JP2012134107A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2012134107A
JP2012134107A JP2010287455A JP2010287455A JP2012134107A JP 2012134107 A JP2012134107 A JP 2012134107A JP 2010287455 A JP2010287455 A JP 2010287455A JP 2010287455 A JP2010287455 A JP 2010287455A JP 2012134107 A JP2012134107 A JP 2012134107A
Authority
JP
Japan
Prior art keywords
insulating plate
battery
electrode group
electrolyte
peripheral edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010287455A
Other languages
Japanese (ja)
Inventor
Dai Takasu
大 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
FDK Twicell Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Twicell Co Ltd filed Critical FDK Twicell Co Ltd
Priority to JP2010287455A priority Critical patent/JP2012134107A/en
Publication of JP2012134107A publication Critical patent/JP2012134107A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery capable of preventing residual electrolyte on an insulation plate when the electrolyte is injected.SOLUTION: A nickel-hydrogen secondary battery 2 comprises an outer can 10 whose upper end is opened; an electrode group 22, in which a positive electrode 24 and a negative electrode 26 are laminated via a separator 28, spirally wound and housed in the outer can 10; an upper insulation plate 32 arranged on a top of the electrode group 22 and having electric insulation; an electrolyte injected in the outer can 10 and impregnated in the electrode group 22; and a sealing body 14 fixed in the opening and sealing the opening by caulking an opening edge of the outer can 10. The upper insulation plate 32 has a liquid injection port 38 provided at its center and passing the electrolyte; an outer peripheral edge 42 having a size and a shape coincide with those of an inner peripheral edge of the outer can 10; and a funnel face 36 provided between the outer peripheral edge 42 and the liquid injection port 38 and indented toward a bottom wall 8 of the outer can 10.

Description

本発明は、外装缶内の電極群の上部に絶縁板を備えた電池に関する。   The present invention relates to a battery including an insulating plate on an upper part of an electrode group in an outer can.

一般的な電池は、負極端子を兼ねる外装缶内に、正極、負極及びセパレータからなる電極群を収容したのち、電解液を注入し、この後、外装缶の上端開口を封口体で封口することにより製造されている。この封口体は、外装缶の上端開口内に絶縁性のパッキンを介して配置され、これら封口体及びパッキンは外装缶の開口縁をかしめ加工することにより外装缶の開口縁に固定されている。なお、前記封口体には、正極端子、安全弁等が取り付けられている。   In a general battery, an electrode group consisting of a positive electrode, a negative electrode, and a separator is accommodated in an outer can that also serves as a negative electrode terminal, and then an electrolyte is injected, and then the upper end opening of the outer can is sealed with a sealing body. It is manufactured by. The sealing body is disposed in the upper end opening of the outer can via an insulating packing, and these sealing body and packing are fixed to the opening edge of the outer can by caulking the opening edge of the outer can. Note that a positive electrode terminal, a safety valve, and the like are attached to the sealing body.

このような電池においては、電極群における最外部の負極が外装缶の内壁と接し、これら負極及び外装缶(負極端子)は電気的に互いに接続されている。一方、電極群の正極は、リボン状の金属からなる正極リードを介して封口体の正極端子と電気的に接続されている。   In such a battery, the outermost negative electrode in the electrode group is in contact with the inner wall of the outer can, and the negative electrode and the outer can (negative electrode terminal) are electrically connected to each other. On the other hand, the positive electrode of the electrode group is electrically connected to the positive electrode terminal of the sealing body through a positive electrode lead made of a ribbon-like metal.

ところで、電池に振動や衝撃が加わった場合、電極群の正極もしくは負極の一部が、他極と接続された封口体、正極リード、外装缶等に接触し、内部短絡を起こす虞がある。そこで、電極群の上部及び下部に絶縁板をそれぞれ配置し、上記内部短絡を防止するようにしている。このような絶縁板は、本来の電気絶縁性を確保するため、電極群の上端及び下端を完全に覆うべく、その外周形状が外装缶の内周形状と合致しているのが一般的である(特許文献1参照)。   By the way, when a vibration or impact is applied to the battery, a part of the positive electrode or the negative electrode of the electrode group may come into contact with the sealing body, the positive electrode lead, the outer can, etc. connected to the other electrode, thereby causing an internal short circuit. Therefore, an insulating plate is disposed above and below the electrode group to prevent the internal short circuit. In order to ensure the original electrical insulation, such an insulating plate generally has an outer peripheral shape that matches the inner peripheral shape of the outer can so as to completely cover the upper and lower ends of the electrode group. (See Patent Document 1).

特開平06−243857号公報Japanese Patent Laid-Open No. 06-243857

ところで、電極群の上部に配置される絶縁板は、中央に電解液の注液口を有している。つまり、電池の製造に際し、外装缶の上端開口より注入された電解液は、絶縁板の注液口を介して外装缶内の電極群に至り、これにより、電極群は電解液中に浸される。   By the way, the insulating plate arranged on the upper part of the electrode group has an electrolyte injection port in the center. In other words, when the battery is manufactured, the electrolytic solution injected from the upper end opening of the outer can reaches the electrode group in the outer can through the injection hole of the insulating plate, so that the electrode group is immersed in the electrolytic solution. The

ところで、外装缶内に電解液を注入する際、電解液の一部が絶縁板の上面に付着し、この付着した電解液が特に、絶縁板の外周縁と外装缶の内周面との境界部分に残留する。   By the way, when injecting the electrolyte into the outer can, a part of the electrolyte adheres to the upper surface of the insulating plate, and this adhering electrolyte is particularly a boundary between the outer peripheral edge of the insulating plate and the inner peripheral surface of the outer can. It remains in the part.

このようにて残留した電解液は、振動などにともない外装缶の内壁を伝い、封口体のかしめ部に到達する。   The electrolytic solution remaining in this way travels along the inner wall of the outer can along with vibrations and reaches the caulked portion of the sealing body.

