JP2012134702A - Impedance matching circuit, impedance matching method, and bidirectional transmission circuit - Google Patents

Impedance matching circuit, impedance matching method, and bidirectional transmission circuit Download PDF

Info

Publication number
JP2012134702A
JP2012134702A JP2010284133A JP2010284133A JP2012134702A JP 2012134702 A JP2012134702 A JP 2012134702A JP 2010284133 A JP2010284133 A JP 2010284133A JP 2010284133 A JP2010284133 A JP 2010284133A JP 2012134702 A JP2012134702 A JP 2012134702A
Authority
JP
Japan
Prior art keywords
signal
output
resistor
output signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010284133A
Other languages
Japanese (ja)
Inventor
Shinji Osaki
真司 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2010284133A priority Critical patent/JP2012134702A/en
Publication of JP2012134702A publication Critical patent/JP2012134702A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To perform high-speed communication without malfunction by matching an impedance in bidirectional transmission between open drain output buffers.SOLUTION: An impedance matching circuit has: a detection circuit to whose first terminal an open drain output buffer is connected and to whose second terminal a bidirectional transmission line is connected, and detecting a first output signal from the open drain output buffer and a second output signal from the bidirectional transmission line; and a resistance connection circuit connecting a load resistance to the first output signal and outputting the signal to the bidirectional transmission line in the case that it is detected that the change in a voltage of the first output signal is in a first direction, connecting a damping resistance to the first output signal and outputting the signal to the bidirectional transmission line in the case that it is detected that the change in the voltage of the first output signal is in a second direction opposite to the first direction, and outputting the second signal to the open drain output buffer without connecting either the load resistance or the damping resistance to the second output signal in the case that the change in a voltage of the second output signal is detected.

Description

本発明は、インピーダンス整合回路、インピーダンス整合方法及び双方向伝送回路に関し、特に、オープンドレイン出力バッファ間で双方向の伝送を行うためのインピーダンス整合回路、インピーダンス整合方法及び双方向伝送回路に関する。   The present invention relates to an impedance matching circuit, an impedance matching method, and a bidirectional transmission circuit, and more particularly to an impedance matching circuit, an impedance matching method, and a bidirectional transmission circuit for performing bidirectional transmission between open drain output buffers.

オンチップデバッグの通信において、低価格マイコンの端子数削減が進み、デバッグ用の端子が1ピンになるとともに、動作周波数の高速化に伴いデバッグデータの高速伝送化が必要になってきた。   In on-chip debugging communication, the number of terminals for low-cost microcomputers has been reduced, the number of terminals for debugging has become one pin, and it has become necessary to increase the transmission speed of debugging data as the operating frequency increases.

オンチップデバッグの通信は、マイコンとICE(In−Circuit Emulator)間でデバッグコマンドやデバッグデータの通信を行うものである。一般的に、オンチップデバッグの通信としては、JTAG(Joint Test Action Group)を使ったものが知られている。しかし、オンチップデバッグの通信に必要なデバッグ端子数は、制御、クロック、データ入力及びデータ出力の4本必要である。そのため、端子数が少ない低価格なマイコンには適さないことから、端子の1ピン化が必要になってきている。   On-chip debug communication is for communicating debug commands and debug data between a microcomputer and an ICE (In-Circuit Emulator). Generally, communication using JTAG (Joint Test Action Group) is known as on-chip debug communication. However, the number of debug terminals necessary for the on-chip debug communication is required for control, clock, data input, and data output. Therefore, since it is not suitable for a low-cost microcomputer with a small number of terminals, it is necessary to make the terminals into one pin.

ここで、オンチップデバッグ通信の特徴として、マイコンがデータを送出中でもICEからマイコンの動作を強制的に停止させる必要がある。そのため、端子を1ピン化した際には、双方が出力状態になってもデータ伝送が可能なオープンドレイン出力バッファを使用する必要がある。しかし、オープンドレイン出力バッファは、インピーダンス整合が難しく高速伝送には適していないことから20MHz以下の低速なデータ伝送に限られていた。   Here, as a feature of the on-chip debug communication, it is necessary to forcibly stop the operation of the microcomputer from the ICE even when the microcomputer transmits data. Therefore, when the terminal is made into one pin, it is necessary to use an open drain output buffer capable of data transmission even when both terminals are in an output state. However, the open drain output buffer is limited to low-speed data transmission of 20 MHz or less because impedance matching is difficult and it is not suitable for high-speed transmission.

また、低価格マイコンにおいても動作速度の向上が求められてきており、オープンドレイン出力バッファでも高速に信号伝送する技術の要求(必要性)が高まってきた。   In addition, low-cost microcomputers are required to improve the operation speed, and the demand (necessity) of technology for high-speed signal transmission using an open drain output buffer has also increased.

特許文献1は、インピーダンス整合を容易に図り、信号伝送速度の高速化に適した双方向伝送回路及びバスシステムを提供することを目的としている。   Patent Document 1 aims to provide a bidirectional transmission circuit and a bus system that facilitate impedance matching and are suitable for increasing the signal transmission speed.

図16は、特許文献1にかかる双方向伝送回路の構成を示すブロック図である。図16において、双方向伝送線路105は、信号を双方向に伝送する双方向伝送線路(特性インピーダンスをZoとする)である。図16では、半導体素子IC1とIC2とを接続するデータバスなどの双方向バスにおける1本の線路に関する部分を示している。   FIG. 16 is a block diagram showing a configuration of a bidirectional transmission circuit according to Patent Document 1. As shown in FIG. In FIG. 16, a bidirectional transmission line 105 is a bidirectional transmission line (characteristic impedance is Zo) for transmitting a signal bidirectionally. FIG. 16 shows a portion related to one line in a bidirectional bus such as a data bus connecting the semiconductor elements IC1 and IC2.

入出力回路120は、半導体素子IC1の内部に備えられている。入出力回路120は、信号の入出力を行う入出力回路(トランシーバともいう)である。入出力回路120は、出力バッファ(ドライバともいう)101(オン抵抗値をRo1とする)と入力バッファ(レシーバともいう)102からなる。入出力回路121は、半導体素子IC2の内部に備えられている。入出力回路121は、信号の入出力を行う入出力回路である。入出力回路121は、出力バッファ103(オン抵抗値をRo2とする)と、入力バッファ104からなる。   The input / output circuit 120 is provided in the semiconductor element IC1. The input / output circuit 120 is an input / output circuit (also referred to as a transceiver) that inputs and outputs signals. The input / output circuit 120 includes an output buffer (also referred to as a driver) 101 (an on-resistance value is Ro1) and an input buffer (also referred to as a receiver) 102. The input / output circuit 121 is provided inside the semiconductor element IC2. The input / output circuit 121 is an input / output circuit that inputs and outputs signals. The input / output circuit 121 includes an output buffer 103 (an on-resistance value is Ro2) and an input buffer 104.

切替部106は、双方向伝送線路105と入出力回路120との間を直列終端するかショートするかを切り替える切替部である。切替部106は、直列終端用の抵抗器108(抵抗値をRs1とする)、ショート用のワイヤー線(以下ショート線と呼ぶ)109、スイッチ107からなる。スイッチ107は、入出力回路120の出力時には抵抗器108を接続し、入出力回路120の入力時(または出力時以外)にはショート線109を接続する。   The switching unit 106 is a switching unit that switches whether the bidirectional transmission line 105 and the input / output circuit 120 are terminated in series or short-circuited. The switching unit 106 includes a series terminating resistor 108 (resistance value is Rs 1), a short wire (hereinafter referred to as a short line) 109, and a switch 107. The switch 107 connects the resistor 108 when the input / output circuit 120 is output, and connects the short line 109 when the input / output circuit 120 is input (or other than during output).

切替部110は、双方向伝送線路105と入出力回路121との間を直列終端するかショートするかを切り替える切替部である。切替部110は、直列終端用の抵抗器112(抵抗値をRs2とする)、ショート用のショート線113、スイッチ111からなる。スイッチ111は、入出力回路121の出力時には抵抗器112を接続し、入出力回路121の入力時(または出力時以外)にはショート線113を接続する。   The switching unit 110 is a switching unit that switches whether the bidirectional transmission line 105 and the input / output circuit 121 are serially terminated or short-circuited. The switching unit 110 includes a series termination resistor 112 (the resistance value is Rs2), a shorting short line 113, and a switch 111. The switch 111 connects the resistor 112 when the input / output circuit 121 outputs, and connects the short line 113 when the input / output circuit 121 is input (or other than when outputting).

ここで、上記抵抗器108は、Rs1=Zo−Ro1で決定される抵抗値を有するものとする。これにより、入出力回路120の出力時(入出力回路121の入力時)には双方向伝送線路105の左端においてインピーダンスを整合させることができる。同様に、抵抗器112は、Rs2=Zo−Ro2により決定される抵抗値を有するものとする。また、ショート線109及び113は、プリント基板上のパターンまたは抵抗値が0Ωの抵抗器であってもよい。   Here, it is assumed that the resistor 108 has a resistance value determined by Rs1 = Zo−Ro1. Thereby, the impedance can be matched at the left end of the bidirectional transmission line 105 when the input / output circuit 120 is output (when the input / output circuit 121 is input). Similarly, it is assumed that the resistor 112 has a resistance value determined by Rs2 = Zo−Ro2. Further, the short lines 109 and 113 may be resistors having a pattern on the printed circuit board or a resistance value of 0Ω.

特許文献1では、出力バッファ101の動作時は、切替部106のスイッチ107が抵抗器108を選択することで、出力バッファと双方向伝送線路105の間にダンピング抵抗として抵抗器108を挿入する。また、入力バッファ102の動作時は、切替部106のスイッチ107がショート線109を選択することで入力バッファ102と双方向伝送線路を直結することで、出力バッファ動作時に出力バッファ101と双方向伝送線路105のインピーダンスが整合し、信号反射を防ぎ、誤動作を防止するものである。   In Patent Document 1, when the output buffer 101 is in operation, the switch 107 of the switching unit 106 selects the resistor 108, thereby inserting the resistor 108 as a damping resistor between the output buffer and the bidirectional transmission line 105. Further, when the input buffer 102 is in operation, the switch 107 of the switching unit 106 selects the short line 109 so that the input buffer 102 and the bidirectional transmission line are directly connected, so that the bidirectional transmission with the output buffer 101 is performed during the output buffer operation. The impedance of the line 105 is matched, signal reflection is prevented, and malfunction is prevented.

特開2001−007742号公報JP 2001-007742 A

特許文献1では、出力バッファ101が出力時にダンピング用の抵抗器108を挿入することで、出力インピーダンスをRo1+Rs1として双方向伝送線路105にインピーダンスマッチングを実現している。ここで、特許文献1において、オンチップデバッグ通信等のように双方の出力バッファを同時に出力する必要性がある場合は、出力バッファ101にオープンドレイン出力バッファを使用する必要がある。しかしながら、特許文献1において、出力バッファ101にオープンドレイン出力バッファを使用する場合には、インピーダンス整合を保てず、信号反射が発生し、誤動作してしまうという問題点がある。   In Patent Document 1, the impedance matching is realized in the bidirectional transmission line 105 by setting the output impedance to Ro1 + Rs1 by inserting the damping resistor 108 when the output buffer 101 outputs. Here, in Patent Document 1, when there is a need to output both output buffers simultaneously, such as on-chip debug communication, it is necessary to use an open drain output buffer for the output buffer 101. However, in Patent Document 1, when an open drain output buffer is used as the output buffer 101, there is a problem that impedance matching cannot be maintained, signal reflection occurs, and malfunction occurs.

その理由を以下に説明する。まず、出力バッファ101にオープンドレイン出力バッファを用いると、出力バッファ101の立ち上がり時の出力インピーダンスが無限大になる。そこで、50Ω程度のプルアップ抵抗(図16に記載なし)を、出力バッファ101と並列接続して、信号131を"high"として出力することが一般的である。   The reason will be described below. First, when an open drain output buffer is used as the output buffer 101, the output impedance when the output buffer 101 rises becomes infinite. Therefore, it is common to connect a pull-up resistor of about 50Ω (not shown in FIG. 16) in parallel with the output buffer 101 and output the signal 131 as “high”.

つまり、出力バッファ101の出力信号の立ち上がり時には、無限大である出力インピーダンスと、50Ωであるプルアップ抵抗とが並列接続されたこととなる。そのため、信号131の立ち上がり時の出力インピーダンスは、プルアップ抵抗の抵抗値(50Ω)そのものになる。   That is, when the output signal of the output buffer 101 rises, an infinite output impedance and a 50Ω pull-up resistor are connected in parallel. Therefore, the output impedance when the signal 131 rises becomes the resistance value (50Ω) of the pull-up resistor itself.

一方、出力バッファ101の出力信号の立ち下がり時には、インピーダンスRo1(20Ω)と、プルアップ抵抗(50Ω)とが並列接続されたこととなる。そのため、信号131の立ち下がり時の出力インピーダンスは、14Ω程度になる。   On the other hand, when the output signal of the output buffer 101 falls, the impedance Ro1 (20Ω) and the pull-up resistor (50Ω) are connected in parallel. Therefore, the output impedance when the signal 131 falls is about 14Ω.

ここで、特許文献1では、上述したように、出力バッファ101の出力時にダンピング用の抵抗器108を直列に挿入する。また、双方向伝送線路105のインピーダンスを例えば、50Ωとする。そして、双方向伝送線路105のインピーダンスと整合を取るためには、信号131の立ち下がり時の出力インピーダンスが14Ω程度であるため、36Ωの抵抗器108を接続し、合計で50Ωとする必要がある。この場合には、双方向伝送線路105のインピーダンスと整合が取れるため、信号反射は発生しない。   Here, in Patent Document 1, as described above, the damping resistor 108 is inserted in series when the output buffer 101 outputs. Further, the impedance of the bidirectional transmission line 105 is set to 50Ω, for example. In order to match the impedance of the bidirectional transmission line 105, the output impedance when the signal 131 falls is about 14Ω. Therefore, it is necessary to connect a 36Ω resistor 108 to make the total 50Ω. . In this case, since the impedance of the bidirectional transmission line 105 is matched, signal reflection does not occur.

しかし、この場合、信号131の立ち上がり時の出力インピーダンスが50Ωであるため、36Ωの抵抗器108を接続すると、合計で86Ωとなってしまう。そのため、双方向伝送線路105のインピーダンスに比べて信号131の出力インピーダンスが高くなり、インピーダンス不整合が発生する。   However, in this case, since the output impedance at the rising edge of the signal 131 is 50Ω, when the 36Ω resistor 108 is connected, the total becomes 86Ω. Therefore, the output impedance of the signal 131 becomes higher than the impedance of the bidirectional transmission line 105, and impedance mismatching occurs.

以上のことから、特許文献1において、出力バッファ101にオープンドレイン出力バッファを使用する場合には、信号131の立ち上がり時と立ち下がり時において、出力インピーダンスが異なってしまう。そのため、上述した問題が発生する。   From the above, when an open drain output buffer is used as the output buffer 101 in Patent Document 1, the output impedance differs between the rising edge and the falling edge of the signal 131. Therefore, the above-described problem occurs.

