JP2012135108A - Feeding system - Google Patents

Feeding system Download PDF

Info

Publication number
JP2012135108A
JP2012135108A JP2010284476A JP2010284476A JP2012135108A JP 2012135108 A JP2012135108 A JP 2012135108A JP 2010284476 A JP2010284476 A JP 2010284476A JP 2010284476 A JP2010284476 A JP 2010284476A JP 2012135108 A JP2012135108 A JP 2012135108A
Authority
JP
Japan
Prior art keywords
power
loop antenna
feeding
power receiving
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010284476A
Other languages
Japanese (ja)
Other versions
JP5725843B2 (en
Inventor
Manabu Horiuchi
学 堀内
Shingo Tanaka
信吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2010284476A priority Critical patent/JP5725843B2/en
Priority to US13/996,133 priority patent/US20130270925A1/en
Priority to EP11851448.8A priority patent/EP2658085A4/en
Priority to CN201180061500.0A priority patent/CN103270671B/en
Priority to PCT/JP2011/079456 priority patent/WO2012086625A1/en
Publication of JP2012135108A publication Critical patent/JP2012135108A/en
Application granted granted Critical
Publication of JP5725843B2 publication Critical patent/JP5725843B2/en
Priority to US15/094,128 priority patent/US10541561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a feeding system that can supply power from a feeding section to a receiving section with high efficiency even if a feeding helical coil and a receiving helical coil experience a distance variation or a lateral shift.SOLUTION: A feeding section 3 installed on a road has a feeding loop antenna 6 supplied with power and a feeding helical coil 7 electromagnetically coupled to the feeding loop antenna 6. A receiving section 5 installed on an automobile has a receiving helical coil 8 electromagnetically resonant with the feeding helical coil 7, and a receiving loop antenna 9 electromagnetically coupled to the receiving helical coil 8. The receiving loop antenna 9 is divided into two L-shaped members 91, 92, and the L-shaped members 91, 92 can be moved for changes in contact position to implement a variable loop size.

Description

本発明は、給電システムに係り、給電コイルから受電コイルに非接触で電力を供給する給電システムに関するものである。   The present invention relates to a power supply system, and more particularly to a power supply system that supplies power from a power supply coil to a power reception coil in a contactless manner.

上述した給電システムとして、例えば図1及び図2に示すものが知られている(特許文献1)。同図に示すように、給電システム1は、給電手段としての給電部3と、受電手段としての受電部5と、を備えている。上記給電部3は、電力が供給される給電側ループアンテナ6と、給電側ループアンテナ6に電磁結合された給電側コイルとしての給電側ヘリカルコイル7と、が設けられている。上記給電側ループアンテナ6に電力が供給されると、その電力が電磁誘導により給電側ヘリカルコイル7に送られる。   As the power feeding system described above, for example, the one shown in FIGS. 1 and 2 is known (Patent Document 1). As shown in the figure, the power feeding system 1 includes a power feeding unit 3 as a power feeding unit and a power receiving unit 5 as a power receiving unit. The power feeding unit 3 includes a power feeding side loop antenna 6 to which power is supplied and a power feeding side helical coil 7 as a power feeding side coil electromagnetically coupled to the power feeding side loop antenna 6. When power is supplied to the power feeding side loop antenna 6, the power is sent to the power feeding side helical coil 7 by electromagnetic induction.

上記受電部5は、給電側ヘリカルコイル7と電磁共鳴する受電側ヘリカルコイル8と、この受電側ヘリカルコイル8に電磁結合された受電側ループアンテナ9と、が設けられている。給電側ヘリカルコイル7に電力が送られると、その電力が磁界の共鳴によって受電側ヘリカルコイル8にワイヤレスで送られる。   The power reception unit 5 includes a power reception side helical coil 8 that electromagnetically resonates with the power supply side helical coil 7 and a power reception side loop antenna 9 that is electromagnetically coupled to the power reception side helical coil 8. When power is sent to the power supply side helical coil 7, the power is wirelessly sent to the power receiving side helical coil 8 by magnetic field resonance.

さらに、受電側ヘリカルコイル8に電力が送られると、その電力が電磁誘導によって受電側ループアンテナ9に送られて、この受電側ループアンテナ9に接続された負荷に供給される。上述した給電システム1によれば、給電側ヘリカルコイル7と受電側ヘリカルコイル8との電磁共鳴により非接触で給電側からの電力を受電側に供給することができる。   Further, when power is sent to the power receiving side helical coil 8, the power is sent to the power receiving side loop antenna 9 by electromagnetic induction and supplied to a load connected to the power receiving side loop antenna 9. According to the power feeding system 1 described above, electric power from the power feeding side can be supplied to the power receiving side in a non-contact manner by electromagnetic resonance between the power feeding side helical coil 7 and the power receiving side helical coil 8.

そして、上述した受電部5を自動車4に設け、給電部3を道路2などに設けることにより、上述した給電システム1を利用してワイヤレスで自動車4に搭載された負荷に電力を供給することが考えられている。   Then, by providing the power receiving unit 5 described above in the automobile 4 and providing the power feeding unit 3 in the road 2 or the like, it is possible to supply power to the load mounted on the automobile 4 wirelessly using the power feeding system 1 described above. It is considered.

ところで、上述した自動車4に設けられた受電部5と道路2に設けられた給電部3との距離は、自動車4の車種によって異なる。即ち、受電部5の受電側ヘリカルコイル8と給電部3の給電側ヘリカルコイル7とのコイル間距離Lも、自動車4の車種によって異なる。例えば、スポーツカーなどの車高の低い車に受電部5を設けると、上記コイル間距離Lは短くなり、RV車などの車高の高い車に受電部5を設けると、上記コイル間距離Lが長くなる。 By the way, the distance between the power receiving unit 5 provided in the automobile 4 and the power feeding unit 3 provided on the road 2 varies depending on the type of the automobile 4. That is, the inter-coil distance L 1 between the power-receiving-side helical coil 8 of the power-receiving unit 5 and the power-feeding-side helical coil 7 of the power feeding unit 3 is also different depending on the vehicle type. For example, when providing the power receiving unit 5 to the height of lower car, sports car, between the coil distance L 1 is shortened, providing the power receiving unit 5 to the vehicle height high vehicle such as RV car, the distance between the coil L 1 is longer.

次に、本発明者らは、上述した図1に示す給電システム1の給電側、受電側ループアンテナ6、9のアンテナ径R11、R12を206mmに固定した状態でコイル間距離Lを100mm〜400mmの範囲で変化させたときの受電側ループアンテナ9の通過特性S21及び反射特性S11を測定した。結果を図21〜図23に示す。 Next, the inventors set the inter-coil distance L 1 in a state where the antenna diameters R 11 and R 12 of the power feeding side and power receiving side loop antennas 6 and 9 of the power feeding system 1 shown in FIG. 1 are fixed to 206 mm. The passage characteristic S21 and the reflection characteristic S11 of the power receiving side loop antenna 9 when measured in the range of 100 mm to 400 mm were measured. The results are shown in FIGS.

図21からも分かるように、上述した給電システム1ではコイル間距離Lが変化すると、通過特性S21が変動してしまう。その主な原因は、図22及び図23に示されるように、給電側ヘリカルコイル7と受電側ヘリカルコイル8との整合のずれである。 As can be seen from Figure 21, when the distance between the coils L 1 in the feeding system 1 described above is changed, passing characteristic S21 is fluctuated. The main cause is misalignment between the power supply side helical coil 7 and the power reception side helical coil 8, as shown in FIGS.

詳しく説明すると、給電側ループアンテナ6、受電側ループアンテナ9のアンテナ径R11、R12を206mmとすると、上記コイル間距離Lが200mmのときは臨界結合に近い状態であるが、それよりもコイル間距離Lが短くなると給電部3と受電部5との結合が密となり、双共振特性を示すため、通過特性S21が1となる周波数が変化する。 More specifically, assuming that the antenna diameters R 11 and R 12 of the power supply side loop antenna 6 and the power reception side loop antenna 9 are 206 mm, when the inter-coil distance L 1 is 200 mm, the state is close to critical coupling. also bind to the inter-coil distance L 1 is shorter and the power supply unit 3 and the power receiving unit 5 becomes dense, to indicate a bi-resonance characteristic, a change in frequency of passing characteristic S21 is a 1.

従って、動作周波数を13.5MHz付近で固定した場合、コイル間距離Lが200mmのときは通過特性S21がほぼ1であり高効率であるが、コイル間距離Lが100mmに変動すると通過特性S21が0.65に低下して損失が増加してしまう。 Therefore, when the operating frequency is fixed at around 13.5 MHz, when the inter-coil distance L 1 is 200 mm, the pass characteristic S21 is almost 1 and high efficiency is obtained. However, when the inter-coil distance L 1 is changed to 100 mm, the pass characteristic is increased. S21 falls to 0.65 and the loss increases.

これに対して、コイル間距離Lが長くなると給電側ヘリカルコイル7と受電側ヘリカルコイル8との結合が疎となり、互いのインピーダンス整合が取れず、通過特性S21が低下して損失が増加してしまう。 In contrast, next loose binding to the inter-coil distance L 1 is longer and the power supply side helical coil 7 and the power reception side helical coil 8, not take each other's impedance matching, passing characteristic S21 is increased loss decreases End up.

