JP2012138463A - Method for evaluating silicon single crystal wafer - Google Patents

Method for evaluating silicon single crystal wafer Download PDF

Info

Publication number
JP2012138463A
JP2012138463A JP2010289732A JP2010289732A JP2012138463A JP 2012138463 A JP2012138463 A JP 2012138463A JP 2010289732 A JP2010289732 A JP 2010289732A JP 2010289732 A JP2010289732 A JP 2010289732A JP 2012138463 A JP2012138463 A JP 2012138463A
Authority
JP
Japan
Prior art keywords
single crystal
crystal wafer
silicon single
oxide film
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010289732A
Other languages
Japanese (ja)
Inventor
Fumitaka Kume
史高 久米
Yuki Shibata
有希 芝田
Chisa Yoshida
知佐 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2010289732A priority Critical patent/JP2012138463A/en
Publication of JP2012138463A publication Critical patent/JP2012138463A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating a silicon single crystal wafer that can easily form a relatively thick silicon oxide film of 5 nm or larger on a surface of the silicon single crystal wafer, and can stably measure C-V characteristics.SOLUTION: The method for evaluating a silicon single crystal wafer includes: depositing a silicon oxide film on a surface of the silicon single crystal wafer; and measuring C-V characteristics by bonding a mercury electrode on the silicon oxide film.

Description

本発明はシリコン単結晶ウェーハの評価方法に関し、より詳しくは、水銀電極を用いてn型シリコン単結晶ウェーハのC−V測定を行う方法に関する。   The present invention relates to a method for evaluating a silicon single crystal wafer, and more particularly to a method for performing CV measurement of an n-type silicon single crystal wafer using a mercury electrode.

従来、シリコン単結晶ウェーハの抵抗率を測定する方法として、C−V(capacitance−voltage)特性を測定する方法が知られている。C−V特性を測定するには、試料となるシリコン単結晶ウェーハの表面にショットキー接合を形成し、逆バイアス電圧を連続的に変化させながら印加することによりシリコン単結晶ウェーハの内部に空乏層を拡げて容量を変化させる。シリコン単結晶ウェーハの表面にショットキー接合を形成するために、例えば水銀電極が用いられる。   Conventionally, a method for measuring CV (capacitance-voltage) characteristics is known as a method for measuring the resistivity of a silicon single crystal wafer. In order to measure the CV characteristics, a depletion layer is formed inside the silicon single crystal wafer by forming a Schottky junction on the surface of the silicon single crystal wafer to be a sample and applying a reverse bias voltage continuously. To expand the capacity and change the capacity. For example, a mercury electrode is used to form a Schottky junction on the surface of the silicon single crystal wafer.

試料となるシリコン単結晶ウェーハがn型の場合、予めシリコン単結晶ウェーハの表面に薄い酸化珪素膜を形成させ、この酸化珪素膜上に水銀電極を接合すると、安定してC−V特性を測定することができる。   When the sample silicon single crystal wafer is n-type, a thin silicon oxide film is formed in advance on the surface of the silicon single crystal wafer, and a mercury electrode is bonded onto the silicon oxide film, so that CV characteristics can be measured stably. can do.

シリコン単結晶ウェーハの表面への薄い酸化珪素膜の形成法としては、過酸化水素などの酸化剤を含有する溶液にシリコン単結晶ウェーハを数分間浸漬させた後に、リンスと乾燥を行う方法が知られている(非特許文献1)。しかし、この方法では酸化処理から乾燥までに約20分間かかるので、時間の短縮が必要である。   As a method for forming a thin silicon oxide film on the surface of a silicon single crystal wafer, a method in which a silicon single crystal wafer is immersed in a solution containing an oxidizing agent such as hydrogen peroxide for several minutes and then rinsed and dried is known. (Non-Patent Document 1). However, in this method, since it takes about 20 minutes from the oxidation treatment to drying, it is necessary to shorten the time.

そこで、シリコン単結晶ウェーハを酸素含有雰囲気中で紫外光に曝すことによって、シリコン単結晶ウェーハの表面を酸化する方法が提案されている(特許文献1)。しかし、この方法では紫外光照射時間等の酸化条件を適切に設定しなければ、安定したC−V特性を得ることができない。   Therefore, a method for oxidizing the surface of a silicon single crystal wafer by exposing the silicon single crystal wafer to ultraviolet light in an oxygen-containing atmosphere has been proposed (Patent Document 1). However, in this method, stable CV characteristics cannot be obtained unless the oxidation conditions such as the ultraviolet light irradiation time are appropriately set.