本発明の第1の態様にかかるインピーダンス整合回路は、第1の端子にオープンドレイン出力バッファが接続され、第2の端子に双方向伝送線路が接続されたインピーダンス整合回路であって、負荷抵抗と、ダンピング抵抗と、前記負荷抵抗もしくは前記ダンピング抵抗のいずれかを接続するか又はいずれも接続しない抵抗接続回路と、前記オープンドレイン出力バッファからの第1の出力信号及び前記双方向伝送線路からの第2の出力信号を検出する検出回路と、を有し、前記抵抗接続回路は、前記検出回路により前記第1の出力信号の電圧の変化が第1の方向であると検出された場合、当該第1の出力信号に前記負荷抵抗を接続して前記双方向伝送線路へ出力し、前記検出回路により前記第1の出力信号の電圧の変化が前記第1の方向とは逆の第2の方向であると検出された場合、当該第1の出力信号に前記ダンピング抵抗を接続して前記双方向伝送線路へ出力し、前記検出回路により前記第2の出力信号の電圧の変化が検出された場合、当該第2の出力信号に前記負荷抵抗及び前記ダンピング抵抗のいずれも接続せずに前記オープンドレイン出力バッファへ出力する。   An impedance matching circuit according to a first aspect of the present invention is an impedance matching circuit in which an open drain output buffer is connected to a first terminal, and a bidirectional transmission line is connected to a second terminal, the load matching resistor , A damping resistor, a resistor connection circuit that connects or does not connect either the load resistor or the damping resistor, a first output signal from the open drain output buffer, and a second resistor from the bidirectional transmission line. And detecting the output signal of the first output signal when the change of the voltage of the first output signal is detected in the first direction by the detection circuit. The load resistance is connected to the output signal of 1 and output to the bidirectional transmission line, and the change in the voltage of the first output signal is changed to the first direction by the detection circuit. When it is detected that the second direction is opposite, the damping resistor is connected to the first output signal and output to the bidirectional transmission line, and the voltage of the second output signal is detected by the detection circuit. When a change is detected, the second output signal is output to the open drain output buffer without connecting either the load resistor or the damping resistor.

本発明の第2の態様にかかるインピーダンス整合方法は、第1のオープンドレイン出力バッファと第2のオープンドレイン出力バッファとの間で双方向の伝送を行う双方向伝送回路のインピーダンス整合方法であって、前記双方向伝送回路は、負荷抵抗とダンピング抵抗とを有し、前記双方向伝送回路において、前記第1のオープンドレイン出力バッファからの第1の出力信号及び前記第2のオープンドレイン出力バッファからの第2の出力信号を検出し、前記第1の出力信号の電圧の変化が第1の方向であると検出した場合、当該第1の出力信号に前記負荷抵抗を接続して前記第2のオープンドレイン出力バッファへ出力し、前記第1の出力信号の電圧の変化が前記第1の方向とは逆の第2の方向であると検出した場合、当該第1の出力信号に前記ダンピング抵抗を接続して前記第2のオープンドレイン出力バッファへ出力し、前記第2の出力信号の電圧の変化を検出した場合、当該第2の出力信号に前記負荷抵抗及び前記ダンピング抵抗のいずれも接続せずに前記第1のオープンドレイン出力バッファへ出力する。   An impedance matching method according to a second aspect of the present invention is an impedance matching method for a bidirectional transmission circuit that performs bidirectional transmission between a first open drain output buffer and a second open drain output buffer. The bidirectional transmission circuit includes a load resistor and a damping resistor. In the bidirectional transmission circuit, the first output signal from the first open drain output buffer and the second open drain output buffer. When the second output signal is detected and the change in the voltage of the first output signal is detected in the first direction, the load resistor is connected to the first output signal and the second output signal is connected. When output to an open drain output buffer and detecting that the change in voltage of the first output signal is in the second direction opposite to the first direction, the first output signal And connecting the damping resistor to the second open drain output buffer, and detecting a change in the voltage of the second output signal, the load resistor and the damping resistor are included in the second output signal. None of them are connected and output to the first open drain output buffer.

本発明の第3の態様にかかる双方向伝送回路は、第1のオープンドレイン出力バッファと第2のオープンドレイン出力バッファとの間で双方向の伝送を行う双方向伝送回路であって、双方向伝送線路と、第1の端子に前記第1のオープンドレイン出力バッファが接続され、第2の端子に前記双方向伝送線路が接続され、第1の負荷抵抗と、第1のダンピング抵抗と、を有する第1のインピーダンス整合回路と、第3の端子に前記双方向伝送線路が接続され、第4の端子に前記第2のオープンドレイン出力バッファが接続され、第2の負荷抵抗と、第2のダンピング抵抗と、を有する第2のインピーダンス整合回路と、を備え、前記第1のインピーダンス整合回路は、前記第1のオープンドレイン出力バッファからの第1の出力信号及び前記双方向伝送線路からの第2の出力信号を検出し、前記第1の出力信号の電圧の変化が第1の方向であると検出した場合、当該第1の出力信号に前記第1の負荷抵抗を接続して前記双方向伝送線路へ出力し、前記第1の出力信号の電圧の変化が前記第1の方向とは逆の第2の方向であると検出した場合、当該第1の出力信号に前記第1のダンピング抵抗を接続して前記双方向伝送線路へ出力し、前記第2の出力信号の電圧の変化を検出した場合、当該第2の出力信号に前記第1の負荷抵抗及び前記第1のダンピング抵抗のいずれも接続せずに前記第1のオープンドレイン出力バッファへ出力し、前記第2のインピーダンス整合回路は、前記双方向伝送線路からの第3の出力信号及び前記第2のオープンドレイン出力バッファからの第4の出力信号を検出し、前記第4の出力信号の電圧の変化が前記第1の方向であると検出した場合、当該第1の出力信号に前記第2の負荷抵抗を接続して前記双方向伝送線路へ出力し、前記第4の出力信号の電圧の変化が前記第2の方向であると検出した場合、当該第4の出力信号に前記第2のダンピング抵抗を接続して前記双方向伝送線路へ出力し、前記第3の出力信号の電圧の変化を検出した場合、当該第3の出力信号に前記第2の負荷抵抗及び前記第2のダンピング抵抗のいずれも接続せずに前記第2のオープンドレイン出力バッファへ出力する。   A bidirectional transmission circuit according to a third aspect of the present invention is a bidirectional transmission circuit that performs bidirectional transmission between a first open drain output buffer and a second open drain output buffer. A transmission line; a first terminal connected to the first open drain output buffer; a second terminal connected to the bidirectional transmission line; a first load resistor; and a first damping resistor. A first impedance matching circuit having a third terminal connected to the bidirectional transmission line; a fourth terminal connected to the second open drain output buffer; a second load resistor; A second impedance matching circuit having a damping resistor, wherein the first impedance matching circuit includes the first output signal from the first open drain output buffer and the dual impedance circuit. When the second output signal from the directional transmission line is detected and the change in the voltage of the first output signal is detected in the first direction, the first load resistance is added to the first output signal. When connected and output to the bidirectional transmission line, it is detected that the change in the voltage of the first output signal is the second direction opposite to the first direction. When the first damping resistor is connected and output to the bidirectional transmission line and a change in the voltage of the second output signal is detected, the first output resistor and the second load signal are included in the second output signal. Output to the first open drain output buffer without connecting any of the first damping resistors, and the second impedance matching circuit outputs the third output signal from the bidirectional transmission line and the second open Fourth output signal from drain output buffer Detecting and detecting that the change in the voltage of the fourth output signal is in the first direction, connecting the second load resistor to the first output signal and outputting to the bidirectional transmission line When the change in the voltage of the fourth output signal is detected in the second direction, the second output resistor is connected to the fourth output signal and output to the bidirectional transmission line. When a change in the voltage of the third output signal is detected, the second open drain output without connecting the second load resistor or the second damping resistor to the third output signal. Output to buffer.

上述した本発明の第1乃至第3の態様により、オープンドレイン出力バッファを用いることにより出力インピーダンスが変化した場合でも、オープンドレイン出力バッファから出力される信号の電圧変化に応じて抵抗値を調整することにより、双方向伝送におけるインピーダンスを整合させることができる。   According to the first to third aspects of the present invention described above, even when the output impedance is changed by using the open drain output buffer, the resistance value is adjusted according to the voltage change of the signal output from the open drain output buffer. Thus, the impedance in bidirectional transmission can be matched.

本発明により、オープンドレイン出力バッファ間で双方向の伝送を行う際のインピーダンスを整合させて、信号反射をなくし、誤動作することなく高速通信を可能とするためのインピーダンス整合回路、インピーダンス整合方法及び双方向伝送回路を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, impedance matching circuit, impedance matching method, and both for matching impedance when performing bidirectional transmission between open drain output buffers, eliminating signal reflection, and enabling high-speed communication without malfunction A bidirectional transmission circuit can be provided.

本発明の実施の形態1にかかるオンチップデバッグ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the on-chip debug apparatus concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるインピーダンスマッチング回路の構成を示すブロック図である。It is a block diagram which shows the structure of the impedance matching circuit concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるインピーダンスマッチング回路の構成を示すブロック図である。It is a block diagram which shows the structure of the impedance matching circuit concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電圧変化検出回路の構成を示すブロック図である。It is a block diagram which shows the structure of the voltage change detection circuit concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電流方向検出回路の構成を示すブロック図である。It is a block diagram which shows the structure of the current direction detection circuit concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるデコーダ回路の構成を示すブロック図である。1 is a block diagram showing a configuration of a decoder circuit according to a first exemplary embodiment of the present invention. 本発明の実施の形態1にかかるプルアップ抵抗選択回路の構成を示すブロック図である。It is a block diagram which shows the structure of the pull-up resistance selection circuit concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるダンピング抵抗選択回路の構成を示すブロック図である。It is a block diagram which shows the structure of the damping resistance selection circuit concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるプルアップ抵抗ダンピング抵抗選択テーブルの例を示す図である。It is a figure which shows the example of the pull-up resistance damping resistance selection table concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるマイコン側からICE側へ信号が出力された際のタイミングチャートである。6 is a timing chart when a signal is output from the microcomputer side to the ICE side according to the first exemplary embodiment of the present invention; 本発明の実施の形態1にかかるICE側からマイコン側へ信号が出力された際のタイミングチャートである。It is a timing chart when the signal is output from the ICE side to the microcomputer side according to the first exemplary embodiment of the present invention. 本発明の実施の形態1にかかるインピーダンスマッチング回路の設定状態を説明するための図である。It is a figure for demonstrating the setting state of the impedance matching circuit concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるインピーダンスマッチング回路の設定状態を説明するための図である。It is a figure for demonstrating the setting state of the impedance matching circuit concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるインピーダンスマッチング回路の設定状態を説明するための図である。It is a figure for demonstrating the setting state of the impedance matching circuit concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるインピーダンスマッチング回路の設定状態を説明するための図である。It is a figure for demonstrating the setting state of the impedance matching circuit concerning Embodiment 1 of this invention. 関連技術にかかる双方向伝送回路の構成を示すブロック図である。It is a block diagram which shows the structure of the bidirectional | two-way transmission circuit concerning related technology.

以下では、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In the drawings, the same elements are denoted by the same reference numerals, and redundant description will be omitted as necessary for the sake of clarity.

<発明の実施の形態1>
図1は、本発明の実施の形態1にかかるオンチップデバッグ装置の構成を示すブロック図である。本実施の形態1にかかるオンチップデバッグ装置は、マイコン25と、ICE226と、双方向伝送回路302とを備える。双方向伝送回路302には、マイコン25とICE226とが接続されている。
<Embodiment 1 of the Invention>
FIG. 1 is a block diagram showing the configuration of the on-chip debugging apparatus according to the first embodiment of the present invention. The on-chip debug device according to the first embodiment includes a microcomputer 25, an ICE 226, and a bidirectional transmission circuit 302. A microcomputer 25 and an ICE 226 are connected to the bidirectional transmission circuit 302.

マイコン25は、CPU(Central Processing Unit)24と、オンチップデバッグ回路23と、入力バッファ102と、オープンドレイン出力バッファ10とを備える。また、双方向伝送回路302は、インピーダンスマッチング回路300と、双方向伝送線路105と、インピーダンスマッチング回路301とを備える。尚、インピーダンスマッチング回路300及び301の詳細な構成は、図2及び図3を用いて後述する。ICE226は、デバッグ処理回路227と、入力バッファ104と、オープンドレイン出力バッファ210とを備える。   The microcomputer 25 includes a CPU (Central Processing Unit) 24, an on-chip debug circuit 23, an input buffer 102, and an open drain output buffer 10. The bidirectional transmission circuit 302 includes an impedance matching circuit 300, the bidirectional transmission line 105, and the impedance matching circuit 301. The detailed configuration of the impedance matching circuits 300 and 301 will be described later with reference to FIGS. The ICE 226 includes a debug processing circuit 227, an input buffer 104, and an open drain output buffer 210.

マイコン25の回路構成を以下に説明する。CPU24とオンチップデバッグ回路23は、制御信号やトレースデータの入出力を相互に行う。これにより、オンチップデバッグ回路23は、CPU24のプログラムデバッグを行う。また、オンチップデバッグ回路23は、入力バッファ102からデータを入力し、オープンドレイン出力バッファ10へデータを出力する。入力バッファ102は、インピーダンスマッチング回路300から入力信号12によりデータを入力する。オープンドレイン出力バッファ10は、インピーダンスマッチング回路300へ出力信号11によりデータを出力する。   The circuit configuration of the microcomputer 25 will be described below. The CPU 24 and the on-chip debug circuit 23 mutually input / output control signals and trace data. Thereby, the on-chip debug circuit 23 performs program debugging of the CPU 24. The on-chip debug circuit 23 receives data from the input buffer 102 and outputs data to the open drain output buffer 10. The input buffer 102 receives data from the impedance matching circuit 300 according to the input signal 12. The open drain output buffer 10 outputs data to the impedance matching circuit 300 according to the output signal 11.

ICE226の回路構成を以下に説明する。デバッグ処理回路227は、入力バッファ104からデータを入力し、オープンドレイン出力バッファ210へデータを出力する。入力バッファ104は、インピーダンスマッチング回路301から入力信号212によりデータを入力する。オープンドレイン出力バッファ210は、インピーダンスマッチング回路301へ出力信号211によりデータを出力する。   The circuit configuration of the ICE 226 will be described below. The debug processing circuit 227 inputs data from the input buffer 104 and outputs data to the open drain output buffer 210. The input buffer 104 receives data from the impedance matching circuit 301 as an input signal 212. The open drain output buffer 210 outputs data to the impedance matching circuit 301 according to the output signal 211.

双方向伝送回路302は、オープンドレイン出力バッファ10を含むマイコン25と、オープンドレイン出力バッファ210を含むICE226との間で、方向伝送線路105を介した双方向の伝送を行う。そして、双方向伝送回路302は、オープンドレイン出力バッファ10とオープンドレイン出力バッファ210とを用いることにより生じる出力インピーダンスの変化を、インピーダンスマッチング回路300及び301により整合を取る。   The bidirectional transmission circuit 302 performs bidirectional transmission via the directional transmission line 105 between the microcomputer 25 including the open drain output buffer 10 and the ICE 226 including the open drain output buffer 210. The bidirectional transmission circuit 302 uses the impedance matching circuits 300 and 301 to match the change in output impedance caused by using the open drain output buffer 10 and the open drain output buffer 210.