以上のことから明らかなように、コイル間距離Lが変動すると給電部3から受電部5への給電効率が変動して損失が増大してしまう、という問題があった。また、図19に示すように、給電側ループアンテナ6、給電側ヘリカルコイル7と、受電側ループアンテナ9、受電側ヘリカルコイル8と、の軸がずれる横ズレxが発生したときも、給電部3から受電部5への給電効率が変動して損失が増大してしまう、という問題があった。 As apparent from the above, there was feed efficiency from the feeding unit 3 and the inter-coil distance L 1 is varied to the power receiving unit 5 increases the loss fluctuates, a problem that is. Further, as shown in FIG. 19, when a lateral shift x in which the axes of the power feeding side loop antenna 6, the power feeding side helical coil 7, the power receiving side loop antenna 9, and the power receiving side helical coil 8 are shifted occurs, There is a problem that the power supply efficiency from 3 to the power receiving unit 5 fluctuates and the loss increases.

特開2010−124522号公報JP 2010-124522 A

そこで、本発明は、給電側ヘリカルコイルと受電側ヘリカルコイルとの距離の変動や横ズレが発生しても給電部から受電部への高効率で電力を供給することができる給電システムを提供することを課題とする。   Therefore, the present invention provides a power feeding system that can supply power with high efficiency from the power feeding unit to the power receiving unit even if a variation in the distance between the power feeding side helical coil and the power receiving side helical coil or a lateral shift occurs. This is the issue.

上述した課題を解決するための請求項1記載の発明は、電力が供給される給電側ループアンテナ及び該給電側ループアンテナに電磁結合された給電側コイルが設けられた給電手段と、前記給電側コイルと電磁共鳴する受電側コイル及び該受電側コイルに電磁結合された受電側ループアンテナが設けられた受電手段と、を備えた給電システムにおいて、前記給電側ループアンテナ及び前記受電側ループアンテナの少なくとも一方を複数の部材に分割して設けて、これら前記複数の部材を動かして互いの接触位置を変えることにより、ループの大きさを可変に設けたことを特徴とする給電システムに存する。   The invention according to claim 1 for solving the above-described problem includes a power feeding side loop antenna to which power is supplied, power feeding means provided with a power feeding side coil electromagnetically coupled to the power feeding side loop antenna, and the power feeding side. A power receiving system including a power receiving side coil that electromagnetically resonates with the coil and a power receiving side loop antenna that is electromagnetically coupled to the power receiving side coil, and at least one of the power feeding side loop antenna and the power receiving side loop antenna. One of the members is divided into a plurality of members, and the size of the loop is variably provided by moving the plurality of members to change the contact position with each other.

請求項2記載の発明は、前記複数の部材が、ループを形成するように互いに重ねられて接触されていることを特徴とする請求項1に記載の給電システムに存する。   The invention according to claim 2 resides in the power feeding system according to claim 1, wherein the plurality of members are overlapped with each other so as to form a loop.

請求項3記載の発明は、前記複数の部材のうち少なくとも一つの端部に中央に向かって凹となる凹部が設けられ、前記凹部が設けられた部材に隣接する部材の端部が、前記凹部にスライド自在に挿入されていることを特徴とする請求項1に記載の給電システムに存する。   According to a third aspect of the present invention, a recess that is concave toward the center is provided at at least one end of the plurality of members, and an end of a member adjacent to the member provided with the recess is the recess. The power feeding system according to claim 1, wherein the power feeding system is slidably inserted into the power feeding system.

請求項4記載の発明は、前記複数の部材を駆動する駆動手段と、前記給電側ループアンテナ及び前記受電側ループアンテナの距離を測定する距離測定手段と、前記距離測定手段により測定した距離に応じたループの大きさとなるように前記駆動手段を制御して前記複数の部材を駆動する駆動制御手段と、を備えたことを特徴とする請求項1〜3何れか1項に記載の給電システムに存する。   According to a fourth aspect of the present invention, the driving means for driving the plurality of members, the distance measuring means for measuring the distance between the power feeding side loop antenna and the power receiving side loop antenna, and the distance measured by the distance measuring means 4. The power feeding system according to claim 1, further comprising: a driving control unit that controls the driving unit to drive the plurality of members so as to have a size of a loop. Exist.

請求項5記載の発明は、前記複数の部材を駆動する駆動手段と、前記受電側コイルでの反射量を測定する反射測定手段と、前記反射測定手段により測定した反射量に応じて前記駆動手段を制御して前記複数の部材を駆動する駆動制御手段と、を備えたことを特徴とする請求項1〜3何れか1項に記載の給電システムに存する。   The invention according to claim 5 is a driving means for driving the plurality of members, a reflection measuring means for measuring a reflection amount at the power receiving side coil, and the driving means according to the reflection amount measured by the reflection measuring means. The power supply system according to any one of claims 1 to 3, further comprising: a drive control unit that drives the plurality of members by controlling the plurality of members.

以上説明したように請求項1記載の発明によれば、給電側ループアンテナ及び受電側ループアンテナの少なくとも一方を複数の部材に分割して設けて、これら複数の部材を動かして互いの接触位置を変えることにより、ループの大きさを可変に設けた。ループの大きさを変えると効率が変動するため、給電側ループアンテナ及び受電側ループアンテナの距離や横ズレに応じてループの大きさを変えることにより、給電側ループアンテナ及び受電側ループアンテナの距離が変動や横ズレが発生しても高効率で電力を供給することができる。   As described above, according to the first aspect of the present invention, at least one of the feeding-side loop antenna and the power-receiving-side loop antenna is divided into a plurality of members, and the plurality of members are moved so that the mutual contact positions are set. By changing it, the size of the loop was made variable. Since the efficiency varies when the size of the loop is changed, the distance between the power supply side loop antenna and the power reception side loop antenna can be changed by changing the size of the loop in accordance with the distance between the power supply side loop antenna and the power reception side loop antenna and the lateral displacement. Even if fluctuations or lateral deviations occur, power can be supplied with high efficiency.

請求項2記載の発明によれば、複数の部材の両端部が、互いに重ねられて接触されているので、簡単な構成で複数の部材の接触位置を変えることができる。   According to invention of Claim 2, since the both ends of several members are piled up and contacted mutually, the contact position of several members can be changed with simple structure.

請求項3記載の発明によれば、複数の部材のうち少なくとも一つの端部に中央に向かって凹となる凹部が設けられ、凹部が設けられた部材に隣接する部材の端部が、凹部にスライド自在に挿入されているので、簡単な構成で複数の部材の接触位置を変えることができる。   According to invention of Claim 3, the recessed part which becomes concave toward the center is provided in the at least one edge part among several members, and the edge part of the member adjacent to the member provided with the recessed part is a recessed part. Since it is slidably inserted, the contact positions of a plurality of members can be changed with a simple configuration.

請求項4記載の発明によれば、距離測定手段が、給電側ループアンテナ及び受電側ループアンテナの距離を測定し、駆動制御手段が、距離測定手段により測定した距離に応じたループの大きさとなるように駆動手段を制御して複数の部材を駆動するので、給電側ループアンテナ及び受電側ループアンテナの距離が変動しても自動的に高効率で電力を供給できるようなループの大きさにすることができる。   According to the fourth aspect of the present invention, the distance measuring means measures the distance between the power feeding side loop antenna and the power receiving side loop antenna, and the drive control means has a loop size corresponding to the distance measured by the distance measuring means. In this way, the driving means is controlled to drive a plurality of members, so that the size of the loop can automatically supply power with high efficiency even if the distance between the feeding loop antenna and the receiving loop antenna varies. be able to.

請求項5記載の発明によれば、反射測定手段が、受電側コイルの反射量を測定し、駆動制御手段が、反射測定手段により測定した反射量に応じて駆動手段を制御して複数の部材を駆動するので、給電側ループアンテナ及び受電側ループアンテナの距離の変動及び横ズレの発生しても自動的に高効率で電力を供給できるようなループの大きさにすることができる。   According to the fifth aspect of the present invention, the reflection measuring unit measures the reflection amount of the power receiving side coil, and the drive control unit controls the driving unit according to the reflection amount measured by the reflection measuring unit, and the plurality of members. Therefore, even when a variation in the distance between the feeding-side loop antenna and the receiving-side loop antenna and a lateral deviation occur, the loop can be sized to automatically supply power with high efficiency.