また、安定してC−V特性を測定するためには酸化珪素膜は5nm以上の比較的厚い酸化珪素膜であることが望ましい。しかし、非特許文献1および特許文献1の酸化珪素膜形成方法では、1〜2nm程度の薄い酸化膜を形成する手段としては好適であるが、5nm以上の比較的厚い酸化珪素膜を形成する手段としては適していない。その他、熱酸化によればシリコン単結晶ウェーハの表面に厚い酸化珪素膜を形成することができるが、酸化工程に長時間が必要である上、少なくとも800℃以上に加熱する必要があるためドーパントが拡散し、その濃度分布が変化してしまう。そのため、シリコン単結晶ウェーハの評価方法において、5nm以上の比較的厚い酸化珪素膜を容易に形成することができる方法が望まれていた。   In order to measure CV characteristics stably, the silicon oxide film is desirably a relatively thick silicon oxide film of 5 nm or more. However, the silicon oxide film forming methods of Non-Patent Document 1 and Patent Document 1 are suitable as means for forming a thin oxide film of about 1 to 2 nm, but means for forming a relatively thick silicon oxide film of 5 nm or more. Not suitable for. In addition, a thick silicon oxide film can be formed on the surface of a silicon single crystal wafer by thermal oxidation. However, a long time is required for the oxidation process, and it is necessary to heat to at least 800 ° C. or higher. It diffuses and its concentration distribution changes. Therefore, in a method for evaluating a silicon single crystal wafer, a method capable of easily forming a relatively thick silicon oxide film of 5 nm or more has been desired.

特表2002−516486号公報Special table 2002-516486 gazette

ASTM Standards F1392−02ASTM Standards F1392-02

本発明は上記課題を解決するために為されたものであり、5nm以上の比較的厚い酸化珪素膜をC−V特性を測定されるシリコン単結晶ウェーハの表面に容易に形成することができ、かつ安定してC−V特性を測定することのできるシリコン単結晶ウェーハの評価方法を提供することを目的とする。   The present invention has been made to solve the above problems, and a relatively thick silicon oxide film of 5 nm or more can be easily formed on the surface of a silicon single crystal wafer whose CV characteristics are measured. It is another object of the present invention to provide a method for evaluating a silicon single crystal wafer capable of stably measuring CV characteristics.

上記目的を達成するために、本発明では、
シリコン単結晶ウェーハの表面に酸化珪素膜を堆積させ、該酸化珪素膜上に水銀電極を接合してC−V特性を測定することを特徴とするシリコン単結晶ウェーハの評価方法を提供する。
In order to achieve the above object, in the present invention,
Provided is a method for evaluating a silicon single crystal wafer, wherein a silicon oxide film is deposited on the surface of a silicon single crystal wafer, a mercury electrode is bonded onto the silicon oxide film, and CV characteristics are measured.

このようにシリコン単結晶ウェーハの表面に酸化珪素膜を堆積させることで、5nm以上の比較的厚い酸化珪素膜をシリコン単結晶ウェーハの表面に容易に形成することができる。その後前記酸化珪素膜上に水銀電極を接合してC−V特性を測定することで、安定してC−V特性を測定することのできるシリコン単結晶ウェーハの評価方法となる。   Thus, by depositing the silicon oxide film on the surface of the silicon single crystal wafer, a relatively thick silicon oxide film of 5 nm or more can be easily formed on the surface of the silicon single crystal wafer. Thereafter, a mercury electrode is bonded onto the silicon oxide film, and the CV characteristics are measured, whereby a silicon single crystal wafer evaluation method capable of stably measuring the CV characteristics is obtained.

また、前記酸化珪素膜としてシリカガラスを堆積させることが好ましい。   Further, it is preferable to deposit silica glass as the silicon oxide film.

このように、シリカガラスであれば、5nm以上の比較的厚い酸化珪素膜を容易に堆積して形成することができるため好ましい。   Thus, silica glass is preferable because a relatively thick silicon oxide film of 5 nm or more can be easily deposited and formed.

さらに、前記シリカガラスの堆積を、前記シリコン単結晶ウェーハの表面にパーヒドロポリシラザンを塗布し、該パーヒドロポリシラザンを転化反応させることにより行うことが好ましい。   Further, it is preferable that the silica glass is deposited by applying perhydropolysilazane to the surface of the silicon single crystal wafer and converting the perhydropolysilazane.

