JP2012138241A - Power facility with regeneration type fuel cell device - Google Patents

Power facility with regeneration type fuel cell device Download PDF

Info

Publication number
JP2012138241A
JP2012138241A JP2010289386A JP2010289386A JP2012138241A JP 2012138241 A JP2012138241 A JP 2012138241A JP 2010289386 A JP2010289386 A JP 2010289386A JP 2010289386 A JP2010289386 A JP 2010289386A JP 2012138241 A JP2012138241 A JP 2012138241A
Authority
JP
Japan
Prior art keywords
regenerator
solar cell
cell device
power
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010289386A
Other languages
Japanese (ja)
Other versions
JP5555153B2 (en
Inventor
Toyotoshi Kurose
豊敏 黒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2010289386A priority Critical patent/JP5555153B2/en
Publication of JP2012138241A publication Critical patent/JP2012138241A/en
Application granted granted Critical
Publication of JP5555153B2 publication Critical patent/JP5555153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power facility with a regeneration type fuel cell device, capable of improving use efficiency of generated power by a photovoltaic panel.SOLUTION: A power facility includes: a photovoltaic device 2 having a photovoltaic panel 3; a regeneration type fuel cell device having a fuel cell 5 and a regenerator 6; a power storage bus line 12 connected to the photovoltaic device 2 and the regenerator 6; an output bus line connected to the photovoltaic device 2, the fuel cell and a power feed system output section 10; and a power supply control device 13 that switches either a supply state of a state where the power generated by the photovoltaic device 2 is supplied to the power storage bus line or a state where the power generated by the photovoltaic device 2 is supplied to the output bus line. The power facility includes an adjustment mechanism that adjusts a current-voltage characteristic of the regenerator 6 so as to approach a maximum efficient point of the photovoltaic device corresponding to a fluctuation of the current-voltage characteristic of the photovoltaic device 2.

Description

本発明は、燃料電池を用いた再生型燃料電池装置を備えた電源設備に関し、特に、飛行船等の電源設備に適した再生型燃料電池装置を備えた電源設備に関する。   The present invention relates to a power supply facility provided with a regenerative fuel cell device using a fuel cell, and more particularly to a power supply facility provided with a regenerative fuel cell device suitable for power supply facilities such as an airship.

成層圏プラットフォームに用いられる飛行船など、長期間にわたって滞空する飛行船では、飛行、姿勢制御、その他の制御に必要な電力を確保する工夫が必要である。電力を得るための電源設備として、太陽電池パネルを用いた設備が考えられているが、太陽電池パネルは、太陽光を受けることができる昼間しか発電をすることができないため、夜間に発電できるように燃料電池を併用することが考えられている。   In an airship that stays for a long period of time, such as an airship used for a stratosphere platform, it is necessary to devise measures to secure electric power necessary for flight, attitude control, and other controls. As a power source facility for obtaining power, facilities using solar cell panels are considered, but since solar cell panels can only generate power during the daytime when they can receive sunlight, they can generate power at night. It is considered to use a fuel cell together.

このように太陽電池パネルを利用する電力源と燃料電池とを併用する電源設備として、例えば、本出願人が先に出願した発明がある。この発明では、太陽電池パネルの温度によって発電電圧値が異なる特性を利用して、太陽電池パネルで発電される電力が蓄電バスラインに供給される状態、および出力バスラインに供給される状態、のいずれかに供給状態を切換える電源制御装置を設けている。また、この電源制御装置が、太陽電池パネルの電力を優先的に負荷装置へ供給し、太陽電池パネルの電力だけでは不足が生じる場合は、その不足分の電力を燃料電池から供給し、太陽電池パネルの電力に余剰電力がある場合には、その余剰電力を再生器に供給するようにしている(特許文献1参照)。   As an example of the power supply equipment that uses both the power source using the solar cell panel and the fuel cell, there is an invention previously filed by the present applicant. In the present invention, using the characteristic that the generated voltage value varies depending on the temperature of the solar cell panel, the state where the electric power generated by the solar cell panel is supplied to the storage bus line, and the state where the electric power is supplied to the output bus line, A power supply control device for switching the supply state is provided for either of them. In addition, when the power supply control device preferentially supplies the power of the solar cell panel to the load device and shortage occurs only with the power of the solar cell panel, the shortage of power is supplied from the fuel cell. When there is surplus power in the panel power, the surplus power is supplied to the regenerator (see Patent Document 1).

なお、他の先行技術として、燃料電池スタックの所定位置に集電板を挿入し、燃料電池スタックの端部に設けられた集電板と所定位置に挿入した集電板との間から燃料電池スタックの発電電力の一部を取出し、取出された電力を低電圧で作動する負荷に供給するようにした燃料電池システムがある(例えば、特許文献2参照)。   As another prior art, a current collector plate is inserted into a predetermined position of the fuel cell stack, and the fuel cell is inserted between the current collector plate provided at the end of the fuel cell stack and the current collector plate inserted into the predetermined position. There is a fuel cell system in which a part of the generated power of the stack is taken out and supplied to a load that operates at a low voltage (for example, see Patent Document 2).

特開2007−49868号公報JP 2007-49868 A 特開2006−318808号公報JP 2006-318808 A

しかしながら、上記飛行船では、外気温度の変化や太陽電池パネルへの太陽光の照射状況が変化することに起因して太陽電池セルの温度が変化して電流−電圧特性(以下、単に「I−V特性」ともいう)が変化し、その結果、太陽電池パネルと再生機が効率よく運転できるそれぞれのI−V特性に差が生じ、太陽電池パネルから再生機に送る電力の一部が使用できなくなる。   However, in the above airship, the temperature of the solar battery cell changes due to the change in the outside air temperature and the change in the solar irradiation condition on the solar battery panel, and the current-voltage characteristics (hereinafter simply referred to as “IV”). As a result, there is a difference in the IV characteristics that allow the solar panel and the regenerator to operate efficiently, and part of the power sent from the solar panel to the regenerator cannot be used. .

その対策としては、太陽電池特性を発電状況に応じて再生器特性に合わせるか、再生器特性を太陽電池特性に合わせるか、あるいはその両方を調整するかのいずれかが考えられる。これらの対策の具体的な方法として、例えば、DC/DCコンバータ等のコンディショナを各太陽電池パネルや再生機とバスとの接続の間に挿入することにより調整する方法などが考えられる。しかし、このような対策は、重量の増加や設備費用の大幅な上昇を招くため、上記飛行船のような構成において採用するのは難しい。   As a countermeasure, it is conceivable that the solar cell characteristics are matched with the regenerator characteristics according to the power generation situation, the regenerator characteristics are matched with the solar cell characteristics, or both are adjusted. As a specific method of these measures, for example, a method of adjusting by inserting a conditioner such as a DC / DC converter between the connection between each solar cell panel or the regenerator and the bus can be considered. However, since such measures cause an increase in weight and a significant increase in equipment costs, it is difficult to adopt in such a configuration as the above airship.

なお、上記特許文献1,2では、上記したような再生器のI−V特性と太陽電池の最大効率点とが一致しないことによって効率が悪化することや、その対策について何ら記載されていない。   In Patent Documents 1 and 2, there is no description about the deterioration of efficiency due to the fact that the IV characteristics of the regenerator as described above and the maximum efficiency point of the solar cell do not coincide with each other and the countermeasures.

そこで、本発明は、太陽電池パネルの電力ロスを低減させて発電電力利用効率向上を図ることができる再生型燃料電池装置を備えた電源設備を提供することを目的とする。   Then, an object of this invention is to provide the power supply equipment provided with the reproduction | regeneration type fuel cell apparatus which can aim at the power generation efficiency improvement by reducing the power loss of a solar cell panel.

上記目的を達成するために、本発明は、太陽電池パネルを備える太陽電池装置と、燃料電池および再生器を備える再生型燃料電池装置と、前記太陽電池装置および前記再生器が接続された蓄電バスラインと、前記太陽電池装置と前記燃料電池および電力供給系出力部が接続された出力バスラインと、前記太陽電池装置で発電される電力が前記蓄電バスラインに供給される状態、および前記太陽電池装置で発電される電力が前記出力バスラインに供給される状態、のいずれかに供給状態を切換える電源制御装置とを有する再生型燃料電池装置を備え、前記太陽電池装置の電流−電圧特性の変化に応じて、前記再生器の電流−電圧特性を前記太陽電池装置の最大効率点に近づけるように調整する調整機構を備えていることを特徴とする。この明細書および特許請求の範囲の書類中における「最大効率点」は、太陽電池装置の出力電力が最大となる運転状態における電流−電圧値をいう。   In order to achieve the above object, the present invention provides a solar cell device including a solar cell panel, a regenerative fuel cell device including a fuel cell and a regenerator, and a power storage bus to which the solar cell device and the regenerator are connected. A line, an output bus line to which the solar cell device, the fuel cell and the power supply system output unit are connected, a state in which electric power generated by the solar cell device is supplied to the power storage bus line, and the solar cell A regenerative fuel cell device having a power supply control device that switches a supply state to any one of a state in which power generated by the device is supplied to the output bus line, and a change in current-voltage characteristics of the solar cell device And an adjustment mechanism for adjusting the current-voltage characteristics of the regenerator so as to approach the maximum efficiency point of the solar cell device. The “maximum efficiency point” in the specification and claims refers to a current-voltage value in an operating state in which the output power of the solar cell device is maximum.