本発明の給電システムの一実施形態を示す図である。It is a figure which shows one Embodiment of the electric power feeding system of this invention. (A)及び(B)はそれぞれ図1に示す給電システムの構成を示す概略斜視図及び側面図である。(A) And (B) is the schematic perspective view and side view which respectively show the structure of the electric power feeding system shown in FIG. 図1に示す給電システムのコイル間距離Lを300mmに固定し、給電側及び受電側ループアンテナのアンテナ径R11、R12を103mm、85mm、75mmと変化させた場合の受電側ループアンテナの通過特性S21を測定した結果を示すグラフである。The distance between the coils L 1 of the power supply system shown in FIG. 1 is fixed to 300 mm, the feeding side and the antenna diameter R 11 of the power receiving side loop antenna, R 12 103mm, 85mm, the power receiving side loop antenna in the case of changing the 75mm It is a graph which shows the result of having measured passage characteristic S21. 図1に示す給電システムのコイル間距離Lを300mmに固定し、給電側及び受電側ループアンテナのアンテナ径R11、R12を103mm、85mm、75mmと変化させた場合の受電側ループアンテナの反射特性S11を測定した結果を示すグラフである。The distance between the coils L 1 of the power supply system shown in FIG. 1 is fixed to 300 mm, the feeding side and the antenna diameter R 11 of the power receiving side loop antenna, R 12 103mm, 85mm, the power receiving side loop antenna in the case of changing the 75mm It is a graph which shows the result of having measured reflection characteristic S11. 図1に示す給電システムのコイル間距離Lを300mmに固定し、給電側及び受電側ループアンテナのアンテナ径R11、R12を103mm、85mm、75mmと変化させた場合の受電側ループアンテナの反射特性S11を測定した結果を示すスミスチャートである。The distance between the coils L 1 of the power supply system shown in FIG. 1 is fixed to 300 mm, the feeding side and the antenna diameter R 11 of the power receiving side loop antenna, R 12 103mm, 85mm, the power receiving side loop antenna in the case of changing the 75mm It is a Smith chart which shows the result of having measured reflection characteristic S11. 図1に示す給電システムの給電側、受電側ヘリカルコイルの共振周波数を13.3MHzに固定し、給電側、受電側ヘリカルコイルのコイル間距離Lの変動に応じて給電側及び受電側ループアンテナのアンテナ径R11、R12を変動させた場合の受電側ループアンテナの通過特性S21を測定した結果を示すグラフである。Feeding side of the power supply system shown in FIG. 1, the power receiving side resonance frequency of the helical coil is fixed to 13.3MHz, the power feeding side, the power feeding side and power receiving side loop antenna in accordance with a variation in distance between the coils L 1 of the power receiving helical coil is a graph showing the results of a pass characteristic S21 was measured of the power receiving side loop antenna when varying the antenna diameter R 11, R 12. 図1に示す給電システムの給電側、受電側ヘリカルコイルの共振周波数を13.3MHzに固定し、給電側、受電側ヘリカルコイルのコイル間距離Lの変動に応じて給電側及び受電側ループアンテナのアンテナ径R11、R12を変動させた場合の受電側ループアンテナの反射特性S11を測定した結果を示すグラフである。Feeding side of the power supply system shown in FIG. 1, the power receiving side resonance frequency of the helical coil is fixed to 13.3MHz, the power feeding side, the power feeding side and power receiving side loop antenna in accordance with a variation in distance between the coils L 1 of the power receiving helical coil it is a graph showing the results of measurement of the reflection characteristic S11 in the power receiving side loop antenna when varying the antenna diameter R 11, R 12. 図1に示す給電システムの給電側、受電側ヘリカルコイルの共振周波数を26MHzに固定し、給電側、受電側ヘリカルコイルのコイル間距離Lの変動に応じて給電側及び受電側ループアンテナのアンテナ径R11、R12を変化させたときの受電側ループアンテナの通過特性S21を測定した結果を示すグラフである。Feeding side of the power supply system shown in FIG. 1, the power receiving side resonance frequency of the helical coil is fixed to 26 MHz, the power feeding side, the antenna of the power feeding side and power receiving side loop antenna in accordance with a variation in distance between the coils L 1 of the power receiving helical coil is a graph showing the results of a pass characteristic S21 was measured of the power receiving side loop antenna when changing the diameter R 11, R 12. 図1に示す給電システムの給電側、受電側ヘリカルコイルの共振周波数を26MHzに固定し、給電側、受電側ヘリカルコイルのコイル間距離Lの変動に応じて給電側及び受電側ループアンテナのアンテナ径R11、R12を変化させたときの受電側ループアンテナの反射特性S11を測定した結果を示すグラフである。Feeding side of the power supply system shown in FIG. 1, the power receiving side resonance frequency of the helical coil is fixed to 26 MHz, the power feeding side, the antenna of the power feeding side and power receiving side loop antenna in accordance with a variation in distance between the coils L 1 of the power receiving helical coil is a graph showing the results of measurement of the reflection characteristic S11 in the power receiving side loop antenna when changing the diameter R 11, R 12. 図1に示す給電システムの給電側ループアンテナのアンテナ径R11を250mmに固定し、コイル間距離Lの変動に応じて受電側ループアンテナのアンテナ径R12みを変化させた場合の通過特性S21を測定した結果を示すグラフである。Pass characteristic when the antenna diameter R 11 of the power feeding side loop antenna feed system shown in Figure 1 is fixed to 250 mm, varying the antenna diameter R 12 only the power-receiving-side loop antenna in accordance with a variation in distance between the coils L 1 It is a graph which shows the result of having measured S21. 給電側ループアンテナの径を250mmに固定し、コイル間距離Lの変動に応じて受電側ループアンテナのアンテナ径R12みを変化させた場合の反射特性S11を測定した結果を示すグラフである。The diameter of the power feeding side loop antenna is fixed to 250 mm, is a graph showing the results of a reflection characteristic S11 was measured in the case of changing the antenna size R 12 only the power-receiving-side loop antenna in accordance with a variation in distance between the coils L 1 . 第1実施形態における受電側ループアンテナの詳細上面図である。It is a detailed top view of the power receiving side loop antenna in 1st Embodiment. 図1に示す給電システムにおいて、コイル間距離Lの変動に応じて図12に示す受電側ループアンテナの長さLを変化させた場合の通過特性S21を測定した結果を示すグラフである。In the power supply system shown in FIG. 1 is a graph showing the results of a pass characteristic S21 was measured when changing the length L 3 of the power receiving side loop antenna shown in FIG. 12 in accordance with a variation in distance between the coils L 1. (A)は、第2実施形態における受電側ループアンテナの上面図であり、(B)は(A)のI−I線断面図である。(A) is a top view of the power receiving side loop antenna in 2nd Embodiment, (B) is the II sectional view taken on the line of (A). 第3実施形態における受電側ループアンテナの上面図である。It is a top view of the power receiving side loop antenna in 3rd Embodiment. 第4実施形態における給電システムを示す図である。It is a figure which shows the electric power feeding system in 4th Embodiment. 第5実施形態における給電システムを示す図である。It is a figure which shows the electric power feeding system in 5th Embodiment. 図17に示す給電システムを構成する制御部の処理手順を説明するためのフローチャートである。It is a flowchart for demonstrating the process sequence of the control part which comprises the electric power feeding system shown in FIG. 横ズレxを説明するための説明図である。It is explanatory drawing for demonstrating the horizontal shift x. コイル間距離Lを200mmに固定した給電側及び受電側ループアンテナの長さL2を103mm、85mm、75mmと変化させた場合の受電側ループアンテナの反射特性S11を測定した結果を示すスミスチャートである。The distance between the coils L 1 the length of the power feeding side and power receiving side loop antenna is fixed to 200mm L2 103mm, 85mm, in Smith chart showing a result of the reflection characteristic S11 was measured of the power receiving side loop antenna in the case of changing the 75mm is there. 図1に示す給電システムの給電側、受電側ループアンテナのアンテナ径R11、R12を206mmに固定した状態でコイル間距離Lを100mm〜400mmの範囲で変化させたときの受電側ループアンテナの通過特性S21を測定した結果を示すグラフである。Feeding side of the power supply system shown in FIG. 1, the power receiving side power receiving side loop antenna when changing the distance between the coils L 1 in the range of 100mm~400mm in a state where the antenna diameter R 11, R 12 and fixed to 206mm of the loop antenna It is a graph which shows the result of having measured the passage characteristic S21. 図1に示す給電システムの給電側、受電側ループアンテナのアンテナ径R11、R12を206mmに固定した状態でコイル間距離Lを100mm〜400mmの範囲で変化させたときの受電側ループアンテナの反射特性S11を測定した結果を示すグラフである。Feeding side of the power supply system shown in FIG. 1, the power receiving side power receiving side loop antenna when changing the distance between the coils L 1 in the range of 100mm~400mm in a state where the antenna diameter R 11, R 12 and fixed to 206mm of the loop antenna It is a graph which shows the result of having measured the reflection characteristic S11. 図1に示す給電システムの給電側、受電側ループアンテナのアンテナ径R11、R12を206mmに固定した状態でコイル間距離Lを100mm〜400mmの範囲で変化させたときの受電側ループアンテナの反射特性S11を測定した結果を示すスミスチャートである。Feeding side of the power supply system shown in FIG. 1, the power receiving side power receiving side loop antenna when changing the distance between the coils L 1 in the range of 100mm~400mm in a state where the antenna diameter R 11, R 12 and fixed to 206mm of the loop antenna It is a Smith chart which shows the result of having measured the reflection characteristic S11.

第1実施形態
以下、第1実施形態における本発明の給電システムを図面に基づいて説明する。図1は、本発明の給電システムの一実施形態を示す図である。図2(A)及び(B)はそれぞれ、図1に示す給電システムの構成を示す概略斜視図及び側面図である。同図に示すように、給電システム1は、道路2上などに設けられた給電手段としての給電部3と、自動車4の腹部分などに設けられた受電手段としての受電部5と、を備えている。
1st Embodiment Hereinafter, the electric power feeding system of this invention in 1st Embodiment is demonstrated based on drawing. FIG. 1 is a diagram showing an embodiment of a power feeding system of the present invention. 2A and 2B are a schematic perspective view and a side view, respectively, showing the configuration of the power feeding system shown in FIG. As shown in the figure, the power supply system 1 includes a power supply unit 3 as a power supply unit provided on a road 2 and the like, and a power reception unit 5 as a power reception unit provided in an abdomen of an automobile 4 or the like. ing.

上記給電部3は、図1及び図2に示すように、電力が供給される給電側ループアンテナ6と、給電側ループアンテナ6に電磁結合された給電側コイルとしての給電側ヘリカルコイル7と、が設けられている。この給電側ループアンテナ6は、ループ状に設けられていて、その軸が道路2から自動車4の腹部分に向かう方向、即ち鉛直方向に沿うように配置されている。上述した給電側ループアンテナ6には、図示しない交流電源から交流電力が供給されている。   As shown in FIGS. 1 and 2, the power feeding unit 3 includes a power feeding side loop antenna 6 to which power is supplied, a power feeding side helical coil 7 as a power feeding side coil electromagnetically coupled to the power feeding side loop antenna 6, and Is provided. The feeding-side loop antenna 6 is provided in a loop shape, and is arranged so that its axis is along the direction from the road 2 toward the abdomen of the automobile 4, that is, the vertical direction. The power feeding side loop antenna 6 is supplied with AC power from an AC power source (not shown).

