JP2012134414A - Durability test apparatus of solar cell module - Google Patents

Durability test apparatus of solar cell module Download PDF

Info

Publication number
JP2012134414A
JP2012134414A JP2010287129A JP2010287129A JP2012134414A JP 2012134414 A JP2012134414 A JP 2012134414A JP 2010287129 A JP2010287129 A JP 2010287129A JP 2010287129 A JP2010287129 A JP 2010287129A JP 2012134414 A JP2012134414 A JP 2012134414A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
pressure
pipe
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010287129A
Other languages
Japanese (ja)
Other versions
JP5381969B2 (en
Inventor
Hideyuki Honda
英行 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Kogyo KK
Original Assignee
Honda Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Kogyo KK filed Critical Honda Kogyo KK
Priority to JP2010287129A priority Critical patent/JP5381969B2/en
Publication of JP2012134414A publication Critical patent/JP2012134414A/en
Application granted granted Critical
Publication of JP5381969B2 publication Critical patent/JP5381969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a durability test apparatus of a solar cell module which automatically tests the mechanical strength and the durability of the solar cell module and the durability in an environment that is similar to the actual use conditions created when the solar cell module is attached to a roof using a frame body and support metal fittings.SOLUTION: A durability test apparatus of a solar cell module includes: a table 3 having an upper surface serving as an installation surface; support means 4 attaching the solar cell module 1 to the installation surface 10; a holding frame body 5 disposed around the module and hermetically attached to the installation surface; sealing means 6 hermetically sealing a space between a surrounding area of the module and the holding frame body without restricting the displacement of the module; a pressure chamber 7 formed by the installation surface of the table, the holding frame body, the sealing means, and the module; and air supply and exhaust means 8 which pressurizes or decompresses the pressure chamber or repeatedly pressurizes or decompresses the pressure chamber. The durability test apparatus generates pressure differences on both front and rear surfaces of the module and provides wind pressure fluctuations that acts on the module in the actual use environment.

Description

本発明は、太陽電池モジュールの耐久性試験装置に係わり、更に詳しくは屋根置き型の設置工法で取付けた状態のソーラーパネルの風、雪、静荷重又は氷荷重に対する耐久性を試験するための装置に関するものである。   The present invention relates to a durability test device for a solar cell module, and more particularly, a device for testing the durability of a solar panel mounted with a roof-standing installation method against wind, snow, static load or ice load. It is about.

通常、屋根に太陽電池モジュールを設置する場合、太陽電池モジュールの温度上昇を抑えるためと施工性を高めるために、屋根と太陽電池の間に5〜10cm程度の間隔を設けて施工する。最近の屋根は、野地板の上面に防水ゴムシートを施設し、その上にカラーベスト等の屋根材を敷設した構造が一般的である。日本瓦の屋根は、古くは野地板の上面に下葺き材を引き、その上に土と瓦を密着させて固定する土葺き工法のみであったが、最近では耐震性を高めるために屋根の軽量化を図る目的で、土を使用せず、その代わり瓦桟木を野地板に打ち付け、瓦の裏に設けた引っ掛け爪を瓦桟木に引っ掛けるいわゆる引掛け桟瓦葺き工法が多く採用されている。   Usually, when installing a solar cell module in a roof, in order to suppress the temperature rise of a solar cell module and to improve workability, it installs with a space | interval of about 5-10 cm between a roof and a solar cell. A recent roof generally has a structure in which a waterproof rubber sheet is provided on the upper surface of a base plate, and a roof material such as a color vest is laid thereon. In the past, Japanese tile roofing was only a method of earthing, in which underlaying material was drawn on the top surface of the base plate, and soil and tiles were fixed in close contact with it. For the purpose of reducing the weight, a so-called “hanging-barrel roofing method” is often employed in which the soil is not used, but instead the tile pier is struck on the base plate and the hook claws provided on the back of the tile are hooked on the tile pier.

このような屋根に太陽電池モジュールを設置するには、屋根材を残したまま、所定間隔に長尺の縦桟若しくは固定金具を、屋根材を貫通させて野地板にネジ止めし、縦桟部材若しくは固定金具に横桟部材を一定間隔毎に横設し、太陽電池モジュールの周囲に設けた枠体を横桟部材に取付ける構造が一般的である。   In order to install a solar cell module on such a roof, a long vertical beam or a fixing bracket is passed through the roof material at a predetermined interval with the roof material remaining, and is screwed to the base plate, and the vertical beam member Alternatively, a structure in which a horizontal beam member is installed on the fixing bracket at regular intervals and a frame provided around the solar cell module is attached to the horizontal beam member is generally used.

例えば、特許文献1には、太陽電池モジュール本体と、この太陽電池モジュール本体の対向する2辺に設けられた第1枠体及び第2枠体とを備える太陽電池モジュールの取付け構造において、複数の太陽電池モジュールをそれぞれの第1枠体及び第2枠体が相互に隣接する様に屋根上に配列しており、前記第1枠体の上側部位には、太陽電池モジュールを屋根上に固定するための固定部を設け、前記第2枠体の下側部位には、太陽電池モジュールを屋根上に係止するための係止部を設け、相互に隣接する各太陽電池モジュールの前記第1枠体及び前記第2枠体間には、屋根上に固定された凸型部材を配置し、前記第1枠体を前記凸型部材の一側面に配置し、前記第2枠体を前記凸型部材の上面に配置して、前記第1枠体及び前記第2枠体間に段差を形成し、前記第1枠体の固定部及び前記第2枠体の係止部を共通の押え部材により前記凸型部材に固定もしくは係止した太陽電池モジュールの取付け構造が開示されている。ここで、太陽電池モジュール本体の左右両側に第3枠体及び第4枠体とを備え、複数の太陽電池モジュールをそれぞれの第3枠体及び第4枠体が相互に隣接する様に屋根上に配列し、前記第3枠体及び前記第4枠体の相互に対向する部位にそれぞれの溝を形成し、前記第3枠体の溝及び前記第4枠体の溝にシール部材を挿入している。   For example, Patent Document 1 discloses a solar cell module mounting structure including a solar cell module main body and a first frame body and a second frame body provided on two opposing sides of the solar cell module main body. The solar cell modules are arranged on the roof so that the first frame and the second frame are adjacent to each other, and the solar cell module is fixed on the roof in an upper portion of the first frame. And a locking portion for locking the solar cell module on the roof is provided at a lower portion of the second frame body, and the first frame of the solar cell modules adjacent to each other is provided. A convex member fixed on the roof is disposed between the body and the second frame, the first frame is disposed on one side of the convex member, and the second frame is disposed on the convex Arranged on the upper surface of the member, between the first frame and the second frame. A solar cell module mounting structure is disclosed in which a difference is formed, and the fixing portion of the first frame body and the locking portion of the second frame body are fixed or locked to the convex member by a common pressing member. . Here, a third frame and a fourth frame are provided on the left and right sides of the solar cell module main body, and the plurality of solar cell modules are arranged on the roof so that the third frame and the fourth frame are adjacent to each other. Are formed in respective portions of the third frame body and the fourth frame body facing each other, and a seal member is inserted into the groove of the third frame body and the groove of the fourth frame body. ing.

ところで、太陽電池モジュールの耐久性試験として国際規格のIEC 61646 機械的荷重試験がある。このIEC規格の試験方法は、次のように定められている。正面を上向き、下向きに取付けられるような構造で、モジュールを取付ける場合、固定点間の距離が最大となるような最悪の場合を用いる。荷重は、正面に2400Pa相当の荷重を均一に徐々に加え、この荷重を1時間維持する。剛性構造体からモジュールを取り外さずに、同じ荷重をモジュールの背面に加える。加圧ステップは、1時間荷重を3サイクル繰り返す。雪・氷の重い堆積に対するモジュールの耐久力を確認する場合は、この試験中にモジュールの正面に加える荷重を2400Paから5400Paに引き上げる。というものである。   Incidentally, there is an international standard IEC 61646 mechanical load test as a durability test of a solar cell module. This IEC standard test method is defined as follows. When mounting the module with a structure that can be mounted face up and face down, use the worst case that maximizes the distance between the fixed points. As the load, a load corresponding to 2400 Pa is gradually and gradually applied to the front, and this load is maintained for 1 hour. The same load is applied to the back of the module without removing the module from the rigid structure. The pressurizing step repeats the 1 hour load for 3 cycles. When checking the durability of the module against heavy accumulation of snow and ice, the load applied to the front of the module during this test is increased from 2400 Pa to 5400 Pa. That's it.

即ち、IEC規格の試験方法は、太陽電池モジュールを垂直にして剛性構造体に取付け、太陽電池モジュールの正面と背面から機械的に荷重を加えて行うので、実際の屋根に設置した太陽電池モジュールとは使用形態が異なり、使用環境を再現したとは言い難い。その上、屋根に太陽電池モジュールを取付けるための枠体や支持金具の耐久性を試験することもできない。   That is, the test method of the IEC standard is performed by attaching a solar cell module vertically to a rigid structure and applying a mechanical load from the front and back of the solar cell module. The usage pattern is different and it is difficult to say that the usage environment has been reproduced. In addition, it is impossible to test the durability of the frame body and the support fitting for attaching the solar cell module to the roof.