このような方法で前記シリカガラスを堆積すれば、5nm以上の比較的厚い酸化珪素膜をより容易に形成することができるため好ましい。   It is preferable to deposit the silica glass by such a method because a relatively thick silicon oxide film of 5 nm or more can be more easily formed.

また、前記酸化珪素膜の堆積をCVD法により行うことが好ましい。   The silicon oxide film is preferably deposited by a CVD method.

このように、CVD法であれば、5nm以上の比較的厚い酸化珪素膜を容易に形成することができるため好ましい。   Thus, the CVD method is preferable because a relatively thick silicon oxide film of 5 nm or more can be easily formed.

さらに、前記酸化珪素膜の厚さが5nm以上50nm以下となるように堆積することが好ましい。   Further, it is preferable that the silicon oxide film is deposited so as to have a thickness of 5 nm to 50 nm.

このような厚さの酸化珪素膜であれば、安定してC−V特性を測定することができるため好ましい。   A silicon oxide film having such a thickness is preferable because the CV characteristics can be measured stably.

前記シリコン単結晶ウェーハとして、n型シリコン単結晶ウェーハを用いることが好ましい。   It is preferable to use an n-type silicon single crystal wafer as the silicon single crystal wafer.

このように、本発明により評価するウェーハをn型シリコン単結晶ウェーハとすれば、特に有効にC−V特性を安定して測定できるため好ましい。   Thus, if the wafer to be evaluated according to the present invention is an n-type silicon single crystal wafer, it is preferable because the CV characteristics can be stably measured particularly effectively.

以上説明したように本発明によれば、シリコン単結晶ウェーハの表面を酸化しなくても、容易に5nm以上の比較的厚い酸化珪素膜をシリコン単結晶ウェーハの表面に堆積することができるので、C−V特性を安定して測定することができるシリコン単結晶ウェーハの評価方法を提供することができる。 As described above, according to the present invention, a relatively thick silicon oxide film of 5 nm or more can be easily deposited on the surface of the silicon single crystal wafer without oxidizing the surface of the silicon single crystal wafer. It is possible to provide a method for evaluating a silicon single crystal wafer capable of measuring CV characteristics stably.

本発明のシリコン単結晶ウェーハの評価方法の一例を示す概略工程図である。It is a schematic process drawing which shows an example of the evaluation method of the silicon single crystal wafer of this invention. 本発明のシリコン単結晶ウェーハの評価方法において酸化珪素膜としてシリカガラスを堆積させた場合のC−V特性の測定結果の一例を示すグラフである。It is a graph which shows an example of the measurement result of the CV characteristic at the time of depositing silica glass as a silicon oxide film in the evaluation method of the silicon single crystal wafer of the present invention.

以下、本発明のシリコン単結晶ウェーハの評価方法の好適な実施形態について図面を参照して説明するが、本発明はこれに限定されるものではない。
前述のように、シリコン単結晶ウェーハの評価方法において、5nm以上の比較的厚い酸化珪素膜を容易に形成することができる方法が望まれていた。
Hereinafter, preferred embodiments of the method for evaluating a silicon single crystal wafer of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
As described above, in a method for evaluating a silicon single crystal wafer, a method capable of easily forming a relatively thick silicon oxide film of 5 nm or more has been desired.

本発明者らは、鋭意検討を重ねたところ、シリコン単結晶ウェーハの表面を酸化しなくても、酸化珪素膜をシリコン単結晶ウェーハの表面に堆積する方法であれば容易に5nm以上の比較的厚い酸化珪素膜を形成することができることを見出し、C−V特性を安定して測定することができるシリコン単結晶ウェーハの評価方法となることを見出して本発明を完成させるに至った。   As a result of extensive studies, the present inventors have found that a method of depositing a silicon oxide film on the surface of a silicon single crystal wafer can be easily performed with a relatively large thickness of 5 nm or more without oxidizing the surface of the silicon single crystal wafer. The present inventors have found that a thick silicon oxide film can be formed, and found that the method is an evaluation method for a silicon single crystal wafer that can stably measure the CV characteristics, thereby completing the present invention.