上記給電側ヘリカルコイル7は、例えば巻線を給電側ループアンテナ6の径よりも大きな径のコイル状に巻いて構成されている。給電側ヘリカルコイル7は、上記給電側ループアンテナ6の自動車4側に、給電側ループアンテナ6と同軸上に配置されている。本実施形態では、給電側ループアンテナ6は、給電側ヘリカルコイル7の最も自動車4から離れた側の巻線と同一平面上に配置されている。   The power supply side helical coil 7 is configured, for example, by winding a winding in a coil shape having a diameter larger than the diameter of the power supply side loop antenna 6. The feeding-side helical coil 7 is arranged coaxially with the feeding-side loop antenna 6 on the automobile 4 side of the feeding-side loop antenna 6. In the present embodiment, the feeding-side loop antenna 6 is arranged on the same plane as the winding of the feeding-side helical coil 7 that is farthest from the automobile 4.

これにより、給電側ループアンテナ6と給電側ヘリカルコイル7とは、互いに電磁結合する範囲内、即ち、給電側ループアンテナ6に交流電力が供給されて、交流電流が流れると給電側ヘリカルコイル7に誘導電流が発生するような範囲内で、互いに離間して設けられている。   As a result, the feeding-side loop antenna 6 and the feeding-side helical coil 7 are within a range where they are electromagnetically coupled to each other, that is, when AC power is supplied to the feeding-side loop antenna 6 and an alternating current flows, They are separated from each other within a range where an induced current is generated.

上記受電部5は、給電側ヘリカルコイル7と電磁共鳴する受電側ヘリカルコイル8と、この受電側ヘリカルコイル8に電磁結合された受電側ループアンテナ9と、が設けられている。上記受電側ループアンテナ9には、図示しない車載バッテリなどの負荷が接続されている。また、受電側ループアンテナ9は、ループ状に設けられていて、その軸が自動車4の腹部分から道路2に向かう方向、即ち鉛直方向に沿うように配置されている。なお、受電側ループアンテナ9は、図2では説明を簡単にするために円ループで示しているが、実際には図12、図14及び図15のようになっている。この図12、図14及び図15に示す受電側ループアンテナ9の構成については後述する。   The power reception unit 5 includes a power reception side helical coil 8 that electromagnetically resonates with the power supply side helical coil 7 and a power reception side loop antenna 9 that is electromagnetically coupled to the power reception side helical coil 8. The power receiving side loop antenna 9 is connected to a load such as an in-vehicle battery (not shown). The power receiving side loop antenna 9 is provided in a loop shape, and its axis is arranged along the direction from the belly portion of the automobile 4 toward the road 2, that is, along the vertical direction. Note that the power receiving side loop antenna 9 is shown as a circular loop in FIG. 2 for the sake of simplicity of explanation, but in actuality, it is as shown in FIGS. The configuration of the power receiving side loop antenna 9 shown in FIGS. 12, 14 and 15 will be described later.

上記受電側ヘリカルコイル8は、給電側ヘリカルコイル7と同一に設けられていて、給電側、受電側ループアンテナ6、9の径よりも大きな径のコイルから成る。また、受電側ヘリカルコイル8は、上記受電側ループアンテナ9の道路2側に、受電側ループアンテナ9と同軸上に配置されている。本実施形態では、受電側ループアンテナ9は、受電側ヘリカルコイル8の最も道路2から離れた側の巻線と同一平面上に配置されている。   The power reception side helical coil 8 is provided in the same manner as the power supply side helical coil 7, and is composed of a coil having a diameter larger than that of the power supply side and the power reception side loop antennas 6 and 9. The power receiving side helical coil 8 is arranged coaxially with the power receiving side loop antenna 9 on the road 2 side of the power receiving side loop antenna 9. In the present embodiment, the power receiving side loop antenna 9 is disposed on the same plane as the winding of the power receiving side helical coil 8 farthest from the road 2.

これにより、受電側ループアンテナ9と受電側ヘリカルコイル8とは、互いに電磁結合する範囲内、即ち、受電側ヘリカルコイル8に交流電流が流れると受電側ループアンテナ9に誘導電流が発生する範囲内に、互いに離間して設けられている。   As a result, the power receiving side loop antenna 9 and the power receiving side helical coil 8 are within a range where they are electromagnetically coupled to each other, that is, within a range where an induction current is generated in the power receiving side loop antenna 9 when an alternating current flows through the power receiving side helical coil 8. Are spaced apart from each other.

上述した給電システム1によれば、自動車4が給電部3に近づいて給電側ヘリカルコイル7と受電側ヘリカルコイル8とが軸方向に間隔を空けて対向したときに、給電側ヘリカルコイル7と受電側ヘリカルコイル8とが電磁共鳴して給電部3から受電部5に非接触で電力を供給できる。   According to the power supply system 1 described above, when the automobile 4 approaches the power supply unit 3 and the power supply side helical coil 7 and the power reception side helical coil 8 face each other with an interval in the axial direction, the power supply side helical coil 7 and the power reception system receive power. The side helical coil 8 can electromagnetically resonate, and power can be supplied from the power feeding unit 3 to the power receiving unit 5 in a contactless manner.

詳しく説明すると、上記給電側ループアンテナ6に交流電力が供給されると、その電力が電磁誘導により給電側ヘリカルコイル7に送られる。給電側ヘリカルコイル7に電力が送られると、その電力が磁界の共鳴によって受電側ヘリカルコイル8にワイヤレスで送られる。さらに、受電側ヘリカルコイル8に電力が送られると、その電力が電磁誘導によって受電側ループアンテナ9に送られて、この受電側ループアンテナ9に接続された負荷に供給される。   More specifically, when AC power is supplied to the power supply side loop antenna 6, the power is sent to the power supply side helical coil 7 by electromagnetic induction. When power is sent to the power supply side helical coil 7, the power is wirelessly sent to the power receiving side helical coil 8 by magnetic field resonance. Further, when power is sent to the power receiving side helical coil 8, the power is sent to the power receiving side loop antenna 9 by electromagnetic induction and supplied to a load connected to the power receiving side loop antenna 9.

次に、上述した給電システム1の詳細な構成を説明する前に、本発明の給電システム1の原理について説明する。まず、本発明者らは、給電側、受電側ループアンテナ6、9の径変動が通過特性S21、反射特性S11に与える影響を調べるべく、給電側ヘリカルコイル7と受電側ヘリカルコイル8とのコイル間距離Lを300mmに固定し、給電側、受電側ループアンテナ6、9のアンテナ径R11、R12を103mm、85mm、75mmと変化させた場合の通過特性S21及び反射特性S11を測定した。結果を図3〜図5に示す。同図に示すように、給電側、受電側ループアンテナ6、9のアンテナ径R11、R12を変化させると、コイル間距離Lは固定であっても通過特性S21及び反射特性S11が変化することが分かった。 Next, the principle of the power feeding system 1 of the present invention will be described before describing the detailed configuration of the power feeding system 1 described above. First, in order to investigate the influence of the diameter fluctuations of the power supply side and power reception side loop antennas 6 and 9 on the pass characteristic S21 and the reflection characteristic S11, the inventors of the present invention are the coils of the power supply side helical coil 7 and the power reception side helical coil 8. between the distance L 1 is fixed to 300 mm, the power feeding side, the antenna diameter R 11, R 12 of the power receiving side loop antenna 6, 9 103 mm, 85 mm, were measured pass characteristic S21 and reflection characteristic S11 in case of changing the 75mm . The results are shown in FIGS. As shown in the figure, the feed side, varying the antenna diameter R 11, R 12 of the power receiving side loop antenna 6,9, the distance between the coils L 1 also pass characteristic S21 and reflection characteristic S11 is changed to a fixed I found out that

詳しくは、給電側、受電側ループアンテナ6、9のアンテナ径R11、R12を大きくすると、給電部3と受電部5との結合は疎の方向に変化して損失が増大し、小さくすると結合は密の方向に変化して、双共振特性を示すことが分かった。このことから、コイル間距離Lが短くなって結合が密になった場合には、給電側、受電側ループアンテナ6、9のアンテナ径R11、R12を大きくすることで結合を疎の方向に、コイル間距離Lが長くなって結合が疎になった場合には、給電側、受電側ループアンテナ6、9のアンテナ径R11、R12を小さくすることで結合を密の方向に制御し、境界結合付近で動作させればよいことが分かった。 Specifically, when the antenna diameters R 11 and R 12 of the power supply side and power reception side loop antennas 6 and 9 are increased, the coupling between the power supply unit 3 and the power reception unit 5 is changed in a sparse direction to increase the loss and to be decreased. It has been found that the coupling changes in the dense direction and exhibits a bi-resonant characteristic. From this, when the inter-coil distance L 1 is shortened and the coupling becomes dense, the coupling is made sparse by increasing the antenna diameters R 11 and R 12 of the loop antennas 6 and 9 on the power feeding side and the power receiving side. direction, if the coupling becomes sparse longer coil distance L 1 is the power supply side, the direction of the tight binding by reducing the antenna diameter R 11, R 12 of the power receiving side loop antenna 6,9 It has been found that it is sufficient to control the operation in the vicinity of the boundary coupling.