これにより、成層圏飛行船等の電源システムにおける再生型燃料電池装置を備えた電源設備において、太陽電池装置の電流−電圧特性が変化したとしても、その変化に応じて再生器の電流−電圧特性を太陽電池装置の最大効率点に近づけるように調整機構で調整するので、太陽電池の発電電力の電力ロスを低減させて効率良く再生型燃料電池装置を備えた電源設備を運用することができる。   As a result, even if the current-voltage characteristic of the solar cell device changes in a power supply facility equipped with a regenerative fuel cell device in a power supply system such as a stratosphere airship, the current-voltage characteristic of the regenerator is Since the adjustment mechanism is adjusted so as to approach the maximum efficiency point of the battery device, the power loss of the generated power of the solar cell can be reduced and the power supply facility equipped with the regenerative fuel cell device can be operated efficiently.

また、前記再生器は、電圧特性を変化させる複数のセルを具備した可変容量型再生器を有し、前記調整機構は、前記太陽電池装置の電流−電圧特性の変化に応じて、前記可変容量型再生器のセル接続数を調整するように構成されていてもよい。   The regenerator includes a variable capacity regenerator having a plurality of cells that change voltage characteristics, and the adjustment mechanism is configured to change the variable capacity according to a change in current-voltage characteristics of the solar cell device. The cell regenerator may be configured to adjust the number of connected cells.

このようにすれば、太陽電池装置の電流−電圧特性変化に応じて可変容量型再生器のセル接続数で再生器の容量を調整して、再生器の電流−電圧特性を太陽電池装置の最大効率点に近づけるように調整することができる。   In this way, the capacity of the regenerator is adjusted by the number of cell connections of the variable capacity regenerator according to the change in the current-voltage characteristic of the solar cell device, and the current-voltage characteristic of the regenerator is adjusted to the maximum of the solar cell device. Adjustments can be made to approach the efficiency point.

また、前記再生器は、複数個の固定容量型再生器を有し、前記調整機構は、前記太陽電池装置の電流−電圧特性の変化に応じて、前記固定容量型再生器の接続数を調整するように構成されていてもよい。   The regenerator has a plurality of fixed capacity regenerators, and the adjustment mechanism adjusts the number of connections of the fixed capacity regenerators according to changes in current-voltage characteristics of the solar cell device. It may be configured to.

このようにすれば、太陽電池装置の電流−電圧特性変化に応じて固定容量型再生器の接続数で再生器の容量を調整して、再生器の電流−電圧特性を太陽電池装置の最大効率点に近づけるように調整することができる。   In this way, the capacity of the regenerator is adjusted by the number of fixed capacity regenerators connected according to the change in the current-voltage characteristics of the solar cell device, and the current-voltage characteristics of the regenerator are adjusted to the maximum efficiency of the solar cell device. It can be adjusted to approach the point.

また、前記再生器は、電圧特性を変化させる複数のセルを具備した可変容量型再生器と、複数個の固定容量型再生器とを有し、前記調整機構は、前記太陽電池装置の電流−電圧特性の変化に応じて、前記可変容量型再生器のセル接続数と、前記固定容量型再生器の接続数とを調整するように構成されていてもよい。   The regenerator includes a variable capacity regenerator having a plurality of cells that change voltage characteristics, and a plurality of fixed capacity regenerators. The number of cell connections of the variable capacity regenerator and the number of connections of the fixed capacity regenerator may be adjusted according to a change in voltage characteristics.

このようにすれば、太陽電池装置の電流−電圧特性変化に応じて可変容量型再生器のセル接続数による容量調整と固定容量型再生器の接続数による容量調整とで、再生器の電流−電圧特性を太陽電池装置の最大効率点に近づけるように容量調整することができ、太陽電池装置の電流−電圧特性変化に応じて再生器の電圧特性をより細かく調整して太陽電池の電力ロスを更に抑えることができる。なお、この明細書および特許請求の範囲の書類中では、上記したような再生器の容量調整によってI−V特性を調整する方法を「再生器可変容量方法」ともいう。   In this way, the capacity adjustment by the number of connected cells of the variable capacity regenerator and the capacity adjustment by the number of connections of the fixed capacity regenerator according to the current-voltage characteristic change of the solar cell device, the current of the regenerator − Capacitance can be adjusted to bring the voltage characteristics closer to the maximum efficiency point of the solar cell device, and the voltage characteristics of the regenerator can be finely adjusted according to changes in the current-voltage characteristics of the solar cell device to reduce the power loss of the solar cell device. It can be further suppressed. In the specification and claims, the method of adjusting the IV characteristics by adjusting the capacity of the regenerator as described above is also referred to as “regenerator variable capacity method”.

一方、本発明の飛行船は、前記いずれかの再生型燃料電池装置を備えた電源設備を具備させた飛行船であって、前記太陽電池パネルを外皮上部の機軸に沿って配設していることを特徴とする。   On the other hand, the airship of the present invention is an airship equipped with a power supply facility equipped with any one of the above-described regenerative fuel cell devices, wherein the solar cell panel is disposed along the axis of the upper skin. Features.

これにより、成層圏飛行船等の電源システムにおける再生型燃料電池装置を備えた電源設備を、太陽電池装置の電流−電圧特性が変化したとしても、その変化に応じて再生器の電流−電圧特性を太陽電池装置の最大効率点に近づけて効率良く運用することができる。   As a result, even if the current-voltage characteristic of the solar cell device changes in the power supply facility equipped with the regenerative fuel cell device in the power supply system such as a stratosphere airship, the current-voltage characteristic of the regenerator is changed to the solar power according to the change. It can be operated efficiently close to the maximum efficiency point of the battery device.

本発明によれば、再生器の電流−電圧特性を、太陽電池の最大効率点に近づけるように細かく調整できるので、再生型燃料電池装置を備えた電源設備における太陽電池の発電電力の利用効率を向上させることが可能となる。   According to the present invention, since the current-voltage characteristics of the regenerator can be finely adjusted so as to approach the maximum efficiency point of the solar cell, the utilization efficiency of the generated power of the solar cell in the power supply facility equipped with the regenerative fuel cell device can be improved. It becomes possible to improve.

本発明に係る再生型燃料電池装置を備えた電源設備を飛行船に具備させた構成を示す回路図である。It is a circuit diagram which shows the structure which provided the power supply equipment provided with the regenerative fuel cell apparatus which concerns on this invention in the airship. 本発明に係る再生型燃料電池装置を備えた電源設備における再生器の調整機構概念を示す図面であり、(a) は、太陽電池装置の電流−電圧特性の変化と、再生器の電流−電圧特性の調整との関係を示すグラフであり、(b) は、再生器の電圧特性を調整する構成の模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing which shows the adjustment mechanism concept of the regenerator in the power supply equipment provided with the regenerative fuel cell device according to the present invention, and (a) shows the change in the current-voltage characteristic of the solar cell device and the current-voltage of the regenerator. It is a graph which shows the relationship with adjustment of a characteristic, (b) is a schematic diagram of the structure which adjusts the voltage characteristic of a regenerator. 本発明に係る電源設備の第1実施形態における図面であり、(a) は、太陽電池装置の電流−電圧特性の変化と、再生器の電流−電圧特性の調整との関係を示すグラフであり、(b) は、再生器の電圧特性を調整する構成の模式図である。It is drawing in 1st Embodiment of the power supply equipment which concerns on this invention, (a) is a graph which shows the relationship between the change of the current-voltage characteristic of a solar cell apparatus, and adjustment of the current-voltage characteristic of a regenerator. (B) is a schematic diagram of the structure which adjusts the voltage characteristic of a regenerator. 本発明に係る電源設備の第2実施形態における図面であり、(a) は、太陽電池装置の電流−電圧特性の変化と、再生器の電流−電圧特性の調整との関係を示すグラフであり、(b) は、再生器の電圧特性を調整する構成の模式図である。It is drawing in 2nd Embodiment of the power supply equipment which concerns on this invention, (a) is a graph which shows the relationship between the change of the current-voltage characteristic of a solar cell apparatus, and adjustment of the current-voltage characteristic of a regenerator. (B) is a schematic diagram of the structure which adjusts the voltage characteristic of a regenerator. 本発明に係る電源設備の第3実施形態における図面であり、(a) は、太陽電池装置の電流−電圧特性の変化と、再生器の電流−電圧特性の調整との関係を示すグラフであり、(b) は、再生器の電圧特性を調整する構成の模式図である。It is drawing in 3rd Embodiment of the power supply equipment which concerns on this invention, (a) is a graph which shows the relationship between the change of the current-voltage characteristic of a solar cell apparatus, and adjustment of the current-voltage characteristic of a regenerator. (B) is a schematic diagram of the structure which adjusts the voltage characteristic of a regenerator. 本発明に係る電源設備の第4実施形態における図面であり、(a) は、太陽電池装置の電流−電圧特性の変化と、再生器の電流−電圧特性の調整との関係を示すグラフであり、(b) は、再生器の電圧特性を調整する構成の模式図である。It is drawing in 4th Embodiment of the power supply equipment which concerns on this invention, (a) is a graph which shows the relationship between the change of the current-voltage characteristic of a solar cell apparatus, and adjustment of the current-voltage characteristic of a regenerator. (B) is a schematic diagram of the structure which adjusts the voltage characteristic of a regenerator.