本発明は、シリコン単結晶ウェーハの表面に酸化珪素膜を堆積させ、該酸化珪素膜上に水銀電極を接合してC−V特性を測定することを特徴とするシリコン単結晶ウェーハの評価方法を提供する。   The present invention provides a method for evaluating a silicon single crystal wafer, comprising depositing a silicon oxide film on a surface of a silicon single crystal wafer, bonding a mercury electrode on the silicon oxide film, and measuring CV characteristics. provide.

[シリコン単結晶ウェーハの表面に酸化珪素膜を堆積させる工程]
本発明では、C−V特性を測定する前にシリコン単結晶ウェーハの表面に酸化珪素膜を堆積させる。堆積方法としては特に制限されないが、前記酸化珪素膜としてシリカガラスを堆積させる方法、又はCVD法により前記酸化珪素膜を堆積させる方法が好ましい。
[Step of depositing a silicon oxide film on the surface of a silicon single crystal wafer]
In the present invention, a silicon oxide film is deposited on the surface of a silicon single crystal wafer before measuring the CV characteristics. A deposition method is not particularly limited, but a method of depositing silica glass as the silicon oxide film or a method of depositing the silicon oxide film by a CVD method is preferable.

ここで評価するシリコン単結晶ウェーハとしては特に限定されないが、C−V特性の評価を安定させるために酸化膜の形成が必要なn型のシリコン単結晶ウェーハの評価において本発明は特に有効である。n型シリコン単結晶ウェーハには、通常の鏡面研磨ウェーハに限られず、n型エピタキシャルウエーハも含まれる。   The silicon single crystal wafer to be evaluated here is not particularly limited, but the present invention is particularly effective in evaluating an n-type silicon single crystal wafer that requires the formation of an oxide film in order to stabilize the evaluation of CV characteristics. . The n-type silicon single crystal wafer is not limited to a normal mirror-polished wafer but also includes an n-type epitaxial wafer.

・酸化珪素膜としてシリカガラスを堆積させる方法
以下に、本発明のシリコン単結晶ウェーハの評価方法の一実施形態として前記シリカガラスを堆積させる方法を図面に基づいて説明する。図1は、本発明のシリコン単結晶ウェーハの評価方法の一例を示す概略工程図である。まず、シリコン単結晶ウェーハの表面をキシレンあるいはジブチルエーテル等の有機溶剤を用いて脱脂することで、続く図1工程bにおけるシリコン単結晶ウェーハとパーヒドロポリシラザンの密着性を担保する(図1工程a)。
-Method for depositing silica glass as a silicon oxide film Hereinafter, a method for depositing silica glass as an embodiment of the method for evaluating a silicon single crystal wafer of the present invention will be described with reference to the drawings. FIG. 1 is a schematic process diagram showing an example of a silicon single crystal wafer evaluation method of the present invention. First, the surface of the silicon single crystal wafer is degreased using an organic solvent such as xylene or dibutyl ether to ensure the adhesion between the silicon single crystal wafer and perhydropolysilazane in the subsequent step b in FIG. 1 (step a in FIG. 1). ).

続いて、前記シリコン単結晶ウェーハの表面にパーヒドロポリシラザン(Perhydropolysirazane(式1)、例えばクラリアント社のアクアミカ。アクアミカはクラリアントジャパン社の商標名。)を有機溶剤とともに塗布する(図1工程b)。塗布には、例えばスプレーあるいはスピンコーターを用いることができる。
−(SiHNH)− (式1)
(式中、nは1以上の整数である。)
Subsequently, perhydropolysilazane (Perhydropolysirazane (Formula 1), for example, Aquamica from Clariant Co., Ltd. is a trade name of Clariant Japan Co.) together with an organic solvent is applied to the surface of the silicon single crystal wafer (Step b in FIG. 1). For the application, for example, a spray or a spin coater can be used.
- (SiH 2 NH) n - ( formula 1)
(In the formula, n is an integer of 1 or more.)

有機溶剤が揮発した後、シリコン単結晶ウェーハの表面に塗布されたパーヒドロポリシラザンは大気中の水分と反応し、酸化珪素膜の一種であるシリカガラスに転化する(図1工程c)。シリカガラスに転化するまでの時間は気温や湿度等の環境に左右される。   After the organic solvent is volatilized, perhydropolysilazane applied to the surface of the silicon single crystal wafer reacts with moisture in the atmosphere and is converted into silica glass which is a kind of silicon oxide film (step c in FIG. 1). The time until conversion to silica glass depends on the environment such as temperature and humidity.