次に、本発明者らは、コイル間距離Lの変動に応じて給電側、受電側ループアンテナ6、9のアンテナ径R11、R12を変動させた場合の通過特性S21及び反射特性S11を測定した。結果を図6及び図7に示す。図6及び図7に示す測定において、コイル間距離Lとアンテナ径R11、R12とは下記に示す表1のように設定されている。

Figure 2012135108
Next, the inventors of the present invention have a passage characteristic S21 and a reflection characteristic S11 when the antenna diameters R 11 and R 12 of the power supply side and power reception side loop antennas 6 and 9 are changed in accordance with the change in the inter-coil distance L 1. Was measured. The results are shown in FIGS. In the measurement shown in FIGS. 6 and 7, are set as shown in Table 1 shown below is a distance between the coils L 1 and the antenna diameter R 11, R 12.
Figure 2012135108

なお、上述した図3〜図7に示す測定において、給電側、受電側ヘリカルコイル7、8としては、その径R21、R22が294mm、巻数が6.5巻、長さL21、L22が52mmのものを用いている。 In the measurement shown in FIGS. 3 to 7 described above, the power supply side and power reception side helical coils 7 and 8 have diameters R 21 and R 22 of 294 mm, a number of turns of 6.5, a length of L 21 and L. 22 is 52 mm.

同図に示すように、コイル間距離Lが変動しても給電側、受電側ループアンテナ6、9のアンテナ径R11、R12を変化させることで、効率と周波数とを一定に保つことができる。即ち、コイル間距離Lが変動しても周波数13.3MHz付近で高効率を得ることができる。 As shown in the figure, even if the inter-coil distance L 1 varies, the efficiency and frequency can be kept constant by changing the antenna diameters R 11 and R 12 of the power supply side and power reception side loop antennas 6 and 9. Can do. That is, it is possible to inter-coil distance L 1 is obtained with high efficiency in the vicinity even frequency 13.3MHz vary.

ただし、コイル間距離Lが広がるに従って、高効率となる帯域は狭くなる傾向があるため、コイル間距離Lが一定以上広がると効率も低下する。このことにより、ある周波数(例えば13.3MHz)で高効率が得られるように最適に設計された給電側、受電側ヘリカルコイル7、8を用いれば、コイル間距離Lが変動しても、給電側、受電側ループアンテナ6、9のアンテナ径R11、R12を変化させることで、高効率を保てることが分かった。 However, as the inter-coil distance L 1 increases, the high-efficiency band tends to be narrowed. Therefore, when the inter-coil distance L 1 increases beyond a certain level, the efficiency also decreases. Thus, a certain frequency (e.g., 13.3MHz) with high efficiency has been optimally designed so as to obtain the power feeding side, the use of the power-receiving-side helical coil 7,8, also the distance between the coils L 1 is varied, It has been found that high efficiency can be maintained by changing the antenna diameters R 11 and R 12 of the power supply side and power reception side loop antennas 6 and 9.

また、本発明者らは、共振周波数が変わっても上記特性が得られるか調べるべく、給電側、受電側ヘリカルコイル7、8の巻数を3にして共振周波数を26MHz付近にして、コイル間距離Lの変動に応じて給電側、受電側ループアンテナ6、9のアンテナ径R11、R12を変動させた場合の通過特性S21及び反射特性S11を測定した。結果を図8及び図9に示す。図8及び図9の測定において、コイル間距離Lとアンテナ径R11、R12とは下記に示す表2のように設定されている。

Figure 2012135108
In order to investigate whether or not the above characteristics can be obtained even if the resonance frequency changes, the inventors set the number of turns of the helical coils 7 and 8 on the power supply side and the power reception side to 3 and sets the resonance frequency to around 26 MHz, and the distance between the coils. The passage characteristic S21 and the reflection characteristic S11 when the antenna diameters R 11 and R 12 of the power feeding side and power receiving side loop antennas 6 and 9 were varied according to the variation of L 1 were measured. The results are shown in FIGS. 8 and 9, the inter-coil distance L 1 and the antenna diameters R 11 and R 12 are set as shown in Table 2 below.
Figure 2012135108

なお、図8及び図9に示す測定において、給電側、受電側ヘリカルコイル7、8の巻数を3巻としたため、その長さL21、L22が24mmとなったが、その他のパラメータは図3〜図7と同じである。 In the measurements shown in FIGS. 8 and 9, since the number of turns of the power supply side and power reception side helical coils 7 and 8 is 3, the lengths L 21 and L 22 are 24 mm. 3 to 7 are the same.

同図に示すように、共振周波数を26MHzにした場合も、コイル間距離Lが変動しても給電側、受電側ループアンテナ6、9の径を変化させることで、効率と周波数とを一定に保つことができる。即ち、コイル間距離Lが変動しても周波数26MHz付近で高効率を得ることができる。 As shown in the figure, even when the resonance frequency 26 MHz, the power feeding side coil distance L 1 is varied, by changing the diameter of the power receiving side loop antenna 6, 9, and efficiency and frequency constant Can be kept in. That is, it is possible to inter-coil distance L 1 is obtained with high efficiency in the vicinity even frequency 26MHz vary.

従来でも説明したように、例えば、道路2に設置された給電部3から自動車4の腹部分に設置された受電部5に給電する場合に、そのコイル間距離Lは車種によって異なる(スポーツカーは低く、RV車は高い)。そこで、一般的には、車種毎に異なる大きさの給電側、受電側ループアンテナ6、9を設けることが考えられるが、これは給電側、受電側ループアンテナ6、9の種類が増えてしまい、コスト的に問題がある。 As described in the prior art, for example, in the case of power feeding from the power supply unit 3 installed on the road 2 to the power receiving portion 5 disposed on the ventral part of the car 4, the distance between the coils L 1 thereof varies depending on the model (sports car Is low and RV is high). Therefore, in general, it is conceivable to provide power supply side and power reception side loop antennas 6 and 9 having different sizes for each vehicle type, but this increases the types of power supply side and power reception side loop antennas 6 and 9. There is a problem with cost.

本実施形態では、ループの大きさを可変に設けた受電側ループアンテナ9を用いて、例えば製造段階で高効率が得られるような大きさに調整した受電側ループアンテナ9を備えた受電部5を取り付ける。これにより、車種を問わず共通の受電側ループアンテナ9を用いて高効率で給電を行うことができるので、受電側ループアンテナ9の種類が増えることなく、コストダウンを図ることができる。この受電側ループアンテナ9の大きさを可変とする構造については後述する。   In the present embodiment, the power receiving unit 5 including the power receiving side loop antenna 9 that is adjusted to a size such that high efficiency can be obtained at the manufacturing stage, for example, using the power receiving side loop antenna 9 having a variable loop size. Install. As a result, power can be supplied with high efficiency using the common power receiving side loop antenna 9 regardless of the vehicle type, and the cost can be reduced without increasing the number of types of the power receiving side loop antenna 9. A structure in which the size of the power receiving loop antenna 9 is variable will be described later.

上述したように道路2に設置された給電部3から自動車4の腹部分に設置された受電部5に給電し、そのコイル間距離Lが車種によって異なる場合には、自動車4に設けられた受電側ループアンテナ9の大きさだけを変化させて、道路2側に設けた給電側ループアンテナ6については大きさについては一定にしておくことが望ましい。そこで、本発明者らは、給電側ループアンテナ6のアンテナ径R11を250mmに固定し、コイル間距離Lの変動に応じて受電側ループアンテナ9のコイル半径R12みを変化させた場合の通過特性S21及び反射特性S11を測定した。結果を図10及び図11に示す。 To power the power receiving unit 5 installed from the power supply unit 3 installed on the road 2 in the abdominal portion of the car 4 as described above, the distance between the coils L 1 is the differ depending on the model, provided in an automobile 4 It is desirable to change only the size of the power receiving side loop antenna 9 and to keep the size of the power feeding side loop antenna 6 provided on the road 2 side constant. Accordingly, the present inventors have found that when the antenna diameter R 11 of the power feeding side loop antenna 6 is fixed to 250 mm, varying the coil radius R 12 only the power-receiving-side loop antenna 9 in accordance with a variation in distance between the coils L 1 The transmission characteristic S21 and the reflection characteristic S11 were measured. The results are shown in FIGS.

同図に示すように、給電側ループアンテナ6のアンテナ径R11を固定しても受電側ループアンテナ9のアンテナ径R12を変化させることにより、コイル間距離Lが変動しても高効率で給電することができることが分かった。この場合、給電側、受電側ループアンテナ6、9の両者のアンテナ径R11、R12を変化させる場合に比べて、アンテナ径R11、R12の変動値が大きく必要となるため、対応可能なコイル間距離Lの変動幅は狭くなると考えられる。また、給電側、受電側ループアンテナ6、9の両者のアンテナ径R11、R12を変化させる場合に比べて、高効率となる帯域幅もやや狭くなる傾向がある。 As shown in the figure, by also securing the antenna diameter R 11 of the power feeding side loop antenna 6 to change the antenna diameter R 12 of the power receiving side loop antenna 9, a high efficiency coil distance L 1 fluctuates It turned out that power can be supplied with. In this case, since the fluctuation values of the antenna diameters R 11 and R 12 are required to be larger than when the antenna diameters R 11 and R 12 of both the power feeding side and the power receiving side loop antennas 6 and 9 are changed, it is possible to cope with it. a variation width of the inter-coil distance L 1 is considered to be narrow. Further, compared to the case where the antenna diameters R 11 and R 12 of both the power feeding side and power receiving side loop antennas 6 and 9 are changed, the bandwidth with high efficiency tends to be slightly narrowed.