以下、本発明の実施形態を図面に基づいて説明する。以下の実施形態では、成層圏プラットフォームに用いられる飛行船に具備させる再生型燃料電池装置を備えた電源設備を例に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a power supply facility including a regenerative fuel cell device provided in an airship used for a stratospheric platform will be described as an example.

図1に示すように、この電源設備1は、太陽電池パネル3を備える太陽電池装置2と、燃料電池5および再生器6を備える再生型燃料電池装置4とを有している。上記太陽電池パネル3は、複数に分割されたパネルグループからなっており、例えば、飛行船の機体を構成する外皮の上部に設けられる。   As shown in FIG. 1, the power supply facility 1 includes a solar cell device 2 including a solar cell panel 3 and a regenerative fuel cell device 4 including a fuel cell 5 and a regenerator 6. The said solar cell panel 3 consists of the panel group divided | segmented into plurality, for example, is provided in the upper part of the outer skin which comprises the body of an airship.

また、上記電源設備1は、太陽電池パネル3を備えた太陽電池装置2、再生型燃料電池装置4および自己の負荷装置に接続される電力供給系出力部10を電気的に接続するハウジング15と、ハウジング15内の接続関係を制御する電源制御装置13とを有する。ハウジング15は、上記太陽電池装置2および再生器6が接続された蓄電バスライン11と、上記太陽電池装置2と燃料電池5および電力供給系出力部10が接続された出力バスライン12と、上記太陽電池装置2で発電される電力が上記蓄電バスライン11に供給される状態、および上記太陽電池装置2で発電される電力が上記出力バスライン12に供給される状態、のいずれかに供給状態を切換える電源制御装置13とを有している。上記電力供給系出力部10としては、飛行船を推進する推進装置、ならびに飛行船に備えられる通信や観測等を行うための機器を含む電力供給系出力先であり、出力バスライン12から電力が供給される。   The power supply facility 1 includes a housing 15 that electrically connects a solar cell device 2 including a solar cell panel 3, a regenerative fuel cell device 4, and a power supply system output unit 10 connected to its own load device. And a power supply control device 13 for controlling the connection relation in the housing 15. The housing 15 includes a storage bus line 11 to which the solar cell device 2 and the regenerator 6 are connected, an output bus line 12 to which the solar cell device 2, the fuel cell 5, and the power supply system output unit 10 are connected, and the above Supply state in any of the state where the electric power generated by the solar cell device 2 is supplied to the power storage bus line 11 and the state where the electric power generated by the solar cell device 2 is supplied to the output bus line 12 And a power supply control device 13 for switching between. The power supply system output unit 10 is a power supply system output destination including a propulsion device for propelling an airship and equipment for communication, observation, and the like provided in the airship. Power is supplied from the output bus line 12. The

また、ハウジング15には、地上などに設けられた外部電源と電気的に接続される外部電源入力部16が設けられている。各バスライン11,12は、外部電源接続開閉手段17,18を介して外部電源入力部接続コネクタ16と接続されている。これらの外部電源接続開閉手段17,18が閉じられ、外部電源入力部16が地上の外部電源に接続されると、外部電源入力部16から電力が各バスライン11,12に供給される。   In addition, the housing 15 is provided with an external power supply input section 16 that is electrically connected to an external power supply provided on the ground or the like. Each bus line 11, 12 is connected to an external power input connector connecting connector 16 via external power connection opening / closing means 17, 18. When these external power supply connection opening / closing means 17 and 18 are closed and the external power supply input unit 16 is connected to an external power supply on the ground, power is supplied from the external power supply input unit 16 to the bus lines 11 and 12.

上記再生型燃料電池装置4は、上記燃料電池5で燃料を化学反応させて発電し、再生器6で燃料電池5の化学反応と逆反応によって燃料電池5による化学反応で生成される物質から燃料を生成する。この再生型燃料電池装置4としては、例えば、燃料として水素(H2)および酸素(O2)を用いるものが利用でき、水素と酸素とを取込んで化学反応させることで発電し、その化学反応によって生成される水(H2O)を排出し、この水を再生器6で電気分解して水素と酸素とを生成し、上記発電の燃料として利用できる。 The regenerative fuel cell device 4 generates power by chemically reacting fuel in the fuel cell 5 and generates a fuel from a substance generated by a chemical reaction by the fuel cell 5 by a reverse reaction and a chemical reaction of the fuel cell 5 in the regenerator 6. Is generated. As this regenerative fuel cell device 4, for example, one using hydrogen (H 2 ) and oxygen (O 2 ) as fuel can be used. Electricity is generated by taking hydrogen and oxygen into a chemical reaction, and the chemical Water (H 2 O) produced by the reaction is discharged, and this water is electrolyzed by the regenerator 6 to produce hydrogen and oxygen, which can be used as fuel for the power generation.

また、上記電源制御装置13は、電力供給系出力部10で必要とされる電力を、太陽電池装置2で発電される電力を優先させて、太陽電池装置2および燃料電池5から供給する。この電源制御装置13は、電力供給系出力部10で必要とされる電力を、太陽電池装置2だけで賄うことができる場合、太陽電池装置2から電力供給系出力部10に電力を供給する。太陽電池装置2だけで賄うことができない場合、太陽電池装置2で発電される電力を電力供給系出力部10に供給し、電力供給系出力部10で必要な電力の不足分を燃料電池5の電力で補うようになっている。   Further, the power supply control device 13 supplies the power required by the power supply system output unit 10 from the solar cell device 2 and the fuel cell 5 with priority given to the power generated by the solar cell device 2. The power supply control device 13 supplies power from the solar cell device 2 to the power supply system output unit 10 when the power required by the power supply system output unit 10 can be covered only by the solar cell device 2. When the solar cell device 2 alone cannot cover the power, the electric power generated by the solar cell device 2 is supplied to the power supply system output unit 10, and the shortage of power required by the power supply system output unit 10 is stored in the fuel cell 5. It comes to supplement with electricity.

また、この電源制御装置13は、電力供給系出力部10に電力を供給しても、太陽電池装置2で発電される電力に余剰分があれば、その余剰分を再生器6に供給する。このように、電源制御装置13は、電力供給系出力部10で必要な電力と、太陽電池装置2で発電される発電電圧値とによって、太陽電池装置2で発電される電力の供給先を、電力供給系出力部10および再生器6のいずれかに振分け制御するように構成されている。   In addition, even if power is supplied to the power supply system output unit 10, if the power generated by the solar cell device 2 has a surplus, the power supply control device 13 supplies the surplus to the regenerator 6. Thus, the power supply control device 13 determines the supply destination of the power generated by the solar cell device 2 based on the power required by the power supply system output unit 10 and the generated voltage value generated by the solar cell device 2. Distribution control is performed for either the power supply system output unit 10 or the regenerator 6.

一方、上記ハウジング15は、太陽電池装置2と各バスライン11,12とを電気的に接続する太陽電池接続ライン20を有する。太陽電池接続ライン20は、蓄電ライン21と出力ライン22とを有する。   On the other hand, the housing 15 has a solar cell connection line 20 that electrically connects the solar cell device 2 and the bus lines 11 and 12. The solar cell connection line 20 includes a power storage line 21 and an output line 22.

上記蓄電ライン21は、太陽電池接続蓄電開閉手段23を介して蓄電バスライン11に接続されている。上記出力ライン22は、太陽電池装置2から出力バスライン12に向かう方向の電流の流れを許容し、逆方向の電流の流れを阻止する太陽電池接続整流手段24を介して出力バスライン12に接続されている。   The power storage line 21 is connected to the power storage bus line 11 via a solar battery connection power storage opening / closing means 23. The output line 22 is connected to the output bus line 12 via a solar cell connection rectifier 24 that allows a current flow in the direction from the solar cell device 2 toward the output bus line 12 and prevents a current flow in the reverse direction. Has been.

さらに、上記ハウジング15は、燃料電池5と出力バスライン12とを電気的に接続する燃料電池接続ライン25と、再生器6と蓄電バスライン11とを電気的に接続する再生器接続ライン26とを有している。上記燃料電池接続ライン25には、燃料電池接続開閉手段27と、燃料電池5から出力バスライン12に向かう方向の電流の流れを許容し、逆方向の電流の流れを阻止する燃料電池接続整流手段28とが設けられている。上記燃料電池接続開閉手段27が閉じられると、燃料電池5で発電される電力は、燃料電池接続整流手段28を介して自動的に出力バスライン12に供給される。   Further, the housing 15 includes a fuel cell connection line 25 that electrically connects the fuel cell 5 and the output bus line 12, and a regenerator connection line 26 that electrically connects the regenerator 6 and the storage bus line 11. have. The fuel cell connection line 25 includes a fuel cell connection opening / closing means 27 and a fuel cell connection rectifying means that allows a current flow in the direction from the fuel cell 5 toward the output bus line 12 and prevents a reverse current flow. 28 are provided. When the fuel cell connection opening / closing means 27 is closed, the power generated by the fuel cell 5 is automatically supplied to the output bus line 12 via the fuel cell connection rectification means 28.