図2は、本発明の実施の形態1にかかるインピーダンスマッチング回路300の構成を示すブロック図である。インピーダンスマッチング回路300は、第1の端子(不図示)にオープンドレイン出力バッファ10を含むマイコン25が接続され、第2の端子(不図示)に双方向伝送線路105が接続されている。インピーダンスマッチング回路300は、プルアップ抵抗器(例えば、後述する図7の抵抗器52)と、ダンピング抵抗器(例えば、後述する図8の抵抗器53)と、検出回路35と、抵抗接続回路36とを備える。尚、プルアップ抵抗器は、負荷抵抗器の一例である。例えば、負荷抵抗器は、プルダウン抵抗器であってもよい。   FIG. 2 is a block diagram showing a configuration of the impedance matching circuit 300 according to the first exemplary embodiment of the present invention. In the impedance matching circuit 300, a microcomputer 25 including the open drain output buffer 10 is connected to a first terminal (not shown), and a bidirectional transmission line 105 is connected to a second terminal (not shown). The impedance matching circuit 300 includes a pull-up resistor (for example, a resistor 52 in FIG. 7 to be described later), a damping resistor (for example, a resistor 53 in FIG. 8 to be described later), a detection circuit 35, and a resistance connection circuit 36. With. The pull-up resistor is an example of a load resistor. For example, the load resistor may be a pull-down resistor.

検出回路35は、オープンドレイン出力バッファ10からの第1の出力信号である入出力信号34及び双方向伝送線路105からの第2の出力信号である信号22を検出する。抵抗接続回路36は、検出回路35による検出結果に応じて、プルアップ抵抗器もしくはダンピング抵抗器のいずれかを接続する、又は、プルアップ抵抗器及びダンピング抵抗器のいずれも接続しない。   The detection circuit 35 detects the input / output signal 34 that is the first output signal from the open drain output buffer 10 and the signal 22 that is the second output signal from the bidirectional transmission line 105. The resistance connection circuit 36 connects either a pull-up resistor or a damping resistor, or neither a pull-up resistor nor a damping resistor is connected according to the detection result by the detection circuit 35.

具体的には、抵抗接続回路36は、検出回路35により第1の出力信号の立ち上がりが検出された場合、当該第1の出力信号にプルアップ抵抗器である抵抗器52を接続して双方向伝送線路105へ出力する。また、抵抗接続回路36は、検出回路35により前記第1の出力信号の立ち下がりが検出された場合、当該第1の出力信号にダンピング抵抗器である抵抗器53を接続して双方向伝送線路105へ出力する。また、抵抗接続回路36は、検出回路35により前記第2の出力信号の立ち上がり又は立ち下がりが検出された場合、当該第2の出力信号にプルアップ抵抗器及びダンピング抵抗器のいずれも接続せずにオープンドレイン出力バッファ10へ出力する。   Specifically, when the rising edge of the first output signal is detected by the detection circuit 35, the resistor connection circuit 36 connects the resistor 52, which is a pull-up resistor, to the first output signal. Output to the transmission line 105. The resistor connection circuit 36 connects a resistor 53, which is a damping resistor, to the first output signal when the detection circuit 35 detects the falling edge of the first output signal. To 105. Further, when the detection circuit 35 detects the rising or falling edge of the second output signal, the resistance connection circuit 36 connects neither the pull-up resistor nor the damping resistor to the second output signal. To the open drain output buffer 10.

検出回路35は、電圧変化検出回路20と、電流方向検出回路21と、デコーダ回路17と、プルアップ抵抗ダンピング抵抗選択テーブル15とを備える。また、抵抗接続回路36は、プルアップ抵抗選択回路13と、ダンピング抵抗選択回路33とを備える。   The detection circuit 35 includes a voltage change detection circuit 20, a current direction detection circuit 21, a decoder circuit 17, and a pull-up resistor damping resistance selection table 15. The resistance connection circuit 36 includes a pull-up resistance selection circuit 13 and a damping resistance selection circuit 33.

電圧変化検出回路20は、信号28を入力し、信号28が立ち上がり信号であれば、電圧変化検出信号18をHighとして出力する。また、電圧変化検出回路20は、信号28が立ち下がりであれば、電圧変化検出信号18をLowとして出力する。つまり、電圧変化検出回路20は、第1の出力信号及び第2の出力信号について電圧の変化を検出する。また、電圧変化検出回路20は、検出した電圧の変化を電圧変化検出信号18として出力する。   The voltage change detection circuit 20 receives the signal 28 and, if the signal 28 is a rising signal, outputs the voltage change detection signal 18 as High. Further, if the signal 28 falls, the voltage change detection circuit 20 outputs the voltage change detection signal 18 as Low. That is, the voltage change detection circuit 20 detects a change in voltage for the first output signal and the second output signal. The voltage change detection circuit 20 outputs the detected voltage change as a voltage change detection signal 18.

電流方向検出回路21は、信号28及び信号22を入力し、信号28から信号22に電流が流れると、電流方向検出信号19をHighとして出力する。また、電流方向検出回路21は、信号22から信号28に電流が流れると、電流方向検出信号19をLowとして出力する。つまり、電流方向検出回路21は、第1の出力信号及び第2の出力信号について電流が流れる方向を検出する。また、電流方向検出回路21は、検出した電流の方向を電流方向検出信号として出力する。   The current direction detection circuit 21 receives the signal 28 and the signal 22, and outputs a current direction detection signal 19 as High when a current flows from the signal 28 to the signal 22. Further, when a current flows from the signal 22 to the signal 28, the current direction detection circuit 21 outputs the current direction detection signal 19 as Low. That is, the current direction detection circuit 21 detects the direction in which the current flows for the first output signal and the second output signal. The current direction detection circuit 21 outputs the detected current direction as a current direction detection signal.

デコーダ回路17は、電圧変化検出信号18と、電流方向検出信号19を入力し、デコード信号(ST1)29と、デコード信号(ST2)30と、デコード信号(ST3)31と、デコード信号(ST4)32を出力する。つまり、デコーダ回路17は、電流方向検出回路21及び電圧変化検出回路20から入力される電流方向検出信号19及び電圧変化検出信号18の変化を表したデコード信号をプルアップ抵抗ダンピング抵抗選択テーブル15に出力する。   The decoder circuit 17 receives the voltage change detection signal 18 and the current direction detection signal 19, and receives a decode signal (ST1) 29, a decode signal (ST2) 30, a decode signal (ST3) 31, and a decode signal (ST4). 32 is output. That is, the decoder circuit 17 supplies the decode signal representing the changes in the current direction detection signal 19 and the voltage change detection signal 18 input from the current direction detection circuit 21 and the voltage change detection circuit 20 to the pull-up resistor damping resistor selection table 15. Output.

プルアップ抵抗ダンピング抵抗選択テーブル15は、電流方向検出回路21により検出される電流の方向と、電圧変化検出回路20により検出される電圧の変化に基づき、ダンピング抵抗器とプルアップ抵抗器のそれぞれの選択を制御する選択信号を抵抗接続回路36へ出力する。   The pull-up resistor damping resistor selection table 15 is based on the direction of the current detected by the current direction detection circuit 21 and the change in voltage detected by the voltage change detection circuit 20. A selection signal for controlling the selection is output to the resistance connection circuit 36.

ここで、プルアップ抵抗ダンピング抵抗選択テーブル15は、電流方向検出回路21により検出される電流の方向がオープンドレイン出力バッファ10から双方向伝送線路105であることが検出され、電圧変化検出回路20により第1の出力信号について電圧の変化が立ち上がりであることが検出された場合、プルアップ抵抗器を選択させるように選択信号を出力する。また、プルアップ抵抗ダンピング抵抗選択テーブル15は、電流方向検出回路21により検出される電流の方向が双方向伝送線路105からオープンドレイン出力バッファ10であることが検出され、電圧変化検出回路20により第1の出力信号について電圧の変化が立ち下がりであることが検出された場合、ダンピング抵抗器を選択させるように選択信号を出力する。さらに、プルアップ抵抗ダンピング抵抗選択テーブル15は、電流方向検出回路21により検出される電流の方向がオープンドレイン出力バッファ10から双方向伝送線路105であることが検出され、電圧変化検出回路20により第1の出力信号について電圧の変化が立ち下がりであることが検出された場合、プルアップ抵抗器及びダンピング抵抗器のいずれも選択させないように選択信号を出力する。さらに、プルアップ抵抗ダンピング抵抗選択テーブル15は、電流方向検出回路21により検出される電流の方向が双方向伝送線路105からオープンドレイン出力バッファ10であることが検出され、電圧変化検出回路20により第1の出力信号について電圧の変化が立ち上がりであることが検出されたた場合、プルアップ抵抗器及びダンピング抵抗器のいずれも選択させないように選択信号を出力する。   Here, the pull-up resistor damping resistor selection table 15 detects that the direction of the current detected by the current direction detection circuit 21 is the bidirectional transmission line 105 from the open drain output buffer 10, and the voltage change detection circuit 20 When it is detected that the voltage change is rising for the first output signal, a selection signal is output to select the pull-up resistor. The pull-up resistor damping resistor selection table 15 detects that the direction of the current detected by the current direction detection circuit 21 is from the bidirectional transmission line 105 to the open drain output buffer 10, and the voltage change detection circuit 20 When it is detected that the change in voltage is falling for one output signal, a selection signal is output so that the damping resistor is selected. Further, the pull-up resistor damping resistor selection table 15 detects that the direction of the current detected by the current direction detection circuit 21 is the bidirectional transmission line 105 from the open drain output buffer 10, and the voltage change detection circuit 20 detects the first direction. When it is detected that the voltage change is falling for one output signal, the selection signal is output so that neither the pull-up resistor nor the damping resistor is selected. Further, the pull-up resistor damping resistor selection table 15 detects that the direction of the current detected by the current direction detection circuit 21 is from the bidirectional transmission line 105 to the open drain output buffer 10, and the voltage change detection circuit 20 When it is detected that the voltage change is rising for one output signal, the selection signal is output so that neither the pull-up resistor nor the damping resistor is selected.

そして、プルアップ抵抗ダンピング抵抗選択テーブル15は、デコード信号に応じて、プルアップ抵抗器の接続有無を示す第1の接続有無信号であるプルアップ抵抗選択信号14と、ダンピング抵抗器の接続有無を示す第2の接続有無信号であるダンピング抵抗選択信号16とを選択信号として出力する。   The pull-up resistor damping resistor selection table 15 determines whether or not the pull-up resistor selection signal 14 which is the first connection presence / absence signal indicating whether or not the pull-up resistor is connected and whether or not the damping resistor is connected according to the decode signal. A damping resistance selection signal 16 which is a second connection presence / absence signal shown is output as a selection signal.

すなわち、プルアップ抵抗ダンピング抵抗選択テーブル15は、デコード信号(ST1)29、デコード信号(ST2)30、デコード信号(ST3)31及びデコード信号(ST4)32を入力し、プルアップ抵抗選択信号14とダンピング抵抗選択信号16にHigh又はLowの信号を出力する。   That is, the pull-up resistor damping resistor selection table 15 receives the decode signal (ST1) 29, the decode signal (ST2) 30, the decode signal (ST3) 31, and the decode signal (ST4) 32. A high or low signal is output to the damping resistance selection signal 16.

抵抗接続回路36は、電流方向検出回路21により検出される電流の方向と、電圧変化検出回路20により検出される電圧の変化に基づき、プルアップ抵抗器及びダンピング抵抗器のそれぞれについての接続をするか否かを選択する。また、抵抗接続回路36は、選択信号に応じて、プルアップ抵抗器及びダンピング抵抗器のそれぞれについての接続をするか否かを選択する。   The resistance connection circuit 36 makes a connection for each of the pull-up resistor and the damping resistor based on the direction of the current detected by the current direction detection circuit 21 and the change in the voltage detected by the voltage change detection circuit 20. Select whether or not. Further, the resistance connection circuit 36 selects whether or not to connect each of the pull-up resistor and the damping resistor according to the selection signal.

ここで、抵抗接続回路36は、プルアップ抵抗選択信号14に応じて、プルアップ抵抗器を接続するか否かを選択するプルアップ抵抗選択回路13と、ダンピング抵抗選択信号16に応じて、ダンピング抵抗器を接続するか否かを選択するダンピング抵抗選択回路33と、を有する。   Here, the resistor connection circuit 36 includes a pull-up resistor selection circuit 13 that selects whether or not to connect a pull-up resistor according to the pull-up resistor selection signal 14, and a damping that operates according to the damping resistance selection signal 16. A damping resistance selection circuit 33 for selecting whether or not to connect the resistor.

プルアップ抵抗選択回路13は、プルアップ抵抗選択信号14を入力し、プルアップ抵抗選択信号14がHighのとき信号34をプルアップする。また、ダンピング抵抗選択回路33は、ダンピング抵抗選択信号16を入力し、ダンピング抵抗選択信号16がHighのとき信号28と信号34の間にダンピング抵抗を挿入する。   The pull-up resistor selection circuit 13 receives the pull-up resistor selection signal 14 and pulls up the signal 34 when the pull-up resistor selection signal 14 is High. The damping resistance selection circuit 33 receives the damping resistance selection signal 16 and inserts a damping resistance between the signal 28 and the signal 34 when the damping resistance selection signal 16 is High.

図1に戻って説明する。双方向伝送線路105は、マイコン25が出力の時には、信号22を入力信号とし、信号222を出力信号とする。また、双方向伝送線路105は、マイコン25が入力のときには、信号222を入力信号とし、信号22を出力信号とする。   Returning to FIG. The bidirectional transmission line 105 uses the signal 22 as an input signal and the signal 222 as an output signal when the microcomputer 25 is outputting. The bidirectional transmission line 105 uses the signal 222 as an input signal and the signal 22 as an output signal when the microcomputer 25 is input.

図3は、本発明の実施の形態1にかかるインピーダンスマッチング回路301の構成を示すブロック図である。インピーダンスマッチング回路301は、第3の端子(不図示)に双方向伝送線路105が接続され、第4の端子(不図示)にオープンドレイン出力バッファ210を含むICE226が接続されている。インピーダンスマッチング回路301は、プルアップ抵抗器(例えば、後述する図14の抵抗器252)と、ダンピング抵抗器(例えば、後述する図15の抵抗器253)と、検出回路235と、抵抗接続回路236とを備える。   FIG. 3 is a block diagram showing a configuration of the impedance matching circuit 301 according to the first exemplary embodiment of the present invention. In the impedance matching circuit 301, the bidirectional transmission line 105 is connected to a third terminal (not shown), and an ICE 226 including an open drain output buffer 210 is connected to a fourth terminal (not shown). The impedance matching circuit 301 includes a pull-up resistor (for example, a resistor 252 in FIG. 14 to be described later), a damping resistor (for example, a resistor 253 in FIG. 15 to be described later), a detection circuit 235, and a resistance connection circuit 236. With.