次に、本発明の受電側ループアンテナ9の詳細な構成について図12を参照して説明する。図12に示すように、受電側ループアンテナ9は、四角ループを2つに分割するL字状部材91、92から構成されている。L字状部材91、92は、互いに同じ形、同じ大きさの帯板状に設けられている。これらL字状部材91、92は、四角ループが形成されるように互いに重ねて接触されている。この受電側ループアンテナ9によれば、L字状部材91、92を矢印Y1に示すように四角ループの対角線上に動かすことにより、その長さL、即ちループの大きさを可変にすることができる。 Next, a detailed configuration of the power receiving side loop antenna 9 of the present invention will be described with reference to FIG. As shown in FIG. 12, the power receiving side loop antenna 9 is composed of L-shaped members 91 and 92 that divide the square loop into two. The L-shaped members 91 and 92 are provided in the shape of a band plate having the same shape and the same size. These L-shaped members 91 and 92 are in contact with each other so as to form a square loop. According to the power receiving side loop antenna 9, the length L 3 , that is, the size of the loop is made variable by moving the L-shaped members 91 and 92 on the diagonal line of the square loop as indicated by the arrow Y1. Can do.

これらL字状部材91、92は、製造段階においてL字状部材91、92を矢印Y1に沿って動かすことにより車種に応じて長さLが調整される。そして、接触部分の電気特性を良好に保つために、フィンガなどによりL字状部材91、92が互いに重なっている部分を挟んで保持することが望ましい。 These L-shaped members 91 and 92, the length L 3 in accordance with the vehicle type is adjusted by moving the L-shaped members 91 and 92 in the manufacturing stage along arrow Y1. And in order to keep the electrical characteristics of the contact portion good, it is desirable to hold the portion where the L-shaped members 91 and 92 overlap each other with fingers or the like.

上述した図12に示す受電側ループアンテナ9の場合、ループから飛び出した部分が特性に悪影響を与えることが懸念される。そこで、本発明者らは、その悪影響について調べるべく、コイル間距離Lの変動に応じて図12に示す受電側ループアンテナ9の長さLを変動させた場合の通過特性S21を測定した。結果を図13に示す。図13の測定において、コイル間距離Lと長さLとは下記の表3に示すように設定されている。

Figure 2012135108
In the case of the power receiving side loop antenna 9 shown in FIG. 12 described above, there is a concern that a portion protruding from the loop may adversely affect the characteristics. Accordingly, the present inventors have to investigate the adverse effects thereof were measured transmission characteristics S21 in the case of varying the length L 3 of the power receiving loop antenna 9 shown in FIG. 12 in accordance with a variation in distance between the coils L 1 . The results are shown in FIG. In the measurement of FIG. 13, the inter-coil distance L 1 and the length L 3 are set as shown in Table 3 below.
Figure 2012135108

同図からも明らかなように、コイル間距離Lが変動しても効率、周波数を一定に保つことができ、ループから飛び出した部分によって何ら悪影響が与えられないことが分かった。 As is apparent from the figure, even if the distance between the coils L 1 fluctuates efficiency can be kept constant frequency, was found not given bad influence any by a portion jumped out loop.

なお、上述した実施形態では、受電側ループアンテナ9を帯板状、かつ、L字状に設けた2つのL字状部材91、92から構成して、ループができるように互いに重ねることにより、受電側ループアンテナ9の大きさを可変に設けていたが、本発明はこれに限ったものではない。受電側ループアンテナ9としては、ループを分割する複数の部材から設けられていて、各部材を動かすことにより受電側ループアンテナ9の大きさが変えられるものであればよく、例えば、直線状の部材を4つ設けて、これら4つの部材を四角ループができるように互いに重ねて、受電側ループアンテナ9の大きさを可変に設けてもよい。   In the above-described embodiment, the power receiving-side loop antenna 9 is composed of two L-shaped members 91 and 92 provided in a band plate shape and an L shape, and is overlapped with each other so that a loop is formed. Although the size of the power receiving side loop antenna 9 is variably provided, the present invention is not limited to this. The power receiving side loop antenna 9 may be any member as long as it is provided with a plurality of members that divide the loop and the size of the power receiving side loop antenna 9 can be changed by moving each member. The four receiving members may be overlapped with each other so as to form a square loop, and the size of the power receiving side loop antenna 9 may be variably provided.

第2実施形態
次に、第2実施形態について説明する。第1実施形態と第2実施形態とで大きく異なる点は、受電側ループアンテナ9の構成である。上述した第1実施形態では、受電側ループアンテナ9は2つのL字状部材91、92から構成されていたが、上述した第2実施形態では、図14に示すように、4つのL字状部材93〜96から構成されている。
Second Embodiment Next, a second embodiment will be described. The major difference between the first embodiment and the second embodiment is the configuration of the power receiving side loop antenna 9. In the first embodiment described above, the power receiving side loop antenna 9 is composed of two L-shaped members 91 and 92. In the second embodiment described above, as shown in FIG. It consists of members 93-96.

上記L字状部材93、95は、その両端が中央部分よりも厚く設けられ、さらに中央部分に向かって凹となる凹部9Aが設けられている。また、上記L字状部材94、96に隣接するL字状部材94、96の両端は、上記凹部9Aにスライド可能に挿入されている。このように、L字状部材94、96の両端をL字状部材93、95の両端に設けた凹部9A内に挿入すると、四角ループが形成される。   Both ends of the L-shaped members 93 and 95 are provided thicker than the central portion, and further, a concave portion 9A that is concave toward the central portion is provided. Further, both ends of the L-shaped members 94 and 96 adjacent to the L-shaped members 94 and 96 are slidably inserted into the concave portion 9A. As described above, when both ends of the L-shaped members 94 and 96 are inserted into the concave portions 9A provided at both ends of the L-shaped members 93 and 95, a square loop is formed.

また、凹部9A内でL字状部94、96の両端をスライドすることにより、四角ループの長さLを可変にすることができる。この場合も、接触部分の電気特性を良好に保つために、フィンガなどによりL字状部材94、96の両端が挿入されたL字状部材93、95の両端を挟んで保持することが望ましい。 Further, by sliding the ends of the L-shaped portion 94, 96 in the recess 9A, it is possible to a square loop length L 3 in the variable. Also in this case, it is desirable to hold both ends of the L-shaped members 93 and 95 into which both ends of the L-shaped members 94 and 96 are inserted by fingers or the like in order to keep the electrical characteristics of the contact portion good.

第3実施形態
次に、第3実施形態について説明する。第1実施形態と第3実施形態とで大きく異なる点は、受電側ループアンテナ9の構成である。上述した第2実施形態では、受電側ループアンテナ9は2つのL字状部材91、92から構成されていたが、第3実施形態では、図15に示すように、2つの半円弧状部材97及び98から受電ループアンテナ9が構成されている。
Third Embodiment Next, a third embodiment will be described. A significant difference between the first embodiment and the third embodiment is the configuration of the power receiving side loop antenna 9. In the second embodiment described above, the power receiving side loop antenna 9 is composed of two L-shaped members 91 and 92. However, in the third embodiment, as shown in FIG. And 98 constitute a power receiving loop antenna 9.

また、半円弧状部材97及び98の一端は、互いに重ねられ、さらにその状態で蝶番10により連結されている。即ち、半円弧状部材97及び98は、蝶番10を中心に回転可能に設けられている。また、半円弧状部材97及び98の他端は、上述した第1実施形態と同様に単に重ねられている。   Further, one ends of the semicircular arc members 97 and 98 are overlapped with each other and further connected by a hinge 10 in that state. That is, the semicircular arc members 97 and 98 are provided to be rotatable around the hinge 10. Further, the other ends of the semicircular arc members 97 and 98 are simply overlapped as in the first embodiment described above.

以上の構成によれば、半円弧状部材97の他端を図面左側、半円弧状部材98の他端を図面右側に動かすと、円ループの大きさが小さくなり、逆に、半円弧状部材97の他端を図面右側、半円弧状部材98の他端を図面左側に動かすと、円ループの大きさが大きくなる。この場合も、接触部分の電気特性を良好に保つために、フィンガなどにより半円弧状部材94、96の互いに重ねられた両端を挟んで保持することが望ましい。   According to the above configuration, when the other end of the semicircular arc member 97 is moved to the left side of the drawing and the other end of the semicircular arc member 98 is moved to the right side of the drawing, the size of the circular loop is reduced. When the other end of 97 is moved to the right side of the drawing and the other end of the semicircular arc member 98 is moved to the left side of the drawing, the size of the circular loop increases. Also in this case, in order to keep the electrical characteristics of the contact portion good, it is desirable to hold the semi-arc-shaped members 94 and 96 with both ends of the semi-arc-shaped members 94 and 96 sandwiched by fingers or the like.

第4実施形態
次に、第4実施形態について説明する。上述した実施形態では、製造段階で車種毎に受電側ループアンテナ9の大きさを調整していたが、第4実施形態では、図16に示すように、受電側ループアンテナ9を構成するL字状部材91〜96や半円弧状部材97、98をそれぞれ駆動するモータなどの駆動手段としての駆動部10と、コイル間距離Lを測定する距離測定手段としての距離測定部11と、を設け、CPUなどの駆動制御手段として働く制御部12により、距離測定部11で測定したコイル間距離Lに応じたループの大きさとなるように駆動部10を制御してこれらL字状部材91〜96、半円弧状部材97、98を駆動することも考えられる。
Fourth Embodiment Next, a fourth embodiment will be described. In the embodiment described above, the size of the power reception side loop antenna 9 is adjusted for each vehicle type at the manufacturing stage. However, in the fourth embodiment, as shown in FIG. a driving unit 10 of the Jo members 91-96 and semicircular member 97, 98 as a driving means such as a motor for driving each of the distance measuring unit 11 of the distance measuring means for measuring the distance between the coils L 1, the provided The control unit 12 serving as drive control means such as a CPU controls the drive unit 10 so as to have a loop size corresponding to the inter-coil distance L 1 measured by the distance measuring unit 11 to control these L-shaped members 91 to 91. It is also conceivable to drive 96, semicircular arc members 97, 98.