また、上記再生器接続ライン26には、再生器接続開閉手段29と、蓄電バスライン11から再生器6に向かう方向の電流の流れを許容し、逆方向の電流の流れを阻止する再生器接続整流手段30とが設けられている。上記再生器接続開閉手段29が閉じられると、蓄電バスライン11に供給される電力は、再生器接続整流手段30を介して自動的に再生器6に供給される。   The regenerator connection line 26 is connected to a regenerator connection opening / closing means 29 and a regenerator connection that allows a current flow in the direction from the storage bus line 11 to the regenerator 6 and prevents a reverse current flow. A rectifying means 30 is provided. When the regenerator connection opening / closing means 29 is closed, the power supplied to the power storage bus line 11 is automatically supplied to the regenerator 6 via the regenerator connection rectification means 30.

さらに、上記電源制御装置13は、太陽電池装置2の発電状況等をモニタする太陽電池発電状況モニタを内蔵している。この電源制御装置13は、太陽電池パネル3とデータ入力ライン31で接続されており、太陽電池発電状況モニタで太陽電池パネル3の発電状況を監視している。得られた太陽電池パネル3の発電状況に関するデータは、複数の太陽電池パネルグループの個々の作動状況を監視し、蓄電バスライン11に接続するグループを選定するために用いている。またグループ毎のヘルスチェックにも使用している。また、太陽電池発電状況モニタでは、太陽電池装置2で発電される電力の電圧値と電流値との関係であるI−V特性(I−V曲線)と、最大電力値とを求め、求めたI−V特性および最大電力値を電源制御装置13に出力している。さらに、電源制御装置13は、上記太陽電池接続ライン20とモニタ接続ライン32で接続されている。このモニタ接続ライン32には、モニタ接続開閉手段33が設けられている。この電源制御装置13は、再生型燃料電池装置4と信号ライン34で接続されている。   Further, the power supply control device 13 has a built-in solar cell power generation status monitor that monitors the power generation status and the like of the solar cell device 2. The power supply control device 13 is connected to the solar cell panel 3 through the data input line 31 and monitors the power generation status of the solar cell panel 3 by a solar cell power generation status monitor. The obtained data regarding the power generation status of the solar cell panel 3 is used to monitor the individual operating statuses of a plurality of solar cell panel groups and select a group connected to the power storage bus line 11. It is also used for group health checks. Moreover, in the solar cell power generation status monitor, an IV characteristic (IV curve) that is a relationship between a voltage value and a current value of electric power generated by the solar cell device 2 and a maximum electric power value are obtained and obtained. The IV characteristic and the maximum power value are output to the power supply control device 13. Furthermore, the power supply control device 13 is connected to the solar cell connection line 20 and the monitor connection line 32. The monitor connection line 32 is provided with a monitor connection opening / closing means 33. The power supply control device 13 is connected to the regenerative fuel cell device 4 through a signal line 34.

このような構成により、太陽電池装置2で発電される電力は、太陽電池接続蓄電開閉手段23が開いている太陽電池接続ライン20から分岐した出力ライン部22の太陽電池接続整流手段24を介して自動的に出力バスライン12に供給される。また、太陽電池接続蓄電開閉手段23が閉じられると、太陽電池装置2で発電される電力は蓄電ライン21に供給される。   With such a configuration, the electric power generated by the solar cell device 2 is passed through the solar cell connection rectifying means 24 of the output line portion 22 branched from the solar cell connection line 20 where the solar cell connection power storage opening / closing means 23 is open. It is automatically supplied to the output bus line 12. When the solar cell connection power storage opening / closing means 23 is closed, the power generated by the solar cell device 2 is supplied to the power storage line 21.

上記電源制御装置13は、例えばコンピュータによって実現され、太陽電池発電状況モニタ(電源制御装置13に内蔵)の検出結果を含む各種情報に基づいて、各開閉手段23,27,29,33に開閉動作を制御するように構成される。   The power supply control device 13 is realized by a computer, for example, and opens and closes the open / close means 23, 27, 29, and 33 based on various information including detection results of a solar cell power generation status monitor (built in the power supply control device 13). Configured to control.

このように電源制御装置13は、太陽電池パネル3と、再生型燃料電池装置4と、電力供給系出力部10と、外部電源入力部16と、電源制御装置(太陽電池発電状況モニタ)13の接続状態を制御し、電力の供給状態を制御するようになっている。また、この電源制御装置13による各機器の制御が、後述するように、太陽電池装置2の電流−電圧特性の変化に応じて、再生器6の電流−電圧特性を太陽電池装置2の最大効率点に近づけるように調整する調整機構8(図2(b) )である。この調整機構による調整としては、再生器6の定格運転時の電流−電圧特性を後述するように変化させることで、この再生器6に電力供給する太陽電池装置2の最大効率点と一致するように近づけることによって行われる。この調整機構は、電源制御装置13からの信号に基づいて再生型燃料電池装置4が調整するように構成してもよい。   As described above, the power supply control device 13 includes the solar cell panel 3, the regenerative fuel cell device 4, the power supply system output unit 10, the external power supply input unit 16, and the power supply control device (solar cell power generation status monitor) 13. The connection state is controlled, and the power supply state is controlled. Further, as will be described later, the control of each device by the power supply control device 13 changes the current-voltage characteristic of the regenerator 6 according to the change in the current-voltage characteristic of the solar cell device 2, and the maximum efficiency of the solar cell device 2. This is an adjusting mechanism 8 (FIG. 2 (b)) for adjusting so as to approach the point. As an adjustment by this adjustment mechanism, the current-voltage characteristic during rated operation of the regenerator 6 is changed as will be described later so as to coincide with the maximum efficiency point of the solar cell device 2 that supplies power to the regenerator 6. It is done by approaching. This adjustment mechanism may be configured such that the regenerative fuel cell device 4 adjusts based on a signal from the power supply control device 13.

なお、図では、電源制御装置13から各開閉手段23,27,29,33への信号配線の記載を省略している。また、上記ハウジング15に設けられる各開閉手段23,27,29,33は、開閉動作によってラインの導通および遮断状態を切換える手段であり、例えば継電器によってそれぞれ実現される。ハウジング15に設けられる各整流手段24,28,30は、例えばダイオードによってそれぞれ実現される。   In the figure, the signal wiring from the power supply control device 13 to each of the opening / closing means 23, 27, 29, 33 is not shown. The opening / closing means 23, 27, 29, 33 provided in the housing 15 are means for switching between conduction and interruption of the line by opening / closing operations, and are realized by relays, for example. Each rectification means 24, 28, 30 provided in the housing 15 is realized by a diode, for example.

以上のような電源設備1によれば、夜間の太陽電池装置2による発電が不可能な状況下では、燃料電池5で発電される電力を電力供給系出力部10に供給するように制御しているが、昼間の太陽電池装置2による発電が可能な状況下では、太陽電池装置2で発電される電力を、機体運用のために電力供給系出力部10に供給し、太陽電池装置2で発電される電力に余剰分がある場合、再生器6に供給するように制御し、万一、太陽電池装置2で発電される電力だけでは電力が不足した場合、燃料電池5で補充するように制御する。従って、上記電源設備1は、特に長期間にわたって滞空する、例えば、成層圏プラットフォームに利用される飛行船に好適な電源設備1となる。   According to the power supply facility 1 as described above, the power generated by the fuel cell 5 is controlled so as to be supplied to the power supply system output unit 10 in a situation where power generation by the solar cell device 2 at night is impossible. However, in a situation where power generation by the solar cell device 2 can be performed in the daytime, the power generated by the solar cell device 2 is supplied to the power supply system output unit 10 for airframe operation, and the solar cell device 2 generates power. If there is a surplus in the generated power, control is performed so that it is supplied to the regenerator 6. If the power generated by the solar cell device 2 is insufficient, the fuel cell 5 is replenished. To do. Therefore, the power supply facility 1 is a power supply facility 1 that is suitable for an airship that stays in a particularly long period of time, for example, used for a stratosphere platform.

しかも、上記電源設備1では、軽量化をはかるためコンディショナ等の重量物を一切用いることなく、開閉手段(継電器)23,27,29,33のみにより直接各要素を断続している。これにより、電源設備1の軽量化を図ることができるので、更に上記飛行船の電源設備として好適に搭載することができる。   Moreover, in the power supply facility 1, each element is directly connected / disconnected only by the switching means (relays) 23, 27, 29, 33 without using any heavy objects such as a conditioner in order to reduce the weight. Thereby, since the weight reduction of the power supply equipment 1 can be achieved, it can mount suitably as a power supply equipment of the said airship further.

次に、図2(a),(b) に基づいて、本発明に係る再生型燃料電池装置を備えた電源設備における再生器の調整機構概念を説明する。図2(a) は、上記太陽電池装置2、再生型燃料電池装置4の電圧値および電流値の関係の一例を示すグラフであり、横軸は、電流値を示し、縦軸は電圧値を示している。図1に示す構成には、図1の符号を付して説明する。   Next, based on FIGS. 2 (a) and 2 (b), the concept of the adjusting mechanism of the regenerator in the power supply facility equipped with the regenerative fuel cell apparatus according to the present invention will be described. FIG. 2 (a) is a graph showing an example of the relationship between the voltage value and the current value of the solar cell device 2 and the regenerative fuel cell device 4, where the horizontal axis indicates the current value and the vertical axis indicates the voltage value. Show. The configuration shown in FIG. 1 will be described with the reference numerals in FIG.