一般的に、電池のかしめ部は、外装缶の上端開口部のゆがみ等により、その内部に微小な隙間を残している可能性がある。このため、かしめ部の前記隙間から電解液が毛細管現象により電池の外部へ染み出す虞がある。
染み出した電解液は、電池周辺の他の部品を腐蝕させたり、電池内の電解液の減少に伴い電池の容量低下を招くといった不具合を生じることがある。
In general, there is a possibility that the caulking portion of the battery may leave a minute gap inside due to distortion of the upper end opening of the outer can. For this reason, there exists a possibility that electrolyte solution may ooze out of the battery by the capillary phenomenon from the said clearance gap of a crimping part.
The exuded electrolytic solution may cause problems such as corrosion of other parts around the battery and a decrease in the capacity of the battery as the electrolytic solution in the battery decreases.

本発明は、上記の事情に基づいてなされたものであり、その目的とするところは、電解液を注入した際に絶縁板上への電解液の残留を防止することができる電池を提供することにある。   The present invention has been made based on the above circumstances, and an object of the present invention is to provide a battery capable of preventing the electrolyte from remaining on the insulating plate when the electrolyte is injected. It is in.

上記目的を達成するために、本発明によれば、上端が開口した外装缶と、正極及び負極がセパレータを介して積層されてなり、前記外装缶に収容された電極群と、前記電極群の上部に配置された電気絶縁性を有する絶縁板と、前記外装缶内に注入され前記電極群に含浸された電解液と、前記外装缶の開口縁をかしめ加工して前記開口内に固定され、前記開口を封口する封口体とを備える電池であって、前記絶縁板は、その中央に設けられ前記電解液を通す注液口と、前記外装缶の内周縁と合致する大きさ及び形状を有した外周縁と、前記外周縁と前記注液口との間に設けられ、前記外装缶の底部側に向けて凹んだ漏斗面とを含むことを特徴とする電池が提供される。   In order to achieve the above object, according to the present invention, an outer can whose upper end is opened, a positive electrode and a negative electrode are laminated via a separator, an electrode group accommodated in the outer can, and the electrode group An insulating plate having electrical insulation disposed at the top, an electrolyte injected into the outer can and impregnated in the electrode group, and an opening edge of the outer can is caulked to be fixed in the opening, A battery including a sealing body that seals the opening, wherein the insulating plate has a size and a shape that match a liquid injection port that is provided in the center and allows the electrolytic solution to pass therethrough and an inner peripheral edge of the outer can. And a funnel surface that is provided between the outer peripheral edge and the liquid inlet and that is recessed toward the bottom side of the outer can.

好ましくは、前記絶縁板の外周縁は、その前記外装缶の底部側の面が斜めに削りとられ、前記外装缶の内周面に向けて尖っている構成とする。   Preferably, the outer peripheral edge of the insulating plate is configured such that a surface on the bottom side of the outer can is scraped obliquely and pointed toward an inner peripheral surface of the outer can.

また、前記外装缶は、横断面形状が円形をなしている構成とすることが好ましい。   Moreover, it is preferable that the said exterior can is set as the structure which has comprised the cross-sectional shape circularly.

また、前記外装缶は、横断面形状が角形をなしている構成とすることが好ましい。   Moreover, it is preferable that the said outer can is set as the structure which the cross-sectional shape has comprised the square shape.

本発明に係る電池においては、電極群の上部に配置された絶縁板が、中央の注液口に向かって外装缶の底部側へ傾斜している漏斗面を有するため、電解液が注液口に集まり電極群側へスムーズに導入される。このため、絶縁板上に電解液が残留することは防止され、電池のかしめ部からの電解液の染み出しを抑制することができる。   In the battery according to the present invention, the insulating plate disposed at the upper part of the electrode group has a funnel surface that is inclined toward the bottom side of the outer can toward the central liquid inlet, so that the electrolyte is injected into the liquid inlet. Are smoothly introduced to the electrode group side. For this reason, it is possible to prevent the electrolytic solution from remaining on the insulating plate, and to suppress the leakage of the electrolytic solution from the caulking portion of the battery.

また、本発明に係る電池は、絶縁板の外周縁が、外装缶の底部側の面が斜めに削りとられ前記外装缶の内周面に向けて尖っているので、絶縁板の外周縁と外装缶の内周面との接触は線接触となる。このため、絶縁板の外周縁と外装缶の内周面の境界に電解液が存在したとしても、この電解液は直ちに絶縁板の漏斗面に沿って注液口まで導かれ、絶縁板と外装缶との境界に電解液が残留することをより確実に防止することができる。   Further, in the battery according to the present invention, the outer peripheral edge of the insulating plate is sharpened toward the inner peripheral surface of the outer can because the bottom side surface of the outer can is sharply cut and sharpened toward the inner peripheral surface of the outer can. The contact with the inner peripheral surface of the outer can is a line contact. For this reason, even if the electrolyte exists at the boundary between the outer peripheral edge of the insulating plate and the inner peripheral surface of the outer can, the electrolyte is immediately guided to the liquid inlet along the funnel surface of the insulating plate. It can prevent more reliably that electrolyte solution remains in a boundary with a can.

更に、本発明においては、外装缶の横断面形状が円形の円筒形電池については、円形の絶縁板が用いられ、外装缶の横断面形状が角形の角形電池については、角形の絶縁板が用いられるため、電極群の上端部全体を覆うことができ十分な絶縁効果を保持しつつ絶縁板上への電解液の残留を防止することができる。   Furthermore, in the present invention, a circular insulating plate is used for a cylindrical battery having a circular outer cross-sectional shape, and a rectangular insulating plate is used for a rectangular battery having a rectangular outer cross-sectional shape. Therefore, the entire upper end portion of the electrode group can be covered, and the remaining of the electrolytic solution on the insulating plate can be prevented while maintaining a sufficient insulating effect.