検出回路235は、電圧変化検出回路220と、電流方向検出回路221と、デコーダ回路217と、プルアップ抵抗ダンピング抵抗選択テーブル215とを備える。抵抗接続回路236は、プルアップ抵抗選択回路213と、ダンピング抵抗選択回路233とを備える。   The detection circuit 235 includes a voltage change detection circuit 220, a current direction detection circuit 221, a decoder circuit 217, and a pull-up resistor damping resistance selection table 215. The resistance connection circuit 236 includes a pull-up resistance selection circuit 213 and a damping resistance selection circuit 233.

尚、インピーダンスマッチング回路301の回路構成は、インピーダンスマッチング回路300と同等であり、双方向伝送線路105に対して左右対称に構成要素が配置されており、詳細説明は省略する。   The circuit configuration of the impedance matching circuit 301 is the same as that of the impedance matching circuit 300, and the components are arranged symmetrically with respect to the bidirectional transmission line 105, and detailed description thereof is omitted.

また、信号222、信号228及び入出力信号234は、それぞれ図2の信号22、信号28及び入出力信号34に対応する。また、電圧変化検出信号218及び電流方向検出信号219は、図2の電圧変化検出信号18及び電流方向検出信号19に対応する。また、デコード信号(ST1)229、デコード信号(ST2)230、デコード信号(ST3)231及びデコード信号(ST4)232は、図2のデコード信号(ST1)29、デコード信号(ST2)30、デコード信号(ST3)31及びデコード信号(ST4)32に対応する。また、プルアップ抵抗選択信号214及びダンピング抵抗選択信号216は、図2のプルアップ抵抗選択信号14及びダンピング抵抗選択信号16に対応する。   Further, the signal 222, the signal 228, and the input / output signal 234 correspond to the signal 22, the signal 28, and the input / output signal 34 of FIG. The voltage change detection signal 218 and the current direction detection signal 219 correspond to the voltage change detection signal 18 and the current direction detection signal 19 of FIG. Also, the decode signal (ST1) 229, the decode signal (ST2) 230, the decode signal (ST3) 231 and the decode signal (ST4) 232 are the decode signal (ST1) 29, the decode signal (ST2) 30, and the decode signal shown in FIG. This corresponds to (ST3) 31 and decode signal (ST4) 32. The pull-up resistance selection signal 214 and the damping resistance selection signal 216 correspond to the pull-up resistance selection signal 14 and the damping resistance selection signal 16 shown in FIG.

図4は、本発明の実施の形態1にかかる電圧変化検出回路20の構成の一例を示すブロック図である。電圧変化検出回路20は、抵抗器60、61及び62と、コンデンサ63と、アンプ64とを備える。抵抗器60は、10KΩ程度の高い抵抗値である。電圧変化検出回路20は、信号28を抵抗器60でプルアップする。これにより、オープンドレイン出力バッファ10がHighを出力した際に、信号28に立ち上がり信号が入力される。そして、抵抗器61からコンデンサ63に向かって電流が流れる。その後、信号65の電圧が信号66よりも高くなり、電圧変化検出回路20は、電圧変化検出信号18にHighを出力する。   FIG. 4 is a block diagram showing an example of the configuration of the voltage change detection circuit 20 according to the first exemplary embodiment of the present invention. The voltage change detection circuit 20 includes resistors 60, 61 and 62, a capacitor 63, and an amplifier 64. The resistor 60 has a high resistance value of about 10 KΩ. The voltage change detection circuit 20 pulls up the signal 28 with the resistor 60. Thereby, when the open drain output buffer 10 outputs High, a rising signal is input to the signal 28. A current flows from the resistor 61 toward the capacitor 63. Thereafter, the voltage of the signal 65 becomes higher than that of the signal 66, and the voltage change detection circuit 20 outputs High to the voltage change detection signal 18.

また、信号22に立ち下がり信号が入力されると、コンデンサ63から抵抗61に向かって電流が流れる。そして、信号66の電圧が信号65よりも高くなり、電圧変化検出回路20は、電圧変化検出信号18にLowを出力する。尚、電圧変化検出回路220も同様の回路構成であるため、図示及び説明を省略する。   When a falling signal is input to the signal 22, a current flows from the capacitor 63 toward the resistor 61. Then, the voltage of the signal 66 becomes higher than that of the signal 65, and the voltage change detection circuit 20 outputs Low to the voltage change detection signal 18. Since the voltage change detection circuit 220 has the same circuit configuration, illustration and description are omitted.

図5は、本発明の実施の形態1にかかる電流方向検出回路21の構成の一例を示すブロック図である。電流方向検出回路21は、抵抗器70及び71と、アンプ72とを備える。電流方向検出回路21は、信号28と信号22を入力する。そして、電流方向検出回路21は、信号28から信号22へ電流が流れると抵抗器70に電位差が発生する。その後、信号74の電位が信号73よりも高くなり、電流方向検出回路21は、信号19にHighを出力する。また、電流が逆に流れると前記動作と逆の動作をし、電流方向検出回路21は、Lowを出力する。尚、電流方向検出回路221も同様の回路構成であるため、図示及び説明を省略する。   FIG. 5 is a block diagram showing an example of the configuration of the current direction detection circuit 21 according to the first exemplary embodiment of the present invention. The current direction detection circuit 21 includes resistors 70 and 71 and an amplifier 72. The current direction detection circuit 21 receives the signal 28 and the signal 22. The current direction detection circuit 21 generates a potential difference in the resistor 70 when a current flows from the signal 28 to the signal 22. Thereafter, the potential of the signal 74 becomes higher than that of the signal 73, and the current direction detection circuit 21 outputs High to the signal 19. When the current flows in the reverse direction, the operation reverse to the above operation is performed, and the current direction detection circuit 21 outputs Low. Since the current direction detection circuit 221 has the same circuit configuration, illustration and description thereof are omitted.

図6は、本発明の実施の形態1にかかるデコーダ回路17の構成の一例を示すブロック図である。デコーダ回路17は、インバータ80及び81と、アンドゲート82〜85とを備える。デコーダ回路17は、電圧変化検出信号18及び電流方向検出信号19を入力する。そして、電圧変化検出信号18がHigh、かつ、電流方向検出信号19がHighのとき、デコーダ回路17は、デコード信号(ST1)29をHighとして出力する。また、電圧変化検出信号18がLow、かつ、電流方向検出信号19がLowのとき、デコーダ回路17は、デコード信号(ST2)30をHighとして出力する。また、電圧変化検出信号18がHigh、かつ、電流方向検出信号19がLowのとき、デコーダ回路17は、デコード信号(ST3)31をHighとして出力する。また、電圧変化検出信号18がLow、かつ、電流方向検出信号19がHighのとき、デコーダ回路17は、デコード信号(ST3)32をHighとして出力する。尚、デコーダ回路217も同様の回路構成であるため、図示及び説明を省略する。   FIG. 6 is a block diagram showing an example of the configuration of the decoder circuit 17 according to the first exemplary embodiment of the present invention. The decoder circuit 17 includes inverters 80 and 81 and AND gates 82 to 85. The decoder circuit 17 receives the voltage change detection signal 18 and the current direction detection signal 19. When the voltage change detection signal 18 is High and the current direction detection signal 19 is High, the decoder circuit 17 outputs the decode signal (ST1) 29 as High. When the voltage change detection signal 18 is Low and the current direction detection signal 19 is Low, the decoder circuit 17 outputs the decode signal (ST2) 30 as High. When the voltage change detection signal 18 is High and the current direction detection signal 19 is Low, the decoder circuit 17 outputs the decode signal (ST3) 31 as High. When the voltage change detection signal 18 is Low and the current direction detection signal 19 is High, the decoder circuit 17 outputs the decode signal (ST3) 32 as High. Since the decoder circuit 217 has the same circuit configuration, illustration and description are omitted.

図7は、本発明の実施の形態1にかかるプルアップ抵抗選択回路13の構成の一例を示すブロック図である。プルアップ抵抗選択回路13は、インバータ90と、抵抗器52と、トランジスタ91とを備える。プルアップ抵抗選択回路13は、プルアップ抵抗選択信号14を入力する。そして、プルアップ抵抗選択信号14にHighが入力されると、インバータ90で反転される。これにより、Lowがトランジスタ91に入力され、トランジスタ91がONになる。その後、プルアップ抵抗選択回路13は、入出力信号34を抵抗器52でプルアップする。また、プルアップ抵抗選択信号14にLowが入力されると、前記動作と逆の動作をする。この場合、トランジスタ91がOFFになり、入出力信号34のプルアップは解除される。尚、プルアップ抵抗選択回路213も同様の回路構成であるため、図示及び説明を省略する。   FIG. 7 is a block diagram showing an example of the configuration of the pull-up resistor selection circuit 13 according to the first exemplary embodiment of the present invention. The pull-up resistor selection circuit 13 includes an inverter 90, a resistor 52, and a transistor 91. The pull-up resistor selection circuit 13 inputs a pull-up resistor selection signal 14. When High is input to the pull-up resistor selection signal 14, the signal is inverted by the inverter 90. Thus, Low is input to the transistor 91, and the transistor 91 is turned on. Thereafter, the pull-up resistor selection circuit 13 pulls up the input / output signal 34 with the resistor 52. When Low is input to the pull-up resistor selection signal 14, the operation reverse to the above operation is performed. In this case, the transistor 91 is turned off and the pull-up of the input / output signal 34 is released. Since the pull-up resistor selection circuit 213 has the same circuit configuration, illustration and description thereof are omitted.

図8は、本発明の実施の形態1にかかるダンピング抵抗選択回路33の構成の一例を示すブロック図である。ダンピング抵抗選択回路33は、抵抗器53と、トランジスタ95及び96からなるスイッチと、インバータ97とを備える。ダンピング抵抗選択回路33は、ダンピング抵抗選択信号16にHighが入力されると、トランジスタ95及び96からなるスイッチがOFFになる。これにより、入出力信号34と信号28の間にダンピング用の抵抗器53が挿入される。また、ダンピング抵抗選択信号16にLowが入力されると、トランジスタ95及び96からなるスイッチがONになる。これにより、入出力信号34と信号28をトランジスタ95及び96によりショートする。尚、ダンピング抵抗選択回路233も同様の回路構成であるため、図示及び説明を省略する。   FIG. 8 is a block diagram showing an example of the configuration of the damping resistance selection circuit 33 according to the first embodiment of the present invention. The damping resistance selection circuit 33 includes a resistor 53, a switch including transistors 95 and 96, and an inverter 97. In the damping resistance selection circuit 33, when High is input to the damping resistance selection signal 16, the switch including the transistors 95 and 96 is turned off. As a result, a damping resistor 53 is inserted between the input / output signal 34 and the signal 28. When Low is input to the damping resistance selection signal 16, the switch composed of the transistors 95 and 96 is turned on. As a result, the input / output signal 34 and the signal 28 are short-circuited by the transistors 95 and 96. Note that the damping resistor selection circuit 233 has the same circuit configuration, and thus illustration and description thereof are omitted.

図9は、本発明の実施の形態1にかかるプルアップ抵抗ダンピング抵抗選択テーブル15の一例を示す図である。ここでは、まず、デコーダ回路17の動作が次のものであることを前提とする。具体的には、デコーダ回路17は、電圧変化検出信号18がHigh、かつ、電流方向検出信号19がHighの場合、デコード信号(ST1)29のみをHighとして出力する。また、デコーダ回路17は、電圧変化検出信号18がLow、かつ、電流方向検出信号19がLowの場合、デコード信号(ST2)30のみをHighとして出力する。また、デコーダ回路17は、電圧変化検出信号18がHigh、かつ、電流方向検出信号19がLowの場合、デコード信号(ST3)31のみをHighとして出力する。電圧変化検出信号18がLow、かつ、電流方向検出信号19がHighの場合、デコード信号(ST4)32のみをHighとして出力する。   FIG. 9 is a diagram showing an example of the pull-up resistor damping resistor selection table 15 according to the first embodiment of the present invention. Here, first, it is assumed that the operation of the decoder circuit 17 is as follows. Specifically, the decoder circuit 17 outputs only the decode signal (ST1) 29 as High when the voltage change detection signal 18 is High and the current direction detection signal 19 is High. Further, when the voltage change detection signal 18 is Low and the current direction detection signal 19 is Low, the decoder circuit 17 outputs only the decode signal (ST2) 30 as High. Further, when the voltage change detection signal 18 is High and the current direction detection signal 19 is Low, the decoder circuit 17 outputs only the decode signal (ST3) 31 as High. When the voltage change detection signal 18 is Low and the current direction detection signal 19 is High, only the decode signal (ST4) 32 is output as High.

そして、図9の例では、デコード信号(ST1)29がHighの場合には、プルアップ抵抗選択信号14がHigh及びダンピング抵抗選択信号16がLowとして出力される。また、デコード信号(ST2)30がHighの場合には、プルアップ抵抗選択信号14がLow及びダンピング抵抗選択信号16がHighとして出力される。デコード信号(ST3)31がHighの場合には、プルアップ抵抗選択信号14がLow及びダンピング抵抗選択信号16がLowとして出力される。デコード信号(ST4)32がHighの場合には、プルアップ抵抗選択信号14がLow及びダンピング抵抗選択信号16がLowとして出力される。すなわち、デコード信号(ST3)31又はデコード信号(ST4)32のいずれかがHighの場合には、インピーダンスマッチング回路300に入力された信号は、プルアップ抵抗器及びダンピング抵抗器に接続せずにそのまま出力される。尚、プルアップ抵抗ダンピング抵抗選択テーブル215も同様の構成であるため、図示及び説明を省略する。   In the example of FIG. 9, when the decode signal (ST1) 29 is High, the pull-up resistor selection signal 14 is output as High and the damping resistor selection signal 16 is output as Low. When the decode signal (ST2) 30 is High, the pull-up resistor selection signal 14 is output as Low and the damping resistor selection signal 16 is output as High. When the decode signal (ST3) 31 is High, the pull-up resistor selection signal 14 is output as Low and the damping resistor selection signal 16 is output as Low. When the decode signal (ST4) 32 is High, the pull-up resistor selection signal 14 is output as Low and the damping resistor selection signal 16 is output as Low. That is, when either the decode signal (ST3) 31 or the decode signal (ST4) 32 is High, the signal input to the impedance matching circuit 300 is not connected to the pull-up resistor and the damping resistor, and is directly used. Is output. Since the pull-up resistor damping resistor selection table 215 has the same configuration, illustration and description thereof are omitted.

上述のごとく回路構成を有することで、容易に本発明の実施の形態1にかかる双方向伝送回路302を実現する事が出来る。   By having the circuit configuration as described above, the bidirectional transmission circuit 302 according to the first embodiment of the present invention can be easily realized.

続いて、本発明の実施の形態1にかかる動作を図10及び図11のタイミングチャートと図12〜図15を用いて説明する。図10及び図11のタイミングチャートは、CPU24のプログラムデバッグ中のある状態を示したものである。   Next, the operation according to the first exemplary embodiment of the present invention will be described with reference to the timing charts of FIGS. 10 and 11 and FIGS. The timing charts of FIGS. 10 and 11 show a certain state during program debugging of the CPU 24.