図2(a) に示すように、電源設備1における電圧設計では、まず、所定の日照量における太陽電池装置2の発電特性である破線40で示すI−V特性における最大発電時最高効率点(最大効率点)と、再生器6の実線41で示すI−V特性における最大効率運転時の電力の交点に、再生器6の定格運転点42が決定される。   As shown in FIG. 2 (a), in the voltage design in the power supply facility 1, first, the maximum efficiency point at the time of maximum power generation in the IV characteristic indicated by the broken line 40 which is the power generation characteristic of the solar cell device 2 at a predetermined amount of sunshine ( The rated operating point 42 of the regenerator 6 is determined at the intersection of the maximum efficiency point) and the power during the maximum efficiency operation in the IV characteristic indicated by the solid line 41 of the regenerator 6.

一方、太陽電池装置2は、上記したように太陽光線と受光面との成す角度によって発電電力値が変化し、太陽光線と受光面との成す受光角度が小さくなって日照量が小さくなるにつれて太陽電池装置2の発電特性が変化して、例えば、図2(a) に実線43で示すようなI−V特性になる。特に、飛行船の場合、昼間は外皮内の気体温度上昇を防ぐために、予め定める領域内で旋回等飛行して外気との対流による熱交換で外皮内の気体温度上昇を抑えるように運用するので、飛行船の太陽に対する姿勢が常時変化して太陽電池の発電状況も常時変化する。   On the other hand, as described above, the solar cell device 2 changes the generated power value depending on the angle formed by the sunlight and the light receiving surface, and the solar light device 2 decreases the amount of sunlight as the light reception angle formed by the sunlight and the light receiving surface decreases. The power generation characteristic of the battery device 2 is changed to be, for example, an IV characteristic as indicated by a solid line 43 in FIG. In particular, in the case of an airship, in order to prevent a rise in the gas temperature in the outer skin during the daytime, it is operated so as to suppress a rise in the gas temperature in the outer skin by swirling in a predetermined area and performing heat exchange by convection with the outside air. The attitude of the airship to the sun changes constantly, and the power generation status of the solar cell also changes constantly.

そして、太陽電池装置2のI−V特性が実線43で示すような状態となった場合に、上記再生器6のI−V特性を実線41の状態で保つと、再生器6は太陽電池装置2のI−V特性43における運転点44での運転となってしまう。つまり、この場合には、双方のI−V特性により、電圧V1よりも高い範囲Rが有効に利用されない電流I1と電圧V1との範囲における運転となり、太陽電池装置2の発電電力のうち高い範囲R部分が利用されない効率の悪い運転となる。   When the IV characteristic of the solar cell device 2 is in a state as indicated by a solid line 43, if the IV characteristic of the regenerator 6 is maintained in the state of the solid line 41, the regenerator 6 is the solar cell device. 2 is the operation at the operation point 44 in the IV characteristic 43. That is, in this case, due to both IV characteristics, the range R higher than the voltage V1 is operated in the range of the current I1 and the voltage V1 in which the range R is not effectively used. Inefficient operation in which the R portion is not used.

そこで、図2(b) に示すように、この実施形態では、上記再生器6の電圧を可変にすることで、上記太陽電池装置2のI−V特性変化に対応して再生器6のI−V特性を変化させることができるようにしている。具体的には、再生器6のセル数を増やし、それらのセルに接続できる電極端子45を多数設けることで、選択できるセル数を可変にした調整機構8を備えさせている。すなわち、再生器6を電圧可変の可変容量型再生器6とすることでI−V特性を変化させることができる調整機構8を備えさせている。   Therefore, as shown in FIG. 2B, in this embodiment, the voltage of the regenerator 6 is made variable so that the I of the regenerator 6 corresponds to the change in the IV characteristic of the solar cell device 2. The −V characteristic can be changed. Specifically, an adjustment mechanism 8 is provided in which the number of cells that can be selected is made variable by increasing the number of cells of the regenerator 6 and providing a large number of electrode terminals 45 that can be connected to these cells. That is, the adjusting mechanism 8 capable of changing the IV characteristic is provided by making the regenerator 6 a variable capacity regenerator 6 with variable voltage.

そして、図2(a) に示すように、太陽電池装置2の発電電力値が低下してI−V特性が実線43のように変化した場合、再生器6の電極端子45の接続位置を調整機構8で変化させてセル数を増やすことで再生器6のI−V特性の電圧を実線46で示すように上げて、太陽電池装置2のI−V特性の実線43における最大効率点(最大発電時最高効率点)に再生器6の定格運転点47を近づける。これにより、太陽電池装置2の電流I2と電圧V2との範囲における運転となり、太陽電池装置2の発電電力のR部分を効率良く利用することができる。   Then, as shown in FIG. 2A, when the generated power value of the solar cell device 2 decreases and the IV characteristic changes as indicated by the solid line 43, the connection position of the electrode terminal 45 of the regenerator 6 is adjusted. By changing the mechanism 8 to increase the number of cells, the voltage of the IV characteristic of the regenerator 6 is increased as indicated by the solid line 46, and the maximum efficiency point (maximum) in the solid line 43 of the IV characteristic of the solar cell device 2 is increased. The rated operating point 47 of the regenerator 6 is brought close to the maximum efficiency point during power generation. Thereby, it becomes the driving | operation in the range of the electric current I2 of the solar cell apparatus 2, and the voltage V2, and R part of the generated electric power of the solar cell apparatus 2 can be utilized efficiently.

この場合、再生器6の運転点44が運転点47に変化するため、電流I1−I2と電圧V1との範囲Bが利用されなくなるが、電流I2と電圧V1−V2の範囲Rに比べれば小さい範囲なので、発電電力全体では広い範囲を有効に利用することになる。   In this case, since the operating point 44 of the regenerator 6 changes to the operating point 47, the range B between the current I1-I2 and the voltage V1 is not used, but is smaller than the range R between the current I2 and the voltage V1-V2. Since it is a range, the entire generated power will be effectively used over a wide range.

このように、再生器6のI−V特性46を太陽電池装置2のI−V特性43に応じて変化させ、太陽電池装置2の最大効率点に再生器6の運転点47を近づけるように調整可能とすることで、無効となる太陽電池発電電力を有効に利用することが可能となるようにしている。   In this way, the IV characteristic 46 of the regenerator 6 is changed according to the IV characteristic 43 of the solar cell device 2 so that the operating point 47 of the regenerator 6 approaches the maximum efficiency point of the solar cell device 2. By making the adjustment possible, it becomes possible to effectively use the solar cell generated power that becomes invalid.

次に、図3(a),(b) 〜6(a),(b) に基づいて、上記電源設備1において、再生器の電流−電圧特性を太陽電池装置2の最大効率点に近づけるように調整する調整機構8の具体的な例を説明する。   Next, based on FIGS. 3 (a), (b) to 6 (a), (b), in the power supply facility 1, the current-voltage characteristics of the regenerator are brought close to the maximum efficiency point of the solar cell device 2. A specific example of the adjustment mechanism 8 that adjusts to will be described.

図3(a),(b) に示す第1実施形態は、再生器6のセル数を可変にして電流−電圧特性を太陽電池装置2の最大効率点に近づけるように調整する調整機構8による再生器可変容量方法の例である。この例は、単スタックによる再生器可変容量方法である。図1に示す構成には、図1の符号を付して説明する。   The first embodiment shown in FIGS. 3A and 3B is based on an adjustment mechanism 8 that adjusts the current-voltage characteristics so as to approach the maximum efficiency point of the solar battery device 2 by making the number of cells of the regenerator 6 variable. It is an example of the regenerator variable capacity method. This example is a regenerator variable capacity method using a single stack. The configuration shown in FIG. 1 will be described with the reference numerals in FIG.

図3(a) に示すように、上記太陽電池装置2の電圧設計で設定したI−V特性を示す破線50は、再生器6の破線51で示すI−V特性における定格運転点52が太陽電池装置2の最大発電時最高効率点に設定されているが、太陽高度の変化等によって太陽電池装置2の発電特性が変化する。そこで、この実施形態では、図3(b) に示すように、再生器6のセル数をA〜Dの4段階で調整できるようにしている。   As shown in FIG. 3A, the broken line 50 indicating the IV characteristic set in the voltage design of the solar cell device 2 indicates that the rated operating point 52 in the IV characteristic indicated by the broken line 51 of the regenerator 6 is the solar characteristic. Although the maximum efficiency point at the time of maximum power generation of the battery device 2 is set, the power generation characteristics of the solar cell device 2 change due to a change in solar altitude or the like. Therefore, in this embodiment, as shown in FIG. 3B, the number of cells of the regenerator 6 can be adjusted in four stages A to D.

そして、太陽電池装置2の発電電力値が低下した場合、太陽電池装置2のI−V特性の変化(図示する破線53〜55)に対応して、再生器6のI−V特性を破線56〜58で示すように変化させる。   And when the electric power generation value of the solar cell apparatus 2 falls, the IV characteristic of the regenerator 6 is shown with the broken line 56 corresponding to the change of the IV characteristic of the solar cell apparatus 2 (broken lines 53 to 55 shown in the figure). Vary as indicated by ~ 58.