本発明に係る円筒形のニッケル水素二次電池を部分的に破断して示した斜視図である。It is the perspective view which fractured | ruptured and showed the cylindrical nickel-hydrogen secondary battery which concerns on this invention partially. 図1のニッケル水素二次電池に組み込まれている上部絶縁板を示した平面図である。It is the top view which showed the upper insulating board integrated in the nickel hydride secondary battery of FIG. 図2中のIII−III線に沿う断面図である。It is sectional drawing which follows the III-III line in FIG. 上部絶縁板の外周縁と外装缶の内周面との境界部分における電解液の挙動を模式的に示した断面図である。It is sectional drawing which showed typically the behavior of the electrolyte solution in the boundary part of the outer periphery of an upper insulating board, and the internal peripheral surface of an exterior can. 本発明に係る角形のニッケル水素二次電池を部分的に破断して示した分解斜視図である。It is the disassembled perspective view which fractured | ruptured and showed the square nickel-hydrogen secondary battery which concerns on this invention partially. 図5のニッケル水素二次電池に組み込まれている上部絶縁板を示した平面図である。FIG. 6 is a plan view showing an upper insulating plate incorporated in the nickel hydride secondary battery of FIG. 5. 図6中のVII−VII線に沿う断面図である。It is sectional drawing which follows the VII-VII line in FIG.

以下、本発明に係る電池を、図面を参照して説明する。
(第1の実施形態)
本発明が適用される第1の実施形態の電池として、例えば、図1に示すAAサイズの円筒型ニッケル水素二次電池2(以下、電池2という)に本発明を適用した場合を例に説明する。
Hereinafter, a battery according to the present invention will be described with reference to the drawings.
(First embodiment)
As an example of the battery according to the first embodiment to which the present invention is applied, a case where the present invention is applied to an AA size cylindrical nickel-hydrogen secondary battery 2 (hereinafter referred to as battery 2) shown in FIG. To do.

図1に示すように、電池2は、上端が開口した有底円筒形状をなす外装缶10を備えている。外装缶10は導電性を有し、その底壁8は負極端子として機能する。外装缶10の開口内には、導電性を有する円板形状の封口体14及びこの封口体14を囲むリング形状の絶縁パッキン12が配置され、絶縁パッキン12及び封口体14は外装缶10の開口縁をかしめ加工することにより外装缶10の開口縁に固定されている。即ち、封口体14及び絶縁パッキン12は互いに協働して外装缶10の開口を封口している。   As shown in FIG. 1, the battery 2 includes an outer can 10 having a bottomed cylindrical shape with an upper end opened. The outer can 10 has conductivity, and its bottom wall 8 functions as a negative electrode terminal. In the opening of the outer can 10, a conductive disc-shaped sealing body 14 and a ring-shaped insulating packing 12 surrounding the sealing body 14 are arranged, and the insulating packing 12 and the sealing body 14 are opened in the outer can 10. The edge is fixed to the opening edge of the outer can 10 by caulking. That is, the sealing body 14 and the insulating packing 12 cooperate with each other to seal the opening of the outer can 10.

ここで、詳しくは、封口体14は中央にガス抜き孔16を有し、そして、封口体14の外面上にはガス抜き孔16を塞ぐゴム製の弁体18が配置されている。更に、封口体14の外面上には、弁体18を覆うようにしてフランジ付き円筒形状の正極端子20が固定され、正極端子20は弁体18を封口体14に向けて押圧している。従って、通常時、ガス抜き孔16は弁体18によって気密に閉じられている。一方、外装缶10内にガスが発生し、その内圧が高まれば、弁体18は内圧によって圧縮され、ガス抜き孔16を開き、この結果、外装缶10内からガス抜き孔16及び正極端子20を介してガスが放出される。つまり、ガス抜き孔16、弁体18及び正極端子20は電池のための安全弁を形成している。   Specifically, the sealing body 14 has a gas vent hole 16 at the center, and a rubber valve body 18 that closes the gas vent hole 16 is disposed on the outer surface of the seal body 14. Further, a flanged cylindrical positive terminal 20 is fixed on the outer surface of the sealing body 14 so as to cover the valve body 18, and the positive terminal 20 presses the valve body 18 toward the sealing body 14. Therefore, the gas vent hole 16 is normally hermetically closed by the valve body 18. On the other hand, when gas is generated in the outer can 10 and its internal pressure increases, the valve body 18 is compressed by the internal pressure and opens the gas vent hole 16. As a result, the gas vent hole 16 and the positive electrode terminal 20 are opened from the outer can 10. Gas is released via That is, the vent hole 16, the valve body 18, and the positive electrode terminal 20 form a safety valve for the battery.

外装缶10には、電極群22が収容されている。この電極群22は、それぞれ帯状の正極24、負極26及びセパレータ28からなり、これらは正極24と負極26の間にセパレータ28が挟み込まれた状態で渦巻状に巻回されている。即ち、セパレータ28を介して正極24及び負極26が互い重ね合わされている。電極群22の最外周は負極26の一部(最外周部)により形成され、外装缶10の内周壁と接触している。即ち、負極26と外装缶10とは互いに電気的に接続されている。   An electrode group 22 is accommodated in the outer can 10. Each of the electrode groups 22 includes a strip-like positive electrode 24, a negative electrode 26, and a separator 28, and these are wound in a spiral shape with the separator 28 sandwiched between the positive electrode 24 and the negative electrode 26. That is, the positive electrode 24 and the negative electrode 26 are overlapped with each other via the separator 28. The outermost periphery of the electrode group 22 is formed by a part of the negative electrode 26 (the outermost periphery) and is in contact with the inner peripheral wall of the outer can 10. That is, the negative electrode 26 and the outer can 10 are electrically connected to each other.

そして、外装缶10内には、電極群22の一端と封口体14との間に正極リード30が配置され、正極リード30の両端は正極24の内端及び封口体14にそれぞれ接続されている。従って、封口体14の正極端子20と正極24とは、正極リード30及び封口体14を介して互いに電気的に接続されている。   In the outer can 10, a positive electrode lead 30 is disposed between one end of the electrode group 22 and the sealing body 14, and both ends of the positive electrode lead 30 are connected to the inner end of the positive electrode 24 and the sealing body 14, respectively. . Accordingly, the positive electrode terminal 20 and the positive electrode 24 of the sealing body 14 are electrically connected to each other via the positive electrode lead 30 and the sealing body 14.

