JP2012137352A - Viscometer - Google Patents

Viscometer Download PDF

Info

Publication number
JP2012137352A
JP2012137352A JP2010289256A JP2010289256A JP2012137352A JP 2012137352 A JP2012137352 A JP 2012137352A JP 2010289256 A JP2010289256 A JP 2010289256A JP 2010289256 A JP2010289256 A JP 2010289256A JP 2012137352 A JP2012137352 A JP 2012137352A
Authority
JP
Japan
Prior art keywords
displacement
force
plate
forced
viscometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010289256A
Other languages
Japanese (ja)
Other versions
JP5483113B2 (en
Inventor
Yasuyuki Yamamoto
泰之 山本
Sohei Matsumoto
壮平 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010289256A priority Critical patent/JP5483113B2/en
Publication of JP2012137352A publication Critical patent/JP2012137352A/en
Application granted granted Critical
Publication of JP5483113B2 publication Critical patent/JP5483113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration type viscometer which is capable of measuring only viscosity separately, which does not require clarification of force generated by an actuator for measurement, and which generates few errors.SOLUTION: A viscometer comprises: a forced vibrating body; a force sensing plate arranged with a small gap from the forced vibrating body; a structure for combining the vibrating body with an actuator; the actuator for driving the forced vibrating body; a displacement sensor for detecting displacement of the forced vibrating body; a structure for combining the force sensing plate with a spring; a spring structure for causing the displacement of the force sensing plate; a displacement gauge for detecting the displacement of the force sensing plate; and a substrate for fixing the spring structure, the actuator, and the displacement gauge.

Description

本発明は、粘度計に関するもので、特に、振動粘度計の測定理論と、振動子の形態に関する。   The present invention relates to a viscometer, and more particularly to a measurement theory of a vibration viscometer and a form of a vibrator.

従来、振動式粘度計の振動体の形状としては、平板を面に平行な方向に振動させるもの、円柱を軸周りに回転振動させるもの、カンチレバー状の平板を面に垂直な方向に振動させるものなどが知られている。   Conventionally, the vibrating body of a vibratory viscometer has a shape of vibrating a flat plate in a direction parallel to the surface, rotating a cylinder around its axis, or vibrating a cantilever-shaped flat plate in a direction perpendicular to the surface. Etc. are known.

特開2001−318040号公報JP 2001-318040 A

上記の粘度計の測定理論は、振動体の周りに十分広い液体空間が存在すると仮定して導かれている。そのため、測定される量は粘度と密度の積となり、粘度を単独で測定できないことが知られている。
また、上記の粘度計は、振動させる物体にアクチュエータと、変位センサの両方が取り付けられており、測定理論上、アクチュエータが発生した力を必要とするが、アクチュエータに発生した力は、周辺のばね構造やダンパー構造などの影響を受けるため、必ずしも明確にしがたく、誤差を発生させる要因となっていた。
本発明は、粘度のみが単独で測定でき、しかもアクチュエータが発生する力を明確にする必要がなく、誤差の少ない振動式粘度計を実現することを課題とする。
The above viscometer measurement theory is derived on the assumption that a sufficiently large liquid space exists around the vibrating body. Therefore, the amount to be measured is the product of viscosity and density, and it is known that the viscosity cannot be measured alone.
The above viscometer has both an actuator and a displacement sensor attached to the object to be vibrated, and requires the force generated by the actuator in terms of measurement theory. Since it is affected by the structure and the damper structure, it is not always clear and causes an error.
An object of the present invention is to realize a vibratory viscometer that can measure only the viscosity alone and that does not require the force generated by the actuator to be clarified and that has few errors.

本発明の粘度計は、強制振動体と、強制振動体とわずかな間隙を介して設置された感力板と、振動体をアクチュエータに結合させるための構造と、強制振動体を駆動するためのアクチュエータと、強制振動体の変位を検出するための変位センサと、感力板をバネに結合させるための構造と、感力板に変位を起こさせるばね構造と、感力板の変位を検出するための変位計と、前記ばね構造、アクチュエータ、及び、変位計を固定するための支持体とを備えることを特徴とする。   The viscometer of the present invention includes a forced vibration body, a force-sensitive plate installed through a slight gap with the forced vibration body, a structure for coupling the vibration body to an actuator, and a drive for driving the forced vibration body. An actuator, a displacement sensor for detecting the displacement of the forced vibration body, a structure for coupling the force sensing plate to the spring, a spring structure for causing the force sensing plate to be displaced, and detecting the displacement of the force sensing plate And a support for fixing the spring structure, the actuator, and the displacement meter.