すなわち、この例では、図3(b) に示すように、可変容量型再生器6のセル数を可変とする電極端子45を多数(この例では、電極端子45をA〜Dの4位置)設けているので、太陽電池装置2のI−V特性変化による電力低下に応じて電力的に有利なセル数となるように再生器6の電極端子45の位置を選択して接続することで電圧(容量)を高くし、再生器6のI−V特性を4段階で変化させることができるようにしている。   That is, in this example, as shown in FIG. 3B, there are a large number of electrode terminals 45 that make the number of cells of the variable capacity regenerator 6 variable (in this example, the electrode terminals 45 are at four positions A to D). Since it is provided, the voltage by selecting and connecting the position of the electrode terminal 45 of the regenerator 6 so that the number of cells advantageous in terms of power can be obtained according to the power reduction due to the change in the IV characteristics of the solar cell device 2. (Capacity) is increased so that the IV characteristics of the regenerator 6 can be changed in four stages.

これにより、図3(a) に示すように、再生器6のI−V特性を太陽電池装置2の最高効率点に近づけて、再生器6の運転点をA〜D位置とし、太陽電池装置2の発電電力を有効に利用することで再生エネルギ量を上げて効率向上を図っている。各運転点A〜Dにおける発電電力の利用範囲は上記図2(a) と同様であるため、その説明は省略する。   As a result, as shown in FIG. 3 (a), the IV characteristic of the regenerator 6 is brought close to the highest efficiency point of the solar cell device 2, and the operating point of the regenerator 6 is set to the A to D positions. By effectively using the power generated by No. 2, the amount of regenerative energy is increased to improve efficiency. Since the use range of the generated power at each of the operating points A to D is the same as that shown in FIG.

なお、この実施形態では、図3(b) に示す可変容量型再生器6に増設したセルの位置の電極端子45を等間隔のピッチで設けているが、電極端子45を設けるピッチは、例えば、「大」、「中」、「小」と不当間隔としてもよい。この電極端子45の不当間隔は、図3(a) に示すような太陽電池装置2の電圧低下の特性等に応じて変化させるセル数に対応して設定すればよい。また、図示する4段階は一例であり、更に細かく設定してもよい。   In this embodiment, the electrode terminals 45 at the positions of the cells added to the variable capacity regenerator 6 shown in FIG. 3 (b) are provided at equal intervals, but the pitch at which the electrode terminals 45 are provided is, for example, , “Large”, “Medium”, and “Small” may be inappropriate intervals. The improper spacing of the electrode terminals 45 may be set in accordance with the number of cells to be changed according to the voltage drop characteristics of the solar battery device 2 as shown in FIG. Further, the four stages shown in the figure are examples, and may be set more finely.

図4(a),(b) に示す第2実施形態は、固定容量型再生器7を複数個設け、それらの再生器7を直列的に接続する個数を調整してI−V特性を変化させる調整機構8による再生器可変容量方法(再生器個数可変)の例である。なお、上記図1に示す構成には、図1の符号を付して説明する。   In the second embodiment shown in FIGS. 4 (a) and 4 (b), a plurality of fixed capacity regenerators 7 are provided, and the IV characteristic is changed by adjusting the number of these regenerators 7 connected in series. It is an example of the regenerator variable capacity method (variable number of regenerators) by the adjusting mechanism 8 to be performed. The configuration shown in FIG. 1 will be described with the reference numerals in FIG.

この実施形態の場合、図4(a) に示すように、上記太陽電池装置2のI−V特性を示す破線60が変化した場合、その太陽電池装置2のI−V特性変化による電力低下に応じて、図4(b) に示すように、電力的に有利な個数の再生器7の接続数となるように継電器61による接続数が選択される。これにより、再生器7としてのI−V特性を、再生器7の接続数に応じて電圧が高くなる特性に変化させることができる。図では、5個の接続された継電器61により、4個の再生器7が直列接続された状態となっている。この実施形態の場合、再生器7の数量は、各再生器7の端部構造や補器類の増加に伴う重量増加を抑える数量が好ましい。   In the case of this embodiment, as shown in FIG. 4 (a), when the broken line 60 indicating the IV characteristic of the solar cell device 2 changes, the power decreases due to the change in the IV characteristic of the solar cell device 2. Accordingly, as shown in FIG. 4 (b), the number of connections by the relay 61 is selected so that the number of regenerators 7 that are advantageous in terms of power is obtained. Thereby, the IV characteristic as the regenerator 7 can be changed to a characteristic in which the voltage increases according to the number of regenerators 7 connected. In the figure, four regenerators 7 are connected in series by five connected relays 61. In the case of this embodiment, the quantity of the regenerators 7 is preferably a quantity that suppresses an increase in weight due to an increase in the end structure of each regenerator 7 and auxiliary devices.

この実施形態によれば、太陽電池装置2のI−V特性が破線60から破線62〜64に示すように変化するのに応じて、再生器7の接続数を変化させることで、図4(a) に示すように再生器7のI−V特性を破線65〜68で示すように変化させることができる。図示する4段階は一例であり、更に細かく設定することもできる。   According to this embodiment, the number of connections of the regenerator 7 is changed as the IV characteristic of the solar cell device 2 changes from the broken line 60 as shown by the broken lines 62 to 64, so that FIG. As shown in a), the IV characteristic of the regenerator 7 can be changed as indicated by broken lines 65-68. The four stages shown are examples, and can be set in more detail.

従って、この実施形態によっても、上記第1実施形態と同様に、再生器7の運転点をA〜Dを太陽電池装置2の最高効率点に近づけて太陽電池装置2の発電電力を有効に利用することで、再生エネルギ量を上げて効率向上を図ることができる。   Therefore, also in this embodiment, the operating point of the regenerator 7 is made close to the highest efficiency point of the solar cell device 2 and the generated power of the solar cell device 2 is effectively used as in the first embodiment. As a result, the amount of regenerative energy can be increased to improve efficiency.

図5(a),(b) に示す第3実施形態は、固定容量型再生器7を複数個設け、それらの再生器7を並列的に接続する個数を調整してI−V特性を変化させる調整機構8による再生器可変容量方法(再生器個数可変)の例である。なお、上記図1に示す構成には、図1の符号を付して説明する。   In the third embodiment shown in FIGS. 5A and 5B, a plurality of fixed capacity regenerators 7 are provided, and the IV characteristics are changed by adjusting the number of the regenerators 7 connected in parallel. It is an example of the regenerator variable capacity method (variable number of regenerators) by the adjusting mechanism 8 to be performed. The configuration shown in FIG. 1 will be described with the reference numerals in FIG.

この実施形態の場合、図5(b) に示すように、3台の再生器7が太陽電池装置2と並列に接続されている。この例では、1台の再生器7が太陽電池装置2と接続された状態で、再生器7の定格運転点が太陽電池装置2の最大効率点となるようにしている。   In the case of this embodiment, as shown in FIG. 5 (b), three regenerators 7 are connected in parallel with the solar cell device 2. In this example, in a state where one regenerator 7 is connected to the solar cell device 2, the rated operating point of the regenerator 7 is set to be the maximum efficiency point of the solar cell device 2.

そして、太陽電池装置2のI−V特性が変化して電圧が下がった場合には、再生器7の接続個数を増やすことで、再生器7の全体でのI−V特性を変化させている。すなわち、この例では、3台の再生器7を設けているため、図5(a) に破線70〜72で示すように、3段階のI−V特性を得ることができ、太陽電池装置2の発電電力値の変化に応じて、電力的に有利な再生器7の接続数となるように、継電器73で各再生器7が太陽電池装置2と接続される。この実施形態では、同一のI−V特性の再生器7を並設することでI−V特性を調整することができ、従来の再生器を使用することもできる。   Then, when the IV characteristic of the solar cell device 2 changes and the voltage decreases, the IV characteristic of the entire regenerator 7 is changed by increasing the number of connected regenerators 7. . That is, in this example, since three regenerators 7 are provided, as shown by broken lines 70 to 72 in FIG. 5A, three-stage IV characteristics can be obtained, and the solar cell device 2 Each regenerator 7 is connected to the solar cell device 2 by a relay 73 so that the number of regenerators 7 that is advantageous in terms of power is obtained in accordance with the change in the generated power value. In this embodiment, the IV characteristics can be adjusted by arranging the regenerators 7 having the same IV characteristics in parallel, and a conventional regenerator can also be used.

従って、この実施形態によっても、上記第1実施形態と同様に、再生器7の運転点をA〜Cを太陽電池装置2の最高効率点に近づけて太陽電池装置2の発電電力を有効に利用することで、再生エネルギ量を上げて効率向上を図ることができる。   Therefore, also in this embodiment, the operating point of the regenerator 7 is made close to the highest efficiency point of the solar cell device 2 and the generated power of the solar cell device 2 is effectively used as in the first embodiment. As a result, the amount of regenerative energy can be increased to improve efficiency.

図6(a),(b) に示す第4実施形態は、上記図3(a),(b) に示す第1実施形態と、上記図5(a),(b) に示す第3実施形態とを組合わせた調整機構8による再生器可変容量法(セル数可変および再生器個数可変)の例である。なお、上記図3(a),(b) に示す構成と同一の構成には同一符号を付し、その説明は省略する。   The fourth embodiment shown in FIGS. 6 (a) and 6 (b) includes the first embodiment shown in FIGS. 3 (a) and 3 (b) and the third embodiment shown in FIGS. 5 (a) and 5 (b). It is an example of the regenerator variable capacity method (variable number of cells and variable number of regenerators) by the adjusting mechanism 8 combined with the form. In addition, the same code | symbol is attached | subjected to the structure same as the structure shown to the said FIG. 3 (a), (b), and the description is abbreviate | omitted.