しかし、太陽電池モジュールの電気特性を試験するための試験方法や試験装置は各種提供されているものの、太陽電池モジュールの機械的強度や耐久性、太陽電池モジュールを枠体や支持金具を用いて屋根に取付けた実際の使用状態に近い環境での耐久性について試験するための試験方法や試験装置は未だ提供されていない。従来は、共通の耐久性試験方法や装置がなく、太陽電池モジュール製造会社や住宅施工会社等がそれぞれ独自に試験を行っていたので、客観性がなく、また他社製品を比較できないといった課題もあった。   However, although various test methods and test apparatuses for testing the electrical characteristics of the solar cell module are provided, the mechanical strength and durability of the solar cell module, and the solar cell module using a frame or a support metal A test method and a test apparatus for testing the durability in an environment close to the actual use state attached to the PC are not yet provided. Previously, there was no common durability test method or equipment, and solar cell module manufacturers and home construction companies conducted their own tests, so there was a problem that there was no objectivity and that other companies' products could not be compared. It was.

尚、特許文献2に記載されているように、一台の送風機を用いて複数の開閉弁を開閉操作して圧力室を加圧、減圧するための動風圧発生装置は公知である。   Note that, as described in Patent Document 2, a dynamic wind pressure generator for pressurizing and depressurizing a pressure chamber by opening and closing a plurality of on-off valves using a single blower is known.

特開2007−231514号公報JP 2007-231514 A 実公平07−027439号公報No. 07-027439

そこで、本発明が前述の状況に鑑み、解決しようとするところは、太陽電池モジュールの機械的強度や耐久性、太陽電池モジュールを枠体や支持金具を用いて屋根に取付けた実際の使用状態に近い環境での耐久性について自動的に試験することが可能な太陽電池モジュールの耐久性試験装置を提供する点にある。   Therefore, in view of the above-mentioned situation, the present invention intends to solve the mechanical strength and durability of the solar cell module, and the actual use state in which the solar cell module is attached to the roof using a frame body and a support metal fitting. The object of the present invention is to provide a solar cell module durability test apparatus capable of automatically testing durability in a near environment.

本発明は、前述の課題解決のために、上面が設置面となったテーブルと、該設置面に太陽電池モジュールを取付ける支持手段と、前記太陽電池モジュールの周囲に配置し、前記設置面に対して気密状態に取付けた保持枠体と、前記太陽電池モジュールの周囲と前記保持枠体との間を、該太陽電池モジュールの変位を拘束せずに気密状態に封じるシール手段と、前記テーブルの設置面と保持枠体とシール手段と太陽電池モジュールとで形成される圧力室と、該圧力室を加圧又は減圧し、あるいは繰り返して加圧と減圧するための給排気手段と、を備え、前記圧力室の圧力を調整して前記太陽電池モジュールの表裏両面に圧力差を発生させ、実環境で太陽電池モジュールに作用する風圧変動を付与することが可能な太陽電池モジュールの耐久性試験装置。を構成した(請求項1)。   In order to solve the above-mentioned problems, the present invention provides a table whose upper surface is an installation surface, a support means for attaching the solar cell module to the installation surface, and is arranged around the solar cell module, with respect to the installation surface. A holding frame attached in an airtight state, sealing means for sealing the space between the periphery of the solar cell module and the holding frame in an airtight state without restricting the displacement of the solar cell module, and installation of the table A pressure chamber formed by the surface, the holding frame, the sealing means, and the solar cell module, and an air supply / exhaust means for pressurizing or depressurizing the pressure chamber, or repeatedly pressurizing and depressurizing, The durability test of the solar cell module capable of adjusting the pressure in the pressure chamber to generate a pressure difference between the front and back surfaces of the solar cell module and imparting wind pressure fluctuation acting on the solar cell module in an actual environment. Apparatus. (Claim 1).

ここで、前記支持手段として、前記太陽電池モジュールを屋根等の被取付部に実際に取付ける枠体若しくは支持金具を用いてなることが好ましい(請求項2)。   Here, it is preferable to use a frame body or a support fitting that actually attaches the solar cell module to an attachment portion such as a roof as the support means.

前記テーブルは架台に対して傾斜角度を調節可能に設けてあり、前記設置面の上面で前記保持枠体の内側に、少なくとも野地板と屋根材とからなる模造屋根を構築し、該模造屋根の上に前記支持手段にて単又は複数の前記太陽電池モジュールを実施工してなることがより好ましい(請求項3)。   The table is provided so that the inclination angle can be adjusted with respect to the gantry, and an imitation roof made of at least a field plate and a roof material is constructed on the upper surface of the installation surface on the inner side of the holding frame, It is more preferable that a single or a plurality of the solar cell modules be implemented on the support means.

そして、大気開放側に、前記太陽電池モジュールの変形を計測する接触式又は非接触式の変位計を設けてなることが好ましい(請求項4)。   And it is preferable to provide the contact-type or non-contact-type displacement meter which measures the deformation | transformation of the said solar cell module in the air | atmosphere open | release side (Claim 4).

具体的には、前記給排気手段は、空気の吐出口と吸入口を備えた送風機と、前記吐出口に接続して前記圧力室に空気を強制供給して加圧するための給気管と、前記吸入口に接続して前記圧力室から空気を強制排気して減圧するための排気管とを有するとともに、前記給気管と排気管の途中に分岐接続されそれぞれ一端が大気開放された吐出管と吸入管とを有し、前記給気管と排気管の分岐部より圧力室側にそれぞれ開閉弁を設けるとともに、吐出管と吸入管にそれぞれ開閉弁を設け、少なくとも前記給気管と排気管に設ける開閉弁は、風量が調節可能な構造であり、各開閉弁を開閉調節することにより、前記圧力室を加圧、減圧するものである(請求項5)。   Specifically, the air supply / exhaust means includes a blower having an air discharge port and an intake port, an air supply pipe connected to the discharge port to forcibly supply and pressurize the pressure chamber, A discharge pipe connected to a suction port for forcibly exhausting air from the pressure chamber and depressurizing, and a discharge pipe having a branch connection midway between the supply pipe and the exhaust pipe, each open to the atmosphere, and a suction pipe An opening / closing valve provided on the pressure chamber side from the branch portion of the air supply pipe and the exhaust pipe, and an opening / closing valve provided on each of the discharge pipe and the suction pipe, and provided on at least the air supply pipe and the exhaust pipe. Is a structure capable of adjusting the air volume, and pressurizes and depressurizes the pressure chamber by adjusting the opening and closing of each on-off valve (Claim 5).

そして、前記給気管の開閉弁と吸入管の開閉弁を開き、前記吐出管の開閉弁を閉じ、前記排気管の開閉弁を調節して前記圧力室を正圧の所定圧力に設定してなるのである(請求項6)。   Then, the opening / closing valve of the supply pipe and the opening / closing valve of the suction pipe are opened, the opening / closing valve of the discharge pipe is closed, and the opening / closing valve of the exhaust pipe is adjusted to set the pressure chamber to a predetermined positive pressure. (Claim 6).

また、前記排気管の開閉弁と吐出管の開閉弁を開き、前記吸入管の開閉弁を閉じ、前記給気管の開閉弁を調節して前記圧力室を負圧の所定圧力に設定してなるのである(請求項7)。   Further, the on-off valve of the exhaust pipe and the on-off valve of the discharge pipe are opened, the on-off valve of the suction pipe is closed, and the on-off valve of the air supply pipe is adjusted to set the pressure chamber to a predetermined negative pressure. (Claim 7).

また、前記圧力室又は該圧力室に連続した配管系に大気開放した圧力調節管を接続するとともに、該圧力調節管に開閉弁を設け、該圧力調節管の開閉弁を繰り返し開閉操作して圧力微動を重畳してなることがより好ましい(請求項8)。   Further, a pressure control pipe opened to the atmosphere is connected to the pressure chamber or a piping system continuous to the pressure chamber, an open / close valve is provided in the pressure control pipe, and the open / close valve of the pressure control pipe is repeatedly opened and closed to perform pressure. More preferably, the fine movement is superimposed (claim 8).

また、前記給気管と排気管の開閉弁より圧力室側を合流させ、1本の給排気管として前記圧力室に接続してなることも好ましい(請求項9)。   Further, it is also preferable that the pressure chamber side is joined from the open / close valve of the air supply pipe and the exhaust pipe, and is connected to the pressure chamber as a single air supply / exhaust pipe.

また、前記給排気管をフレキシブルな圧力管で形成したことも好ましい(請求項10)。   It is also preferable that the air supply / exhaust pipe is formed of a flexible pressure pipe.

更に、前記給排気手段によってバッファタンクからなるアキュムレータの内部を所定の圧力に設定し、該アキュムレータに圧力管を介して単数又は複数の前記圧力室が接続され、各圧力室で太陽電池モジュールの耐久性試験を行うようにすることも好ましい(請求項11)。   Furthermore, the inside of the accumulator comprising the buffer tank is set to a predetermined pressure by the air supply / exhaust means, and one or a plurality of the pressure chambers are connected to the accumulator via a pressure pipe, and the durability of the solar cell module is established in each pressure chamber. It is also preferable to perform a sex test (claim 11).

そして、前記給排気管又は圧力管が長手方向の一部又は全部を断熱性の素材で作製され、前記給排気手段と配管系で発生する熱から前記圧力室を遮断してなることがより好ましい(請求項12)。   More preferably, the supply / exhaust pipe or the pressure pipe is made of a heat insulating material partly or entirely in the longitudinal direction, and the pressure chamber is cut off from heat generated in the supply / exhaust means and the piping system. (Claim 12).