本発明は、単に振動体と、感力板の変位を測定するだけで、粘度を単独で測定できる振動粘度計を実現する。このような振動粘度計は、誤差が少なく、コスト面で優れている。そのため、産業上のさまざまな場面での粘度測定のための設備コストを低減し、粘度をより簡便に、かつ高精度に測定することが可能になる。
また、感力板と振動体を二重渦巻き構造とすることによりコンパクト化が図れ、さらに、MEMS加工技術を用いて作製すればより一層のコンパクト化が図れる。
The present invention realizes a vibration viscometer that can measure the viscosity independently by simply measuring the displacement of the vibrating body and the force plate. Such a vibration viscometer has few errors and is excellent in cost. Therefore, the equipment cost for viscosity measurement in various industrial scenes can be reduced, and the viscosity can be measured more easily and with high accuracy.
In addition, a compact structure can be achieved by using a double spiral structure for the sensitive plate and the vibrator, and further compactness can be achieved by using the MEMS processing technique.

本発明の感力板を用いた振動粘度計の原理模式図である。It is a principle schematic diagram of the vibration viscometer using the sensitive plate of the present invention. 本発明の感力板を用いた振動粘度計の周波数比0.1の時の振幅と粘度の関係を示すグラフである。It is a graph which shows the relationship between the amplitude and viscosity at the time of the frequency ratio of 0.1 of the vibration viscometer using the sensitive plate of this invention. 本発明の感力板を用いた振動粘度計の一実施例を示す図である。It is a figure which shows one Example of the vibration viscometer using the power sensitive board of this invention. 本発明の感力板を用いた振動粘度計の他の実施例を示す図である。It is a figure which shows the other Example of the vibration viscometer using the power sensitive board of this invention.

図1は、本発明による感力板を用いた粘度測定の原理を説明するための説明図である。
図において、強制振動体をアクチュエータ(例えばピエゾなど)で振動させると、強制振動体と感力板の間の液体が動かされ、粘性応力が発生する。この粘性応力によって感力板が振動を始める。感力板の振動の運動方程式は、感力板の質量をm、粘性力をη、感力板の表面のうち粘性応力を受ける部分の面積をS、感力板と強制振動体のギャップの間隔をd、ばね定数をk、感力体の変位をx、振動体の変位をx、時間をtとすると、
FIG. 1 is an explanatory diagram for explaining the principle of viscosity measurement using a power plate according to the present invention.
In the figure, when the forced vibration body is vibrated by an actuator (for example, a piezo), the liquid between the forced vibration body and the force sensitive plate is moved, and a viscous stress is generated. The pressure sensitive plate starts to vibrate due to this viscous stress. The equation of motion of the vibration of the power plate is as follows: m is the mass of the power plate, η is the viscous force, S is the area of the surface of the power plate that is subjected to viscous stress, and the gap between the force plate and the forced vibration body is If the interval is d, the spring constant is k 1 , the displacement of the sensitive body is x 1 , the displacement of the vibrating body is x 2 , and the time is t,

である。強制振動体に、振幅A、振動角周波数ωの正弦波状の変位、 It is. The forced vibration body has a sinusoidal displacement of amplitude A 2 and vibration angular frequency ω,

を与えると、感力板は If you give

のように振動する。共通のパラメータをまとめると、 It vibrates like. To summarize the common parameters:

と表される。
この感力板の振動は、粘度に比例するパラメータΓと、固有角周波数ωによって記述されている。強制振動体を様々な周波数ωで振動させて、そのときの強制振動体の変位と、感力板の変位を測定し、理論とカーブフィットすることで、パラメータΓと固有角周波数ωを求める。パラメータΓの粘度以外の部分は、強制振動体と感力板の構造が決まれば、一定値となるため、あらかじめ粘度の分かった校正用標準液などでキャリブレーションしておく。この装置定数を用いて、測定されたΓの値から、粘度を算出できる。
あるいは、図2に示すように、固有角周波数よりも10分の1以下程度の周波数では、感力板の振幅が粘度にほぼ比例するため、振幅と粘度の関係のグラフをあらかじめ校正用標準液などでキャリブレーションしておけば、実際の測定では、単一の周波数で振幅を調べるだけで、粘度を算出できる。
It is expressed.
The vibration of the power plate is described by a parameter Γ proportional to viscosity and a natural angular frequency ω 0 . By oscillating the forced vibration body at various frequencies ω, the displacement of the forced vibration body and the displacement of the sensitive plate at that time are measured, and the parameter Γ and the natural angular frequency ω 0 are obtained by curve fitting with the theory. . The parts other than the viscosity of the parameter Γ are constant values if the structures of the forced vibration body and the force sensitive plate are determined. Therefore, calibration is performed using a calibration standard solution whose viscosity is known in advance. Using this apparatus constant, the viscosity can be calculated from the measured value of Γ.
Alternatively, as shown in FIG. 2, the amplitude of the power plate is approximately proportional to the viscosity at a frequency of about one tenth or less than the natural angular frequency. If it is calibrated, the viscosity can be calculated in the actual measurement simply by examining the amplitude at a single frequency.

図3は、本発明の一実施例として円筒形状の強制振動体と、リング形状の感力板を有する粘度計の模式図である。この装置の寸法は数十cm角程度で、テーブルトップである。実際には、より小型の場合も実現可能である。   FIG. 3 is a schematic diagram of a viscometer having a cylindrical forced vibrating body and a ring-shaped force plate as an embodiment of the present invention. The size of this apparatus is about several tens of cm square, which is a table top. Actually, a smaller size can be realized.

上記図3の実施例では円筒形状の強制振動体及びリング形状の感力板を用いたが、他の形状でもよく、例えば、強制振動体と感力板を二重渦巻き構造にすれば、コンパクト化が図れ、また、MEMS加工技術を用いて強制振動体及び感力板を作製すれば一層のコンパクト化が図れる。
図4に、強制振動体と感力板を二重渦巻き構造にして、MEMS加工技術を用いて、シリコンウェーハ上に実現した本発明の他の実施例を示す。ここで、二重渦巻き構造の強制振動体と感力板は、渦巻きの中心軸と平行な方向に振動変位する。
In the embodiment shown in FIG. 3, a cylindrical forced vibration body and a ring-shaped power sensing plate are used. However, other shapes may be used. For example, if the forced vibration body and the power sensing plate have a double spiral structure, the structure is compact. In addition, if a forced vibration body and a force-sensitive plate are produced using MEMS processing technology, further downsizing can be achieved.
FIG. 4 shows another embodiment of the present invention realized on a silicon wafer by using a MEMS processing technique with a forced vibrating body and a force sensitive plate having a double spiral structure. Here, the forced vibrating body and the force sensitive plate having a double spiral structure are oscillated and displaced in a direction parallel to the central axis of the spiral.

本発明は振動粘度計をより簡便に実現する方法を提供可能にし、低コストかつ高精度な振動粘度計として利用可能である。また、MEMS加工技術を用いて粘性センサを実現する目的にも、簡便な方法を提供できるため、粘性センサの実現性を高める。粘性センサとして利用されれば、インプロセスの粘度測定、内蔵型の粘度モニターなどとして利用可能である。   The present invention can provide a method for realizing a vibration viscometer more easily, and can be used as a low-cost and high-accuracy vibration viscometer. Moreover, since the simple method can be provided also for the objective of implement | achieving a viscosity sensor using MEMS processing technology, the feasibility of a viscosity sensor is improved. If used as a viscosity sensor, it can be used for in-process viscosity measurement, built-in viscosity monitor, and the like.