この実施形態の場合、図6(b) に示すように、セル数を増やしてそれらのセル数を選択できる電極端子45を多数設けることで容量可変にした可変容量型再生器6が1台と、固定容量型再生器7が2台設けられている。これら3台の再生器6,7は、太陽電池装置2と並列に接続されている。この例では、1台の再生器7が太陽電池装置2と接続された状態で、再生器の定格運転点が太陽電池装置2の最大効率点となるようにしている。   In the case of this embodiment, as shown in FIG. 6 (b), there is one variable capacity regenerator 6 having a variable capacity by providing a large number of electrode terminals 45 capable of selecting the number of cells by increasing the number of cells. Two fixed capacity regenerators 7 are provided. These three regenerators 6 and 7 are connected in parallel with the solar cell device 2. In this example, the rated operating point of the regenerator becomes the maximum efficiency point of the solar cell device 2 in a state where one regenerator 7 is connected to the solar cell device 2.

この実施形態の場合、図6(a) に示すように、上記可変容量型再生器6のセル数変更によるI−V特性の調整を太陽電池装置2の発電電力値が低い位置で行い、並設した2台の固定容量型再生器7の接続数によるI−V特性の調整を太陽電池装置2の発電電力値が高い位置で行うようにしている。   In the case of this embodiment, as shown in FIG. 6A, the adjustment of the IV characteristics by changing the number of cells of the variable capacity regenerator 6 is performed at a position where the generated power value of the solar cell device 2 is low. The adjustment of the IV characteristics according to the number of connected two fixed capacity regenerators 7 is performed at a position where the generated power value of the solar cell device 2 is high.

このように可変容量型再生器6と固定容量型再生器7とを備えた複合型の電源設備1によれば、太陽電池装置2の電圧設計で設定したI−V特性が破線80のときには、1台の固定容量型再生器7のみを接続し、太陽電池装置2の発電電力の低下によってI−V特性が下がると継電器81を接続してもう1台の固定容量型再生器7を太陽電池装置2に接続する。そして、更にI−V特性が下がると、可変容量型再生器6の継電器81を接続する。この可変容量型再生器6を接続した状態では、セル数の接続数を電極端子45の接続位置で調整することで、再生器6(再生器7を含む全体)のI−V特性を細かく調整することができる。   Thus, according to the composite power supply facility 1 including the variable capacity regenerator 6 and the fixed capacity regenerator 7, when the IV characteristic set in the voltage design of the solar cell device 2 is the broken line 80, When only one fixed capacity regenerator 7 is connected and the IV characteristic is lowered due to a decrease in the generated power of the solar cell device 2, a relay 81 is connected to connect the other fixed capacity regenerator 7 to the solar battery. Connect to device 2. When the IV characteristic further decreases, the relay 81 of the variable capacity regenerator 6 is connected. In the state where the variable capacity regenerator 6 is connected, the IV characteristic of the regenerator 6 (the whole including the regenerator 7) is finely adjusted by adjusting the number of cells connected at the connection position of the electrode terminal 45. can do.

図6(a) の右部に2本の破線82,83で示すI−V特性が、固定容量型再生器7を1台接続したときと2台接続したときの再生器7のI−V特性であり、左部に4本の破線84〜87で示すI−V特性が可変容量型再生器6を接続したとき(継電器81(C) を接続したとき)の再生器6のI−V特性である。   The IV characteristics indicated by the two broken lines 82 and 83 on the right side of FIG. 6 (a) indicate that the IV of the regenerator 7 when one fixed capacity regenerator 7 is connected and when two fixed capacity regenerators 7 are connected. The IV characteristic of the regenerator 6 when the variable capacity regenerator 6 is connected (when the relay 81 (C) is connected) has IV characteristics indicated by four broken lines 84 to 87 on the left side. It is a characteristic.

従って、この実施形態によっても、上記第1実施形態と同様に、再生器6,7の運転点を太陽電池装置2の最高効率点に近づけて太陽電池装置2の発電電力を有効に利用することで、再生エネルギ量を上げて効率向上を図ることができる。   Therefore, also in this embodiment, as in the first embodiment, the operating point of the regenerators 6 and 7 is brought close to the highest efficiency point of the solar cell device 2 and the generated power of the solar cell device 2 is effectively used. Thus, the amount of regenerative energy can be increased to improve efficiency.

また、この実施形態では、図6(a) に、成層圏プラットフォームに用いられる飛行船における定格電力の一例を曲線88で示している。従って、この曲線88を超える範囲の電力を余剰分として再生器6,7に供給することができる。   In this embodiment, an example of the rated power in the airship used for the stratosphere platform is shown by a curve 88 in FIG. Therefore, the power in the range exceeding the curve 88 can be supplied to the regenerators 6 and 7 as a surplus.

以上のように、上記再生型燃料電池装置4を備えた電源設備1によれば、再生器6(7)のI−V特性を太陽電池装置2のI−V特性の変化に応じて調整することができるので、太陽電池装置2および再生型燃料電池装置4で得られる電力を効率良く電力供給系出力部10に供給して、太陽電池装置2による発電電力の利用効率を向上させることが可能となる。   As described above, according to the power supply facility 1 including the regenerative fuel cell device 4, the IV characteristic of the regenerator 6 (7) is adjusted according to the change in the IV characteristic of the solar cell device 2. Therefore, it is possible to efficiently supply the power obtained by the solar cell device 2 and the regenerative fuel cell device 4 to the power supply system output unit 10 and improve the utilization efficiency of the generated power by the solar cell device 2. It becomes.

しかも、太陽電池装置2の発電電力値の変化に応じて再生器6のセル接続数または再生器7の接続数を可変にして調整する再生器可変容量法としているので、太陽電池装置2のI−V特性変化に応じて再生器6(7)の電力を調整してI−V特性を変化させるという簡単な制御で、太陽電池装置2の発電電力の利用効率を向上させた電源設備1の運転が可能となる。   Moreover, since the regenerator variable capacity method is employed in which the number of cells connected to the regenerator 6 or the number of connections of the regenerator 7 is variably adjusted in accordance with the change in the generated power value of the solar cell device 2, the regenerator variable capacity method is used. The power supply facility 1 that improves the utilization efficiency of the generated power of the solar cell device 2 by simple control of adjusting the power of the regenerator 6 (7) according to the change of the -V characteristic and changing the IV characteristic. Driving is possible.

従って、上記再生型燃料電池装置を備えた電源設備1によれば、成層圏プラットフォームに用いられる飛行船のように、長期間滞空して自己が使用する電力を発電しなければならない構成に、長期間にわたって飛行、姿勢制御等の電力を再生して、効率的で運転ができる電源設備1を提供することが可能となる。   Therefore, according to the power supply facility 1 equipped with the regenerative fuel cell device, a structure in which the power used by itself is generated after being suspended for a long time, such as an airship used for a stratospheric platform, can be generated over a long period of time. It is possible to provide power supply equipment 1 that regenerates electric power for flight, attitude control, and the like and that can be operated efficiently.

しかも、上記電源設備1によれば、コンディショナ等の重量物を用いないためシステムの軽量化を図ることができ、制御する構成もシンプル(開閉手段としての継電器のみでの制御となる)となるので、重量および設備費用の増加を抑えて負荷を小さくし、上記飛行船のように長期間滞空する構成において効率改善効果の高い電源設備1を構成することができる。   Moreover, according to the power supply facility 1, the weight of the system can be reduced because no heavy object such as a conditioner is used, and the control configuration is simple (the control is performed only by the relay as the switching means). Therefore, it is possible to reduce the load by suppressing an increase in weight and facility cost, and to configure the power supply facility 1 having a high efficiency improvement effect in a configuration where the aircraft stays for a long time like the airship.

なお、上記実施形態では、成層圏プラットフォームに用いられる飛行船等に備える電源設備1を例に説明したが、他の用途に用いられる電源設備としても利用することができ、本発明は上記実施形態に限定されるものではない。   In the above embodiment, the power supply facility 1 provided for an airship or the like used for the stratosphere platform has been described as an example. However, the power supply facility 1 can also be used for other purposes, and the present invention is limited to the above embodiment. Is not to be done.

また、上記実施形態における蓄電バスライン11と出力バスライン12を設ける構成も一例であり、他の構成であってもよく、上記実施形態に限定されるものではない。   Moreover, the structure which provides the electrical storage bus line 11 and the output bus line 12 in the said embodiment is an example, Another structure may be sufficient and it is not limited to the said embodiment.

さらに、上述した実施形態は一例を示しており、本発明の要旨を損なわない範囲での種々の変更は可能であり、本発明は上述した実施形態に限定されるものではない。   Furthermore, the above-described embodiment shows an example, and various modifications can be made without departing from the gist of the present invention, and the present invention is not limited to the above-described embodiment.

本発明に係る再生型燃料電池装置を備えた電源設備は、成層圏などで自らが消費する電力を長期間自給しなければならない飛行船等に利用できる。   The power supply facility equipped with the regenerative fuel cell device according to the present invention can be used for an airship or the like that must self-supplied for a long time in the stratosphere.