以上にしてなる本発明の太陽電池モジュールの耐久性試験装置によれば、上面が設置面となったテーブルと、該設置面に太陽電池モジュールを取付ける支持手段と、前記太陽電池モジュールの周囲に配置し、前記設置面に対して気密状態に取付けた保持枠体と、前記太陽電池モジュールの周囲と前記保持枠体との間を、該太陽電池モジュールの変位を拘束せずに気密状態に封じるシール手段と、前記テーブルの設置面と保持枠体とシール手段と太陽電池モジュールとで形成される圧力室と、該圧力室を加圧又は減圧し、あるいは繰り返して加圧と減圧するための給排気手段と、を備え、前記圧力室の圧力を調整して前記太陽電池モジュールの表裏両面に圧力差を発生させたので、実環境で太陽電池モジュールに作用する風圧変動を再現して付与して耐久性を試験することができ、圧力室と大気圧の圧力差を大きくして、太陽電池モジュールを取付けたまま、破壊するまで試験することができる。ここで、実環境に発生するモジュールを屋根側へ押す方向の圧力は、前記圧力室の圧力を大気圧より低く、つまり圧力室の内部を減圧することにより再現し、またモジュールを屋根から引き離す方向の圧力は、前記圧力室の圧力を大気圧より高く、つまり圧力室の内部を加圧することにより再現できるのである。本発明の場合、大気開放空間は圧力が一定の圧力室とみなすことができる。そして、前記圧力室の圧力を急激に変化させることにより時々刻々変化する動圧や脈動を再現することができ、太陽電池モジュールに実環境で作用する風圧を与えて耐久性を試験することができる。本発明は、太陽電池モジュールを取り囲む気密チャンバーを使用しないので、装置の構造が簡単になり、太陽電池モジュールの装着への着脱が容易である。   According to the durability test apparatus for a solar cell module of the present invention configured as described above, a table whose upper surface is an installation surface, support means for attaching the solar cell module to the installation surface, and arranged around the solar cell module And a seal that seals the holding frame attached to the installation surface in an airtight state between the periphery of the solar cell module and the holding frame without restricting the displacement of the solar cell module. Means, a pressure chamber formed by the installation surface of the table, the holding frame, the sealing means, and the solar cell module, and air supply / exhaust for pressurizing or depressurizing the pressure chamber, or repeatedly pressurizing and depressurizing Means for adjusting the pressure in the pressure chamber to generate a pressure difference between the front and back surfaces of the solar cell module, so that wind pressure fluctuations acting on the solar cell module in an actual environment are reproduced and attached. To be able to test the durability, by increasing the pressure difference between the pressure chamber and the atmospheric pressure, while attaching the solar cell module can be tested to failure. Here, the pressure in the direction of pushing the module generated in the real environment to the roof side is reproduced by lowering the pressure in the pressure chamber below atmospheric pressure, that is, by reducing the pressure chamber interior, and pulling the module away from the roof. This pressure can be reproduced by making the pressure in the pressure chamber higher than atmospheric pressure, that is, by pressurizing the inside of the pressure chamber. In the present invention, the open air space can be regarded as a pressure chamber having a constant pressure. The dynamic pressure and pulsation that change from moment to moment can be reproduced by abruptly changing the pressure in the pressure chamber, and the durability can be tested by applying wind pressure acting in a real environment to the solar cell module. . Since the present invention does not use an airtight chamber that surrounds the solar cell module, the structure of the device is simplified and the solar cell module can be easily attached and detached.

また、前記支持手段として、前記太陽電池モジュールを屋根等の被取付部に実際に取付ける枠体若しくは支持金具を用いてなることにより、太陽電池モジュール自体の耐久性試験に加えて太陽電池モジュールを屋根に支持する支持手段とモジュールとの連結部の耐久性試験を行うことができる。   In addition to the durability test of the solar cell module itself, the solar cell module is mounted on the roof by using a frame or a support metal fitting that actually attaches the solar cell module to a mounted portion such as a roof as the support means. It is possible to perform a durability test on the connecting portion between the supporting means and the module that are supported by the module.

そして、前記テーブルが架台に対して傾斜角度を調節可能に設けてあるので、太陽電池モジュールを適当な角度に設定でき、実際に傾斜した屋根に取付けた状態を再現することができるとともに、耐久性試験中に太陽電池モジュールの上面を観察し易くなる。更に、前記設置面の上面で前記保持枠体の内側に、少なくとも野地板と屋根材とからなる模造屋根を構築し、該模造屋根の上に前記支持手段にて単又は複数の前記太陽電池モジュールを実施工することにより、実環境を完全に再現することができる。   And since the table is provided so that the inclination angle can be adjusted with respect to the gantry, the solar cell module can be set to an appropriate angle, and the state of being attached to the actually inclined roof can be reproduced, and also the durability It becomes easy to observe the upper surface of the solar cell module during the test. Further, an imitation roof composed of at least a base plate and a roof material is constructed on the upper surface of the installation surface inside the holding frame, and the single or plural solar cell modules are formed on the imitation roof by the support means. By carrying out the construction, the real environment can be completely reproduced.

大気開放側に、前記太陽電池モジュールの変形を計測する接触式又は非接触式の変位計を設けることにより、圧力室内の圧力変化に影響されずに太陽電池モジュールの変形を計測することができる。   By providing a contact-type or non-contact-type displacement meter for measuring the deformation of the solar cell module on the atmosphere opening side, the deformation of the solar cell module can be measured without being affected by the pressure change in the pressure chamber.

そして、前記給排気手段は、空気の吐出口と吸入口を備えた送風機と、前記吐出口に接続して前記圧力室に空気を強制供給して加圧するための給気管と、前記吸入口に接続して前記圧力室から空気を強制排気して減圧するための排気管とを有するとともに、前記給気管と排気管の途中に分岐接続されそれぞれ一端が大気開放された吐出管と吸入管とを有し、前記給気管と排気管の分岐部より圧力室側にそれぞれ開閉弁を設けるとともに、吐出管と吸入管にそれぞれ開閉弁を設け、少なくとも前記給気管と排気管に設ける開閉弁は、風量が調節可能な構造であるので、一台の送風機による空気の給気と排気を利用して、各開閉弁を開閉調節することにより、圧力室内の圧力を大気圧よりも高い正圧(加圧状態)と大気圧よりも低い負圧(減圧状態)に設定することができる。ここで、送風機は、ポンプに比べて風量が大きいので、圧力室内の圧力を素早く所定の圧力に設定することができる。   The air supply / exhaust means includes a blower having an air discharge port and an intake port, an air supply pipe connected to the discharge port for forcibly supplying and pressurizing air to the pressure chamber, and an intake port. An exhaust pipe for connecting and forcibly exhausting air from the pressure chamber to reduce the pressure, and a discharge pipe and an intake pipe that are branched and connected in the middle of the air supply pipe and the exhaust pipe, each of which is open to the atmosphere. An open / close valve is provided on the pressure chamber side from the branch portion of the supply pipe and the exhaust pipe, and an open / close valve is provided on each of the discharge pipe and the suction pipe. Therefore, the pressure in the pressure chamber is adjusted to a positive pressure (pressurization higher than atmospheric pressure) by opening and closing each on-off valve using air supply and exhaust air from a single blower. State) and negative pressure (reduced pressure) lower than atmospheric pressure It can be set to). Here, since the blower has a larger air volume than the pump, the pressure in the pressure chamber can be quickly set to a predetermined pressure.

ここで、前記給気管の開閉弁と吸入管の開閉弁を開き、前記吐出管の開閉弁を閉じ、前記排気管の開閉弁を調節して前記圧力室を正圧の所定圧力に設定することができ、また前記排気管の開閉弁と吐出管の開閉弁を開き、前記吸入管の開閉弁を閉じ、前記給気管の開閉弁を調節して前記圧力室を負圧の所定圧力に設定することができる。この場合、前記各開閉弁はとして、例えばバタフライバルブやボールバルブを用いることができる。   Here, the on-off valve of the supply pipe and the on-off valve of the suction pipe are opened, the on-off valve of the discharge pipe is closed, and the on-off valve of the exhaust pipe is adjusted to set the pressure chamber to a predetermined positive pressure. In addition, the on-off valve of the exhaust pipe and the on-off valve of the discharge pipe are opened, the on-off valve of the suction pipe is closed, and the on-off valve of the air supply pipe is adjusted to set the pressure chamber to a predetermined negative pressure. be able to. In this case, for example, a butterfly valve or a ball valve can be used as each on-off valve.

更に、前記圧力室又は該圧力室に連続した配管系に大気開放した圧力調節管を接続するとともに、該圧力調節管に開閉弁を設け、該圧力調節管の開閉弁を繰り返し開閉操作して圧力微動を重畳すれば、より自然環境に近い状態を再現することができ、例えば台風等の強風時の環境において太陽電池モジュールに動風圧が加わった状態と同等な環境を再現することができる。   Further, a pressure control pipe opened to the atmosphere is connected to the pressure chamber or a piping system continuous to the pressure chamber, and an open / close valve is provided in the pressure control pipe, and the open / close valve of the pressure control pipe is repeatedly opened and closed to perform pressure. If fine movement is superimposed, a state closer to the natural environment can be reproduced, and for example, an environment equivalent to a state in which dynamic wind pressure is applied to the solar cell module in an environment with a strong wind such as a typhoon can be reproduced.

また、前記給気管と排気管の開閉弁より圧力室側を合流させ、1本の給排気管として前記圧力室に接続すれば、配管が簡単になり、更に前記給排気管をフレキシブルな圧力管で形成すれば、圧力室が可動の場合であっても対応できる。   Further, if the pressure chamber side is joined from the open / close valve of the air supply pipe and the exhaust pipe and connected to the pressure chamber as a single air supply / exhaust pipe, the piping is simplified, and the supply / exhaust pipe is further flexible. If the pressure chamber is formed, it can be handled even when the pressure chamber is movable.