Claims (5)

強制振動体と、強制振動体とわずかな間隙を介して設置された感力板と、振動体をアクチュエータに結合させるための構造と、強制振動体を駆動するためのアクチュエータと、強制振動体の変位を検出するための変位センサと、感力板をバネに結合させるための構造と、感力板に変位を起こさせるばね構造と、感力板の変位を検出するための変位計と、前記ばね構造、アクチュエータ、及び、変位計を固定するための支持体とを備えることを特徴とする粘度計。   A forced vibration body, a force sensing plate installed through a slight gap with the forced vibration body, a structure for coupling the vibration body to the actuator, an actuator for driving the forced vibration body, A displacement sensor for detecting displacement; a structure for coupling a force sensing plate to a spring; a spring structure for causing displacement of the force sensing plate; a displacement meter for detecting displacement of the force sensing plate; A viscometer comprising a spring structure, an actuator, and a support for fixing a displacement meter. 前記強制振動体と感力板は二重渦巻き構造をなし、強制振動体と感力板は、渦巻きの中心軸と平行な方向に振動変位することを特徴とする請求項1記載の粘度計。   2. The viscometer according to claim 1, wherein the forced vibration body and the force sensitive plate have a double spiral structure, and the forced vibration body and the power sensitive plate are vibrated and displaced in a direction parallel to the central axis of the spiral. 前記強制振動体と感力板はMEMS加工技術を用いて製作されたことを特徴とする請求項1又は2記載の粘度計。   The viscometer according to claim 1 or 2, wherein the forced vibration body and the force sensitive plate are manufactured using a MEMS processing technique. 請求項1〜3のいずれか1項記載の粘度計において、固有角周波数よりも10分の1以下程度の周波数で強制振動体を駆動し、感力板の振幅と粘度との関係のグラフをあらかじめ校正用標準液でキャリブレーションしておき、予め求めておいたグラフに、前記周波数で強制振動体を駆動させたときの感力板の振幅を変位計で検出し得られた振幅をあてはめて粘度を算出することを特徴とする粘度計。   The viscometer according to any one of claims 1 to 3, wherein the forced vibrating body is driven at a frequency of about 1/10 or less than the natural angular frequency, and a graph of the relationship between the amplitude and the viscosity of the power plate is shown. Calibrate with a calibration standard solution in advance, and apply the amplitude obtained by detecting the amplitude of the force plate with a displacement meter when the forced vibration body is driven at the above frequency to the previously obtained graph. A viscometer characterized by calculating a viscosity. 請求項1〜3のいずれか1項記載の粘度計において、感力板の質量をm、粘性力をη、感力板の表面のうち粘性応力を受ける部分の面積をS、感力板と強制振動体のギャップの間隔をd、ばね定数をk、感力体の変位をx、振動体の変位をx、時間をtとし、強制振動体に下記の式2の変位を与え、固有角周波数ωが以下の式4であり、パラメータΓが以下の式6であるとき、以下の式5となることを利用して、強制振動体を様々な周波数で振動させて、そのときの強制振動体の変位と、感力板の変位を測定し、理論とカーブフィットすることで、パラメータΓと固有角周波数ωを求め、パラメータΓの粘度以外の部分は、あらかじめ粘度の分かった校正用標準液などでキャリブレーションしておき、この装置定数を用いて、測定されたΓの値から、粘度を算出することを特徴とする粘度計。
The viscometer according to any one of claims 1 to 3, wherein m is the mass of the force-sensitive plate, m is the viscosity force, S is the area of the surface of the force-sensitive plate that receives the viscous stress, and The gap of the forced vibrating body is d, the spring constant is k 1 , the displacement of the sensitive body is x 1 , the displacement of the vibrating body is x 2 , and the time is t. When the natural angular frequency ω 0 is the following expression 4 and the parameter Γ is the following expression 6, the forced vibration body is vibrated at various frequencies by using the following expression 5. By measuring the displacement of the forced vibrating body and the displacement of the force plate, and by curve fitting with theory, the parameter Γ and the natural angular frequency ω 0 are obtained. Calibrated with a standard solution for calibration, etc. From the value of Γ is, viscometer and calculating the viscosity.
JP2010289256A 2010-12-27 2010-12-27 Viscometer Active JP5483113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010289256A JP5483113B2 (en) 2010-12-27 2010-12-27 Viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289256A JP5483113B2 (en) 2010-12-27 2010-12-27 Viscometer

