JP2012131730A - Method of producing vinyl chloride monomer - Google Patents

Method of producing vinyl chloride monomer Download PDF

Info

Publication number
JP2012131730A
JP2012131730A JP2010284553A JP2010284553A JP2012131730A JP 2012131730 A JP2012131730 A JP 2012131730A JP 2010284553 A JP2010284553 A JP 2010284553A JP 2010284553 A JP2010284553 A JP 2010284553A JP 2012131730 A JP2012131730 A JP 2012131730A
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride monomer
reaction
dichloroethane
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010284553A
Other languages
Japanese (ja)
Inventor
Masanori Shimada
昌紀 島田
Takuma Goto
琢真 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010284553A priority Critical patent/JP2012131730A/en
Publication of JP2012131730A publication Critical patent/JP2012131730A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently produce a vinyl chloride monomer under lower temperature and lower pressure condition.SOLUTION: In a method of producing the vinyl chloride monomer, 1,2-dichloroethane is subjected to dehydrochlorination through catalytic reaction made by solid acid catalyst to produce the vinyl chloride monomer. For example, a solid catalyst, such as γ-alumina and silica alumina, that shows Lewis acidity is suitably used as the solid acid catalyst.

Description

本発明は、塩化ビニルモノマーの製造方法に関する。   The present invention relates to a method for producing a vinyl chloride monomer.

ポリ塩化ビニル樹脂は機械的強度、耐薬品性等に優れており、従来より配管材料、建築材料等の各種用途に用いられている。
このポリ塩化ビニル樹脂の製造原料である塩化ビニルモノマーは、従来、エチレンの直接塩素化法やオキシクロリネーション法によって合成された1,2−ジクロロエタンを熱分解することにより製造されてきた(特許文献1〜3参照)。
Polyvinyl chloride resin is excellent in mechanical strength, chemical resistance, and the like, and has been conventionally used for various applications such as piping materials and building materials.
The vinyl chloride monomer, which is a raw material for producing this polyvinyl chloride resin, has been conventionally produced by thermally decomposing 1,2-dichloroethane synthesized by a direct chlorination method or oxychlorination method of ethylene (patent document). 1-3).

特開平5−262682号公報JP-A-5-262682 特開平6−80593号公報JP-A-6-80593 WO2006/098466WO2006 / 098466

しかし、これらの熱分解反応では、充分な反応効率を得るためには500℃、15気圧という高温高圧条件が必要であり、そのため高性能な設備が必要となるとともに、煩雑な条件の制御が必要とされるなどの課題があった。   However, these thermal decomposition reactions require high-temperature and high-pressure conditions of 500 ° C. and 15 atmospheres in order to obtain sufficient reaction efficiency, which requires high-performance equipment and complicated control of conditions. There were problems such as being said.

本発明は上記課題に鑑みなされたものであり、より低温及び/又は低圧力において塩化ビニルモノマーを効率的に製造することができる塩化ビニルモノマーの製造方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the manufacturing method of the vinyl chloride monomer which can manufacture a vinyl chloride monomer efficiently at lower temperature and / or low pressure.

本発明の塩化ビニルモノマーの製造方法は、
1,2−ジクロロエタンを、固体酸触媒による触媒反応により脱塩酸して製造することを特徴とする。
このような塩化ビニルモノマーの製造方法では、
ルイス酸性を示す前記固体酸触媒を用いるか、
前記ルイス酸性を示す固体酸触媒をγ−アルミナとするか、
前記ルイス酸性を示す固体酸触媒をシリカアルミナとするか、
前記シリカアルミナのシリカ/アルミナ比が0.5〜20であるか、
反応温度を300〜400℃とすることのいずれか1以上を備えていることが好ましい。
The method for producing the vinyl chloride monomer of the present invention comprises:
It is characterized by producing 1,2-dichloroethane by dehydrochlorination by a catalytic reaction with a solid acid catalyst.
In such a method for producing a vinyl chloride monomer,
Using the solid acid catalyst exhibiting Lewis acidity,
The solid acid catalyst showing Lewis acidity is γ-alumina,
The solid acid catalyst exhibiting Lewis acidity is silica alumina,
Whether the silica alumina has a silica / alumina ratio of 0.5-20,
It is preferable to include any one or more of setting the reaction temperature to 300 to 400 ° C.