これにより、給電側ループアンテ7及び受電側ループアンテナ9のコイル間距離Lが変動しても自動的に高効率で電力を供給できるようなループの大きさにすることができる。なお、距離測定部11としては、例えば、赤外線やUWB無線などを用いることが考えられる。これにより自動的に高効率で電力を供給できるような大きさにすることができる。 This makes it possible to coil distance L 1 of the feed-side loop antenna 7 and the power receiving side loop antenna 9 is the size of the loop can be supplied with power automatically efficient be varied. In addition, as the distance measurement part 11, it is possible to use infrared rays, UWB radio | wireless, etc., for example. As a result, the size can be automatically set so that power can be supplied with high efficiency.

第5実施形態
次に、第5実施形態について説明する。上述した第4実施形態では、距離測定部11により測定したコイル間距離Lに応じてL字状部材91〜96、半円弧状部材97、98を駆動していたが、第5実施形態では、図17に示すように、距離測定部11の代わりに受電側ヘリカルコイル8の反射量を測定する反射測定部13を設け、制御部12により、反射測定部13で測定した反射特性S21が良くなるように駆動部10を制御してこれらL字状部材91〜96、半円弧状部材97、98を駆動することも考えられる。なお、上述した反射測定部13は、受電側ヘリカルコイル8に送られる電力を測定して、測定した電力から反射量を求める装置であり、例えば、方向性結合器やサーキュレータを用いることが考えられる。
Fifth Embodiment Next, a fifth embodiment will be described. In the fourth embodiment described above, the distance measuring unit 11 in accordance with the distance between the coils L 1 measured by the L-shaped member 91 to 96, had been driving the semicircular member 97 and 98, in the fifth embodiment 17, instead of the distance measuring unit 11, a reflection measuring unit 13 for measuring the reflection amount of the power receiving side helical coil 8 is provided, and the reflection characteristic S21 measured by the reflection measuring unit 13 by the control unit 12 is good. It is also conceivable to drive the L-shaped members 91 to 96 and the semicircular arc-shaped members 97 and 98 by controlling the driving unit 10 so as to be. The reflection measurement unit 13 described above is a device that measures the power sent to the power-receiving-side helical coil 8 and obtains the amount of reflection from the measured power. For example, a directional coupler or a circulator may be used. .

次に、上述した制御部12の詳細な動作について図18を参照して以下説明する。まず、制御部12は、反射測定部13で測定した受電側ヘリカルコイル8に供給される電力から給電部3からの給電が開始されたことを検出すると、ループ制御処理を開始する。まず、制御部12は、反射測定部13が求めた反射量を取り込み(ステップS1)、反射量が一定量以下か否かを判定する(ステップS2)。反射量が一定量以下であれば(ステップS2でY)、制御部12は再びステップS1に戻る。これに対して、反射量が一定量を超えていれば(ステップS2でN)、制御部12は、駆動部10を制御してループが大きくなる方向にL字状部材91〜96、半円弧状部材97、98を動かす(ステップS3)。   Next, detailed operation of the control unit 12 described above will be described below with reference to FIG. First, when the control unit 12 detects that the power supply from the power supply unit 3 is started from the power supplied to the power receiving side helical coil 8 measured by the reflection measurement unit 13, the control unit 12 starts a loop control process. First, the control unit 12 takes in the reflection amount obtained by the reflection measurement unit 13 (step S1), and determines whether or not the reflection amount is equal to or less than a certain amount (step S2). If the amount of reflection is below a certain amount (Y in step S2), the control unit 12 returns to step S1 again. On the other hand, if the amount of reflection exceeds a certain amount (N in step S2), the control unit 12 controls the drive unit 10 to increase the loop in the direction of increasing the L-shaped members 91 to 96, semicircle. The arcuate members 97 and 98 are moved (step S3).

次に、制御部12は、再び反射量を取り込んで(ステップS4)、ステップS3で動かした結果、反射量が減少したか否かを判定する(ステップS5)。反射量が減少していれば(ステップS5でY)、制御部12は、反射量が減少した結果、反射量が一定量以下になったか否かを判定する(ステップS6)。反射量が一定量以下であれば(ステップS6でY)、制御部12は再びステップS1に戻る。   Next, the control unit 12 takes in the reflection amount again (step S4), and determines whether or not the reflection amount has decreased as a result of moving in step S3 (step S5). If the amount of reflection has decreased (Y in Step S5), the control unit 12 determines whether or not the amount of reflection has become a certain amount or less as a result of the decrease in the amount of reflection (Step S6). If the amount of reflection is below a certain amount (Y in step S6), the control unit 12 returns to step S1 again.

これに対して、反射量が一定量を超えていれば(ステップS6でN)、制御部12は、コイル間距離Lが短すぎて結合がまだ密の状態であると判定して、再び駆動部10を制御してループが大きくなる方向にL字状部材91〜96、半円弧状部材97、98を動かす(ステップS7)。その後、制御部12は、再び反射量を取り込んで(ステップS8)、取り込んだ反射量が一定量以下となるまで、ステップS7の動作を繰り返す。ステップS8で取り込んだ反射量が一定量以下になると(ステップS9でY)、制御部12は再びステップS1に戻る。 In contrast, the reflection amount exceeds the predetermined amount (N at step S6), and the control unit 12 determines that the bond is too short coil distance L 1 is still tight, again The drive unit 10 is controlled to move the L-shaped members 91 to 96 and the semicircular arc members 97 and 98 in the direction in which the loop becomes larger (step S7). Thereafter, the control unit 12 captures the reflection amount again (step S8), and repeats the operation of step S7 until the captured reflection amount becomes equal to or less than a predetermined amount. When the amount of reflection captured in step S8 is less than or equal to a certain amount (Y in step S9), the control unit 12 returns to step S1 again.

これに対して、反射量が減少していなければ(ステップS5でN)、制御部12は、コイル間距離Lが長すぎて結合が疎の状態であると判定して、逆に駆動部10を制御してループが小さくなる方向にL字状部材91〜96、半円弧状部材97、98を動かす(ステップS10)。その後、制御部12は、再び反射量を取り込んで(ステップS11)、取り込んだ反射量が一定量以下となるまで、ステップS10の動作を繰り返す。ステップS11で取り込んだ反射量が一定量以下になると(ステップS12でY)、制御部12は再びステップS1に戻る。上述した第5実施形態によれば、自動的に高効率で電力を供給できるような大きさにすることができる。 In contrast, if the amount of reflection has been reduced (N in step S5), and the control unit 12 determines that the coupling coil distance L 1 is too long it is the state of the sparse, conversely driver 10 is controlled to move the L-shaped members 91 to 96 and the semicircular arc members 97 and 98 in the direction in which the loop becomes smaller (step S10). Thereafter, the control unit 12 captures the amount of reflection again (step S11), and repeats the operation of step S10 until the captured amount of reflection becomes a certain amount or less. When the amount of reflection captured in step S11 becomes a certain amount or less (Y in step S12), the control unit 12 returns to step S1 again. According to the fifth embodiment described above, the size can be automatically set so that power can be supplied with high efficiency.

なお、上述した実施形態では、距離変化による効率低下を防ぐようにしていたが、本発明はこれに限ったものではない。例えば、図19に示すように、給電側ループアンテナ6及び給電側ヘリカルコイル7の軸と、受電側ループアンテナ9及び給電側ヘリカルコイル7の軸と、の位置ズレxの変動による特性変化にも対応することができる。   In the above-described embodiment, the reduction in efficiency due to a change in distance is prevented, but the present invention is not limited to this. For example, as shown in FIG. 19, the characteristic change due to the variation of the positional deviation x between the axis of the power supply side loop antenna 6 and the power supply side helical coil 7 and the axis of the power reception side loop antenna 9 and the power supply side helical coil 7 is also caused. Can respond.

上記効果を確認するために本発明者らは、コイル間距離Lを200mmに固定して横ズレx(図19)の変動に対応して、図12に示す受電側ループアンテナ9の長さLを変動させた場合に、反射特性S21を測定した。結果を図20に示す。図20の測定において、横ズレxと長さLとは下記の表4のように設定されている。同図からも明らかなように、横ズレxが生じても給電側、受電側ループアンテナ6、9の大きさを変化させることで、効率と周波数とを一定に保つことができることが分かった。従って、上述した第5実施形態によれば、反射量を一定量以下となるようにループの大きさを制御することにより、コイル間距離Lの変動及び横ズレの変動の両者に対応できることが分かった。

Figure 2012135108
The present inventors to confirm the above effect, in response to variation of the lateral deviation x (FIG. 19) to fix the distance between the coils L 1 to 200 mm, the length of the power receiving side loop antenna 9 shown in FIG. 12 when the L 3 is varied to measure the reflection characteristic S21. The results are shown in FIG. In the measurement of FIG. 20, the lateral deviation x and the length L 3 are set as shown in Table 4 below. As can be seen from the figure, the efficiency and frequency can be kept constant by changing the sizes of the power-feeding and power-receiving-side loop antennas 6 and 9 even if a lateral shift x occurs. Therefore, according to the fifth embodiment described above, by controlling the size of the loop to the reflection amount becomes constant amount or less, it can accommodate both variations in the distance between the coils L 1 and the horizontal displacement variation I understood.
Figure 2012135108

また、上述した実施形態によれば、受電側ループアンテナ9のみのアンテナ径R12を変化させてコイル間距離Lの変動に対応していたが、本発明はこれに限ったものではない。例えば、給電側ループアンテナ6のアンテナ径R11のみを変化させてもよいし、受電側ループアンテナ9及び給電側ループアンテナ6の両者のアンテナ径R12を変動させてもよい。 Further, according to the embodiment described above, corresponded to the variations in the distance between the coils L 1 by changing the antenna diameter R 12 of only the power receiving side loop antenna 9, the present invention is not limited thereto. For example, only the antenna diameter R 11 of the power supply side loop antenna 6 may be changed, or the antenna diameters R 12 of both the power reception side loop antenna 9 and the power supply side loop antenna 6 may be changed.

