a step of capturing hematopoietic stem cells in the hematopoietic stem cell separator by introducing a body fluid from the inlet side of the hematopoietic stem cell separator and leading out from the outlet side;
(B) introducing a solution for detaching hematopoietic stem cells trapped in the hematopoietic stem cell separation device from the outlet side of the hematopoietic stem cell separation device and deriving from the inlet side;
Of isolating hematopoietic stem cells.
工程(A)の前にプライミングする工程を含む請求項7記載の造血幹細胞の分離方法。
The method for separating hematopoietic stem cells according to claim 7, comprising a step of priming before step (A).
JP2010293005A 2010-12-28 2010-12-28 Hematopoietic stem cell separating material or method for separation Pending JP2012139142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293005A JP2012139142A (en) 2010-12-28 2010-12-28 Hematopoietic stem cell separating material or method for separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293005A JP2012139142A (en) 2010-12-28 2010-12-28 Hematopoietic stem cell separating material or method for separation

Publications (1)

Publication Number Publication Date
JP2012139142A true JP2012139142A (en) 2012-07-26

Family

ID=46676094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293005A Pending JP2012139142A (en) 2010-12-28 2010-12-28 Hematopoietic stem cell separating material or method for separation

Country Status (1)

Country Link
JP (1) JP2012139142A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012839A (en) * 2013-07-05 2015-01-22 日立化成株式会社 Cell-catching system, and operational method of cell-catching system
JP2015047073A (en) * 2013-08-29 2015-03-16 日立化成株式会社 Cell capturing device and cell capturing system
JP2015198595A (en) * 2014-04-07 2015-11-12 日立化成株式会社 Cell-capturing device and cell-capturing apparatus
JP2016010393A (en) * 2014-06-30 2016-01-21 株式会社カネカ Installing stand for device for cell segregation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104643A (en) * 1994-10-05 1996-04-23 Asahi Medical Co Ltd Method for removing erythrocyte
JPH09322757A (en) * 1996-05-31 1997-12-16 Asahi Medical Co Ltd Cell separating purification material, cell separating purifier and cell separating purification
WO2005035737A1 (en) * 2003-10-10 2005-04-21 Asahi Kasei Medical Co., Ltd. Method of preparing cell concentrate and cell composition
JP2006158305A (en) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology Adsorbent for separating cell, adsorbent module for separating cell and method for separating cell
WO2007046501A1 (en) * 2005-10-21 2007-04-26 Kaneka Corporation Stem cell separating material and method of separation
JP2007159874A (en) * 2005-12-15 2007-06-28 Asahi Kasei Corp Ligand immobilization substrate and cell selective adsorbent
JP2008022822A (en) * 2006-07-25 2008-02-07 Kaneka Corp System for separating and culturing adult stem cell
JP2009101022A (en) * 2007-10-24 2009-05-14 Kaneka Corp Device and method for producing bone regeneration composition, bone regeneration composition and bone regeneration method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104643A (en) * 1994-10-05 1996-04-23 Asahi Medical Co Ltd Method for removing erythrocyte
JPH09322757A (en) * 1996-05-31 1997-12-16 Asahi Medical Co Ltd Cell separating purification material, cell separating purifier and cell separating purification
WO2005035737A1 (en) * 2003-10-10 2005-04-21 Asahi Kasei Medical Co., Ltd. Method of preparing cell concentrate and cell composition
JP2006158305A (en) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology Adsorbent for separating cell, adsorbent module for separating cell and method for separating cell
WO2007046501A1 (en) * 2005-10-21 2007-04-26 Kaneka Corporation Stem cell separating material and method of separation
JP2007159874A (en) * 2005-12-15 2007-06-28 Asahi Kasei Corp Ligand immobilization substrate and cell selective adsorbent
JP2008022822A (en) * 2006-07-25 2008-02-07 Kaneka Corp System for separating and culturing adult stem cell
JP2009101022A (en) * 2007-10-24 2009-05-14 Kaneka Corp Device and method for producing bone regeneration composition, bone regeneration composition and bone regeneration method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012839A (en) * 2013-07-05 2015-01-22 日立化成株式会社 Cell-catching system, and operational method of cell-catching system
JP2015047073A (en) * 2013-08-29 2015-03-16 日立化成株式会社 Cell capturing device and cell capturing system
JP2015198595A (en) * 2014-04-07 2015-11-12 日立化成株式会社 Cell-capturing device and cell-capturing apparatus
JP2016010393A (en) * 2014-06-30 2016-01-21 株式会社カネカ Installing stand for device for cell segregation

Similar Documents

Publication Publication Date Title
JP6208186B2 (en) Blood component separation system, separation material
JP5944832B2 (en) Leukocyte or mononuclear cell separation method, separation material
JP5975985B2 (en) Mononuclear cell preparation material, and mononuclear cell preparation method using the preparation material
WO2002101029A1 (en) Method of separating and concentrating cells for kidney regfneration
JP2012139142A (en) Hematopoietic stem cell separating material or method for separation
JP6143746B2 (en) Nucleated cell capture filter or nucleated cell preparation method using the same
WO2016002505A1 (en) Filter having optimized external shape of ridges inside filter
JP2013036818A (en) Method of concentrating tumor cell and separation material
JP2016010394A (en) Filter with optimized ratio of projected parts in filter
JP6379042B2 (en) How to remove red blood cells
JP2012139112A (en) Differential leukocyte count recovery unit
JP6615577B2 (en) Method for producing cell concentrate using cell separation filter
JP2012120458A (en) Cell separator
JP2012120457A (en) Cell separating device with function of priming device, and priming method using the same
JPH11266852A (en) Cell separator
JP2019024426A (en) Cell separation device and method of obtaining cell-containing liquid comprising monocytes
JPH1014565A (en) Hematopoietic stem cell concentrating material, hematopoietic stem cell concentrating filter and concentration of hematopoietic stem cell
McDonald et al. Leukoreduction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150909

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20151113