電極群22と封口体14との間には上部絶縁板32が配置されている。この上部絶縁板32は、図2から明らかなように、平面視形状が円形であり、その中央には、電解液を挿通可能な円形の注液口38が設けられている。そして、上部絶縁板32の所定位置には、正極リード30を通すスリット40が設けられている。上部絶縁板32の材料としては、電気絶縁性を有する合成樹脂、例えば、ポリプロピレン、ポリエチレン、ポリ塩化ビニル等を用いることができる。また、上部絶縁板32は、ある程度の強度を確保するため、その厚さを0.15mm〜0.3mmとすることが好ましい。   An upper insulating plate 32 is disposed between the electrode group 22 and the sealing body 14. As apparent from FIG. 2, the upper insulating plate 32 has a circular shape in plan view, and a circular liquid injection port 38 through which an electrolytic solution can be inserted is provided at the center. A slit 40 through which the positive electrode lead 30 passes is provided at a predetermined position of the upper insulating plate 32. As the material of the upper insulating plate 32, a synthetic resin having electrical insulation properties, for example, polypropylene, polyethylene, polyvinyl chloride, or the like can be used. The upper insulating plate 32 preferably has a thickness of 0.15 mm to 0.3 mm in order to ensure a certain level of strength.

より詳しくは、上部絶縁板32は、その外周縁42が円筒状の外装缶10の内周面と合致するように、外装缶10の内径寸法と略同じの外径寸法を有する。そして、図3から明らかなように、上部絶縁板32は、外周縁42から注液口38、つまり、外装缶10の底壁8側(図3中矢印A方向)に向けて突出する切頭円錐形状をなし、その底壁8とは反対側の面が注液口38に至る雌テーパの漏斗面36として形成されている。この漏斗面36は、電解液を外装缶10内に注入する際に、電解液を注液口38にスムーズに導くために設けられている。外装缶10の横断面に対する漏斗面36の傾斜角度αは、3度〜10度の範囲に設定することが好ましい。前記傾斜角度αが、3度より小さいと、漏斗面36上の電解液を注液口38へスムーズに導くことが困難となり、電解液が上部絶縁板32上に残留しやすくなる。よって、傾斜角度αは3度以上とすることが好ましく、より好ましくは、5度以上とする。一方、前記傾斜角度αが10度を超えると、外装缶10内において上部絶縁板32が占める空間の体積が増加し、これに伴い電極群22の体積が減少するので、所望の電池容量を確保することが困難となるからである。   More specifically, the upper insulating plate 32 has an outer diameter dimension substantially the same as the inner diameter dimension of the outer can 10 so that the outer peripheral edge 42 matches the inner peripheral surface of the cylindrical outer can 10. As is apparent from FIG. 3, the upper insulating plate 32 is a truncated portion protruding from the outer peripheral edge 42 toward the liquid injection port 38, that is, toward the bottom wall 8 side of the outer can 10 (in the direction of arrow A in FIG. 3). The surface opposite to the bottom wall 8 has a conical shape and is formed as a female tapered funnel surface 36 that reaches the liquid injection port 38. The funnel surface 36 is provided to smoothly guide the electrolytic solution to the liquid inlet 38 when the electrolytic solution is injected into the outer can 10. The inclination angle α of the funnel surface 36 with respect to the cross section of the outer can 10 is preferably set in the range of 3 degrees to 10 degrees. If the inclination angle α is smaller than 3 degrees, it is difficult to smoothly guide the electrolytic solution on the funnel surface 36 to the liquid inlet 38, and the electrolytic solution tends to remain on the upper insulating plate 32. Therefore, the inclination angle α is preferably 3 degrees or more, and more preferably 5 degrees or more. On the other hand, if the inclination angle α exceeds 10 degrees, the volume of the space occupied by the upper insulating plate 32 in the outer can 10 increases, and the volume of the electrode group 22 decreases accordingly, so that a desired battery capacity is secured. It is difficult to do.

更に、図3の円P内に示した拡大図から明らかなように、上部絶縁板32の外周縁42は、外装缶10の底壁8側の面、即ち、その下面44が斜めに削りとられることで、尖った形状をなしている。このような外周縁42によれば、図4に示すように、外周縁42と外装缶10の内周面6との接触は線接触となり、これら外周縁42と内周面6の境界に電解液Lが存在したとしても、この電解液Lは直ちに、上部絶縁板32の漏斗面36に沿って注液口38までスムーズに流下し、注液口38を通って電極群22に到達する。従って、電解液Lが前記境界に残留したままになることはなく、よって、かしめ部から外部に染み出すこともない。   Further, as apparent from the enlarged view shown in the circle P of FIG. 3, the outer peripheral edge 42 of the upper insulating plate 32 is formed by shaving the surface on the bottom wall 8 side of the outer can 10, that is, its lower surface 44. As a result, it has a sharp shape. According to such an outer peripheral edge 42, as shown in FIG. 4, the contact between the outer peripheral edge 42 and the inner peripheral surface 6 of the outer can 10 is a line contact, and the boundary between the outer peripheral edge 42 and the inner peripheral surface 6 is electrolyzed. Even if the liquid L is present, the electrolyte L immediately flows smoothly down to the liquid injection port 38 along the funnel surface 36 of the upper insulating plate 32 and reaches the electrode group 22 through the liquid injection port 38. Therefore, the electrolytic solution L does not remain at the boundary, and therefore does not ooze out from the caulking portion.

また、電池2においては、図1に示すように、電極群22と外装缶10の底壁8との間に、下部絶縁板34が配置されている。この下部絶縁板34は、平坦な円形状をなしている。下部絶縁板34の材料としては、上部絶縁板32と同様に、ポリプロピレン、ポリエチレン、ポリ塩化ビニル等を用いることができる。また、その厚さも0.15mm〜0.3mmのものを用いることが好ましい。   In the battery 2, as shown in FIG. 1, a lower insulating plate 34 is disposed between the electrode group 22 and the bottom wall 8 of the outer can 10. The lower insulating plate 34 has a flat circular shape. As the material of the lower insulating plate 34, as with the upper insulating plate 32, polypropylene, polyethylene, polyvinyl chloride, or the like can be used. Moreover, it is preferable to use the thickness of 0.15 mm to 0.3 mm.