1 電源設備
2 太陽電池装置
3 太陽電池パネル
4 再生型燃料電池装置
5 燃料電池
6 再生器(可変容量型)
7 再生器(固定容量型)
8 調整機構
10 電力供給系出力部
11 蓄電バスライン
12 出力バスライン
13 電源制御装置(太陽電池発電状況モニタ)
20 太陽電池接続ライン
21 蓄電ライン
22 出力ライン
34 信号ライン
40 太陽電池装置のI−V特性
41 再生器のI−V特性
42 定格運転点
43 太陽電池装置のI−V特性
46 再生器のI−V特性
50 太陽電池装置のI−V特性
51 再生器のI−V特性
52 定格運転点
53 太陽電池装置のI−V特性
56 再生器のI−V特性
60 太陽電池装置のI−V特性
65 再生器のI−V特性
62 太陽電池装置のI−V特性
66 再生器のI−V特性
70 太陽電池装置のI−V特性
80 太陽電池装置のI−V特性
82 再生器のI−V特性
1 Power supply facilities
2 Solar cell device
3 Solar panel
4 Regenerative fuel cell system
5 Fuel cell
6 Regenerator (variable capacity type)
7 Regenerator (fixed capacity type)
8 Adjustment Mechanism 10 Power Supply System Output Unit 11 Storage Bus Line 12 Output Bus Line 13 Power Supply Control Device (Solar Cell Power Generation Status Monitor)
DESCRIPTION OF SYMBOLS 20 Solar cell connection line 21 Power storage line 22 Output line 34 Signal line 40 Solar cell device IV characteristic 41 Regenerator IV characteristic 42 Rated operating point 43 Solar cell device IV characteristic 46 Regenerator I- V characteristic 50 IV characteristic of solar cell device 51 IV characteristic of regenerator 52 Rated operating point 53 IV characteristic of solar cell device 56 IV characteristic of regenerator 60 IV characteristic of solar cell device 65 IV characteristics of regenerator 62 IV characteristics of solar cell device 66 IV characteristics of regenerator 70 IV characteristics of solar cell device 80 IV characteristics of solar cell device 82 IV characteristics of regenerator

Claims (5)

太陽電池パネルを備える太陽電池装置と、燃料電池および再生器を備える再生型燃料電池装置と、前記太陽電池装置および前記再生器が接続された蓄電バスラインと、前記太陽電池装置と前記燃料電池および電力供給系出力部が接続された出力バスラインと、前記太陽電池装置で発電される電力が前記蓄電バスラインに供給される状態、および前記太陽電池装置で発電される電力が前記出力バスラインに供給される状態、のいずれかに供給状態を切換える電源制御装置とを有する再生型燃料電池装置を備え、
前記再生型燃料電池装置は、前記太陽電池装置の電流−電圧特性の変化に応じて、前記再生器の電圧特性を前記太陽電池装置の最大効率点電圧に近づけるように調整する調整機構を備えていることを特徴とする再生型燃料電池装置を備えた電源設備。
A solar cell device including a solar cell panel, a regenerative fuel cell device including a fuel cell and a regenerator, a storage bus line to which the solar cell device and the regenerator are connected, the solar cell device, the fuel cell, and An output bus line to which a power supply system output unit is connected, a state where power generated by the solar cell device is supplied to the power storage bus line, and power generated by the solar cell device is supplied to the output bus line A regenerative fuel cell device having a power supply control device that switches the supply state to any of the supplied states,
The regenerative fuel cell device includes an adjustment mechanism that adjusts the voltage characteristic of the regenerator so as to approach the maximum efficiency point voltage of the solar cell device according to a change in the current-voltage characteristic of the solar cell device. A power supply facility equipped with a regenerative fuel cell device.
前記再生器は、電圧特性を変化させる複数のセルを具備した可変容量型再生器を有し、
前記調整機構は、前記太陽電池装置の電流−電圧特性の変化に応じて、前記可変容量型再生器のセル接続数を調整するように構成されている請求項1に記載の再生型燃料電池装置を備えた電源設備。
The regenerator has a variable capacity regenerator having a plurality of cells that change voltage characteristics,
2. The regenerative fuel cell device according to claim 1, wherein the adjustment mechanism is configured to adjust the number of connected cells of the variable capacity regenerator in accordance with a change in current-voltage characteristics of the solar cell device. Power supply equipment with.
前記再生器は、複数個の固定容量型再生器を有し、
前記調整機構は、前記太陽電池装置の電流−電圧特性の変化に応じて、
前記固定容量型再生器の接続数を調整するように構成されている請求項1に記載の再生型燃料電池装置を備えた電源設備。
The regenerator has a plurality of fixed capacity regenerators,
According to the change of the current-voltage characteristic of the solar cell device, the adjustment mechanism
The power supply facility comprising the regenerative fuel cell device according to claim 1, configured to adjust the number of connections of the fixed capacity regenerator.
前記再生器は、電圧特性を変化させる複数のセルを具備した可変容量型再生器と、複数個の固定容量型再生器とを有し、
前記調整機構は、前記太陽電池装置の電流−電圧特性の変化に応じて、
前記可変容量型再生器のセル接続数と、前記固定容量型再生器の接続数とを調整するように構成されている請求項1に記載の再生型燃料電池装置を備えた電源設備。
The regenerator includes a variable capacity regenerator having a plurality of cells that change voltage characteristics, and a plurality of fixed capacity regenerators,
According to the change of the current-voltage characteristic of the solar cell device, the adjustment mechanism
The power supply facility comprising the regenerative fuel cell device according to claim 1, configured to adjust the number of cells connected to the variable capacity regenerator and the number of connections of the fixed capacity regenerator.
請求項1〜4のいずれか1項に記載の再生型燃料電池装置を備えた電源設備を具備させた飛行船であって、
前記太陽電池パネルを外皮上部の機軸に沿って配設していることを特徴とする飛行船。
An airship equipped with a power supply facility comprising the regenerative fuel cell device according to any one of claims 1 to 4,
An airship characterized in that the solar cell panel is disposed along the axis of the upper skin.
JP2010289386A 2010-12-27 2010-12-27 Power supply equipment with regenerative fuel cell system Active JP5555153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289386A JP5555153B2 (en) 2010-12-27 2010-12-27 Power supply equipment with regenerative fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289386A JP5555153B2 (en) 2010-12-27 2010-12-27 Power supply equipment with regenerative fuel cell system

Publications (2)

Publication Number Publication Date
JP2012138241A true JP2012138241A (en) 2012-07-19
JP5555153B2 JP5555153B2 (en) 2014-07-23

Family

ID=46675507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289386A Active JP5555153B2 (en) 2010-12-27 2010-12-27 Power supply equipment with regenerative fuel cell system

Country Status (1)

Country Link
JP (1) JP5555153B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053353A (en) * 2003-08-05 2005-03-03 Chube Univ Airship
JP2006073353A (en) * 2004-09-02 2006-03-16 Institute Of National Colleges Of Technology Japan Fuel cell system and its operation method
JP2007018781A (en) * 2005-07-05 2007-01-25 Nissan Motor Co Ltd Fuel cell system
JP2007049868A (en) * 2005-08-12 2007-02-22 Japan Aerospace Exploration Agency Power facility
JP2008278726A (en) * 2007-05-07 2008-11-13 Hitachi Ltd Wind power generation control system and its control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053353A (en) * 2003-08-05 2005-03-03 Chube Univ Airship
JP2006073353A (en) * 2004-09-02 2006-03-16 Institute Of National Colleges Of Technology Japan Fuel cell system and its operation method
JP2007018781A (en) * 2005-07-05 2007-01-25 Nissan Motor Co Ltd Fuel cell system
JP2007049868A (en) * 2005-08-12 2007-02-22 Japan Aerospace Exploration Agency Power facility
JP2008278726A (en) * 2007-05-07 2008-11-13 Hitachi Ltd Wind power generation control system and its control method

Also Published As

Publication number Publication date
JP5555153B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
AU2019260587B2 (en) DC/DC converter for distributed storage and solar systems
US9048513B2 (en) Hybrid battery system
JP5935046B2 (en) Storage battery assembly control system
JP2011120449A (en) Power generation system, control device, and switching circuit
US20100001585A1 (en) Electric power system
CN108233421B (en) Photovoltaic power generation system and photovoltaic power transmission method
US20120217800A1 (en) Solar power systems optimized for use in communications networks
CN102257699B (en) A photovoltaic system
US20090174259A1 (en) Natural Energy Power Supplying Apparatus
JP4104076B2 (en) Power supply equipment
CN102257700B (en) A photovoltaic system
CN109638882B (en) Photovoltaic system
CN107947148B (en) Multi-bus circuit of power supply controller
EP3182554B1 (en) A system for converting distributed renewable energy into usable energy
CN112217193B (en) Photovoltaic hydrogen production power station, direct-current coupling photovoltaic off-grid hydrogen production system and control method thereof
US10110005B2 (en) High-voltage direct current transmission path
JP5555153B2 (en) Power supply equipment with regenerative fuel cell system
CN110311461A (en) A kind of unmanned electrical-mechanical system of solar energy
JPWO2019053824A1 (en) Power adjustment device for solar power plant, power generation system, and power adjustment method for solar power plant
Nakahata et al. Development of smart grid demonstration systems
JP7184053B2 (en) power wiring device
CN206272327U (en) A kind of power supply management circuit structure for solar energy unmanned plane
CN116054230B (en) Ship full-direct-current comprehensive power system architecture based on multiport energy router
CN105656189A (en) Power distribution system
JP3208537U (en) Solar power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140530

R150 Certificate of patent or registration of utility model

Ref document number: 5555153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250