図10は、本発明の実施の形態1にかかるマイコン25側からICE226側へ信号が出力された際のタイミングチャートである。時刻T1〜T19は、オンチップデバッグ回路23がデバッグデータをオープンドレイン出力バッファ10、インピーダンスマッチング回路300、双方向伝送線路105、インピーダンスマッチング回路301、入力バッファ104を介してデバッグ処理回路227に出力している状態の時間経過を示す。次に各時刻での動作を説明する。   FIG. 10 is a timing chart when a signal is output from the microcomputer 25 side to the ICE 226 side according to the first embodiment of the present invention. At times T1 to T19, the on-chip debug circuit 23 outputs debug data to the debug processing circuit 227 via the open drain output buffer 10, the impedance matching circuit 300, the bidirectional transmission line 105, the impedance matching circuit 301, and the input buffer 104. Indicates the elapsed time of the status. Next, the operation at each time will be described.

時刻T1においては、オープンドレイン出力バッファ10がLowを出力している状態を示す。時刻T2においては、オープンドレイン出力バッファ10がHighを出力すると、立ち上がり信号が、入出力信号34、ダンピング抵抗選択回路33及び信号28に伝播し、電圧変化検出回路20及び電流方向検出回路21に入力され、信号22に伝播することを示す。   At time T1, the open drain output buffer 10 is outputting Low. At time T2, when the open drain output buffer 10 outputs High, the rising signal propagates to the input / output signal 34, the damping resistor selection circuit 33, and the signal 28, and is input to the voltage change detection circuit 20 and the current direction detection circuit 21. To propagate to the signal 22.

時刻T3においては、信号28に立ち上がり信号が入力されると電圧変化検出回路20は、電圧変化検出信号18にHighを出力する。立ち上がり信号が伝播しているため、信号28の電圧が信号22より高くなる。そして、信号28から信号22に電流が流れ、電流方向検出回路21は、電流方向検出信号19にHighを出力することを示す。   At time T <b> 3, when a rising signal is input as the signal 28, the voltage change detection circuit 20 outputs High to the voltage change detection signal 18. Since the rising signal is propagated, the voltage of the signal 28 becomes higher than that of the signal 22. Then, a current flows from the signal 28 to the signal 22, and the current direction detection circuit 21 outputs High to the current direction detection signal 19.

時刻T4においては、デコーダ回路17は、電圧変化検出信号18にHigh及び電流方向検出信号19にHighを入力する。そして、デコーダ回路17は、デコード信号(ST1)29にHighを出力する。続いて、プルアップ抵抗ダンピング抵抗選択テーブル15は、デコード信号(ST1)29のHighを入力する。そして、プルアップ抵抗ダンピング抵抗選択テーブル15は、当該テーブルに設定されているプルアップ抵抗選択信号14にHighを出力し、ダンピング抵抗選択信号16にLowを出力する。その後、プルアップ抵抗選択回路13は、プルアップ抵抗選択信号14にHighが入力されたことで、信号34をプルアップ用の抵抗器52でプルアップする。また、ダンピング抵抗選択回路33は、ダンピング抵抗選択信号16にLowが入力され、ダンピング用の抵抗器53をショートに設定することを示す。   At time T <b> 4, the decoder circuit 17 inputs High to the voltage change detection signal 18 and High to the current direction detection signal 19. Then, the decoder circuit 17 outputs High to the decode signal (ST1) 29. Subsequently, the pull-up resistor damping resistor selection table 15 inputs High of the decode signal (ST1) 29. Then, the pull-up resistor damping resistance selection table 15 outputs High to the pull-up resistor selection signal 14 set in the table, and outputs Low to the damping resistor selection signal 16. Thereafter, the pull-up resistor selection circuit 13 pulls up the signal 34 with the pull-up resistor 52 when High is input to the pull-up resistor selection signal 14. Further, the damping resistance selection circuit 33 indicates that Low is input to the damping resistance selection signal 16 and sets the damping resistor 53 to a short circuit.

時刻T5においては、信号22は、双方向伝送線路105を通過し、信号222に伝播し、電流方向検出回路221を介して信号228へ伝播することを示す。   At time T <b> 5, the signal 22 passes through the bidirectional transmission line 105, propagates to the signal 222, and propagates to the signal 228 via the current direction detection circuit 221.

時刻T6においては、信号228には立ち上がり信号が伝播しているので、電圧変化検出回路220は、電圧変化検出信号218にHighを出力する。信号222の電圧が信号228よりも高いため、電流が信号222から信号228に流れ、電流方向検出回路221は、電流方向検出信号219にLowを出力することを示す。   At time T6, since the rising signal is propagated to the signal 228, the voltage change detection circuit 220 outputs High to the voltage change detection signal 218. Since the voltage of the signal 222 is higher than that of the signal 228, current flows from the signal 222 to the signal 228, indicating that the current direction detection circuit 221 outputs Low to the current direction detection signal 219.

時刻T7においては、デコーダ回路217は、前記電圧変化検出信号218と電流方向検出信号219を入力する。そして、デコーダ回路217は、デコード信号(ST3)231にHighを出力する。プルアップ抵抗ダンピング抵抗選択テーブル215は、デコード信号(ST3)231のHighを入力し、前記テーブルに設定されているプルアップ抵抗選択信号214にLow、ダンピング抵抗選択信号216にLowを出力する。プルアップ抵抗選択回路213は、プルアップ抵抗選択信号214を入力し、信号234をプルアップしない設定にする。また、ダンピング抵抗選択回路233は、ダンピング抵抗選択信号216を入力し、ダンピング用の抵抗器253をショートすることを示す。   At time T7, the decoder circuit 217 receives the voltage change detection signal 218 and the current direction detection signal 219. Then, the decoder circuit 217 outputs High to the decode signal (ST3) 231. The pull-up resistor damping resistance selection table 215 inputs High of the decode signal (ST3) 231 and outputs Low to the pull-up resistor selection signal 214 and Low to the damping resistor selection signal 216 set in the table. The pull-up resistor selection circuit 213 receives the pull-up resistor selection signal 214 and sets the signal 234 not to be pulled up. Further, the damping resistance selection circuit 233 receives the damping resistance selection signal 216 and indicates that the damping resistor 253 is short-circuited.

以上の動作によりインピーダンスマッチング部300と301は、図12の設定になる。図12は、本発明の実施の形態1にかかるインピーダンスマッチング回路の設定状態を説明するための図である。   The impedance matching units 300 and 301 are set as shown in FIG. 12 by the above operation. FIG. 12 is a diagram for explaining a setting state of the impedance matching circuit according to the first embodiment of the present invention.

時刻T8においては、オープンドレイン出力バッファ10がLowを出力すると、立ち下がり信号が、入出力信号34、ダンピング抵抗選択回路33、信号28に伝播し、電圧変化検出回路20、電流方向検出回路21に入力され、信号22に伝播することを示す。   At time T8, when the open drain output buffer 10 outputs Low, the falling signal is propagated to the input / output signal 34, the damping resistance selection circuit 33, and the signal 28, and then to the voltage change detection circuit 20 and the current direction detection circuit 21. Indicates that the signal is input and propagated to the signal 22.

時刻T9においては、信号28に立ち下がり信号が入力されると、電圧変化検出回路20は、電圧変化検出信号18にLowを出力する。立ち下がり信号が伝播しているため、信号22の電圧が信号28より高くなり、信号22から信号28に電流が流れ電流方向検出回路21は、電流方向検出信号19にLowを出力することを示す。   At time T <b> 9, when a falling signal is input to the signal 28, the voltage change detection circuit 20 outputs Low to the voltage change detection signal 18. Since the falling signal is propagated, the voltage of the signal 22 becomes higher than the signal 28, current flows from the signal 22 to the signal 28, and the current direction detection circuit 21 outputs Low to the current direction detection signal 19. .

時刻T10においては、デコーダ回路17は、電圧変化検出信号18にLow、電流方向検出信号19にLowが入力される。そして、デコーダ回路17は、デコード信号(ST2)30にHighを出力する。プルアップ抵抗ダンピング抵抗選択テーブル15は、デコード信号(ST2)30のHighを入力し、前記テーブルに設定されているプルアップ抵抗選択信号14にLowを出力し、ダンピング抵抗選択信号16にHighを出力する。プルアップ抵抗選択回路13は、プルアップ抵抗選択信号14にLowが入力されたことで、信号34をプルアップしない設定にする。また、ダンピング抵抗選択回路33は、ダンピング抵抗選択信号にHighが入力され、ダンピング用の抵抗器52を挿入することを示す。   At time T <b> 10, the decoder circuit 17 receives Low as the voltage change detection signal 18 and Low as the current direction detection signal 19. Then, the decoder circuit 17 outputs High to the decode signal (ST2) 30. The pull-up resistor damping resistance selection table 15 inputs High of the decode signal (ST2) 30, outputs Low to the pull-up resistor selection signal 14 set in the table, and outputs High to the damping resistor selection signal 16 To do. The pull-up resistor selection circuit 13 sets the signal 34 not to be pulled up when Low is input to the pull-up resistor selection signal 14. Further, the damping resistance selection circuit 33 indicates that High is input to the damping resistance selection signal and the resistor 52 for damping is inserted.

時刻T11においては、信号22は双方向伝送線路105を通過し、信号222に伝播し、電流方向検出回路221を介して信号228へ伝播することを示す。   At time T <b> 11, the signal 22 passes through the bidirectional transmission line 105, propagates to the signal 222, and propagates to the signal 228 via the current direction detection circuit 221.

時刻T12においては、信号228には立ち下がり信号が伝播しているので、電圧変化検出回路220は、電圧変化検出信号218にLowを出力する。信号228の電圧が信号222よりも高いため、電流が信号228から信号222に流れ、電流方向検出回路221は、電流方向検出信号219にHighを出力することを示す。   At time T <b> 12, since the falling signal is propagated in the signal 228, the voltage change detection circuit 220 outputs Low to the voltage change detection signal 218. Since the voltage of the signal 228 is higher than that of the signal 222, current flows from the signal 228 to the signal 222, indicating that the current direction detection circuit 221 outputs High to the current direction detection signal 219.

時刻T13においては、デコーダ回路217は、前記電圧変化検出信号218と電流方向検出信号219を入力する。そして、デコーダ回路217は、デコード信号(ST4)232にHighを出力する。プルアップ抵抗ダンピング抵抗選択テーブル215は、デコード信号(ST4)232のHighを入力し、前記テーブルに設定されているプルアップ抵抗選択信号214にLow、ダンピング抵抗選択信号216にLowを出力する。プルアップ抵抗選択回路213は、プルアップ抵抗選択信号214を入力し、信号234をプルアップしない設定にする。また、ダンピング抵抗選択回路233は、ダンピング抵抗選択信号216を入力し、ダンピング用の抵抗器253をショートすることを示す。   At time T13, the decoder circuit 217 receives the voltage change detection signal 218 and the current direction detection signal 219. Then, the decoder circuit 217 outputs High to the decode signal (ST4) 232. The pull-up resistor damping resistance selection table 215 inputs High of the decode signal (ST4) 232, and outputs Low to the pull-up resistor selection signal 214 and Low to the damping resistor selection signal 216 set in the table. The pull-up resistor selection circuit 213 receives the pull-up resistor selection signal 214 and sets the signal 234 not to be pulled up. Further, the damping resistance selection circuit 233 receives the damping resistance selection signal 216 and indicates that the damping resistor 253 is short-circuited.

以上の動作によりインピーダンスマッチング部300と301は、図13の設定になる。図13は、本発明の実施の形態1にかかるインピーダンスマッチング回路の設定状態を説明するための図である。   The impedance matching units 300 and 301 are set as shown in FIG. 13 by the above operation. FIG. 13 is a diagram for explaining a setting state of the impedance matching circuit according to the first embodiment of the present invention.

尚、時刻T14乃至T19は、時刻T2乃至T7と同様であるため、説明を省略する。   Note that the times T14 to T19 are the same as the times T2 to T7, and thus description thereof is omitted.

次に、図11は、本発明の実施の形態1にかかるICE側からマイコン側へ信号が出力された際のタイミングチャートである。時刻T20〜T31は、デバッグ処理回路227がデバッグコマンドをオープンドレイン出力バッファ210、インピーダンスマッチング回路301、双方向伝送線路105、インピーダンスマッチング回路300、入力バッファ102を介してオンチップデバッグ回路23に出力している状態の時間経過を示す。   Next, FIG. 11 is a timing chart when a signal is output from the ICE side to the microcomputer side according to the first embodiment of the present invention. At times T20 to T31, the debug processing circuit 227 outputs a debug command to the on-chip debug circuit 23 via the open drain output buffer 210, the impedance matching circuit 301, the bidirectional transmission line 105, the impedance matching circuit 300, and the input buffer 102. Indicates the elapsed time of the status.

時刻T20においては、オープンドレイン出力バッファ210がLowを出力すると、立ち下がり信号が、入出力信号234、ダンピング抵抗選択回路233、信号228に伝播し、電圧変化検出回路220、電流方向検出回路221に入力され、信号222に伝播することを示す。   At time T20, when the open drain output buffer 210 outputs Low, the falling signal is propagated to the input / output signal 234, the damping resistance selection circuit 233, and the signal 228, and to the voltage change detection circuit 220 and the current direction detection circuit 221. Indicates that the signal is input and propagated to the signal 222.

時刻T21においては、信号228に立ち下がり信号が入力されると、電圧変化検出回路220は、電圧変化検出信号218にLowを出力する。立ち下がり信号が伝播しているため、信号222の電圧が信号228より高くなり、信号222から信号228に電流が流れ、電流方向検出回路221は、電流方向検出信号219にLowを出力することを示す。   At time T <b> 21, when a falling signal is input to the signal 228, the voltage change detection circuit 220 outputs Low to the voltage change detection signal 218. Since the falling signal is propagated, the voltage of the signal 222 becomes higher than the signal 228, the current flows from the signal 222 to the signal 228, and the current direction detection circuit 221 outputs Low to the current direction detection signal 219. Show.

時刻T22においては、デコーダ回路217は、電圧変化検出信号218がLow、電流方向検出信号219がLowを入力する。そして、デコーダ回路217は、デコード信号(ST2)230にHighを出力する。プルアップ抵抗ダンピング抵抗選択テーブル215は、デコード信号(ST2)230のHighを入力し、前記テーブルに設定されているプルアップ抵抗選択信号214にLowを出力し、前記テーブルに設定されているダンピング抵抗選択信号216にHighを出力する。プルアップ抵抗選択回路213は、プルアップ抵抗選択信号214にLowが入力されたことで、信号234をプルアップしない設定にする。また、ダンピング抵抗選択回路233は、ダンピング抵抗選択信号にHighを入力したことで、ダンピング用の抵抗器253を挿入することを示す。   At time T22, the decoder circuit 217 inputs Low as the voltage change detection signal 218 and Low as the current direction detection signal 219. Then, the decoder circuit 217 outputs High to the decode signal (ST2) 230. The pull-up resistor damping resistance selection table 215 inputs High of the decode signal (ST2) 230, outputs Low to the pull-up resistor selection signal 214 set in the table, and sets the damping resistor set in the table High is output to the selection signal 216. The pull-up resistor selection circuit 213 sets the signal 234 not to be pulled up when Low is input to the pull-up resistor selection signal 214. The damping resistance selection circuit 233 indicates that the damping resistor 253 is inserted when High is input to the damping resistance selection signal.