更に、前記給排気手段によってバッファタンクからなるアキュムレータの内部を所定の圧力に設定し、該アキュムレータに圧力管を介して単数又は複数の前記圧力室が接続され、各圧力室で太陽電池モジュールの耐久性試験を行うようにすれば、異なるタイプの太陽電池モジュールの耐久性試験を同時に行うことができ、また太陽電池モジュールの耐久性試験中に他の太陽電池モジュールを試験装置に装着する作業を平行して行うことができる。   Furthermore, the inside of the accumulator comprising the buffer tank is set to a predetermined pressure by the air supply / exhaust means, and one or a plurality of the pressure chambers are connected to the accumulator via a pressure pipe, and the durability of the solar cell module is established in each pressure chamber. By performing the durability test, it is possible to perform the durability test of different types of solar cell modules at the same time, and to install other solar cell modules on the test equipment in parallel during the durability test of the solar cell modules. Can be done.

更に、前記給排気管又は圧力管が長手方向の一部又は全部を断熱性の素材で作製され、前記給排気手段と配管系で発生する熱から前記圧力室を遮断すれば、長時間試験を行っても圧力室、つまり太陽電池モジュールの温度上昇が抑制され、自然に近い状態で耐久性試験を行うことができる。   Furthermore, if the supply / exhaust pipe or pressure pipe is made of a heat insulating material partly or entirely in the longitudinal direction and the pressure chamber is shielded from heat generated in the supply / exhaust means and the piping system, a long-term test can be performed. Even if it goes, the temperature rise of the pressure chamber, that is, the solar cell module is suppressed, and the durability test can be performed in a state close to nature.

本発明の太陽電池モジュールの耐久性試験装置の一部断面で示した正面図である。It is the front view shown in the partial cross section of the durability test apparatus of the solar cell module of this invention. 同じく耐久性試験装置の一部断面で示した側面図である。It is the side view shown with the partial cross section of the durability test apparatus similarly. 架台に対してテーブルを傾斜させた状態の耐久性試験装置の側面図である。It is a side view of the durability test apparatus of the state which inclined the table with respect to the mount frame. 耐久性試験装置のテーブル部分に設けたカバーを開放し、後方へ移動させて設置面を開放する状態を一部断面で示した側面図である。It is the side view which showed the state which open | released the cover provided in the table part of the durability test apparatus, was moved back, and opened the installation surface in the partial cross section. 太陽電池モジュールを支持手段にてテーブルの設置面に取付けた状態の省略平面図である。It is an abbreviated top view of the state which attached the solar cell module to the installation surface of the table by the support means. 保持枠体で太陽電池モジュールの周囲をパッキン状のシール部で気密状態に保持した状態の部分断面図である。It is a fragmentary sectional view of the state where the periphery of the solar cell module is held in an airtight state by a packing-like seal portion with the holding frame. 保持枠体で太陽電池モジュールの周囲をシート状のシール部で気密状態に保持した状態の部分断面図である。It is a fragmentary sectional view of the state where the periphery of the solar cell module is held in an airtight state by a sheet-like seal portion with the holding frame. 各開閉弁を操作して圧力室を正圧に加圧する場合の簡略説明図である。It is a simplified explanatory view in the case of operating each on-off valve to pressurize the pressure chamber to a positive pressure. 各開閉弁を操作して圧力室を負圧に減圧する場合の簡略説明図である。It is a simplified explanatory diagram in the case of operating each on-off valve to reduce the pressure chamber to a negative pressure. 給排気手段で圧力を調整するアキュムレータに複数の圧力室を接続した使用状態の簡略説明図である。It is a simplified explanatory view of a use state in which a plurality of pressure chambers are connected to an accumulator that adjusts the pressure by the air supply / exhaust means. アキュムレータの具体的構造を示す簡略説明図である。It is a simplified explanatory view showing a specific structure of the accumulator.

次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1〜図6は本発明の太陽電池モジュールの耐久性試験装置の実施形態を示し、図中符号1は太陽電池モジュール、2は架台、3はテーブル、4は支持手段、5は保持枠体、6はシール手段、7は圧力室、8は給排気手段、9はカバーをそれぞれ示している。   Next, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings. 1 to 6 show an embodiment of a durability test apparatus for a solar cell module of the present invention, in which 1 is a solar cell module, 2 is a stand, 3 is a table, 4 is support means, and 5 is a holding frame. , 6 are sealing means, 7 is a pressure chamber, 8 is an air supply / exhaust means, and 9 is a cover.

本実施形態の太陽電池モジュールの耐久性試験装置は、太陽電池モジュール1を、架台2に対して傾斜角度を調節可能に設けたテーブル3の設置面10に、支持手段4と保持枠体5とシール手段6とで気密状態で装着し、前記テーブル3の設置面10と保持枠体5とシール手段6と太陽電池モジュール1とで形成される圧力室7の内部を、架台2に内蔵した給排気手段8によって加圧又は減圧し、あるいは繰り返して加圧と減圧することにより、前記圧力室7の圧力を調整して前記太陽電池モジュール1の表裏両面に圧力差を発生させ、実環境で太陽電池モジュール1に作用する風圧変動を再現して付与するようになっている。前記テーブル3の上面に設置した太陽電池モジュール1を覆うように、該テーブル3の上面に透明なカバー9を開閉可能且つ前後方向へスライド移動可能に設けている。本発明では、大気開放空間は圧力が一定の圧力室とみなすことができ、前記圧力室7の内部の圧力を調整することにより、太陽電池モジュール1の表裏面に大気圧との差圧を発生させ、該太陽電池モジュール1を撓み変形させるのである。   The solar cell module durability test apparatus according to this embodiment includes a support unit 4, a holding frame body 5, and a solar cell module 1 on an installation surface 10 of a table 3 in which the inclination angle of the solar cell module 1 is adjustable with respect to the gantry 2. It is mounted in a hermetically sealed manner with the sealing means 6, and the interior of the pressure chamber 7 formed by the installation surface 10 of the table 3, the holding frame body 5, the sealing means 6 and the solar cell module 1 is built in the gantry 2. By pressurizing or depressurizing by the exhaust means 8, or repeatedly pressurizing and depressurizing, the pressure in the pressure chamber 7 is adjusted to generate a pressure difference between the front and back surfaces of the solar cell module 1, and the solar Wind pressure fluctuations acting on the battery module 1 are reproduced and applied. A transparent cover 9 is provided on the upper surface of the table 3 so as to be openable and closable and slidable in the front-rear direction so as to cover the solar cell module 1 installed on the upper surface of the table 3. In the present invention, the open air space can be regarded as a pressure chamber with a constant pressure, and by adjusting the pressure inside the pressure chamber 7, a differential pressure from the atmospheric pressure is generated on the front and back surfaces of the solar cell module 1. The solar cell module 1 is bent and deformed.

更に詳しくは、前記耐久性試験装置は、前記架台2の上端前縁部に、平面視四角形の前記テーブル3の前縁を水平な支軸を有する複数の蝶番11,…で連結するとともに、前記架台2の内部の固定部とテーブル3の後部下面とを昇降機12で連結して、該テーブル3の傾斜角度を調節可能とした構造となっている。前記テーブル3は、大きな圧力に耐えるためと、支持手段4や保持枠体5を気密状態で取付けることができるように、鋼製の本体板13の上面にゴムシート14を積層して前記設置面10としている。前記本体板13には適宜箇所に螺孔を形成し、該螺孔に対応するゴムシート14には円孔を形成している。この本体板13に形成する螺孔は、上下に貫通しないことが望ましいが、貫通しても螺孔にボルトを螺合しておけば気密性を保つことができる。   In more detail, the durability test apparatus connects the front edge of the table 3 having a square shape in plan view to the front edge of the upper end of the gantry 2 with a plurality of hinges 11,. The fixed portion inside the gantry 2 and the rear lower surface of the table 3 are connected by an elevator 12 so that the inclination angle of the table 3 can be adjusted. The table 3 is formed by laminating a rubber sheet 14 on the upper surface of a steel body plate 13 so as to withstand a large pressure and to attach the support means 4 and the holding frame 5 in an airtight state. 10 is set. The main body plate 13 is formed with screw holes at appropriate positions, and the rubber sheet 14 corresponding to the screw holes is formed with a circular hole. Although it is desirable that the screw holes formed in the main body plate 13 do not penetrate vertically, the airtightness can be maintained by screwing bolts into the screw holes even if they penetrate.

図1、図2及び図6に示すように、前記圧力室7は、前記テーブル3の設置面10に、該設置面10に対して間隔を開けて太陽電池モジュール1の周囲を支持手段4で取付け、それから前記太陽電池モジュール1の周囲に保持枠体5を配置するとともに、前記設置面10に対して気密状態に取付け、更に前記太陽電池モジュール1の周囲と前記保持枠体5との間を、該太陽電池モジュール1の変位を拘束せずにシール手段6で気密状態に封じて構成する。つまり、前記圧力室7は、前記テーブル3の設置面10と保持枠体5とシール手段6と太陽電池モジュール1とで形成されている。   As shown in FIGS. 1, 2, and 6, the pressure chamber 7 is provided on the installation surface 10 of the table 3 with support means 4 around the solar cell module 1 at a distance from the installation surface 10. Attach, and then arrange the holding frame 5 around the solar cell module 1 and attach it to the installation surface 10 in an airtight state. Further, between the periphery of the solar cell module 1 and the holding frame 5 The solar cell module 1 is configured to be sealed in an airtight state by the sealing means 6 without restricting the displacement of the solar cell module 1. That is, the pressure chamber 7 is formed by the installation surface 10 of the table 3, the holding frame 5, the sealing means 6, and the solar cell module 1.