また、上述した給電システム1は自動車4に電力を供給するシステムとして適用していたが、本発明はこれに限ったものではない。他のシステムに適用させてもよい。   Further, although the above-described power supply system 1 is applied as a system for supplying power to the automobile 4, the present invention is not limited to this. You may make it apply to another system.

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

1 給電システム
3 給電部(給電手段)
5 受電部(受電手段)
6 給電側ループアンテナ
7 給電側ヘリカルコイル(給電側コイル)
8 受電側ヘリカルコイル(受電側コイル)
9 受電側ループアンテナ
10 駆動部(駆動手段)
11 距離測定部(距離測定手段)
12 制御部(駆動制御手段)
91〜96 L字状部材(部材)
97、98 半円弧状部材(部材)
1 Power Supply System 3 Power Supply Unit (Power Supply Means)
5 Power receiving unit (power receiving means)
6 Feeding side loop antenna 7 Feeding side helical coil (feeding side coil)
8 Receiving side helical coil (Receiving side coil)
9 Receiving-side loop antenna 10 Drive unit (drive means)
11 Distance measuring unit (distance measuring means)
12 Control unit (drive control means)
91-96 L-shaped member (member)
97, 98 Semicircular arc member (member)

Claims (5)

電力が供給される給電側ループアンテナ及び該給電側ループアンテナに電磁結合された給電側コイルが設けられた給電手段と、前記給電側コイルと電磁共鳴する受電側コイル及び該受電側コイルに電磁結合された受電側ループアンテナが設けられた受電手段と、を備えた給電システムにおいて、
前記給電側ループアンテナ及び前記受電側ループアンテナの少なくとも一方を複数の部材に分割して設けて、これら前記複数の部材を動かして互いの接触位置を変えることにより、ループの大きさを可変に設けた
ことを特徴とする給電システム。
A power feeding means provided with a power feeding side loop antenna to which power is supplied, a power feeding side coil electromagnetically coupled to the power feeding side loop antenna, a power receiving side coil that electromagnetically resonates with the power feeding side coil, and an electromagnetic coupling to the power receiving side coil A power receiving system provided with a power receiving side loop antenna,
At least one of the feeding-side loop antenna and the power-receiving-side loop antenna is divided into a plurality of members, and the size of the loop is variably provided by moving the plurality of members to change the mutual contact position. A power supply system characterized by this.
前記複数の部材が、ループを形成するように互いに重ねられて接触されている
ことを特徴とする請求項1に記載の給電システム。
The power supply system according to claim 1, wherein the plurality of members are overlapped with each other so as to form a loop.
前記複数の部材のうち少なくとも一つの端部に中央に向かって凹となる凹部が設けられ、
前記凹部が設けられた部材に隣接する部材の端部が、前記凹部にスライド自在に挿入されている
ことを特徴とする請求項1に記載の給電システム。
A recess that is concave toward the center is provided at at least one end of the plurality of members,
The power feeding system according to claim 1, wherein an end of a member adjacent to the member provided with the recess is slidably inserted into the recess.
前記複数の部材を駆動する駆動手段と、
前記給電側ループアンテナ及び前記受電側ループアンテナの距離を測定する距離測定手段と、
前記距離測定手段により測定した距離に応じたループの大きさとなるように前記駆動手段を制御して前記複数の部材を駆動する駆動制御手段と、
を備えたことを特徴とする請求項1〜3何れか1項に記載の給電システム。
Driving means for driving the plurality of members;
Distance measuring means for measuring the distance between the power feeding side loop antenna and the power receiving side loop antenna;
Drive control means for driving the plurality of members by controlling the drive means so as to have a loop size corresponding to the distance measured by the distance measurement means;
The power feeding system according to any one of claims 1 to 3, further comprising:
前記複数の部材を駆動する駆動手段と、
前記受電側コイルでの反射量を測定する反射測定手段と、
前記反射測定手段により測定した反射量に応じて前記駆動手段を制御して前記複数の部材を駆動する駆動制御手段と、
を備えたことを特徴とする請求項1〜3何れか1項に記載の給電システム。
Driving means for driving the plurality of members;
Reflection measurement means for measuring the amount of reflection at the power receiving coil;
Drive control means for driving the plurality of members by controlling the drive means according to the amount of reflection measured by the reflection measurement means;
The power feeding system according to any one of claims 1 to 3, further comprising:
JP2010284476A 2010-12-21 2010-12-21 Power supply system Active JP5725843B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010284476A JP5725843B2 (en) 2010-12-21 2010-12-21 Power supply system
US13/996,133 US20130270925A1 (en) 2010-12-21 2011-12-20 Power feed system
EP11851448.8A EP2658085A4 (en) 2010-12-21 2011-12-20 Power feed system
CN201180061500.0A CN103270671B (en) 2010-12-21 2011-12-20 Feeding power system
PCT/JP2011/079456 WO2012086625A1 (en) 2010-12-21 2011-12-20 Power feed system
US15/094,128 US10541561B2 (en) 2010-12-21 2016-04-08 Power feed system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284476A JP5725843B2 (en) 2010-12-21 2010-12-21 Power supply system

Publications (2)

Publication Number Publication Date
JP2012135108A true JP2012135108A (en) 2012-07-12
JP5725843B2 JP5725843B2 (en) 2015-05-27

Family

ID=46650020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284476A Active JP5725843B2 (en) 2010-12-21 2010-12-21 Power supply system

Country Status (1)

Country Link
JP (1) JP5725843B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572110B (en) * 2013-04-01 2017-02-21 Nitto Denko Corp Radio power transmission device, power supply control method of wireless power transmission device, and manufacturing method of wireless power transmission device
WO2022137280A1 (en) * 2020-12-21 2022-06-30 株式会社Ihi Coil device, and contactless power supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289535A (en) * 1994-04-15 1995-11-07 Siemens Ag Variable antenna for magnetic resonance device
JP2010063245A (en) * 2008-09-02 2010-03-18 Sony Corp Non-contact feeder system
JP2010119246A (en) * 2008-11-14 2010-05-27 Toyota Motor Corp Power supply system
JP2010124522A (en) * 2008-11-17 2010-06-03 Toyota Central R&D Labs Inc Feed system
JP2010259204A (en) * 2009-04-23 2010-11-11 Toyota Motor Corp Power supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289535A (en) * 1994-04-15 1995-11-07 Siemens Ag Variable antenna for magnetic resonance device
JP2010063245A (en) * 2008-09-02 2010-03-18 Sony Corp Non-contact feeder system
JP2010119246A (en) * 2008-11-14 2010-05-27 Toyota Motor Corp Power supply system
JP2010124522A (en) * 2008-11-17 2010-06-03 Toyota Central R&D Labs Inc Feed system
JP2010259204A (en) * 2009-04-23 2010-11-11 Toyota Motor Corp Power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572110B (en) * 2013-04-01 2017-02-21 Nitto Denko Corp Radio power transmission device, power supply control method of wireless power transmission device, and manufacturing method of wireless power transmission device
WO2022137280A1 (en) * 2020-12-21 2022-06-30 株式会社Ihi Coil device, and contactless power supply system
GB2616977A (en) * 2020-12-21 2023-09-27 Ihi Corp Coil device, and contactless power supply system

Also Published As

Publication number Publication date
JP5725843B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2012086625A1 (en) Power feed system
EP2555377B1 (en) Contactless power feeding apparatus and contactless power feeding method
JP6179826B2 (en) Charging and feeding system for vehicles
JP5938719B2 (en) Charging and feeding system for vehicles
KR101108925B1 (en) Non-contact power transmission apparatus
WO2013002240A1 (en) Power feeding system design method and power feeding system
JP5506327B2 (en) Non-contact power supply device
WO2012128093A1 (en) Power supply system
EP2675038A1 (en) Contactless electrical-power-supplying device
JP5751326B2 (en) Resonant contactless power supply system
US20150348692A1 (en) Electromagnetic induction coil
CN104205567A (en) Non-contact power transmitting system
JP6149209B2 (en) Non-contact power feeding device
JP5725843B2 (en) Power supply system
JP2012135109A (en) Feeding system
JP2012200031A (en) Feeding system
US9893566B2 (en) Power supply system
EP2728710B1 (en) Electrical supply system
JP5825882B2 (en) Power supply system
JP2018148681A (en) Mobile power supply system
JP2013021862A (en) Power feeding system design method
WO2020122017A1 (en) Power receiving device
JP2013013274A (en) Power supply system
JP2013027251A (en) Power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150331

R150 Certificate of patent or registration of utility model

Ref document number: 5725843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250