更に、外装缶10内には、上部絶縁板32の注液口38を介して注入された所定量のアルカリ電解液(図示せず)が存在している。このアルカリ電解液は、正極24、負極26及びセパレータ28に含浸され、正極24と負極26との間での充放電反応を進行させる。なお、アルカリ電解液の種類としては、特に限定されないが、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、及びこれらのうち2つ以上を混合した水溶液等をあげることができ、またアルカリ電解液の濃度についても特には限定されず、例えば、8N(規定度)のものを用いることができる。   Furthermore, a predetermined amount of alkaline electrolyte (not shown) injected through the liquid injection port 38 of the upper insulating plate 32 exists in the outer can 10. The alkaline electrolyte is impregnated in the positive electrode 24, the negative electrode 26, and the separator 28, and the charge / discharge reaction between the positive electrode 24 and the negative electrode 26 proceeds. The type of the alkaline electrolyte is not particularly limited, and examples thereof include an aqueous sodium hydroxide solution, an aqueous lithium hydroxide solution, an aqueous potassium hydroxide solution, and an aqueous solution obtained by mixing two or more of these, Further, the concentration of the alkaline electrolyte is not particularly limited, and for example, a concentration of 8N (normality) can be used.

(第2の実施形態)
本発明が適用される第2の実施形態の電池として、例えば、図5に示す角形のニッケル水素二次電池4(以下、電池4という)に本発明を適用した場合を例に説明する。
なお、第2の実施形態の電池4は、第1の実施形態の電池2と同様に電極群50の上部に配置される上部絶縁板52に特徴を有するものであり、それ以外の構成部材は、一般的な構造を有する角形電池と同様である。よって、上部絶縁板52以外の構成部材についての説明は簡略化する。
(Second Embodiment)
As a battery according to the second embodiment to which the present invention is applied, for example, a case where the present invention is applied to a prismatic nickel-hydrogen secondary battery 4 (hereinafter referred to as battery 4) shown in FIG. 5 will be described as an example.
The battery 4 of the second embodiment is characterized by the upper insulating plate 52 disposed on the upper part of the electrode group 50 as in the battery 2 of the first embodiment. This is the same as the prismatic battery having a general structure. Therefore, the description of the constituent members other than the upper insulating plate 52 is simplified.

まず、図5に示すように、電池4は、上端が開口した有底の角筒形状をなす外装缶54を備えている。この外装缶54の中には、正極56と負極58の間にセパレータ60が挟み込まれた状態で折り畳まれ全体として角形に成形されている電極群50が収容されている。電極群50の最外部には負極58が位置付けられ、外装缶54の内周壁と接触しており、これにより、負極58と外装缶54とは互いに電気的に接続されている。一方、電極群54の正極56の一部と封口体62の正極端子64とは、正極リード64を介して互いに電気的に接続されている。そして、封口体62と電極群50との間には角形の上部絶縁板52が配置されている。   First, as shown in FIG. 5, the battery 4 includes an outer can 54 having a bottomed rectangular tube shape with an open upper end. The outer can 54 accommodates an electrode group 50 which is folded in a state where the separator 60 is sandwiched between the positive electrode 56 and the negative electrode 58 and is formed into a square shape as a whole. The negative electrode 58 is positioned at the outermost part of the electrode group 50 and is in contact with the inner peripheral wall of the outer can 54, whereby the negative electrode 58 and the outer can 54 are electrically connected to each other. On the other hand, a part of the positive electrode 56 of the electrode group 54 and the positive electrode terminal 64 of the sealing body 62 are electrically connected to each other via the positive electrode lead 64. A rectangular upper insulating plate 52 is disposed between the sealing body 62 and the electrode group 50.

外装缶54の開口内には、封口体62及びこの封口体62を囲む角形のリング形状の絶縁パッキン66が配置され、これら封口体62及び絶縁パッキン66は外装缶54の開口縁をかしめ加工することにより外装缶54の開口縁に固定される。
上部絶縁板52は、図6に示すように、平面視形状が角形をなしており、その中央には、電解液を挿通可能な円形の注液口70を含んでいる。そして、上部絶縁板52の所定位置には、正極リード64を通すスリット72が設けられている。上部絶縁板52の材料としては、第1の実施形態と同様な材料を用いることができ、また、上部絶縁板52の厚さも、第1の実施形態と同様な厚さとすることが好ましい。
In the opening of the outer can 54, a sealing body 62 and a rectangular ring-shaped insulating packing 66 surrounding the sealing body 62 are disposed. The sealing body 62 and the insulating packing 66 caulk the opening edge of the outer can 54. As a result, it is fixed to the opening edge of the outer can 54.
As shown in FIG. 6, the upper insulating plate 52 has a square shape in plan view, and includes a circular liquid inlet 70 through which an electrolytic solution can be inserted at the center. A slit 72 through which the positive electrode lead 64 passes is provided at a predetermined position of the upper insulating plate 52. As the material of the upper insulating plate 52, the same material as that of the first embodiment can be used, and the thickness of the upper insulating plate 52 is preferably set to the same thickness as that of the first embodiment.

上部絶縁板52は、角形の外装缶54の内側の横断面形状と合致する大きさを有し、その外周縁74もまた角形形状をなしている。つまり、上部絶縁板52の平面視形状の縦横寸法は、外装缶54の内側における横断面の縦横寸法と同じに設定している。そして、図7から明らかなように、上部絶縁板52は、外周縁74から注液口70、つまり、外装缶54の底壁側(図7中矢印B方向)に向けて突出する切頭角錐形状をなし、その底壁側とは反対側の面が注液口70に至る傾斜した角錐状の漏斗面68として形成されている。この漏斗面68は、電解液を外装缶54内に注入する際に、電解液を注液口70にスムーズに導くために設けられている。外装缶54の横断面に対する漏斗面68の傾斜角度αは、第1の実施形態の場合と同様な理由により5度〜10度の範囲に設定することが好ましい。ここで、漏斗面68は、図6から明らかなように、注液口70を挟んで配置された一対ずつの三角領域、即ち、鈍角の二等辺三角形の領域T1,T2と、これら領域T1,T2に挟まれた鋭角の二等辺三角形の領域T3,T4とからなっている。   The upper insulating plate 52 has a size that matches the cross-sectional shape inside the rectangular outer can 54, and its outer peripheral edge 74 also has a rectangular shape. That is, the vertical and horizontal dimensions of the upper insulating plate 52 in plan view are set to be the same as the vertical and horizontal dimensions of the cross section inside the outer can 54. As apparent from FIG. 7, the upper insulating plate 52 is a truncated pyramid that protrudes from the outer peripheral edge 74 toward the liquid injection port 70, that is, toward the bottom wall of the outer can 54 (in the direction of arrow B in FIG. 7). The surface opposite to the bottom wall side is formed as an inclined pyramid-shaped funnel surface 68 that reaches the liquid injection port 70. The funnel surface 68 is provided to smoothly guide the electrolyte to the liquid inlet 70 when the electrolyte is poured into the outer can 54. The inclination angle α of the funnel surface 68 with respect to the transverse cross section of the outer can 54 is preferably set in the range of 5 to 10 degrees for the same reason as in the first embodiment. Here, as is apparent from FIG. 6, the funnel surface 68 includes a pair of triangular regions arranged across the liquid injection port 70, that is, obtuse isosceles triangular regions T <b> 1 and T <b> 2, and these regions T <b> 1 and T <b> 1. It comprises sharp isosceles triangular regions T3 and T4 sandwiched between T2.