ここで、前記支持手段4として、前記太陽電池モジュール1を屋根等の被取付部に実際に取付ける枠体若しくは支持金具を用い、支持手段4の耐久性試験も行うのである。ここで、図示しないが、前記設置面10の上面で前記保持枠体5の内側に、少なくとも野地板と屋根材とからなる模造屋根を構築し、該模造屋根の上に前記支持手段4にて単又は複数の前記太陽電池モジュール1を実施工することが好ましい。   Here, a durability test of the support means 4 is also performed by using a frame body or a support fitting for actually attaching the solar cell module 1 to an attached part such as a roof as the support means 4. Here, although not shown, an imitation roof composed of at least a field plate and a roof material is constructed on the upper surface of the installation surface 10 inside the holding frame body 5, and the support means 4 is provided on the imitation roof. It is preferable to implement one or a plurality of the solar cell modules 1.

また、前記シール手段6は、前記太陽電池モジュール1の変形を拘束しない可撓性を備えているのである。図6に示したシール手段6は、シリコンゴムのような軟弾性物6Aからなる帯状のものであり、前記太陽電池モジュール1を構成する周囲のブラケット15の外面と前記保持枠体5の内面との間に、気密性を保てる程度に圧縮状態で介在させるのである。通常は、前記シール手段6となる軟弾性物6Aを前記保持枠体5の内面に接着している。前記圧力室7を構成する部分にリーク箇所があれば、シリコンシーラーを充填する。   Further, the sealing means 6 is provided with flexibility that does not restrain deformation of the solar cell module 1. The sealing means 6 shown in FIG. 6 is a belt-shaped member made of a soft elastic material 6A such as silicon rubber, and the outer surface of the surrounding bracket 15 constituting the solar cell module 1 and the inner surface of the holding frame 5 In between, it is interposed in a compressed state to the extent that airtightness can be maintained. Usually, a soft elastic material 6 </ b> A serving as the sealing means 6 is bonded to the inner surface of the holding frame 5. If there is a leak portion in the portion constituting the pressure chamber 7, the silicon sealer is filled.

耐久性試験中の太陽電池モジュール1の変形を計測するために、大気開放側、つまり前記太陽電池モジュール1の上面側に、アーチ状にトラバース16を設け、該トラバース16に接触式又は非接触式の変位計16Aを設けている。変位計以外にも圧力計を始めとして、温度計等を適所に配置している。   In order to measure the deformation of the solar cell module 1 during the durability test, an arched traverse 16 is provided on the open side of the atmosphere, that is, on the upper surface side of the solar cell module 1, and the traverse 16 is contacted or non-contacted. Displacement meter 16A is provided. In addition to displacement gauges, pressure gauges, thermometers, etc. are placed in place.

更に詳しく、図1、図2及び図5に基づいて、太陽電池モジュール1を設置面10に取付ける構造を説明するが、太陽電池モジュール1とそれを屋根等に取付けるための支持手段4の構造は、製造メーカによって異なるため、図示した取付構造はあくまでも一例を示したものである。共通する点は、前記設置面10の上面で、太陽電池モジュール1の周囲に、前記保持枠体5を設置面10に対して気密状態に取付けて圧力室7の側壁を構成し、該保持枠体5と太陽電池モジュール1の周囲とをシール手段6で気密状態に封じることである。それ以外の構成は支持手段4も含めて自由である。   More specifically, the structure for attaching the solar cell module 1 to the installation surface 10 will be described based on FIGS. 1, 2 and 5. The structure of the solar cell module 1 and the support means 4 for attaching it to a roof or the like is as follows. The mounting structure shown is merely an example because it differs depending on the manufacturer. The common point is that the holding frame body 5 is attached to the installation surface 10 in an airtight state around the solar cell module 1 on the upper surface of the installation surface 10 to form a side wall of the pressure chamber 7. The body 5 and the periphery of the solar cell module 1 are sealed in an airtight state by the sealing means 6. Other configurations are free including the supporting means 4.

先ず、屋根の傾斜に沿って取付ける2本の縦ビーム17,17を、前記保持枠体5の内部に納まるように、前記設置面10の左右に間隔を開けて配置するとともに、前記縦ビーム17,17に交差するように2本の横ビーム18,18を前後に間隔を開けて配置し、交差部に貫通させたボルトで該設置面10に固定する。前記横ビーム18,18の左右両端部は前記保持枠体5を貫通して外部に表れ、この端部を利用して前記保持枠体5を取り囲むように平面視四角形の枠体からなるサポート部材19を取付け、該サポート部材19から内方へ突出させた複数の支持ボルト20,…の先端を前記保持枠体5の外面に当接して、前記圧力室7の内部の圧力が大気圧より高くなった際に、該保持枠体5が外側へ変形して気密性が破れるのを防止している。尚、前記圧力室7の内部の圧力が大気圧よりも低くなった場合、前記保持枠体5が内側へ変形しても前記シール手段6を圧迫するだけであり、気密性はより高くなるので、保持枠体5の内側への変形は許容する。   First, the two vertical beams 17 and 17 attached along the inclination of the roof are arranged at right and left sides of the installation surface 10 so as to be accommodated in the holding frame body 5, and the vertical beam 17. , 17, two transverse beams 18, 18 are arranged at intervals in the front-rear direction and fixed to the installation surface 10 with bolts penetrating through the intersecting portions. The left and right ends of the horizontal beams 18 and 18 pass through the holding frame 5 and appear to the outside, and support members made of a rectangular frame in plan view so as to surround the holding frame 5 using the ends. 19 is attached, and the tips of the plurality of support bolts 20,... Projecting inward from the support member 19 are brought into contact with the outer surface of the holding frame 5, so that the pressure inside the pressure chamber 7 is higher than atmospheric pressure. When this happens, the holding frame 5 is prevented from being deformed outwardly and breaking its airtightness. If the pressure inside the pressure chamber 7 is lower than the atmospheric pressure, even if the holding frame 5 is deformed inward, it only presses the sealing means 6 and the airtightness becomes higher. In addition, deformation inside the holding frame 5 is allowed.

図7は、前記シール手段6の他の実施形態である。この実施形態のシール手段6は、キャンパス地等の気密性を有する可撓性シート6Bで構成し、帯状の可撓性シート6Bの一側縁を前記太陽電池モジュール1のブラケット15の外面に接着するとともに、他側縁を前記支持手段4等の適宜な固定部にネジ止めし、該可撓性シート6Bの中間部を前記保持枠体5の内面に接触するようにしたものである。前記圧力室7の内部の圧力が大気圧より高い場合には、前記可撓性シート6Bの中間部は前記保持枠体5の内面に圧接して気密性を維持するが、前記圧力室7の内部の圧力が大気圧よりも低い場合には、前記可撓性シート6Bの中間部は内側に引き込まれるので、前記支持手段4と可撓性シート6Bの端縁及び支持手段4と設置面10との間を気密性を持たせる必要がある。   FIG. 7 shows another embodiment of the sealing means 6. The sealing means 6 of this embodiment is composed of an airtight flexible sheet 6B such as a campus site, and one side edge of the belt-like flexible sheet 6B is bonded to the outer surface of the bracket 15 of the solar cell module 1. In addition, the other side edge is screwed to an appropriate fixing part such as the support means 4 so that the intermediate part of the flexible sheet 6B is in contact with the inner surface of the holding frame body 5. When the pressure inside the pressure chamber 7 is higher than the atmospheric pressure, the intermediate portion of the flexible sheet 6B is pressed against the inner surface of the holding frame 5 to maintain airtightness. When the internal pressure is lower than the atmospheric pressure, the intermediate portion of the flexible sheet 6B is drawn inward, so that the support means 4 and the edge of the flexible sheet 6B and the support means 4 and the installation surface 10 are provided. It is necessary to provide airtightness.

次に、図1、図2、図8及び図9に基づき、前記給排気手段8を説明する。本発明の給排気手段8は、前記圧力室7の静圧力を、−10,000Pa〜+10,000Paの範囲に設定可能であり、それにより前記太陽電池モジュール1に最大1t/m2の静圧を発生させる能力を有している。先ず、前記給排気手段8には、電気モータで駆動する風量の大きな送風機22を有し、該送風機22には、空気の吐出口23と吸入口24を備えている。そして、前記送風機22の吐出口23に接続して前記圧力室7に空気を強制供給して加圧するための給気管25と、前記吸入口24に接続して前記圧力室7から空気を強制排気して減圧するための排気管26とを有するとともに、前記給気管25と排気管26の途中に分岐接続されそれぞれ一端が大気開放された吐出管27と吸入管28とを有する。更に、前記給気管25と排気管26の分岐部より圧力室7側にそれぞれ開閉弁A,Bを設けるとともに、吐出管27と吸入管28にそれぞれ開閉弁C,Dを設けている。ここで、少なくとも前記給気管25と排気管26に設ける開閉弁A,Bは、風量が調節可能な構造である。 Next, the air supply / exhaust means 8 will be described with reference to FIGS. 1, 2, 8 and 9. The air supply / exhaust means 8 of the present invention can set the static pressure of the pressure chamber 7 in the range of −10,000 Pa to +10,000 Pa, thereby allowing the solar cell module 1 to have a maximum static pressure of 1 t / m 2 . Has the ability to generate First, the air supply / exhaust means 8 has an air blower 22 with a large air volume driven by an electric motor, and the air blower 22 is provided with an air outlet 23 and an inlet 24. An air supply pipe 25 is connected to the discharge port 23 of the blower 22 to forcibly supply and pressurize the air to the pressure chamber 7, and is connected to the suction port 24 to forcibly exhaust air from the pressure chamber 7. And a discharge pipe 27 and a suction pipe 28 which are branched and connected in the middle of the air supply pipe 25 and the exhaust pipe 26 and one end of which is opened to the atmosphere. Further, on-off valves A and B are provided on the pressure chamber 7 side from the branch portions of the supply pipe 25 and the exhaust pipe 26, respectively, and on-off valves C and D are provided on the discharge pipe 27 and the suction pipe 28, respectively. Here, at least the on-off valves A and B provided in the air supply pipe 25 and the exhaust pipe 26 have a structure in which the air volume can be adjusted.