本発明によれば、より低温度/低圧力おいて塩化ビニルモノマーを効率的に製造することができる塩化ビニルモノマーの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a vinyl chloride monomer which can manufacture a vinyl chloride monomer efficiently in lower temperature / low pressure can be provided.

本発明の塩化ビニルモノマーの製造方法では、1,2−ジクロロエタンを固体酸触媒による触媒反応により脱塩酸することにより製造することができる。
1,2−ジクロロエタン自体は、従来公知の任意の方法により製造することができる。例えば、エチレンの直接塩素化又はオキシ塩素化等により得ることができる。
使用する1,2−ジクロロエタンの純度は特に限定されず、公知の方法によって製造したものを、精製することなくそのまま用いてもよい。また、効率的に塩化ビニルモノマーを製造するという観点から、好ましくは80〜100wt%、さらに好ましくは90〜100wt%のものが挙げられる。
In the method for producing a vinyl chloride monomer of the present invention, 1,2-dichloroethane can be produced by dehydrochlorination by a catalytic reaction with a solid acid catalyst.
1,2-dichloroethane itself can be produced by any conventionally known method. For example, it can be obtained by direct chlorination or oxychlorination of ethylene.
The purity of 1,2-dichloroethane used is not particularly limited, and those produced by known methods may be used as they are without purification. Moreover, from a viewpoint of manufacturing a vinyl chloride monomer efficiently, Preferably it is 80-100 wt%, More preferably, a 90-100 wt% thing is mentioned.

1,2−ジクロロエタンは、反応時においては、気体又は液体のいずれでもよいが、1,2−ジクロロエタンの脱塩酸反応は、通常、気相で行われることから、気体として用いることが適している。例えば、1,2−ジクロロエタンを気化器により気化させて用いることが好ましい。なお、1,2−ジクロロエタンは、希釈せずに用いてもよいし、不活性ガス等により希釈して用いてもよい。希釈に用いる不活性ガスとしては、特に限定されないが、例えば、窒素、ヘリウム、アルゴン等が挙げられる。これら不活性ガスは単独もしくは、2種以上を混合して用いることができる。希釈の程度は、特に限定されない。   1,2-Dichloroethane may be either a gas or a liquid during the reaction, but the dehydrochlorination reaction of 1,2-dichloroethane is usually carried out in the gas phase, so it is suitable for use as a gas. . For example, it is preferable to use 1,2-dichloroethane vaporized by a vaporizer. In addition, 1,2-dichloroethane may be used without being diluted, or may be used after being diluted with an inert gas or the like. Although it does not specifically limit as an inert gas used for dilution, For example, nitrogen, helium, argon etc. are mentioned. These inert gases can be used alone or in admixture of two or more. The degree of dilution is not particularly limited.