時刻T23においては、信号222は双方向伝送線路105を通過し、信号22に伝播し、電流方向検出回路21を介して信号28へ伝播することを示す。   At time T23, the signal 222 passes through the bidirectional transmission line 105, propagates to the signal 22, and propagates to the signal 28 via the current direction detection circuit 21.

時刻T24においては、信号28には立ち下がり信号が伝播しているので、電圧変化検出回路20は、電圧変化検出信号18にLowを出力する。信号28の電圧が信号22よりも高いため、電流が信号28から信号22に流れ、電流方向検出回路21は、電流方向検出信号19にHighを出力することを示す。   At time T24, since the falling signal is propagated to the signal 28, the voltage change detection circuit 20 outputs Low to the voltage change detection signal 18. Since the voltage of the signal 28 is higher than that of the signal 22, current flows from the signal 28 to the signal 22, indicating that the current direction detection circuit 21 outputs High to the current direction detection signal 19.

時刻T25においては、デコーダ回路17は、前記電圧変化検出信号18と電流方向検出信号19を入力する。そして、デコーダ回路17は、デコード信号(ST4)32にHighを出力する。プルアップ抵抗ダンピング抵抗選択テーブル15は、デコード信号(ST4)32のHighを入力し、前記テーブルに設定されているプルアップ抵抗選択信号14にLowが、ダンピング抵抗選択信号16にLowが出力される。プルアップ抵抗選択回路13は、プルアップ抵抗選択信号14を入力し、信号34をプルアップしない設定にする。また、ダンピング抵抗選択回路33は、ダンピング抵抗選択信号16を入力し、ダンピング用の抵抗器53をショートすることを示す。   At time T25, the decoder circuit 17 receives the voltage change detection signal 18 and the current direction detection signal 19. Then, the decoder circuit 17 outputs High to the decode signal (ST4) 32. The pull-up resistor damping resistor selection table 15 receives the High of the decode signal (ST4) 32, and outputs Low to the pull-up resistor selection signal 14 and Low to the damping resistor selection signal 16 set in the table. . The pull-up resistor selection circuit 13 receives the pull-up resistor selection signal 14 and sets the signal 34 not to be pulled up. The damping resistance selection circuit 33 inputs the damping resistance selection signal 16 and indicates that the damping resistor 53 is short-circuited.

以上の動作によりインピーダンスマッチング部300と301は、図14の設定になる。図14は、本発明の実施の形態1にかかるインピーダンスマッチング回路の設定状態を説明するための図である。   With the above operation, the impedance matching units 300 and 301 are set as shown in FIG. FIG. 14 is a diagram for explaining a setting state of the impedance matching circuit according to the first embodiment of the present invention.

時刻T26においては、オープンドレイン出力バッファ210がHighを出力すると、立ち上がり信号が、入出力信号234、ダンピング抵抗選択回路233、信号228に伝播し、電圧変化検出回路220、電流方向検出回路221に入力され、信号222に伝播することを示す。   At time T26, when the open drain output buffer 210 outputs High, the rising signal propagates to the input / output signal 234, the damping resistance selection circuit 233, and the signal 228, and is input to the voltage change detection circuit 220 and the current direction detection circuit 221. And propagate to signal 222.

時刻T27においては、信号228に立ち上がり信号が入力されると、電圧変化検出回路220は、電圧変化検出信号218にHighを出力する。立ち上がり信号が伝播しているため、信号228の電圧が信号222より高くなり、信号228から信号222に電流が流れ、電流方向検出回路221は、電流方向検出信号219にHighを出力することを示す。   At time T <b> 27, when a rising signal is input to the signal 228, the voltage change detection circuit 220 outputs High to the voltage change detection signal 218. Since the rising signal is propagated, the voltage of the signal 228 becomes higher than the signal 222, the current flows from the signal 228 to the signal 222, and the current direction detection circuit 221 indicates that the current direction detection signal 219 outputs High. .

時刻T28においては、デコーダ回路217は、電圧変化検出信号218がHigh、電流方向検出信号219がHighを入力する。そして、デコーダ回路217は、デコード信号(ST1)229にHighを出力する。プルアップ抵抗ダンピング抵抗選択テーブル215は、デコード信号(ST1)229のHighを入力し、前記テーブルに設定されているプルアップ抵抗選択信号214にHighを出力し、前記テーブルに設定されているダンピング抵抗選択信号216にLowを出力する。プルアップ抵抗選択回路213は、プルアップ抵抗選択信号214にHighが入力されたことで、信号234をプルアップ用の抵抗器52でプルアップする。また、ダンピング抵抗選択回路233は、ダンピング抵抗選択信号216にLowを入力したことで、ダンピング用の抵抗器253をショートに設定することを示す。   At time T28, the decoder circuit 217 receives the voltage change detection signal 218 as High and the current direction detection signal 219 as High. Then, the decoder circuit 217 outputs High to the decode signal (ST1) 229. The pull-up resistor damping resistance selection table 215 inputs High of the decode signal (ST1) 229, outputs High to the pull-up resistor selection signal 214 set in the table, and sets the damping resistor set in the table Low is output to the selection signal 216. The pull-up resistor selection circuit 213 pulls up the signal 234 with the pull-up resistor 52 when High is input to the pull-up resistor selection signal 214. Further, the damping resistance selection circuit 233 indicates that the damping resistor 253 is set to be short-circuited by inputting Low to the damping resistance selection signal 216.

時刻T29においては、信号222は双方向伝送線路105を通過し、信号22に伝播し、電流方向検出回路21を介して信号28へ伝播することを示す。   At time T <b> 29, the signal 222 passes through the bidirectional transmission line 105, propagates to the signal 22, and propagates to the signal 28 via the current direction detection circuit 21.

時刻T30においては、信号28には立ち上がり信号が伝播しているので、電圧変化検出回路20は、電圧変化検出信号18にHighを出力する。信号22の電圧が信号28よりも高いため、電流が信号22から信号28に流れ、電流方向検出回路21は、電流方向検出信号19にLowを出力することを示す。   At time T <b> 30, since the rising signal is propagated to the signal 28, the voltage change detection circuit 20 outputs High to the voltage change detection signal 18. Since the voltage of the signal 22 is higher than that of the signal 28, current flows from the signal 22 to the signal 28, indicating that the current direction detection circuit 21 outputs Low to the current direction detection signal 19.

時刻T31においては、デコーダ回路17は、前記電圧変化検出信号18と電流方向検出信号19を入力する。そして、デコーダ回路17は、デコード信号(ST3)31にHighを出力する。プルアップ抵抗ダンピング抵抗選択テーブル15は、デコード信号(ST3)31のHighを入力し、前記テーブルに設定されているプルアップ抵抗選択信号14にLowが、ダンピング抵抗選択信号16にLowが出力される。プルアップ抵抗選択回路13は、プルアップ抵抗選択信号14を入力し、信号34をプルアップしない設定にする。また、ダンピング抵抗選択回路33は、ダンピング抵抗選択信号16を入力し、ダンピング用の抵抗器53をショートすることを示す。   At time T31, the decoder circuit 17 receives the voltage change detection signal 18 and the current direction detection signal 19. Then, the decoder circuit 17 outputs High to the decode signal (ST3) 31. The pull-up resistor damping resistance selection table 15 receives High of the decode signal (ST3) 31 and outputs Low to the pull-up resistor selection signal 14 and Low to the damping resistor selection signal 16 set in the table. . The pull-up resistor selection circuit 13 receives the pull-up resistor selection signal 14 and sets the signal 34 not to be pulled up. The damping resistance selection circuit 33 inputs the damping resistance selection signal 16 and indicates that the damping resistor 53 is short-circuited.

以上の動作によりインピーダンスマッチング部300と301は、図15の設定になる。図15は、本発明の実施の形態1にかかるインピーダンスマッチング回路の設定状態を説明するための図である。   The impedance matching units 300 and 301 are set as shown in FIG. 15 by the above operation. FIG. 15 is a diagram for explaining a setting state of the impedance matching circuit according to the first embodiment of the present invention.

また、本発明の実施の形態1は、次のように表現することもできる。すなわち、双方向伝送線路に信号を入出力する双方向伝送回路であり、且つ双方の出力回路から同時に信号を出力する場合が存在する双方向伝送回路に関する発明ということができる。そして、当該双方向伝送回路は、一方から出力された信号を入力し、前記双方向伝送線路のインピーダンスにマッチングさせる第1インピーダンスマッチング部と、他方から同時に出力された信号を入力し、前記双方向伝送線路のインピーダンスにマッチングさせる第2インピーダンスマッチング部とを備える。   The first embodiment of the present invention can also be expressed as follows. That is, it can be said that the invention relates to a bidirectional transmission circuit that is a bidirectional transmission circuit that inputs / outputs signals to / from the bidirectional transmission line and that outputs signals simultaneously from both output circuits. The bidirectional transmission circuit inputs a signal output from one side, inputs a first impedance matching unit that matches the impedance of the bidirectional transmission line, and a signal output simultaneously from the other side, and inputs the bidirectional signal. A second impedance matching unit that matches the impedance of the transmission line.

ここで、前記第1および第2インピーダンスマッチング部は、双方の出力回路から同時に前記双方向伝送線路へ信号を出力した際にそれぞれの側に流れる電流の方向を検出する電流方向検出回路と、同じく前記それぞれの側における電圧の変化を検出する電圧変化検出回路と、前記電流方向検出回路と前記電圧変化検出回路から出力される電圧変化検出信号と電流方向検出信号を入力し、前記それぞれの側の出力信号の変化を表したデコード信号を出力するデコーダ回路と、前記デコーダ回路から出力されたデコード信号を入力し、ダンピング抵抗とプルアップ抵抗のそれぞれの選択を制御する選択信号を出力するプルアップ抵抗ダンピング抵抗選択テーブルと、前記選択信号によって制御され、プルアップ抵抗を選択するプルアップ抵抗選択回路とダンピング抵抗を挿入するダンピング抵抗選択回路を有する。   Here, the first and second impedance matching units are the same as the current direction detection circuit that detects the direction of the current flowing to each side when signals are output from both output circuits to the bidirectional transmission line simultaneously. A voltage change detection circuit for detecting a change in voltage on each side, a voltage change detection signal output from the current direction detection circuit and the voltage change detection circuit, and a current direction detection signal are input. A decoder circuit that outputs a decode signal representing a change in the output signal, and a pull-up resistor that inputs the decode signal output from the decoder circuit and outputs a selection signal that controls selection of a damping resistor and a pull-up resistor Damping resistor selection table and pull-up resistor selection controlled by the selection signal to select the pull-up resistor Having a damping resistance selection circuit for inserting the circuit and the damping resistor.

前記第1および第2インピーダンスマッチング部は、それぞれ、双方の出力信号の変化を監視する。そして、第1インピーダンスマッチング部は、一方(図1のマイコン25側)の出力信号の立ち上がりを検出すると出力信号にプルアップ抵抗を接続し、立ち下がりを検出するとダンピング抵抗を挿入し、他方(図1のICE226側)の出力信号が立ち上がり又は立ち下がりを検出するとプルアップ抵抗及びダンピング抵抗を挿入しない動作をする。また、他方(図1のICE226側)に接続されたインピーダンスマッチング部は、他方(図1のICE226側)の出力信号の立ち上がりを検出すると出力信号にプルアップ抵抗を接続し、立ち下がりを検出するとダンピング抵抗を挿入し、一方(図1のマイコン25側)の出力信号が立ち上がり又は立ち下がりを検出するとプルアップ抵抗及びダンピング抵抗を挿入しない動作をする。   Each of the first and second impedance matching units monitors changes in both output signals. The first impedance matching unit connects a pull-up resistor to the output signal when the rising edge of the output signal on one side (the microcomputer 25 side in FIG. 1) is detected, and inserts a damping resistor when the falling edge is detected. When the rising or falling edge of the output signal on the ICE 226 side of 1 is detected, the pull-up resistor and the damping resistor are not inserted. When the impedance matching unit connected to the other (ICE 226 side in FIG. 1) detects the rising edge of the output signal on the other side (ICE 226 side in FIG. 1), it connects a pull-up resistor to the output signal and detects the falling edge. When a damping resistor is inserted and one of the output signals (on the microcomputer 25 side in FIG. 1) detects rising or falling, the pull-up resistor and the damping resistor are not inserted.

これにより、特許文献1において出力バッファにオープンドレインを使用した場合に、信号反射が発生し、誤動作するという問題点を解決することが出来る。上記問題点を解決する理由について、図12〜図15を用いて以下に説明する。   As a result, when an open drain is used for the output buffer in Patent Document 1, the problem of signal reflection and malfunction can be solved. The reason for solving the above problem will be described below with reference to FIGS.

まず、双方向伝送線路に接続されている2つの出力回路の信号変化を監視する。そして、信号の立ち上がり時は、プルアップ抵抗ダンピング抵抗選択テーブルに従って図12及び図14のようにプルアップ用の抵抗器52及び抵抗器252を挿入し、かつ、ダンピング用の抵抗器53及び抵抗器253をショートする。これにより、オープンドレイン出力バッファ10の出力インピーダンス(無限大Ω)に、プルアップ用の抵抗器52及び抵抗器252の抵抗値50Ωが並列接続されたことになる。この場合、出力インピーダンスは50Ωになり、双方向伝送線路105とインピーダンスマッチングを取ることができる。そのため、入力信号212は、信号反射が発生せず誤動作が発生しない。   First, signal changes of two output circuits connected to the bidirectional transmission line are monitored. When the signal rises, the pull-up resistor 52 and the resistor 252 are inserted as shown in FIGS. 12 and 14 according to the pull-up resistor damping resistor selection table, and the damping resistor 53 and the resistor are inserted. Short 253. As a result, the resistance value 50Ω of the pull-up resistor 52 and the resistor 252 is connected in parallel to the output impedance (infinite Ω) of the open drain output buffer 10. In this case, the output impedance is 50Ω, and impedance matching with the bidirectional transmission line 105 can be obtained. Therefore, the input signal 212 does not cause signal reflection and does not malfunction.

また、信号の立ち下がり時は、前記テーブルにしたがって図13及び図15のようにプルアップ用の抵抗器52及び抵抗器252を外し、かつ、ダンピング用の抵抗器53及び抵抗器253に30Ωを挿入する。これにより、オープンドレイン出力バッファ10の出力インピーダンス(約20Ω)にダンピング用の抵抗器53及び抵抗器253の抵抗値30Ωが直列接続されたことになる。この場合、前記抵抗値を加算した50Ωになることで、双方向伝送線路105とインピーダンスマッチングを取ることができる。そのため、入力信号212は、信号反射が発生せず、誤動作が発生することなく、高速通信が可能となる。よって、特許文献1により発生する問題を解決する事ができる。   When the signal falls, the pull-up resistor 52 and the resistor 252 are removed as shown in FIGS. 13 and 15 according to the above table, and the damping resistor 53 and the resistor 253 are set to 30Ω. insert. Thereby, the resistance value 30Ω of the damping resistor 53 and the resistor 253 is connected in series to the output impedance (about 20Ω) of the open drain output buffer 10. In this case, impedance matching with the bidirectional transmission line 105 can be obtained by setting the resistance value to 50Ω. Therefore, the input signal 212 does not cause signal reflection, and high-speed communication is possible without causing malfunction. Therefore, the problem caused by Patent Document 1 can be solved.