Publications (2)

Publication Number Publication Date
JP2012137352A true JP2012137352A (en) 2012-07-19
JP5483113B2 JP5483113B2 (en) 2014-05-07

Family

ID=46674892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289256A Active JP5483113B2 (en) 2010-12-27 2010-12-27 Viscometer

Country Status (1)

Country Link
JP (1) JP5483113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021124713A1 (en) * 2019-12-18 2021-06-24

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220441A (en) * 1990-01-24 1991-09-27 Kobe Steel Ltd Vibrating viscosimeter
JP2001038198A (en) * 1999-08-03 2001-02-13 Akio Takaku Fluid flow separation device
JP2001318040A (en) * 2000-05-09 2001-11-16 Yamaichi Electronics Co Ltd Method for measuring viscosity of liquid, and method and instrument for measuring visco-elasticity of liquid
JP2009058340A (en) * 2007-08-31 2009-03-19 National Institute Of Advanced Industrial & Technology Viscometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220441A (en) * 1990-01-24 1991-09-27 Kobe Steel Ltd Vibrating viscosimeter
JP2001038198A (en) * 1999-08-03 2001-02-13 Akio Takaku Fluid flow separation device
JP2001318040A (en) * 2000-05-09 2001-11-16 Yamaichi Electronics Co Ltd Method for measuring viscosity of liquid, and method and instrument for measuring visco-elasticity of liquid
JP2009058340A (en) * 2007-08-31 2009-03-19 National Institute Of Advanced Industrial & Technology Viscometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021124713A1 (en) * 2019-12-18 2021-06-24
WO2021124713A1 (en) * 2019-12-18 2021-06-24 国立大学法人東北大学 Viscometer and method for measuring viscosity
JP7154660B2 (en) 2019-12-18 2022-10-18 国立大学法人東北大学 Viscometer and viscosity measurement method
US11761872B2 (en) 2019-12-18 2023-09-19 Tohoku University Viscometer and method for measuring viscosity

Also Published As

Publication number Publication date
JP5483113B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP2730673B2 (en) Method and apparatus for measuring physical properties using cantilever for introducing ultrasonic waves
JP4555368B2 (en) Method for measuring viscoelasticity of liquid
JP5020403B1 (en) Vibration type physical property measuring apparatus and method
WO2013111608A1 (en) Viscoelasticity measurement method and viscoelasticity measurement device
JP4281985B2 (en) Improvement on offset removal device for vibrating gyroscope
JP2007198744A (en) Piezoelectric acceleration sensor
JP2005148062A (en) Micro-mass measuring instrument to which oscillation circuit is adapted and micro-mass measuring method
Pratap et al. Fluid spectroscopy with piezoelectric ultrasound mems transducers
JPH0520693B2 (en)
JP2011117944A (en) Acceleration sensor
Ganguly et al. Phase correction for frequency response function measurements
Paralı et al. A digital measurement system based on laser displacement sensor for piezoelectric ceramic discs vibration characterization
KR101727593B1 (en) A device for measuring the viscosity of fluid using piezo ceramic
JP5483113B2 (en) Viscometer
KR101282452B1 (en) Apparatus to simultaneously measure density and viscosity of liquid
CN112964242A (en) System and method for testing mechanical coupling error of quartz tuning fork gyroscope gauge head
JP5831904B2 (en) Viscoelasticity measuring method and viscoelasticity measuring device
JP6089148B2 (en) Orthogonal super position rheometer
US10119896B2 (en) Electromechanical transducers for fluid viscosity measurement
JP2016518613A5 (en)
JP2007329739A (en) Film stiffness measuring device and measuring method
JP2004012149A (en) Liquid physical property measuring apparatus
Pinrod et al. High-overtone bulk diffraction wave gyroscope
JP7352329B2 (en) Viscoelasticity measurement method and viscoelasticity measurement device
Dumont et al. Using accelerometers for measuring rotational degrees-of-freedom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5483113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250