固体酸触媒としては、特に限定されるものではなく、当該分野で公知のいずれを使用してもよい。例えば、ハロゲン化物、硫酸塩、リン酸塩、酸化物、硫化物などの金属塩;イソポリ酸、ヘテロポリ酸、複合酸化物、固定化スルホン酸、ゼオライト(amicite、アンモニウム白榴石、方沸石、バレル沸石、bellbergite、bikitaite、boggsite、brewsterite、brewsterite-Sr、brewsterite-Ba、菱沸石、灰菱沸石、ソーダ菱沸石、カリ菱沸石、chiavennite、斜プチロル沸石(-Na、-K、-Ca等)、コウルス沸石、ダキアルディ沸石、灰ダキアルディ沸石、ソーダダキアルディ沸石、エディントン沸石、剥沸石、エリオン沸石、ソーダエリオン沸石、カリエリオン沸石、灰エリオン沸石、faujasite(-Na、-Ca、-Mg等)、フェリエライト(-Mg、-K、-Na等)、ガロン沸石、gaultite、ギスモンド沸石、グメリン沸石(-Na、-Ca、-K等)、ゴビンス沸石、ゴナルド沸石、goosecreekite、gottardiite、重土十字沸石、輝沸石、灰輝沸石、ストロンチウム輝沸石、ソーダ輝沸石、カリ輝沸石、hsianghualite、kalborsite、濁沸石、白榴石、レビ沸石(−Ca、−Na等)、lovdarite、maricopaite、mazzite、merlinoite、中沸石、montesommaite、モルデナイト、mutinaite、ソーダ沸石、offretite、pahasapaite、partheite、paulingite(-K、-Ca等)、十字沸石(-Na、-K、-Ca等)、ポルクス石、roggianite、スコレス沸石、ステラ沸石、束沸石(-Ca、-Na等)、トムソン沸石、tschernichite、tschortnerite、ワイラケ沸石、weinebeneite、willhendersonite、湯河原沸石等)等及びこれらゼオライトの陽イオン交換部位に水素イオンが吸着したものを用いることができる。これらは単独で又は2種以上を組み合わせて用いてもよい。   The solid acid catalyst is not particularly limited, and any known in the art may be used. For example, metal salts such as halides, sulfates, phosphates, oxides, sulfides; isopolyacids, heteropolyacids, complex oxides, immobilized sulfonic acids, zeolites (amicite, ammonium leucite, fluorite, barrels Zeolite, bellbergite, bikitaite, boggsite, brewsterite, brewsterite-Sr, brewsterite-Ba, chabazite, chalybazite, soda chabazite, potash, chaavennite, clinoptilolite (-Na, -K, -Ca, etc.), Courusite, Dakiardiite, Ashdakiardiite, Sodadakiardiite, Eddingtonite, Exfoliated stone, Elionite, Soda Elionite, Cullionionite, Ash Elionite, faujasite (-Na, -Ca, -Mg, etc.), Ferrierite (-Mg, -K, -Na, etc.), Gallonite, gaultite, Gismondite, Gumelinite (-Na, -Ca, -K, etc.), Gobbinsite, Gonaldite, goosecreekite, gottardiite, heavy soil Agarite, pyroxene, perovite, strontium pyroxene, soda pyroxene, potassium pyroxenite, hsianghualite, kalborsite, aragonite, white nepheline, levite (-Ca, -Na, etc.), lovdarite, maricopaite, mazzite, merlinoite, mesolite, montesommaite, mordenite, mutinaite, soda zeolite, offretite, pahasapaite, partheite, paulingite (-K, -Ca etc.), zeolitic (-Na, -K, -Ca etc.), polxite, roggianite, scholes Zeolite, stellar zeolite, bundle zeolite (-Ca, -Na, etc.), Thomson zeolite, tschernichite, tschortnerite, Weirake zeolite, weinebeneite, willhendersonite, Yugawara zeolite, etc.) and those with adsorbed hydrogen ions at the cation exchange sites of these zeolites Can be used. You may use these individually or in combination of 2 or more types.