また、図7の円Q内に示した拡大図から明らかなように、上部絶縁板52の外周縁74もまた、第1の実施形態と同様に、その下面78が斜めに削りとられることで、尖った形状をなし、第1の実施形態と同様の機能を発揮する。
なお、上部絶縁板52の材料としては、第1の実施形態の上部絶縁板32と同様に、ポリプロピレン、ポリエチレン、ポリ塩化ビニル等を用いることができる。また、その厚さも0.15mm〜0.3mmのものを用いることが好ましい。
Further, as is clear from the enlarged view shown in the circle Q of FIG. 7, the outer peripheral edge 74 of the upper insulating plate 52 is also cut off obliquely as in the first embodiment. It has a pointed shape and exhibits the same function as the first embodiment.
As the material of the upper insulating plate 52, polypropylene, polyethylene, polyvinyl chloride, or the like can be used as in the upper insulating plate 32 of the first embodiment. Moreover, it is preferable to use the thickness of 0.15 mm to 0.3 mm.

1.AAサイズの円筒型ニッケル水素二次電池の組み立て
実施例1
一般的なニッケル水素二次電池に用いられる正極24及び負極26をこれらの間にポリプロピレン繊維製不織布から成るセパレータ28を挟んだ状態で渦巻状に巻回し、電極群22を作製した。
1. Example 1 Assembling of AA Size Cylindrical Nickel Metal Hydride Secondary Battery
A positive electrode 24 and a negative electrode 26 used for a general nickel metal hydride secondary battery were wound in a spiral shape with a separator 28 made of a nonwoven fabric made of polypropylene fiber sandwiched between them to produce an electrode group 22.

次いで、AAサイズ用の有底円筒形状の外装缶10を準備し、この外装缶10内にポリプロピレン製の円板形状の下部絶縁板34を挿入し、その上に上記した電極群22を収容した。更に、電極群22の上に、ポリプロピレン製の上部絶縁板32を載置した。   Next, a bottomed cylindrical outer can 10 for AA size was prepared, a disk-shaped lower insulating plate 34 made of polypropylene was inserted into the outer can 10, and the above-described electrode group 22 was accommodated thereon. . Further, an upper insulating plate 32 made of polypropylene was placed on the electrode group 22.

ここで、上部絶縁板32は、図2及び図3に示す形状をなしている。つまり、上部絶縁板32は、その外周縁42の平面視形状が、円筒状の外装缶10の内周面と合致する円形状をなしており、斯かる外周縁42の外径寸法は、外装缶10の内径寸法と同じに設定している。また、その中央部には、直径1.5mmの注液口38が設けられている。更に、上部絶縁板32は、外周縁42から注液口38に向かって漏斗面36を有している。そして、外装缶10の横断面に対する漏斗面36の傾斜角度αは10度に設定している。なお、下部絶縁板及び上部絶縁板32の厚さは、0.3mmとした。   Here, the upper insulating plate 32 has a shape shown in FIGS. That is, the upper insulating plate 32 has a circular shape in which the plan view of the outer peripheral edge 42 matches the inner peripheral surface of the cylindrical outer can 10, and the outer diameter of the outer peripheral edge 42 The inner diameter of the can 10 is set to be the same. In addition, a liquid injection port 38 having a diameter of 1.5 mm is provided at the center. Further, the upper insulating plate 32 has a funnel surface 36 from the outer peripheral edge 42 toward the liquid injection port 38. The inclination angle α of the funnel surface 36 with respect to the transverse cross section of the outer can 10 is set to 10 degrees. Note that the thickness of the lower insulating plate and the upper insulating plate 32 was 0.3 mm.

その後、水酸化ナトリウム水溶液から成るアルカリ電解液を2ml外装缶内に注液した。この後、封口体14等を外装缶10の開口に配置するとともに、外装缶10の開口縁をかしめ加工して開口を封口し、AAサイズの円筒型ニッケル水素二次電池を組み立てた。このニッケル水素二次電池を電池Aと称す。なお、この電池Aを10000個組み立てた。   Thereafter, an alkaline electrolyte composed of an aqueous sodium hydroxide solution was poured into a 2 ml outer can. Thereafter, the sealing body 14 and the like were disposed in the opening of the outer can 10 and the opening edge of the outer can 10 was crimped to seal the opening, thereby assembling an AA size cylindrical nickel-hydrogen secondary battery. This nickel metal hydride secondary battery is referred to as battery A. In addition, 10,000 batteries A were assembled.

実施例2
上部絶縁板における漏斗面の傾斜角度αを5度としたこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池B)を組み立てた。
Example 2
A nickel-metal hydride secondary battery (battery B) similar to battery A of Example 1 was assembled except that the inclination angle α of the funnel surface of the upper insulating plate was 5 degrees.