更に、前記圧力室7に大気開放した圧力調節管29を接続するとともに、該圧力調節管29に開閉弁Eを設けている。そして、本実施形態では、前記給気管25と排気管26の開閉弁A,Bより圧力室7側を合流させ、1本の給排気管30として前記圧力室7に接続している。本実施形態では、前記圧力室7を設けたテーブル3は、前記給排気手段8を内蔵した架台2に対して可動であるため、前記給排気管30の一部をフレキシブルな圧力管で形成している。尚、前記給気管25と排気管26の開閉弁A,Bより圧力室7側は、該圧力室7と常に連通しているので、実質的に圧力室7と同等であり、この部分を2本の圧力管にするか、1本の圧力管にするかは設計的事項である。本実施形態では、前記給排気管30に分岐させて前記圧力調節管29を接続している。   Further, a pressure adjusting pipe 29 opened to the atmosphere is connected to the pressure chamber 7, and an opening / closing valve E is provided in the pressure adjusting pipe 29. In this embodiment, the pressure chamber 7 side is merged from the on-off valves A and B of the air supply pipe 25 and the exhaust pipe 26 and connected to the pressure chamber 7 as a single air supply / exhaust pipe 30. In the present embodiment, since the table 3 provided with the pressure chamber 7 is movable with respect to the gantry 2 having the air supply / exhaust means 8 built therein, a part of the air supply / exhaust pipe 30 is formed by a flexible pressure pipe. ing. Note that the pressure chamber 7 side of the air supply pipe 25 and the exhaust pipe 26 from the on-off valves A and B is always in communication with the pressure chamber 7, so that this portion is substantially the same as the pressure chamber 7. Whether to use a single pressure pipe or a single pressure pipe is a matter of design. In the present embodiment, the pressure adjusting pipe 29 is connected to the supply / exhaust pipe 30 in a branched manner.

本実施形態では、前記開閉弁A〜Dと開閉弁Eとして、流量が調節可能で弁体が90度回転する毎に「開」と「閉」を繰り返すタイプのものであり、例えばバタフライバルブやボールバルブを用いる。本実施形態では、前記開閉弁A〜Dは、各弁体の回転軸に一端を連結した回転伝達用フレキシブルケーブルの他端を、架台2の側面に設けた回転ハンドル31A〜31Dに連結し、回転ハンドル31A〜31Dを回転させることにより、対応する開閉弁A〜Dを開閉操作するようになっている。前記開閉弁Eは、圧力微動(脈動)を重畳するものであるので、一定の周期で開閉を繰り返すことが望ましく、そのため弁体の回転軸をモータで回転させる。   In the present embodiment, the on-off valves A to D and the on-off valve E are of a type in which the flow rate can be adjusted and “open” and “closed” are repeated each time the valve body rotates 90 degrees. Use a ball valve. In the present embodiment, the on-off valves A to D connect the other end of the rotation transmission flexible cable having one end connected to the rotation shaft of each valve body to the rotation handles 31A to 31D provided on the side surface of the gantry 2, By rotating the rotary handles 31A to 31D, the corresponding on-off valves A to D are opened and closed. Since the on-off valve E superimposes fine pressure movement (pulsation), it is desirable to repeat opening and closing at a constant cycle, and therefore the rotating shaft of the valve body is rotated by a motor.

先ず、図8に基づいて、前記圧力室7の内部の圧力を大気圧よりも高い正圧に設定する操作を説明する。それには、図8(a)に示すように、前記給気管25の開閉弁Aと吸入管28の開閉弁Dを開き、前記吐出管27の開閉弁Cを閉じ、前記排気管26の開閉弁Bを調節すれば、前記圧力室7を正圧の所定圧力に設定することができる。実際には、開閉弁Dは開いたままではなく、開閉弁Bに連動させて開き具合を制御する。それから、前記圧力調節管29の開閉弁Eを繰り返し開閉操作すれば、図8(b)に示すように、圧力微動を重畳することができる。   First, an operation of setting the pressure inside the pressure chamber 7 to a positive pressure higher than the atmospheric pressure will be described with reference to FIG. As shown in FIG. 8 (a), the on-off valve A of the air supply pipe 25 and the on-off valve D of the suction pipe 28 are opened, the on-off valve C of the discharge pipe 27 is closed, and the on-off valve of the exhaust pipe 26 is opened. By adjusting B, the pressure chamber 7 can be set to a predetermined positive pressure. Actually, the opening / closing valve D is not kept open, but the opening degree is controlled in conjunction with the opening / closing valve B. Then, if the on-off valve E of the pressure adjusting pipe 29 is repeatedly opened and closed, the fine pressure can be superimposed as shown in FIG.

次に、図9に基づいて、前記圧力室7の内部の圧力を大気圧よりも低い負圧に設定する操作を説明する。それには、図9(a)に示すように、前記排気管26の開閉弁Bと吐出管27の開閉弁Cを開き、前記吸入管28の開閉弁Dを閉じ、前記給気管25の開閉弁Aを調節すれば、前記圧力室7を負圧の所定圧力に設定することができる。実際には、開閉弁Cは開いたままではなく、開閉弁Aに連動させて開き具合を制御する。それから、前記圧力調節管29の開閉弁Eを繰り返し開閉操作すれば、図9(b)に示すように、圧力微動を重畳することができる。   Next, an operation for setting the pressure inside the pressure chamber 7 to a negative pressure lower than the atmospheric pressure will be described with reference to FIG. For this purpose, as shown in FIG. 9A, the on-off valve B of the exhaust pipe 26 and the on-off valve C of the discharge pipe 27 are opened, the on-off valve D of the suction pipe 28 is closed, and the on-off valve of the air supply pipe 25 is opened. By adjusting A, the pressure chamber 7 can be set to a predetermined negative pressure. Actually, the opening / closing valve C is not kept open, but the opening degree is controlled in conjunction with the opening / closing valve A. Then, if the on-off valve E of the pressure adjusting pipe 29 is repeatedly opened and closed, the fine pressure can be superimposed as shown in FIG.

このように、本発明では、前記圧力室7の内部の圧力を変化させて、太陽電池モジュール1の表裏から荷重を加えた場合と同様な外力を付与することができ、しかも自然の風圧のように脈動も加えることができるので、より自然に近い状態で耐久性試験を行うことができる。   As described above, in the present invention, the internal pressure of the pressure chamber 7 can be changed to apply the same external force as when a load is applied from the front and back of the solar cell module 1, and the natural wind pressure can be applied. Since pulsation can also be added to the surface, a durability test can be performed in a more natural state.

また、前記テーブル3を傾斜させて実際の屋根に装着した場合を再現することができるのである。尚、本実施形態では、前記テーブル3の傾斜角度を調節する前記昇降機12は、手動で昇降操作するようになっている。前記昇降機12は、前記回転ハンドル31の近くに設けた操作ハンドル32にユニバーサルジョイント33を介して駆動部34に連結され、該操作ハンドルを回転して前記テーブル3の傾斜角度を調節する。   Moreover, the case where the table 3 is inclined and mounted on an actual roof can be reproduced. In the present embodiment, the elevator 12 that adjusts the tilt angle of the table 3 is manually lifted and lowered. The elevator 12 is connected to an operating handle 32 provided near the rotary handle 31 via a universal joint 33 and is connected to a drive unit 34, and adjusts the tilt angle of the table 3 by rotating the operating handle.

前記給排気手段8は、前記開閉弁A〜Dもサーボモータで駆動することにより、前記圧力室7の内部に設けた各種センサーの信号をフィードバックしてコンピュータ制御すれば、所望の風圧パターンで耐久性試験を自動的に行えるようにすることも可能である。   The air supply / exhaust means 8 is driven by a servo motor to drive the on-off valves A to D, and if the signals of various sensors provided in the pressure chamber 7 are fed back and controlled by a computer, it is durable with a desired wind pressure pattern. It is also possible to automatically perform sex testing.

本発明の太陽電池モジュールの耐久性試験装置は、図10に示すように、前記給排気手段8と前記圧力室7との間にバッファタンクからなるアキュムレータ35を配置し、圧力の予期しないビビリを防止するとともに、前記給排気管30又は圧力管36が長手方向の一部又は全部を断熱性の素材で作製され、前記給排気手段8と配管系で発生する熱から前記圧力室7を遮断してなることが好ましい。ここで、前記給排気手段8と配管系で発生する熱としては、前記各開閉弁での断熱圧縮による温度上昇と、送風機22の電動モータの発熱があり、これらが長時間の運転で蓄積するのである。   As shown in FIG. 10, the solar cell module durability test apparatus of the present invention has an accumulator 35 formed of a buffer tank between the air supply / exhaust means 8 and the pressure chamber 7, thereby preventing unexpected chattering of pressure. The supply / exhaust pipe 30 or the pressure pipe 36 is made of a heat insulating material partly or entirely in the longitudinal direction to prevent the pressure chamber 7 from heat generated in the supply / exhaust means 8 and the piping system. It is preferable that Here, as the heat generated in the air supply / exhaust means 8 and the piping system, there are a temperature rise due to adiabatic compression in each on-off valve and heat generation of the electric motor of the blower 22, and these are accumulated in a long-time operation. It is.