・CVD法により酸化珪素膜を堆積させる方法
以下に、CVD法により酸化珪素膜を堆積させる方法を説明する。前記酸化珪素膜は、CVD法を用いてもシリコン単結晶ウェーハの表面に堆積することができる。例えばキャリアガスとして窒素ガスを用い、これにモノシランと酸素を混合した反応ガス雰囲気中でシリコン単結晶ウェーハを約400℃に加熱すると、当該シリコン単結晶ウェーハの表面上に酸化珪素膜が堆積する。
Method of depositing silicon oxide film by CVD method Hereinafter, a method of depositing a silicon oxide film by the CVD method will be described. The silicon oxide film can be deposited on the surface of a silicon single crystal wafer even using a CVD method. For example, when a silicon single crystal wafer is heated to about 400 ° C. in a reaction gas atmosphere in which nitrogen gas is used as a carrier gas and monosilane and oxygen are mixed with this, a silicon oxide film is deposited on the surface of the silicon single crystal wafer.

[酸化珪素膜の厚み]
本発明に係るシリコン単結晶ウェーハの表面上に堆積させる酸化珪素膜の厚さが、5nm以上50nm以下となるように堆積することが望ましい。酸化珪素膜の厚さが5nm以上となるように堆積すれば酸化珪素膜を均一に形成することができるため好ましい。また、酸化珪素膜の厚さが50nm以下となるように堆積すれば酸化膜の絶縁性の影響は少なく、C−V特性を安定して測定することができるため好ましい。
[Thickness of silicon oxide film]
It is desirable that the silicon oxide film deposited on the surface of the silicon single crystal wafer according to the present invention is deposited so as to have a thickness of 5 nm to 50 nm. It is preferable to deposit the silicon oxide film so that the thickness is 5 nm or more because the silicon oxide film can be formed uniformly. Further, it is preferable to deposit the silicon oxide film so that the thickness is 50 nm or less because the influence of the insulating property of the oxide film is small and the CV characteristics can be stably measured.

[酸化珪素膜上に水銀電極を接合してC−V特性を測定する工程]
本発明では、前記堆積させた酸化珪素膜上に水銀電極を接合してC−V特性を測定することによりシリコン単結晶ウェーハを評価する。シリコン単結晶ウェーハの表面に前記酸化珪素膜を形成した後、該酸化珪素膜を介してシリコン単結晶ウェーハの表面にバイアス電圧を印加し、C−V特性の測定を行う(例えば、図1工程d)。これにより、C−V特性を安定して測定することができる。
[Process for measuring CV characteristics by joining a mercury electrode on a silicon oxide film]
In the present invention, a silicon single crystal wafer is evaluated by bonding a mercury electrode on the deposited silicon oxide film and measuring CV characteristics. After the silicon oxide film is formed on the surface of the silicon single crystal wafer, a bias voltage is applied to the surface of the silicon single crystal wafer through the silicon oxide film to measure the CV characteristics (for example, the step of FIG. 1). d). Thereby, a CV characteristic can be measured stably.

以下、実施例、比較例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to the following Example.

[実施例1]
面方位(100)、直径200mm、抵抗率0.0015Ω・cmのn型シリコン単結晶基板上に厚さ4μm、抵抗率0.2Ω・cmのn型シリコンエピタキシャル層を形成したシリコンエピタキシャルウェーハを準備した。
[Example 1]
A silicon epitaxial wafer is prepared in which an n-type silicon epitaxial layer having a thickness of 4 μm and a resistivity of 0.2 Ω · cm is formed on an n-type silicon single crystal substrate having a plane orientation (100), a diameter of 200 mm, and a resistivity of 0.0015 Ω · cm. did.

まず、ジブチルエーテルを用いてシリコンエピタキシャルウェーハの表面を十分に洗浄し、ウェーハの表面を脱脂した。ウェーハが乾燥した後、ウェーハの表面にジブチルエーテルで0.1%に希釈したパーヒドロポリシラザンをスピンコーターで塗布した。   First, the surface of the silicon epitaxial wafer was sufficiently washed with dibutyl ether to degrease the surface of the wafer. After the wafer was dried, perhydropolysilazane diluted to 0.1% with dibutyl ether was applied to the surface of the wafer with a spin coater.