実施例3
上部絶縁板における漏斗面の傾斜角度αを4度としたこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池C)を組み立てた。
実施例4
上部絶縁板における漏斗面の傾斜角度αを3度としたこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池D)を組み立てた。
Example 3
A nickel metal hydride secondary battery (battery C) similar to the battery A of Example 1 was assembled except that the inclination angle α of the funnel surface in the upper insulating plate was 4 degrees.
Example 4
A nickel metal hydride secondary battery (battery D) similar to battery A of Example 1 was assembled except that the inclination angle α of the funnel surface of the upper insulating plate was 3 degrees.

比較例1
上部絶縁板における漏斗面の傾斜角度αを0度、即ち、平坦な上部絶縁板を使用したこと以外は実施例1の電池Aと同様なニッケル水素二次電池(電池E)を組み立てた。
Comparative Example 1
A nickel hydride secondary battery (battery E) similar to the battery A of Example 1 was assembled except that the inclination angle α of the funnel surface of the upper insulating plate was 0 degree, that is, a flat upper insulating plate was used.

2.ニッケル水素二次電池の液漏れの発生率
電池A〜電池Eに対し、6時間振動を加えた後、かしめ部を目視観察するとともに、リトマス試験紙でかしめ部を拭いた。そして、目視で液漏れが確認できた場合又はリトマス試験紙が赤色から青色に変化した場合には液漏れと判定し、液漏れした電池の個数を計数した。この液漏れした電池の個数を液漏れ個数とする。そして、(I)式で示される液漏れ発生率を求めた。
液漏れ発生率(%)=(液漏れ個数/組み立てた電池の総数)×100・・・(I)
得られた結果を表1に示した。
2. Rate of occurrence of liquid leakage of nickel metal hydride secondary battery After vibration was applied to batteries A to E for 6 hours, the caulking part was visually observed and the caulking part was wiped with litmus paper. And when the liquid leak was confirmed visually or when the litmus paper changed from red to blue, it was determined that the liquid leaked, and the number of batteries leaked was counted. The number of leaked batteries is defined as the number of leaked batteries. And the liquid leak occurrence rate shown by (I) type | formula was calculated | required.
Liquid leak occurrence rate (%) = (number of liquid leaks / total number of assembled batteries) × 100 (I)
The obtained results are shown in Table 1.

Figure 2012134107
Figure 2012134107

3.評価結果
表1から次のことが明らかである。
(1)外周縁から中央の注液口に向かって傾斜する漏斗面を有している上部絶縁板を備えた実施例1〜4(電池A〜D)と傾斜していない平坦な上部絶縁板を備えた比較例1(電池E)とを比較すると、実施例1〜4は、比較例1に比べて液漏れ発生率が低いことがわかる。これは、実施例1〜4の電池では、電解液の注入の際、漏斗面の作用により、電解液が速やかに注液口に導かれるので、上部絶縁板上には、電解液が残留し難く、しかも電極群に到達した電解液は、速やかに電極群内に浸透するので、上部絶縁板上に戻ることもほとんどない。このため、かしめ部から電解液が漏れることは有効に防止されているためと考えられる。
3. Evaluation results Table 1 clearly shows the following.
(1) Examples 1 to 4 (batteries A to D) having an upper insulating plate having a funnel surface inclined from the outer peripheral edge toward the central liquid injection port and a flat upper insulating plate not inclined When compared with Comparative Example 1 (battery E) having the above, it can be seen that Examples 1 to 4 have a lower rate of liquid leakage than Comparative Example 1. This is because in the batteries of Examples 1 to 4, when the electrolyte was injected, the electrolyte was quickly guided to the liquid injection port by the action of the funnel surface, so that the electrolyte remained on the upper insulating plate. It is difficult, and the electrolyte solution that has reached the electrode group quickly penetrates into the electrode group, and therefore hardly returns to the upper insulating plate. For this reason, it is considered that leakage of the electrolyte from the caulking portion is effectively prevented.

これに対し、平坦な上部絶縁板を備えた比較例1の電池Eでは、電解液の注液の際に、注液口に到達しない電解液が比較的多く存在し、上部絶縁板上に電解液の一部が残留してしまっているものと考えられる。このため、上部絶縁板上に残留した電解液がかしめ部の微小な隙間から外部に染み出してしまい、液漏れを起こした電池が発生したものと考えられる。
このことから、上部絶縁板に漏斗面を設けることは、電解液の漏出を防止する上で有効であることがわかる。
On the other hand, in the battery E of Comparative Example 1 including the flat upper insulating plate, there is a relatively large amount of electrolytic solution that does not reach the injection port when the electrolytic solution is injected, and the electrolytic solution is electrolyzed on the upper insulating plate. It is considered that a part of the liquid remains. For this reason, it is considered that the electrolyte remaining on the upper insulating plate oozes out from the minute gaps in the caulking portion to generate a battery that has leaked.
From this, it can be seen that providing the funnel surface on the upper insulating plate is effective in preventing leakage of the electrolyte.

(2)漏斗面を有する上部絶縁板を備えた実施例1〜4(電池A〜D)を互いに比較すると、漏斗面の傾斜角度が大きいほど液漏れ発生率が低いことがわかる。これは、傾斜角度が大きいほど電解液が注液口に速やかに導かれるので、上部絶縁板上における電解液の残留を極力抑えることができるためであると考えられる。 (2) When Examples 1-4 (battery AD) provided with the upper insulating board which has a funnel surface are compared mutually, it turns out that a liquid leak incidence rate is so low that the inclination-angle of a funnel surface is large. This is presumably because the larger the tilt angle, the quicker the electrolyte is introduced to the injection port, so that the remaining electrolyte on the upper insulating plate can be suppressed as much as possible.

(3)ここで、特に、実施例1及び実施例2(電池A及び電池B)は、液漏れ発生率が極めて低くなっている。即ち、漏斗面の傾斜角度が5度を超えると液漏れ発生率が0%となっている。このことから、上部絶縁板の漏斗面の傾斜角度は、5度以上とすることが好ましい。 (3) Here, in particular, Example 1 and Example 2 (Battery A and Battery B) have a very low liquid leakage occurrence rate. That is, when the inclination angle of the funnel surface exceeds 5 degrees, the liquid leakage occurrence rate is 0%. For this reason, the inclination angle of the funnel surface of the upper insulating plate is preferably 5 degrees or more.