図10に示した耐久性試験システムは、前記給排気手段8によってバッファタンクからなるアキュムレータ35の内部を所定の圧力に設定するようにし、それから前記アキュムレータ35に圧力管36を介して複数の前記圧力室7,7を接続したものである。前記アキュムレータ35には前記圧力調節管29を接続し、それに備えた開閉弁Eを操作して圧力微動を加えるようにしている。そして、前記アキュムレータ35に接続されたそれぞれの圧力室7を、異なる太陽電池モジュール1で構成すれば、同時に複数の太陽電池モジュール1,…の耐久性試験を行うことができる。ここで、前記アキュムレータ35の容積が圧力室7の容積よりも十分に大きければ、一つの圧力室7の圧力変動が他の圧力室7に大して影響を与えないので、独立して耐久性試験を行うことができる。この場合、各圧力室7に直接前記圧力調節管29を接続することも可能であり、その場合には圧力微動が異なる条件で同時に複数の耐久性試験を行うこともできる。   In the durability test system shown in FIG. 10, the inside of the accumulator 35 consisting of a buffer tank is set to a predetermined pressure by the air supply / exhaust means 8, and then a plurality of the pressures are connected to the accumulator 35 via a pressure pipe 36. The chambers 7 and 7 are connected. The accumulator 35 is connected to the pressure adjusting pipe 29, and an on-off valve E provided for the accumulator 35 is operated so as to apply a fine pressure. And if each pressure chamber 7 connected to the said accumulator 35 is comprised by the different solar cell module 1, the durability test of several solar cell module 1, ... can be performed simultaneously. Here, if the volume of the accumulator 35 is sufficiently larger than the volume of the pressure chamber 7, the pressure fluctuation of one pressure chamber 7 does not significantly affect the other pressure chambers 7. It can be carried out. In this case, the pressure adjusting pipe 29 can be directly connected to each pressure chamber 7, and in this case, a plurality of durability tests can be performed simultaneously under different pressure fine movement conditions.

図11には、前記アキュムレータ35の具体的構造を示している。前記アキュムレータ35は、円筒状のタンク37の下部に前記給排気手段8の給気管25と排気管26を中心をずらせて接続するとともに、前記タンク37の内部で半分よりも上方に上下を区画する仕切板38を固定し、該仕切板38の中心には開口39が形成され、更に前記仕切板38より下方の空間に前記給気管25と排気管26による気流を遮るように金網からなる整流部材40を配置し、そして前記タンク37の上面中央部に前記圧力管36を接続している。更に、前記タンク37の仕切板38よりも上位に、開閉弁Eを備えた前記圧力調節管29を接続している。また、前記圧力管36の一部には断熱素材で作成した断熱管41を接続している。前記給排気手段8の送風機22、電動モータ、配管系及び前記アキュムレータ35では、流動する空気と管壁面との摩擦によって熱が発生し、長時間の耐久性試験の運転によって摩擦熱が蓄積し、温度が上昇する。前記圧力室7の温度上昇、即ち太陽電池モジュール1の温度上昇は耐久性試験に悪影響を及ぼすので、前記断熱管41によって圧力室7への熱伝導を遮断するのである。   FIG. 11 shows a specific structure of the accumulator 35. The accumulator 35 is connected to the lower part of the cylindrical tank 37 with the air supply pipe 25 and the exhaust pipe 26 of the air supply / exhaust means 8 being shifted from each other in the center, and the upper and lower sides are divided above the half inside the tank 37. A partition plate 38 is fixed, an opening 39 is formed at the center of the partition plate 38, and a rectifying member made of a wire mesh is provided in a space below the partition plate 38 so as to block the air flow from the air supply pipe 25 and the exhaust pipe 26. 40 and the pressure pipe 36 is connected to the center of the upper surface of the tank 37. Further, the pressure adjusting pipe 29 provided with the on-off valve E is connected to the upper side of the partition plate 38 of the tank 37. In addition, a heat insulating pipe 41 made of a heat insulating material is connected to a part of the pressure pipe 36. In the blower 22, the electric motor, the piping system, and the accumulator 35 of the air supply / exhaust means 8, heat is generated by the friction between the flowing air and the pipe wall surface, and the frictional heat is accumulated by a long-term durability test operation. The temperature rises. Since the temperature rise of the pressure chamber 7, that is, the temperature rise of the solar cell module 1 adversely affects the durability test, the heat conduction to the pressure chamber 7 is blocked by the heat insulating pipe 41.

更に、本発明の太陽電池モジュールの耐久性試験装置に、カーテンウォールや窓の環境試験装置で公知の風雨、日照、振動試験装置を組み合わせることも可能である。また、前記圧力室7の温度を制御することも好ましい。   Furthermore, the solar cell module durability test apparatus of the present invention can be combined with a wind / rain / sunlight / vibration test apparatus known as an environmental test apparatus for curtain walls and windows. It is also preferable to control the temperature of the pressure chamber 7.

1 太陽電池モジュール、 2 架台、
3 テーブル、 4 支持手段、
5 保持枠体、 6 シール手段、
6A 軟弾性物、 6B 可撓性シート、
7 圧力室、 8 給排気手段、
9 カバー、 10 設置面、
11 蝶番、 12 昇降機、
13 本体板、 14 ゴムシート、
15 ブラケット、 16 トラバース、
16A 変位計、 17 縦ビーム、
18 横ビーム、 19 サポート部材、
20 支持ボルト、 22 送風機、
23 吐出口、 24 吸入口、
25 給気管、 26 排気管、
27 吐出管、 28 吸入管、
29 圧力調節管、 30 給排気管、
31A〜31D 回転ハンドル、 32 操作ハンドル、
33 ユニバーサルジョイント、 34 駆動部、
35 アキュムレータ、 36 圧力管、
37 タンク、 38 仕切板、
39 開口、 40 整流部材、
41 断熱管、
A〜E 開閉弁。
1 solar cell module, 2 frame,
3 tables, 4 support means,
5 holding frame, 6 sealing means,
6A soft elastic material, 6B flexible sheet,
7 Pressure chamber, 8 Air supply / exhaust means,
9 Cover, 10 Installation surface,
11 hinges, 12 elevators,
13 body plate, 14 rubber sheet,
15 brackets, 16 traverses,
16A Displacement meter, 17 Longitudinal beam,
18 transverse beam, 19 support member,
20 support bolts, 22 blowers,
23 outlet, 24 inlet,
25 air supply pipe, 26 exhaust pipe,
27 discharge pipe, 28 suction pipe,
29 Pressure control pipe, 30 Supply / exhaust pipe,
31A to 31D Rotation handle, 32 Operation handle,
33 Universal joint, 34 Drive unit,
35 accumulator, 36 pressure tube,
37 tanks, 38 dividers,
39 opening, 40 rectifying member,
41 heat insulation pipe,
A to E Open / close valve.

Claims (12)