以上のことから、本発明の実施の形態1の効果は、通信速度が速いオープンドレインを使った双方向伝送線路でも誤動作が発生しないことである。その理由は、電流方向検出回路と電圧変化検出回路とデコーダ回路とプルアップ抵抗ダンピング抵抗選択テーブルとプルアップ抵抗選択回路とダンピング抵抗選択回路を有することで、オープンドレイン出力バッファの信号が、立ち上がり時には出力側に50Ωのプルアップ抵抗器を入れ、立ち下がり時には30Ωのダンピング抵抗器を入れることで、出力インピーダンスが双方向伝送線路のインピーダンスと整合するからである。   From the above, the effect of the first embodiment of the present invention is that no malfunction occurs even in a bidirectional transmission line using an open drain having a high communication speed. The reason is that it has a current direction detection circuit, a voltage change detection circuit, a decoder circuit, a pull-up resistor damping resistor selection table, a pull-up resistor selection circuit, and a damping resistor selection circuit. This is because a 50Ω pull-up resistor is inserted on the output side and a 30Ω damping resistor is inserted at the time of falling so that the output impedance matches the impedance of the bidirectional transmission line.

<その他の発明の実施の形態>
尚、上述したように、本発明の実施の形態1にかかるプルアップ抵抗器は、プルダウン抵抗器に置き換わっても構わない。その場合、上記において第1の出力信号について電圧の変化の方向を「立ち上がり」であるものと検出していた箇所を「立ち下がり」とし、第1の出力信号について電圧の変化の方向を「立ち下がり」であるものと検出していた箇所を「立ち上がり」とすればよい。さらに、本発明の実施の形態1にかかるプルアップ抵抗器は、少なくとも負荷抵抗器であればよい。その場合、「立ち上がり」を第1の方向、「立ち下がり」を第1の方向とは逆の第2の方向と表現することができる。すなわち、抵抗接続回路36は、検出回路35により第1の出力信号の電圧の変化が第1の方向であると検出された場合、当該第1の出力信号に負荷抵抗器を接続して双方向伝送線路105へ出力する。また、抵抗接続回路36は、検出回路35により第1の出力信号の電圧の変化が第2の方向であると検出された場合、当該第1の出力信号にダンピング抵抗器を接続して双方向伝送線路105へ出力する。さらに、抵抗接続回路36は、検出回路35により第2の出力信号の電圧の変化が検出された場合、当該第2の出力信号に負荷抵抗器及びダンピング抵抗器のいずれも接続せずにオープンドレイン出力バッファ10へ出力する。
<Other embodiments of the invention>
As described above, the pull-up resistor according to the first embodiment of the present invention may be replaced with a pull-down resistor. In that case, the position where the change direction of the voltage for the first output signal is detected as “rising” is referred to as “falling”, and the change direction of the voltage for the first output signal is set to “rise”. A portion that has been detected as “falling” may be regarded as “rising”. Furthermore, the pull-up resistor according to the first embodiment of the present invention may be at least a load resistor. In this case, “rise” can be expressed as a first direction, and “fall” can be expressed as a second direction opposite to the first direction. That is, when the detection circuit 35 detects that the change in the voltage of the first output signal is in the first direction, the resistance connection circuit 36 connects the load resistor to the first output signal and performs bidirectional processing. Output to the transmission line 105. In addition, when the detection circuit 35 detects that the change in the voltage of the first output signal is in the second direction, the resistance connection circuit 36 connects the damping output to the first output signal and performs bidirectional processing. Output to the transmission line 105. Further, when a change in the voltage of the second output signal is detected by the detection circuit 35, the resistance connection circuit 36 is connected to the second output signal without connecting either a load resistor or a damping resistor. Output to the output buffer 10.

さらに、本発明は、次のようなものであってもよい。第1のオープンドレイン出力バッファと第2のオープンドレイン出力バッファとの間で双方向の伝送を行う双方向伝送回路のインピーダンス整合方法であって、前記双方向伝送回路は、負荷抵抗とダンピング抵抗とを有し、前記双方向伝送回路において、前記第1のオープンドレイン出力バッファからの第1の出力信号及び前記第2のオープンドレイン出力バッファからの第2の出力信号を検出し、前記第1の出力信号の電圧の変化が第1の方向であると検出した場合、当該第1の出力信号に前記負荷抵抗を接続して前記第2のオープンドレイン出力バッファへ出力し、前記第1の出力信号の電圧の変化が前記第1の方向とは逆の第2の方向であると検出した場合、当該第1の出力信号に前記ダンピング抵抗を接続して前記第2のオープンドレイン出力バッファへ出力し、前記第2の出力信号の電圧の変化を検出した場合、当該第2の出力信号に前記負荷抵抗及び前記ダンピング抵抗のいずれも接続せずに前記第1のオープンドレイン出力バッファへ出力する。   Further, the present invention may be as follows. An impedance matching method for a bidirectional transmission circuit that performs bidirectional transmission between a first open drain output buffer and a second open drain output buffer, the bidirectional transmission circuit comprising: a load resistor; a damping resistor; In the bidirectional transmission circuit, the first output signal from the first open drain output buffer and the second output signal from the second open drain output buffer are detected, and the first output signal is detected. When it is detected that the change in the voltage of the output signal is in the first direction, the load resistor is connected to the first output signal and output to the second open drain output buffer, and the first output signal Is detected in a second direction opposite to the first direction, the damping resistor is connected to the first output signal and the second open circuit is connected. When output to an in-output buffer and a change in the voltage of the second output signal is detected, the first open drain output is performed without connecting either the load resistor or the damping resistor to the second output signal. Output to buffer.

また、本発明は、双方向伝送線路に信号を入出力する双方向伝送回路に関し、特にマイコンのプログラムをデバッグするオンチップデバッグの技術に関する。   The present invention also relates to a bidirectional transmission circuit for inputting / outputting signals to / from a bidirectional transmission line, and more particularly to an on-chip debugging technique for debugging a microcomputer program.

さらに、本発明は上述した実施の形態のみに限定されるものではなく、既に述べた本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。   Furthermore, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention described above.

10、210 オープンドレイン出力バッファ
11、211 出力信号
12、212 入力信号
13、213 プルアップ抵抗選択回路
14、214 プルアップ抵抗選択信号
15、215 プルアップ抵抗ダンピング抵抗選択テーブル
16、216 ダンピング抵抗選択信号
17、217 デコーダ回路
18、218 電圧変化検出信号
19、219 電流方向検出信号
20、220 電圧変化検出回路
21、221 電流方向検出回路
22、222 信号
23 オンチップデバッグ回路
24 CPU
25 マイコン
226 ICE
227 デバッグ処理回路
28、228 信号
29、229 デコード信号(ST1)
30、230 デコード信号(ST2)
31、231 デコード信号(ST3)
32、232 デコード信号(ST4)
33、233 ダンピング抵抗選択回路
34、234 入出力信号
35、235 検出回路
36、236 抵抗接続回路
52、53 抵抗器
252、253 抵抗器
60、61、62 抵抗器
63 コンデンサ
64 アンプ
65、66 信号
70、71 抵抗器
72 アンプ
73、74 信号
80,81 インバータ
82、83、84、85 アンドゲート
90 インバータ
91 トランジスタ
95、96 トランジスタ
97 インバータ
101、103 出力バッファ
102、104 入力バッファ
105 双方向伝送線路
106、110 切替部
107、111 スイッチ
108、112 抵抗器
109、113 ショート線
120,121 入出力回路
131 信号
300,301 インピーダンスマッチング回路
302 双方向伝送回路
IC1、IC2 半導体素子
T1〜T31 時刻
Ro1、Ro2 抵抗値
Rs1、Rs2 抵抗値
Zo 特性インピーダンス
10, 210 Open drain output buffer 11, 211 Output signal 12, 212 Input signal 13, 213 Pull-up resistor selection circuit 14, 214 Pull-up resistor selection signal 15, 215 Pull-up resistor damping resistor selection table 16, 216 Damping resistor selection signal 17, 217 Decoder circuit 18, 218 Voltage change detection signal 19, 219 Current direction detection signal 20, 220 Voltage change detection circuit 21, 221 Current direction detection circuit 22, 222 Signal 23 On-chip debug circuit 24 CPU
25 Microcomputer 226 ICE
227 Debug processing circuit 28, 228 Signal 29, 229 Decode signal (ST1)
30, 230 Decode signal (ST2)
31,231 Decode signal (ST3)
32, 232 decode signal (ST4)
33, 233 Damping resistor selection circuit 34, 234 Input / output signal 35, 235 Detection circuit 36, 236 Resistor connection circuit 52, 53 Resistor 252, 253 Resistor 60, 61, 62 Resistor 63 Capacitor 64 Amplifier 65, 66 Signal 70 , 71 Resistor 72 Amplifier 73, 74 Signal 80, 81 Inverter 82, 83, 84, 85 AND gate 90 Inverter 91 Transistor 95, 96 Transistor 97 Inverter 101, 103 Output buffer 102, 104 Input buffer 105 Bidirectional transmission line 106, 110 switching unit 107, 111 switch 108, 112 resistor 109, 113 short line 120, 121 input / output circuit 131 signal 300, 301 impedance matching circuit 302 bidirectional transmission circuit IC1, IC2 half Conductor elements T1 to T31 Time Ro1, Ro2 Resistance value Rs1, Rs2 Resistance value Zo Characteristic impedance

Claims (10)