次に、パーヒドロポリシラザンを塗布したシリコンエピタキシャルウェーハを350℃で1時間熱処理し、パーヒドロポリシラザンをシリカガラスに転化することでウェーハ上に酸化珪素膜を堆積した。その後、前記酸化珪素膜上に水銀電極を接合してC−V特性を評価した。熱処理後のシリカガラスの厚さをエリプソメータで測定した値は、10.1nmであった。   Next, the silicon epitaxial wafer coated with perhydropolysilazane was heat treated at 350 ° C. for 1 hour to convert the perhydropolysilazane into silica glass, thereby depositing a silicon oxide film on the wafer. Thereafter, a mercury electrode was joined on the silicon oxide film, and CV characteristics were evaluated. The value obtained by measuring the thickness of the silica glass after the heat treatment with an ellipsometer was 10.1 nm.

C−V特性評価の際、シリコンエピタキシャル層の表面に堆積したシリカガラス(酸化珪素膜)上に水銀電極を接合し、バイアス電圧を0.5V間隔で20Vまで掛けた。得られたバイアス電圧と空乏層容量の関係から空乏層幅と不純物濃度を算出し、その関係を図2に示した。空乏層幅0.5μmにおける不純物濃度を10回繰り返し測定したところ、その標準偏差値を平均値で除して得られる繰り返し測定精度は、1.5%であった。   When evaluating the CV characteristics, a mercury electrode was bonded onto silica glass (silicon oxide film) deposited on the surface of the silicon epitaxial layer, and a bias voltage was applied up to 20 V at intervals of 0.5 V. The depletion layer width and impurity concentration were calculated from the relationship between the obtained bias voltage and depletion layer capacitance, and the relationship is shown in FIG. When the impurity concentration in the depletion layer width of 0.5 μm was repeatedly measured 10 times, the repeated measurement accuracy obtained by dividing the standard deviation value by the average value was 1.5%.

以上より、本発明のシリコン単結晶ウェーハの評価方法によれば、5nm以上の比較的厚い酸化珪素膜をシリコン単結晶ウェーハの表面に容易に形成することができ、かつ安定してC−V特性を測定することのできることが示された。   As described above, according to the method for evaluating a silicon single crystal wafer of the present invention, a relatively thick silicon oxide film of 5 nm or more can be easily formed on the surface of the silicon single crystal wafer, and the CV characteristics can be stably formed. It was shown that can be measured.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (6)

シリコン単結晶ウェーハの表面に酸化珪素膜を堆積させ、該酸化珪素膜上に水銀電極を接合してC−V特性を測定することを特徴とするシリコン単結晶ウェーハの評価方法。   A silicon single crystal wafer evaluation method, comprising depositing a silicon oxide film on a surface of a silicon single crystal wafer, bonding a mercury electrode on the silicon oxide film, and measuring CV characteristics. 前記酸化珪素膜としてシリカガラスを堆積させることを特徴とする請求項1に記載のシリコン単結晶ウェーハの評価方法。   2. The method for evaluating a silicon single crystal wafer according to claim 1, wherein silica glass is deposited as the silicon oxide film. 前記シリカガラスの堆積を、前記シリコン単結晶ウェーハの表面にパーヒドロポリシラザンを塗布し、該パーヒドロポリシラザンを転化反応させることにより行うことを特徴とする請求項2に記載のシリコン単結晶ウェーハの評価方法。   3. The silicon single crystal wafer evaluation according to claim 2, wherein the silica glass is deposited by applying perhydropolysilazane to a surface of the silicon single crystal wafer and converting the perhydropolysilazane. Method. 前記酸化珪素膜の堆積をCVD法により行うことを特徴とする請求項1に記載のシリコン単結晶ウェーハの評価方法。   2. The method for evaluating a silicon single crystal wafer according to claim 1, wherein the silicon oxide film is deposited by a CVD method. 前記酸化珪素膜の厚さが5nm以上50nm以下となるように堆積することを特徴とする請求項1乃至請求項4のいずれか1項に記載のシリコン単結晶ウェーハの評価方法。   5. The method for evaluating a silicon single crystal wafer according to claim 1, wherein the silicon oxide film is deposited so as to have a thickness of 5 nm to 50 nm. 前記シリコン単結晶ウェーハとして、n型シリコン単結晶ウェーハを用いることを特徴とする請求項1乃至請求項5のいずれか1項に記載のシリコン単結晶ウェーハの評価方法。

The method for evaluating a silicon single crystal wafer according to any one of claims 1 to 5, wherein an n-type silicon single crystal wafer is used as the silicon single crystal wafer.