なかでも、ルイス酸性を示すものが適している。また、容易に入手できることから、アルミナ、シリカアルミナ又はゼオライトが好ましい。ゼオライトとしては、最も大きい細孔構造が酸素12員環であることが望ましく、その中でもモルデナイト、ベータゼオライト、Y型ゼオライト等がより好ましい。
固体酸触媒としてシリカアルミナやゼオライトを用いる場合には、シリカ/アルミナ比は0.5〜20であることが適しており、好ましくは0.5〜10が挙げられる。
固体酸触媒は、上記に該当するものであれば、通常の水熱合成、沈殿法、共沈法等の合成法で合成したもの、市販品等を使用することができる。
Among them, those showing Lewis acidity are suitable. Moreover, since it can obtain easily, an alumina, a silica alumina, or a zeolite is preferable. As the zeolite, the largest pore structure is desirably an oxygen 12-membered ring, and among them, mordenite, beta zeolite, Y-type zeolite and the like are more preferable.
When silica alumina or zeolite is used as the solid acid catalyst, the silica / alumina ratio is suitably 0.5 to 20, preferably 0.5 to 10.
As long as it corresponds to the above, what was synthesize | combined by synthesis methods, such as normal hydrothermal synthesis, a precipitation method, and a coprecipitation method, a commercial item, etc. can be used for a solid acid catalyst.

固体触媒は、そのまま用いても、また、これを適当な担体、例えば、シリカ等に担持させて用いてもよい。触媒の形状は、粒状、ペレット状、円筒状等任意の形状及び大きさとすることができる。   The solid catalyst may be used as it is, or may be used by supporting it on a suitable carrier such as silica. The shape of the catalyst can be any shape and size such as granular, pellet, cylindrical.

本発明の塩化ビニルモノマーの製造方法では、その反応形式は特に限定されず、任意の反応形式で行うことができる。例えば、固定床式(例えば、固定床気相流通式、固定床液相流通式)、流動床式(例えば、流動床気相流通式、流動床液相流通式)、懸濁床回分式、懸濁床連続式等が実現し得る設備が挙げられる。なかでも、固定床気相流通式、固定床液相流通式及び懸濁床回分式が適している。   In the method for producing a vinyl chloride monomer of the present invention, the reaction form is not particularly limited, and can be carried out in any reaction form. For example, fixed bed type (for example, fixed bed gas phase flow type, fixed bed liquid phase flow type), fluidized bed type (for example, fluid bed gas phase flow type, fluid bed liquid phase flow type), suspension bed batch type, A facility that can realize a suspension bed continuous type and the like can be mentioned. Among these, a fixed bed gas phase flow method, a fixed bed liquid phase flow method, and a suspension bed batch method are suitable.

反応温度は、300〜400℃程度が適している。
反応におけるLHSV値は0.2〜10が好ましく、さらに好ましくは0.5〜5である。LHSV値は1時間あたりに反応させる1,2−ジクロロエタン重量(g)を触媒体積(ml)で割ることにより求めることができる。
The reaction temperature is suitably about 300 to 400 ° C.
The LHSV value in the reaction is preferably from 0.2 to 10, more preferably from 0.5 to 5. The LHSV value can be determined by dividing the weight (g) of 1,2-dichloroethane reacted per hour by the catalyst volume (ml).

1,2−ジクロロエタンの脱塩酸反応は、常圧下で行ってもよいし、加圧下で行ってもよい。例えば、常圧(≒0.101325MPa)〜2.0MPa程度、好ましくは0.1〜0.8MPa程度が挙げられる。これにより、副反応を低減させることができる。また、脱塩酸反応は、大気中又は酸素雰囲気下で行ってもよいが、上述した希釈ガスを用いる場合には、不活性ガス、例えば、窒素又はアルゴン雰囲気で行うことが適している。   The dehydrochlorination reaction of 1,2-dichloroethane may be performed under normal pressure or under pressure. For example, normal pressure (≈0.1011325 MPa) to about 2.0 MPa, preferably about 0.1 to 0.8 MPa. Thereby, a side reaction can be reduced. The dehydrochlorination reaction may be performed in the air or in an oxygen atmosphere. However, when the above-described dilution gas is used, it is suitable to perform in an inert gas, for example, a nitrogen or argon atmosphere.