第1の端子にオープンドレイン出力バッファが接続され、第2の端子に双方向伝送線路が接続されたインピーダンス整合回路であって、
負荷抵抗と、
ダンピング抵抗と、
前記負荷抵抗もしくは前記ダンピング抵抗のいずれかを接続するか又はいずれも接続しない抵抗接続回路と、
前記オープンドレイン出力バッファからの第1の出力信号及び前記双方向伝送線路からの第2の出力信号を検出する検出回路と、を有し、
前記抵抗接続回路は、
前記検出回路により前記第1の出力信号の電圧の変化が第1の方向であると検出された場合、当該第1の出力信号に前記負荷抵抗を接続して前記双方向伝送線路へ出力し、
前記検出回路により前記第1の出力信号の電圧の変化が前記第1の方向とは逆の第2の方向であると検出された場合、当該第1の出力信号に前記ダンピング抵抗を接続して前記双方向伝送線路へ出力し、
前記検出回路により前記第2の出力信号の電圧の変化が検出された場合、当該第2の出力信号に前記負荷抵抗及び前記ダンピング抵抗のいずれも接続せずに前記オープンドレイン出力バッファへ出力する
ことを特徴とするインピーダンス整合回路。
An impedance matching circuit having an open drain output buffer connected to a first terminal and a bidirectional transmission line connected to a second terminal,
Load resistance,
Damping resistance,
A resistor connection circuit that connects either the load resistor or the damping resistor or none of them,
A detection circuit for detecting a first output signal from the open drain output buffer and a second output signal from the bidirectional transmission line;
The resistance connection circuit is:
When the detection circuit detects that the voltage change of the first output signal is in the first direction, the load resistor is connected to the first output signal and output to the bidirectional transmission line,
When the detection circuit detects that the voltage change of the first output signal is in the second direction opposite to the first direction, the damping resistor is connected to the first output signal. Output to the bidirectional transmission line,
When a change in the voltage of the second output signal is detected by the detection circuit, the second output signal is output to the open drain output buffer without connecting either the load resistor or the damping resistor. Impedance matching circuit characterized by
前記負荷抵抗は、プルアップ抵抗であり、
前記抵抗接続回路は、
前記検出回路により前記第1の出力信号の立ち上がりが検出された場合、当該第1の出力信号に前記プルアップ抵抗を接続して前記双方向伝送線路へ出力し、
前記検出回路により前記第1の出力信号の立ち下がりが検出された場合、当該第1の出力信号に前記ダンピング抵抗を接続して前記双方向伝送線路へ出力し、
前記検出回路により前記第2の出力信号の立ち上がり又は立ち下がりが検出された場合、当該第2の出力信号に前記プルアップ抵抗及び前記ダンピング抵抗のいずれも接続せずに前記オープンドレイン出力バッファへ出力することを特徴とする請求項1に記載のインピーダンス整合回路。
The load resistor is a pull-up resistor,
The resistance connection circuit is:
When the rising edge of the first output signal is detected by the detection circuit, the pull-up resistor is connected to the first output signal and output to the bidirectional transmission line,
When the detection circuit detects a fall of the first output signal, the damping resistor is connected to the first output signal and output to the bidirectional transmission line,
When the rising or falling edge of the second output signal is detected by the detection circuit, the second output signal is output to the open drain output buffer without connecting either the pull-up resistor or the damping resistor. The impedance matching circuit according to claim 1, wherein:
前記検出回路は、
前記第1の出力信号及び前記第2の出力信号について電流が流れる方向を検出する電流方向検出回路と、
前記第1の出力信号及び前記第2の出力信号について電圧の変化を検出する電圧変化検出回路と、を有し、
前記抵抗接続回路は、前記電流方向検出回路により検出される電流の方向と、前記電圧変化検出回路により検出される電圧の変化に基づき、前記負荷抵抗及び前記ダンピング抵抗のそれぞれについての接続をするか否かを選択することを特徴とする請求項1又は2に記載のインピーダンス整合回路。
The detection circuit includes:
A current direction detection circuit for detecting a direction in which a current flows with respect to the first output signal and the second output signal;
A voltage change detection circuit for detecting a change in voltage with respect to the first output signal and the second output signal,
Whether the resistance connection circuit performs connection for each of the load resistance and the damping resistance based on the direction of the current detected by the current direction detection circuit and the change of the voltage detected by the voltage change detection circuit. The impedance matching circuit according to claim 1, wherein whether or not to select is selected.
前記検出回路は、
前記電流方向検出回路により検出される電流の方向と、前記電圧変化検出回路により検出される電圧の変化に基づき、前記ダンピング抵抗と前記負荷抵抗のそれぞれの選択を制御する選択信号を前記抵抗接続回路へ出力する選択テーブルをさらに備え、
前記抵抗接続回路は、前記選択信号に応じて、前記負荷抵抗及び前記ダンピング抵抗のそれぞれについての接続をするか否かを選択することを特徴とする請求項3に記載のインピーダンス整合回路。
The detection circuit includes:
Based on the direction of the current detected by the current direction detection circuit and the change in voltage detected by the voltage change detection circuit, a selection signal for controlling selection of each of the damping resistor and the load resistor is sent to the resistor connection circuit A selection table to output to
The impedance matching circuit according to claim 3, wherein the resistance connection circuit selects whether or not to connect each of the load resistance and the damping resistance in accordance with the selection signal.
前記選択テーブルは、
前記電流方向検出回路により検出される電流の方向が前記オープンドレイン出力バッファから前記双方向伝送線路であることが検出され、前記電圧変化検出回路により前記第1の出力信号について電圧の変化が前記第1の方向であることが検出された場合、前記負荷抵抗を選択させるように前記選択信号を出力し、
前記電流方向検出回路により検出される電流の方向が前記オープンドレイン出力バッファから前記双方向伝送線路であることが検出され、前記電圧変化検出回路により前記第1の出力信号について電圧の変化が前記第2の方向であることが検出された場合、前記ダンピング抵抗を選択させるように前記選択信号を出力し、
前記電流方向検出回路により検出される電流の方向が前記双方向伝送線路から前記オープンドレイン出力バッファであることが検出された場合、前記負荷抵抗及び前記ダンピング抵抗のいずれも選択させないように前記選択信号を出力することを特徴とする請求項4に記載のインピーダンス整合回路。
The selection table is
The direction of the current detected by the current direction detection circuit is detected from the open drain output buffer to the bidirectional transmission line, and the voltage change detection circuit detects a change in voltage for the first output signal. If it is detected that the direction is 1, the selection signal is output to select the load resistance;
The direction of the current detected by the current direction detection circuit is detected from the open drain output buffer to the bidirectional transmission line, and the voltage change detection circuit detects a change in voltage for the first output signal. If the direction of 2 is detected, the selection signal is output to select the damping resistor,
When the direction of the current detected by the current direction detection circuit is detected as the open drain output buffer from the bidirectional transmission line, the selection signal is selected so that neither the load resistor nor the damping resistor is selected. The impedance matching circuit according to claim 4, wherein:
前記電流方向検出回路は、検出した電流の方向を電流方向検出信号として出力し、
前記電圧変化検出回路は、検出した電圧の変化を電圧変化検出信号として出力し、
前記検出回路は、
前記電流方向検出回路及び前記電圧変化検出回路から入力される前記電流方向検出信号及び前記電圧変化検出信号の変化を表したデコード信号を前記選択テーブルに出力するデコーダ回路をさらに備え、
前記選択テーブルは、前記デコード信号に応じて、前記負荷抵抗の接続有無を示す第1の接続有無信号と、前記ダンピング抵抗の接続有無を示す第2の接続有無信号とを前記選択信号として出力し、
前記抵抗接続回路は、
前記第1の接続有無信号に応じて、前記負荷抵抗を接続するか否かを選択する負荷抵抗選択回路と、
前記第2の接続有無信号に応じて、前記ダンピング抵抗を接続するか否かを選択するダンピング抵抗選択回路と、を有することを特徴とする請求項4又は5に記載のインピーダンス整合回路。
The current direction detection circuit outputs the detected current direction as a current direction detection signal,
The voltage change detection circuit outputs the detected voltage change as a voltage change detection signal,
The detection circuit includes:
A decoder circuit for outputting to the selection table a decode signal representing a change in the current direction detection signal and the voltage change detection signal input from the current direction detection circuit and the voltage change detection circuit;
The selection table outputs, as the selection signal, a first connection presence / absence signal indicating whether or not the load resistor is connected and a second connection presence / absence signal indicating whether or not the damping resistor is connected according to the decode signal. ,
The resistance connection circuit is:
A load resistance selection circuit that selects whether or not to connect the load resistance according to the first connection presence / absence signal;
6. The impedance matching circuit according to claim 4, further comprising: a damping resistance selection circuit that selects whether to connect the damping resistor according to the second connection presence / absence signal.
第1のオープンドレイン出力バッファと第2のオープンドレイン出力バッファとの間で双方向の伝送を行う双方向伝送回路のインピーダンス整合方法であって、
前記双方向伝送回路は、負荷抵抗とダンピング抵抗とを有し、
前記双方向伝送回路において、
前記第1のオープンドレイン出力バッファからの第1の出力信号及び前記第2のオープンドレイン出力バッファからの第2の出力信号を検出し、
前記第1の出力信号の電圧の変化が第1の方向であると検出した場合、当該第1の出力信号に前記負荷抵抗を接続して前記第2のオープンドレイン出力バッファへ出力し、
前記第1の出力信号の電圧の変化が前記第1の方向とは逆の第2の方向であると検出した場合、当該第1の出力信号に前記ダンピング抵抗を接続して前記第2のオープンドレイン出力バッファへ出力し、
前記第2の出力信号の電圧の変化を検出した場合、当該第2の出力信号に前記負荷抵抗及び前記ダンピング抵抗のいずれも接続せずに前記第1のオープンドレイン出力バッファへ出力する
ことを特徴とするインピーダンス整合方法。
An impedance matching method for a bidirectional transmission circuit that performs bidirectional transmission between a first open drain output buffer and a second open drain output buffer,
The bidirectional transmission circuit has a load resistor and a damping resistor,
In the bidirectional transmission circuit,
Detecting a first output signal from the first open drain output buffer and a second output signal from the second open drain output buffer;
If it is detected that the voltage change of the first output signal is in the first direction, the load resistor is connected to the first output signal and output to the second open drain output buffer;
When it is detected that the change in the voltage of the first output signal is in the second direction opposite to the first direction, the damping resistor is connected to the first output signal and the second open signal is connected. Output to the drain output buffer,
When a change in the voltage of the second output signal is detected, the second output signal is output to the first open drain output buffer without connecting either the load resistor or the damping resistor. Impedance matching method.
前記負荷抵抗は、プルアップ抵抗であり、
前記第1の出力信号の立ち上がりを検出した場合、当該第1の出力信号に前記プルアップ抵抗を接続して前記第2のオープンドレイン出力バッファへ出力し、
前記第1の出力信号の立ち下がりを検出した場合、当該第1の出力信号に前記ダンピング抵抗を接続して前記第2のオープンドレイン出力バッファへ出力し、
前記第2の出力信号の立ち上がり又は立ち下がりを検出した場合、当該第2の出力信号に前記プルアップ抵抗及び前記ダンピング抵抗のいずれも接続せずに前記第1のオープンドレイン出力バッファへ出力することを特徴とする請求項7に記載のインピーダンス整合方法。
The load resistor is a pull-up resistor,
When the rising edge of the first output signal is detected, the pull-up resistor is connected to the first output signal and output to the second open drain output buffer;
When the falling edge of the first output signal is detected, the damping resistor is connected to the first output signal and output to the second open drain output buffer;
When the rising or falling edge of the second output signal is detected, the second output signal is output to the first open drain output buffer without connecting either the pull-up resistor or the damping resistor. The impedance matching method according to claim 7.
第1のオープンドレイン出力バッファと第2のオープンドレイン出力バッファとの間で双方向の伝送を行う双方向伝送回路であって、
双方向伝送線路と、
第1の端子に前記第1のオープンドレイン出力バッファが接続され、第2の端子に前記双方向伝送線路が接続され、第1の負荷抵抗と、第1のダンピング抵抗と、を有する第1のインピーダンス整合回路と、
第3の端子に前記双方向伝送線路が接続され、第4の端子に前記第2のオープンドレイン出力バッファが接続され、第2の負荷抵抗と、第2のダンピング抵抗と、を有する第2のインピーダンス整合回路と、
を備え、
前記第1のインピーダンス整合回路は、
前記第1のオープンドレイン出力バッファからの第1の出力信号及び前記双方向伝送線路からの第2の出力信号を検出し、
前記第1の出力信号の電圧の変化が第1の方向であると検出した場合、当該第1の出力信号に前記第1の負荷抵抗を接続して前記双方向伝送線路へ出力し、
前記第1の出力信号の電圧の変化が前記第1の方向とは逆の第2の方向であると検出した場合、当該第1の出力信号に前記第1のダンピング抵抗を接続して前記双方向伝送線路へ出力し、
前記第2の出力信号の電圧の変化を検出した場合、当該第2の出力信号に前記第1の負荷抵抗及び前記第1のダンピング抵抗のいずれも接続せずに前記第1のオープンドレイン出力バッファへ出力し、
前記第2のインピーダンス整合回路は、
前記双方向伝送線路からの第3の出力信号及び前記第2のオープンドレイン出力バッファからの第4の出力信号を検出し、
前記第4の出力信号の電圧の変化が前記第1の方向であると検出した場合、当該第1の出力信号に前記第2の負荷抵抗を接続して前記双方向伝送線路へ出力し、
前記第4の出力信号の電圧の変化が前記第2の方向であると検出した場合、当該第4の出力信号に前記第2のダンピング抵抗を接続して前記双方向伝送線路へ出力し、
前記第3の出力信号の電圧の変化を検出した場合、当該第3の出力信号に前記第2の負荷抵抗及び前記第2のダンピング抵抗のいずれも接続せずに前記第2のオープンドレイン出力バッファへ出力する
ことを特徴とする双方向伝送回路。
A bidirectional transmission circuit that performs bidirectional transmission between a first open drain output buffer and a second open drain output buffer,
A bidirectional transmission line;
The first open drain output buffer is connected to a first terminal, the bidirectional transmission line is connected to a second terminal, and includes a first load resistor and a first damping resistor. An impedance matching circuit;
The second transmission line is connected to a third terminal, the second open drain output buffer is connected to a fourth terminal, and a second load resistor and a second damping resistor are included. An impedance matching circuit;
With
The first impedance matching circuit includes:
Detecting a first output signal from the first open drain output buffer and a second output signal from the bidirectional transmission line;
When it is detected that the voltage change of the first output signal is in the first direction, the first load resistor is connected to the first output signal and output to the bidirectional transmission line,
When it is detected that the change in the voltage of the first output signal is in the second direction opposite to the first direction, the first damping resistor is connected to the first output signal and the both Output to the transmission line
When detecting a change in the voltage of the second output signal, the first open drain output buffer without connecting either the first load resistor or the first damping resistor to the second output signal. Output to
The second impedance matching circuit includes:
Detecting a third output signal from the bidirectional transmission line and a fourth output signal from the second open drain output buffer;
When it is detected that the change in the voltage of the fourth output signal is in the first direction, the second load resistor is connected to the first output signal and output to the bidirectional transmission line,
If it is detected that the change in the voltage of the fourth output signal is in the second direction, the second damping resistor is connected to the fourth output signal and output to the bidirectional transmission line,
If a change in the voltage of the third output signal is detected, the second open drain output buffer without connecting the second load resistor and the second damping resistor to the third output signal. A bidirectional transmission circuit characterized by output to
前記第1の負荷抵抗は、第1のプルアップ抵抗であり、
前記第1のインピーダンス整合回路は、
前記第1の出力信号の立ち上がりを検出した場合、当該第1の出力信号に前記第1のプルアップ抵抗を接続して前記双方向伝送線路へ出力し、
前記第1の出力信号の立ち下がりを検出した場合、当該第1の出力信号に前記第1のダンピング抵抗を接続して前記双方向伝送線路へ出力し、
前記第2の出力信号の立ち上がり又は立ち下がりを検出した場合、当該第2の出力信号に前記第1のプルアップ抵抗及び前記第1のダンピング抵抗のいずれも接続せずに前記第1のオープンドレイン出力バッファへ出力し、
前記第1の負荷抵抗は、第2のプルアップ抵抗であり、
前記第2のインピーダンス整合回路は、
前記第4の出力信号の立ち上がりを検出した場合、当該第4の出力信号に前記第2のプルアップ抵抗を接続して前記双方向伝送線路へ出力し、
前記第4の出力信号の立ち下がりを検出した場合、当該第4の出力信号に前記第2のダンピング抵抗を接続して前記双方向伝送線路へ出力し、
前記第3の出力信号の立ち上がり又は立ち下がりを検出した場合、当該第3の出力信号に前記第2のプルアップ抵抗及び前記第2のダンピング抵抗のいずれも接続せずに前記第2のオープンドレイン出力バッファへ出力する
ことを特徴とする請求項9に記載の双方向伝送回路。
The first load resistor is a first pull-up resistor;
The first impedance matching circuit includes:
When the rising edge of the first output signal is detected, the first pull-up resistor is connected to the first output signal and output to the bidirectional transmission line,
When detecting the fall of the first output signal, connect the first damping resistor to the first output signal and output to the bidirectional transmission line,
When the rising or falling edge of the second output signal is detected, neither the first pull-up resistor nor the first damping resistor is connected to the second output signal. Output to the output buffer,
The first load resistor is a second pull-up resistor;
The second impedance matching circuit includes:
When detecting the rise of the fourth output signal, connect the second pull-up resistor to the fourth output signal and output to the bidirectional transmission line,
When the falling of the fourth output signal is detected, the second output resistor is connected to the fourth output signal and output to the bidirectional transmission line,
When the rising or falling edge of the third output signal is detected, the second open drain is connected to the third output signal without connecting any of the second pull-up resistor and the second damping resistor. The bidirectional transmission circuit according to claim 9, wherein the bidirectional transmission circuit outputs to an output buffer.
JP2010284133A 2010-12-21 2010-12-21 Impedance matching circuit, impedance matching method, and bidirectional transmission circuit Pending JP2012134702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010284133A JP2012134702A (en) 2010-12-21 2010-12-21 Impedance matching circuit, impedance matching method, and bidirectional transmission circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284133A JP2012134702A (en) 2010-12-21 2010-12-21 Impedance matching circuit, impedance matching method, and bidirectional transmission circuit

Publications (1)

Publication Number Publication Date
JP2012134702A true JP2012134702A (en) 2012-07-12

Family

ID=46649789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284133A Pending JP2012134702A (en) 2010-12-21 2010-12-21 Impedance matching circuit, impedance matching method, and bidirectional transmission circuit

Country Status (1)

Country Link
JP (1) JP2012134702A (en)

Similar Documents

Publication Publication Date Title
US9929732B2 (en) LVDS input window circuit with two comparators and multiplexer
US7840194B2 (en) Transmitting circuit, receiving circuit, interface switching module and interface switching method for SATA and SAS interfaces
US9325534B2 (en) Configurable differential to single ended IO
US20160335210A1 (en) Method and system for bidirectional communication
JP2018019323A (en) Ringing suppression circuit
US8063663B2 (en) Differential signal transmitting apparatus and differential signal receiving apparatus
US20210119762A1 (en) Serial bidirectional communication circuit and method thereof
US20160041940A1 (en) Signal path isolation for conductive circuit paths and multipurpose interfaces
US8020137B2 (en) Structure for an on-demand power supply current modification system for an integrated circuit
JP2012134702A (en) Impedance matching circuit, impedance matching method, and bidirectional transmission circuit
JPH07302144A (en) Interface circuit
JP5502938B2 (en) Test equipment
JP6645069B2 (en) Communication system and communication method
US6842038B1 (en) Self optimizing off chip driver
US7812640B2 (en) Bridge design for SD and MMC data buses
US8122165B2 (en) On-demand power supply current modification system and method for an integrated circuit
CN113811863A (en) Bidirectional switching driver for half-duplex interface
JP5799704B2 (en) Signal transmission circuit and signal transmission method
JP2012174026A (en) Back panel substrate extension device
JPWO2020012928A1 (en) In-vehicle electronic control device
JP2000307412A (en) Bidirectional buffer circuit
JP2004129285A (en) Signal transmission apparatus and circuit block