上面が設置面となったテーブルと、
該設置面に太陽電池モジュールを取付ける支持手段と、
前記太陽電池モジュールの周囲に配置し、前記設置面に対して気密状態に取付けた保持枠体と、
前記太陽電池モジュールの周囲と前記保持枠体との間を、該太陽電池モジュールの変位を拘束せずに気密状態に封じるシール手段と、
前記テーブルの設置面と保持枠体とシール手段と太陽電池モジュールとで形成される圧力室と、
該圧力室を加圧又は減圧し、あるいは繰り返して加圧と減圧するための給排気手段と、
を備え、前記圧力室の圧力を調整して前記太陽電池モジュールの表裏両面に圧力差を発生させ、実環境で太陽電池モジュールに作用する風圧変動を付与することが可能な太陽電池モジュールの耐久性試験装置。
A table whose upper surface is the installation surface;
Support means for attaching the solar cell module to the installation surface;
A holding frame disposed around the solar cell module and attached in an airtight manner to the installation surface;
Sealing means for sealing between the periphery of the solar cell module and the holding frame in an airtight state without restraining the displacement of the solar cell module;
A pressure chamber formed by an installation surface of the table, a holding frame, a sealing means, and a solar cell module;
Supply and exhaust means for pressurizing or depressurizing the pressure chamber, or repeatedly pressurizing and depressurizing;
Durability of the solar cell module capable of adjusting the pressure of the pressure chamber to generate a pressure difference between the front and back surfaces of the solar cell module and imparting wind pressure fluctuation acting on the solar cell module in an actual environment Test equipment.
前記支持手段として、前記太陽電池モジュールを屋根等の被取付部に実際に取付ける枠体若しくは支持金具を用いてなる請求項1記載の太陽電池モジュールの耐久性試験装置。   The durability test apparatus for a solar cell module according to claim 1, wherein the support means is a frame body or a support fitting that actually attaches the solar cell module to an attachment portion such as a roof. 前記テーブルは架台に対して傾斜角度を調節可能に設けてあり、前記設置面の上面で前記保持枠体の内側に、少なくとも野地板と屋根材とからなる模造屋根を構築し、該模造屋根の上に前記支持手段にて単又は複数の前記太陽電池モジュールを実施工してなる請求項1又は2記載の太陽電池モジュールの耐久性試験装置。   The table is provided so that the inclination angle can be adjusted with respect to the gantry, and an imitation roof made of at least a field plate and a roof material is constructed on the upper surface of the installation surface on the inner side of the holding frame, The durability test apparatus of the solar cell module of Claim 1 or 2 formed by implementing one or several said solar cell modules on the said support means on the top. 大気開放側に、前記太陽電池モジュールの変形を計測する接触式又は非接触式の変位計を設けてなる請求項1〜3何れか1項に記載の太陽電池モジュールの耐久性試験装置。   The durability test apparatus for a solar cell module according to any one of claims 1 to 3, wherein a contact-type or non-contact-type displacement meter for measuring deformation of the solar cell module is provided on the atmosphere opening side. 前記給排気手段は、空気の吐出口と吸入口を備えた送風機と、前記吐出口に接続して前記圧力室に空気を強制供給して加圧するための給気管と、前記吸入口に接続して前記圧力室から空気を強制排気して減圧するための排気管とを有するとともに、前記給気管と排気管の途中に分岐接続されそれぞれ一端が大気開放された吐出管と吸入管とを有し、前記給気管と排気管の分岐部より圧力室側にそれぞれ開閉弁を設けるとともに、吐出管と吸入管にそれぞれ開閉弁を設け、少なくとも前記給気管と排気管に設ける開閉弁は、風量が調節可能な構造であり、各開閉弁を開閉調節することにより、前記圧力室を加圧、減圧するものである請求項1〜4何れか1項に記載の太陽電池モジュールの耐久性試験装置。   The air supply / exhaust means is connected to a blower having an air discharge port and an intake port, an air supply pipe connected to the discharge port to forcibly supply and pressurize air to the pressure chamber, and connected to the intake port. An exhaust pipe for forcibly exhausting the air from the pressure chamber and reducing the pressure, and a discharge pipe and a suction pipe that are branched and connected to the supply pipe and the exhaust pipe and one end is opened to the atmosphere. In addition, an opening / closing valve is provided on the pressure chamber side from the branch portion of the supply pipe and the exhaust pipe, and an opening / closing valve is provided on each of the discharge pipe and the suction pipe. The durability test apparatus for a solar cell module according to any one of claims 1 to 4, wherein the solar cell module has a possible structure and pressurizes and depressurizes the pressure chamber by adjusting opening and closing of each on-off valve. 前記給気管の開閉弁と吸入管の開閉弁を開き、前記吐出管の開閉弁を閉じ、前記排気管の開閉弁を調節して前記圧力室を正圧の所定圧力に設定してなる請求項5記載の太陽電池モジュールの耐久性試験装置。   The open / close valve of the supply pipe and the open / close valve of the suction pipe are opened, the open / close valve of the discharge pipe is closed, and the open / close valve of the exhaust pipe is adjusted to set the pressure chamber to a predetermined positive pressure. 5. A durability test apparatus for a solar cell module according to 5. 前記排気管の開閉弁と吐出管の開閉弁を開き、前記吸入管の開閉弁を閉じ、前記給気管の開閉弁を調節して前記圧力室を負圧の所定圧力に設定してなる請求項5記載の太陽電池モジュールの耐久性試験装置。   The open / close valve of the exhaust pipe and the open / close valve of the discharge pipe are opened, the open / close valve of the suction pipe is closed, and the open / close valve of the air supply pipe is adjusted to set the pressure chamber to a predetermined negative pressure. 5. A durability test apparatus for a solar cell module according to 5. 前記圧力室又は該圧力室に連続した配管系に大気開放した圧力調節管を接続するとともに、該圧力調節管に開閉弁を設け、該圧力調節管の開閉弁を繰り返し開閉操作して圧力微動を重畳してなる請求項5〜7何れか1項に記載の太陽電池モジュールの耐久性試験装置。   A pressure control pipe opened to the atmosphere is connected to the pressure chamber or a piping system continuous to the pressure chamber, and an open / close valve is provided in the pressure control pipe, and the open / close valve of the pressure control pipe is repeatedly opened and closed to finely adjust the pressure. The durability test device for a solar cell module according to any one of claims 5 to 7, wherein the device is superposed. 前記給気管と排気管の開閉弁より圧力室側を合流させ、1本の給排気管として前記圧力室に接続してなる請求項5〜8何れか1項に記載の太陽電池モジュールの耐久性試験装置。   The durability of the solar cell module according to any one of claims 5 to 8, wherein the pressure chamber side is merged from the open / close valve of the air supply pipe and the exhaust pipe, and is connected to the pressure chamber as a single air supply / exhaust pipe. Test equipment. 前記給排気管をフレキシブルな圧力管で形成した請求項9記載の太陽電池モジュールの耐久性試験装置。   The durability test apparatus for a solar cell module according to claim 9, wherein the air supply / exhaust pipe is formed of a flexible pressure pipe. 前記給排気手段によってバッファタンクからなるアキュムレータの内部を所定の圧力に設定し、該アキュムレータに圧力管を介して単数又は複数の前記圧力室が接続され、各圧力室で太陽電池モジュールの耐久性試験を行う請求項1〜10何れか1項に記載の太陽電池モジュールの耐久性試験装置。   The inside of the accumulator comprising a buffer tank is set to a predetermined pressure by the air supply / exhaust means, and one or a plurality of the pressure chambers are connected to the accumulator via a pressure pipe, and a durability test of the solar cell module is performed in each pressure chamber The durability test apparatus of the solar cell module of any one of Claims 1-10 which performs. 前記給排気管又は圧力管が長手方向の一部又は全部を断熱性の素材で作製され、前記給排気手段と配管系で発生する熱から前記圧力室を遮断してなる請求項9〜11何れか1項に記載の太陽電池モジュールの耐久性試験装置。   12. The air supply / exhaust pipe or the pressure pipe is made of a heat insulating material partly or entirely in the longitudinal direction, and the pressure chamber is cut off from heat generated in the air supply / exhaust means and a piping system. The durability test apparatus for solar cell modules according to claim 1.
JP2010287129A 2010-12-24 2010-12-24 Durability testing device for solar cell module Active JP5381969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010287129A JP5381969B2 (en) 2010-12-24 2010-12-24 Durability testing device for solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010287129A JP5381969B2 (en) 2010-12-24 2010-12-24 Durability testing device for solar cell module

Publications (2)

Publication Number Publication Date
JP2012134414A true JP2012134414A (en) 2012-07-12
JP5381969B2 JP5381969B2 (en) 2014-01-08

Family

ID=46649645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010287129A Active JP5381969B2 (en) 2010-12-24 2010-12-24 Durability testing device for solar cell module

Country Status (1)

Country Link
JP (1) JP5381969B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161514A (en) * 2014-02-26 2015-09-07 エスペック株式会社 Crushing test apparatus, and crushing test method
CN106990003A (en) * 2017-05-04 2017-07-28 苏州正易鑫新能源科技有限公司 A kind of anti-folding durable test device of photovoltaic cell
CN115060587A (en) * 2022-07-27 2022-09-16 江苏沐阳智骅能源科技有限公司 Compressive strength test equipment for manufacturing polycrystalline silicon solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180727A (en) * 1991-12-27 1993-07-23 Nikken Sekkei Ltd Apparatus for dynamic wind pressure test for body to be tested
JPH0727439Y2 (en) * 1991-03-12 1995-06-21 本田工業株式会社 Dynamic wind pressure generator
JPH08233697A (en) * 1995-02-27 1996-09-13 Asahi Glass Co Ltd Dynamic wind pressure testing device for building side wall
JPH10132705A (en) * 1996-11-05 1998-05-22 Canon Inc Method and equipment for testing liquid crystal display panel
JP2002373687A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Noise silencing for fuel-cell-mounted equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727439Y2 (en) * 1991-03-12 1995-06-21 本田工業株式会社 Dynamic wind pressure generator
JPH05180727A (en) * 1991-12-27 1993-07-23 Nikken Sekkei Ltd Apparatus for dynamic wind pressure test for body to be tested
JPH08233697A (en) * 1995-02-27 1996-09-13 Asahi Glass Co Ltd Dynamic wind pressure testing device for building side wall
JPH10132705A (en) * 1996-11-05 1998-05-22 Canon Inc Method and equipment for testing liquid crystal display panel
JP2002373687A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Noise silencing for fuel-cell-mounted equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161514A (en) * 2014-02-26 2015-09-07 エスペック株式会社 Crushing test apparatus, and crushing test method
CN106990003A (en) * 2017-05-04 2017-07-28 苏州正易鑫新能源科技有限公司 A kind of anti-folding durable test device of photovoltaic cell
CN106990003B (en) * 2017-05-04 2023-09-26 普德光伏技术(苏州)有限公司 Photovoltaic cell piece anti-bending endurance testing device
CN115060587A (en) * 2022-07-27 2022-09-16 江苏沐阳智骅能源科技有限公司 Compressive strength test equipment for manufacturing polycrystalline silicon solar cell

Also Published As

Publication number Publication date
JP5381969B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5381969B2 (en) Durability testing device for solar cell module
CN101726449B (en) Non-destructive test equipment
KR101617250B1 (en) Confidential performance test device and installation mathods
KR101173240B1 (en) Apparatus for testing leakage performance of a door using pressure control system
CN104075854A (en) Shield segment joint anti-penetrability performance test device
KR20110115446A (en) Pressure control system for door leakage performance testing apparatus
CN109752144A (en) One kind being based on electrical equipment waterproof test device and method
CN108287049A (en) Spaceborne flywheel disturbs the experimental rig for power test of shaking under vacuum environment
JP5343915B2 (en) Durability testing device for solar cell module
CN105444965A (en) Vacuum pressure test device
CN113883353B (en) Six-degree-of-freedom pipeline vibration damper and vibration damping method
KR20120014605A (en) Mechanical load tester of photovoltaic module
CN212586208U (en) Environmental test system and protective structure
JP4200954B2 (en) Pneumatic panel
CN115638948B (en) Building envelope comprehensive performance detection system and detection method
CN111751399A (en) Novel monitoring device for high and low temperature tests of explosive products
JP2017002656A (en) Frame for fitting solar power generation panel, and solar power generation device
CN206540670U (en) Urea pipe tightness measuring device in automobile sensor
CN109870264A (en) The torque selecting device of shield duct piece installation bolt
CN217197071U (en) Corrosion inhibitor recycling application device for inner tube production line
CN212180198U (en) Building curtain wall air tightness detection device
CN216304714U (en) Underwater enclosing structure device for underwater assembly
CN104111472A (en) Dehumidification sealing device for mounting seismograph
CN220422244U (en) Cabinet for placing monitoring equipment
CN218098188U (en) Pipeline air tightness detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250