2 ニッケル水素二次電池
10 外装缶
12 絶縁パッキン
14 封口体
20 正極端子
24 正極
26 負極
32 上部絶縁板
36 漏斗面
38 注液口
40 スリット
2 Nickel Metal Hydride Battery 10 Exterior Can 12 Insulating Packing 14 Sealing Body 20 Positive Terminal 24 Positive Electrode 26 Negative Electrode 32 Upper Insulating Plate 36 Funnel Surface 38 Injection Port 40 Slit

Claims (4)

上端が開口した外装缶と、
正極及び負極がセパレータを介して積層されてなり、前記外装缶に収容された電極群と、
前記電極群の上部に配置された電気絶縁性を有する絶縁板と、
前記外装缶内に注入され前記電極群に含浸された電解液と、
前記外装缶の開口縁をかしめ加工して前記開口内に固定され、前記開口を封口する封口体と
を備える電池であって、
前記絶縁板は、
その中央に設けられ前記電解液を通す注液口と、
前記外装缶の内周縁と合致する大きさ及び形状を有した外周縁と、
前記外周縁と前記注液口との間に設けられ、前記外装缶の底部側に向けて凹んだ漏斗面と
を含むことを特徴とする電池。
An outer can with an open top;
A positive electrode and a negative electrode are laminated via a separator, and an electrode group accommodated in the outer can,
An insulating plate having electrical insulation disposed on the electrode group;
An electrolyte solution injected into the outer can and impregnated in the electrode group;
A battery provided with a sealing body that is fixed in the opening by caulking the opening edge of the outer can, and sealing the opening;
The insulating plate is
A liquid injection port provided in the center for passing the electrolyte solution;
An outer peripheral edge having a size and shape matching the inner peripheral edge of the outer can;
A battery including a funnel surface provided between the outer peripheral edge and the liquid injection port and recessed toward the bottom side of the outer can.
前記絶縁板の外周縁は、
その前記外装缶の底部側の面が斜めに削りとられ、前記外装缶の内周面に向けて尖っていることを特徴とする請求項1に記載の電池。
The outer peripheral edge of the insulating plate is
2. The battery according to claim 1, wherein a surface on a bottom side of the outer can is sharply cut and sharpened toward an inner peripheral surface of the outer can.
前記外装缶は、横断面形状が円形をなしていることを特徴とする請求項1又は2に記載の電池。   The battery according to claim 1, wherein the outer can has a circular cross-sectional shape. 前記外装缶は、横断面形状が角形をなしていることを特徴とする請求項1又は2に記載の電池。   The battery according to claim 1, wherein the outer can has a square cross-sectional shape.
JP2010287455A 2010-12-24 2010-12-24 Battery Pending JP2012134107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010287455A JP2012134107A (en) 2010-12-24 2010-12-24 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010287455A JP2012134107A (en) 2010-12-24 2010-12-24 Battery

Publications (1)

Publication Number Publication Date
JP2012134107A true JP2012134107A (en) 2012-07-12

Family

ID=46649453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010287455A Pending JP2012134107A (en) 2010-12-24 2010-12-24 Battery

Country Status (1)

Country Link
JP (1) JP2012134107A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022337A (en) * 2012-07-23 2014-02-03 Sharp Corp Nonaqueous secondary battery and liquid injection method therefor
KR20140064474A (en) * 2012-11-20 2014-05-28 삼성에스디아이 주식회사 Rechargeable battery
JP2014523610A (en) * 2011-06-30 2014-09-11 エルジー ケム. エルティーディ. Secondary battery with an insulating member
CN113809485A (en) * 2021-09-28 2021-12-17 惠州市恒泰科技股份有限公司 Steel shell button cell and preparation method thereof
EP3926742A4 (en) * 2019-10-30 2022-06-15 Contemporary Amperex Technology Co., Limited Top cover assembly, secondary battery, battery module and device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523610A (en) * 2011-06-30 2014-09-11 エルジー ケム. エルティーディ. Secondary battery with an insulating member
JP2014022337A (en) * 2012-07-23 2014-02-03 Sharp Corp Nonaqueous secondary battery and liquid injection method therefor
KR20140064474A (en) * 2012-11-20 2014-05-28 삼성에스디아이 주식회사 Rechargeable battery
KR101683199B1 (en) 2012-11-20 2016-12-06 삼성에스디아이 주식회사 Rechargeable battery
EP3926742A4 (en) * 2019-10-30 2022-06-15 Contemporary Amperex Technology Co., Limited Top cover assembly, secondary battery, battery module and device
CN113809485A (en) * 2021-09-28 2021-12-17 惠州市恒泰科技股份有限公司 Steel shell button cell and preparation method thereof
CN113809485B (en) * 2021-09-28 2023-06-16 惠州市恒泰科技股份有限公司 Steel shell button cell and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101111073B1 (en) Cap Assembly for Secondary Battery
CN110581235B (en) Secondary battery
JP2012134107A (en) Battery
US7960053B2 (en) Sealed battery and manufacturing method therefor
JP2010507211A (en) End cap encapsulant for electrochemical cells
JP3475527B2 (en) Cylindrical air battery
JP2021533526A (en) Batteries with vents
CN115360373A (en) Battery with a battery cell
JP4357839B2 (en) End seal assembly for alkaline batteries
CN110050358B (en) Sealing gasket for cylindrical alkaline cell and cylindrical alkaline cell
JP2009231207A (en) Cylindrical battery
JP5630859B2 (en) Cylindrical storage battery
JP2009135008A (en) Gasket for alkaline cell, and alkaline cell
JP2019114472A (en) Collector lead and secondary battery including collector lead
JP2010505229A (en) End cap sealing assembly for electrochemical cells
JP2016149300A (en) Alkaline secondary battery
JP7187205B2 (en) cylindrical battery
JP2015220118A (en) Alkali secondary battery
JP5812421B2 (en) Cylindrical battery, lid structure
JP2015125869A (en) Alkaline secondary battery
JP2019117690A (en) Collector and secondary battery with the collector
JP7488008B2 (en) Alkaline storage battery
JP2010165506A (en) Flat battery
CN111727516B (en) Sealing body and battery
EP4283729A1 (en) Sealing body for cylindrical storage battery and cylindrical storage battery using same