JP2010289732A 2010-12-27 2010-12-27 Method for evaluating silicon single crystal wafer Pending JP2012138463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289732A JP2012138463A (en) 2010-12-27 2010-12-27 Method for evaluating silicon single crystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289732A JP2012138463A (en) 2010-12-27 2010-12-27 Method for evaluating silicon single crystal wafer

Publications (1)

Publication Number Publication Date
JP2012138463A true JP2012138463A (en) 2012-07-19

Family

ID=46675659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289732A Pending JP2012138463A (en) 2010-12-27 2010-12-27 Method for evaluating silicon single crystal wafer

Country Status (1)

Country Link
JP (1) JP2012138463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087877A1 (en) * 2012-12-07 2014-06-12 信越化学工業株式会社 Interposer substrate and method for manufacturing same
JP2014236141A (en) * 2013-06-04 2014-12-15 信越半導体株式会社 Method for evaluating silicon single crystal wafer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087877A1 (en) * 2012-12-07 2014-06-12 信越化学工業株式会社 Interposer substrate and method for manufacturing same
JPWO2014087877A1 (en) * 2012-12-07 2017-01-05 信越化学工業株式会社 Interposer substrate and manufacturing method thereof
JP2017038091A (en) * 2012-12-07 2017-02-16 信越化学工業株式会社 Manufacturing method of substrate for interposer
JP2014236141A (en) * 2013-06-04 2014-12-15 信越半導体株式会社 Method for evaluating silicon single crystal wafer

Similar Documents

Publication Publication Date Title
Puniredd et al. Highly stable organic monolayers for reacting silicon with further functionalities: the effect of the C− C bond nearest the silicon surface
Yu et al. Hydrogen gas sensing properties of Pt/Ta2O5 Schottky diodes based on Si and SiC substrates
Zhang et al. Surface passivation of silicon using HfO 2 thin films deposited by remote plasma atomic layer deposition system
Park et al. Growth studies and characterization of silicon nitride thin films deposited by alternating exposures to Si2Cl6 and NH3
Erkov et al. Si–TiO2 interface evolution at prolonged annealing in low vacuum or N2O ambient
Suh et al. Electrical properties of atomic layer deposited Al2O3 with anneal temperature for surface passivation
Hsu et al. Enhanced Si passivation and PERC solar cell efficiency by atomic layer deposited aluminum oxide with two-step post annealing
Ahmad et al. Electrical characteristics of poly (methylsilsesquioxane) thin films for non-volatile memory
Cui et al. XPS and AFM characterization of the self‐assembled molecular monolayers of a 3‐aminopropyltrimethoxysilane on silicon surface, and effects of substrate pretreatment by UV‐irradiation
WO2011137133A3 (en) Semiconducting devices and methods of preparing
Gad et al. Improved Si/SiOx interface passivation by ultra-thin tunneling oxide layers prepared by rapid thermal oxidation
Park et al. 1-Dimensional fiber-based field-effect transistors made by low-temperature photochemically activated sol–gel metal-oxide materials for electronic textiles
Herth et al. Optimization of SiNX: H films deposited by PECVD for reliability of electronic, microsystems and optical applications
JP2012138463A (en) Method for evaluating silicon single crystal wafer
JP6795331B2 (en) Silica film manufacturing method, silica film and electronic device
Meyer et al. Chemical passivation of crystalline Si by Al2O3 deposited using atomic layer deposition: implications for solar cells
Zhao et al. Formation and elimination mechanism of thermal blistering in Al2O3/Si system
Bashouti et al. Hybrid silicon nanowires: from basic research to applied nanotechnology
Bonilla et al. Effective Antireflection and Surface Passivation of Silicon Using a SiO2/aT iOx Film Stack
Patel et al. Effective charge dynamics in Al2O3/SiO2 multilayer stacks and their influence on silicon surface passivation
Chebout et al. Electrical characterization of ethanol sensing device based on Vanadium oxide/Porous Si/Si structure
Cui et al. Effective surface passivation of p-type crystalline silicon with silicon oxides formed by light-induced anodisation
Yoo et al. Properties of plasma enhanced chemical vapor deposited silicon nitride for the application in multicrystalline silicon solar cells
Pan et al. High sensing performance of nanoimprinted HfO2 sensing membrane for electrode-insulator-semiconductor pH sensors
CN111081532B (en) Method for preparing semiconductor graphite wafer and application thereof