1,2−ジクロロエタンの反応系への供給量又は供給速度は、例えば、触媒の容積、温度、圧力等によって適宜調整することができる。例えば、液体及び気体で供給する場合のいずれにおいても、0.1〜10g/時程度が挙げられる。
反応によって得られた塩化ビニルモノマーは、当該分野で公知の方法により回収することができ、さらに精製してもよい。例えば、冷却による副生成物の液化分離のような方法が例示される。
The supply amount or supply rate of 1,2-dichloroethane to the reaction system can be appropriately adjusted depending on, for example, the volume, temperature, pressure, etc. of the catalyst. For example, in either case of supplying in liquid and gas, about 0.1 to 10 g / hour is mentioned.
The vinyl chloride monomer obtained by the reaction can be recovered by methods known in the art and may be further purified. For example, a method such as liquefaction separation of by-products by cooling is exemplified.

以下に、本発明の塩化ビニルモノマーの製造方法の実施例を具体的に示す。
1,2−ジクロロエタンの脱水反応は、流通式触媒反応装置を用い、触媒は石英製の直管(内径10mm)に充填して行った。
反応ガス及び反応液は、ガスクロマトグラフ(島津製作所製、商品名GC−2010)、キャピラリーカラム(Agilent J&W社製、商品名DB−1、30m×0.25mm(内径)、膜厚1.0μm)水素炎イオン化検出器(FID)を用いて、定量した。
Below, the Example of the manufacturing method of the vinyl chloride monomer of this invention is shown concretely.
The dehydration reaction of 1,2-dichloroethane was performed using a flow-type catalytic reactor, and the catalyst was filled in a quartz straight tube (inner diameter 10 mm).
Reaction gas and reaction liquid are gas chromatograph (manufactured by Shimadzu Corporation, trade name GC-2010), capillary column (manufactured by Agilent J & W, trade name DB-1, 30 m × 0.25 mm (inner diameter), film thickness 1.0 μm) hydrogen Quantification was performed using a flame ionization detector (FID).

1,2−ジクロロエタン転化率及び塩化ビニルモノマー選択率は下式で算出した。
1,2−ジクロロエタン転化率(%)={(供給1,2−ジクロロエタン量(mol)−検出1,2−ジクロロエタン量(mol))/供給1,2−ジクロロエタン量(mol)}×100
塩化ビニルモノマー選択率(%)={塩化ビニルモノマー量(mol)/(各生成物量(mol)×炭素数/2)}×100
The 1,2-dichloroethane conversion rate and vinyl chloride monomer selectivity were calculated by the following equations.
1,2-dichloroethane conversion (%) = {(feed 1,2-dichloroethane amount (mol) -detected 1,2-dichloroethane amount (mol)) / feed 1,2-dichloroethane amount (mol)} × 100
Vinyl chloride monomer selectivity (%) = {vinyl chloride monomer amount (mol) / (each product amount (mol) × carbon number / 2)} × 100

実施例1
γ−アルミナ3gを内径10mmの石英製反応管に充填し、窒素中400℃で2時間熱処理した。その後、固体酸触媒を反応温度に放冷し、触媒層を得た。
気化させた1,2−ジクロロエタを流量0.6g/時及び窒素流量8000ml/時で、触媒層に通し、圧力0.1MPa、反応温度360℃の条件下にて反応させた。この反応のLHSV値は2.8であった。
反応生成物をガスクロマトグラフで分析したところ、反応経過時間1時間後において、1,2−ジクロロエタン転化率70%、塩化ビニルモノマー選択率82%であった。
Example 1
A quartz reaction tube having an inner diameter of 10 mm was filled with 3 g of γ-alumina and heat-treated at 400 ° C. for 2 hours in nitrogen. Thereafter, the solid acid catalyst was allowed to cool to the reaction temperature to obtain a catalyst layer.
The vaporized 1,2-dichloroethane was passed through the catalyst layer at a flow rate of 0.6 g / hour and a nitrogen flow rate of 8000 ml / hour, and reacted under conditions of a pressure of 0.1 MPa and a reaction temperature of 360 ° C. The LHSV value for this reaction was 2.8.
When the reaction product was analyzed by gas chromatography, the 1,2-dichloroethane conversion was 70% and the vinyl chloride monomer selectivity was 82% after 1 hour of the reaction elapsed time.

実施例2
γ−アルミナに代えて、シリカ/アルミナ比7のシリカアルミナを用いた以外は実施例1と同様にして反応を行った。
反応生成物をガスクロマトグラフで分析したところ、反応経過時間1時間後において、1,2−ジクロロエタン転化率65%、塩化ビニルモノマー選択率80%であった。
Example 2
The reaction was performed in the same manner as in Example 1 except that silica alumina having a silica / alumina ratio of 7 was used instead of γ-alumina.
When the reaction product was analyzed by gas chromatography, 1,2-dichloroethane conversion was 65% and vinyl chloride monomer selectivity was 80% after an elapsed time of reaction of 1 hour.

実施例3
シリカ/アルミナ比15の水素型Y型ゼオライトを用いた以外は実施例1と同様にして反応を行った。
反応生成物をガスクロマトグラフで分析した結果、反応経過時間1時間後において、1,2−ジクロロエタン転化率63%、塩化ビニルモノマー選択率75%であった。
Example 3
The reaction was conducted in the same manner as in Example 1 except that hydrogen type Y zeolite with a silica / alumina ratio of 15 was used.
As a result of analyzing the reaction product by gas chromatography, 1,2-dichloroethane conversion was 63% and vinyl chloride monomer selectivity was 75% after 1 hour of reaction elapsed time.

本発明によれば、より低温/低圧力において、塩化ビニルモノマーを効率的に製造することができる。   According to the present invention, a vinyl chloride monomer can be efficiently produced at a lower temperature / lower pressure.

Claims (6)

1,2−ジクロロエタンを、固体酸触媒による触媒反応により脱塩酸して製造することを特徴とする塩化ビニルモノマーの製造方法。   A method for producing a vinyl chloride monomer, characterized in that 1,2-dichloroethane is produced by dehydrochlorination by a catalytic reaction with a solid acid catalyst. ルイス酸性を示す前記固体酸触媒を用いる請求項1に記載の塩化ビニルモノマーの製造方法。   The method for producing a vinyl chloride monomer according to claim 1, wherein the solid acid catalyst exhibiting Lewis acidity is used. 前記ルイス酸性を示す固体酸触媒をγ−アルミナとする請求項2に記載の塩化ビニルモノマーの製造方法。   The method for producing a vinyl chloride monomer according to claim 2, wherein the solid acid catalyst exhibiting Lewis acidity is γ-alumina. 前記ルイス酸性を示す固体酸触媒をシリカアルミナとする請求項2に記載の塩化ビニルモノマーの製造方法。   The method for producing a vinyl chloride monomer according to claim 2, wherein the solid acid catalyst exhibiting Lewis acidity is silica alumina. 前記シリカアルミナのシリカ/アルミナ比が0.5〜20である請求項4に記載の塩化ビニルモノマーの製造方法。   The method for producing a vinyl chloride monomer according to claim 4, wherein the silica alumina has a silica / alumina ratio of 0.5 to 20. 反応温度を300〜400℃とする請求項1〜5に記載の塩化ビニルモノマーの製造方法。   The method for producing a vinyl chloride monomer according to claim 1, wherein the reaction temperature is 300 to 400 ° C.
JP2010284553A 2010-12-21 2010-12-21 Method of producing vinyl chloride monomer Pending JP2012131730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010284553A JP2012131730A (en) 2010-12-21 2010-12-21 Method of producing vinyl chloride monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284553A JP2012131730A (en) 2010-12-21 2010-12-21 Method of producing vinyl chloride monomer

Publications (1)

Publication Number Publication Date
JP2012131730A true JP2012131730A (en) 2012-07-12

Family

ID=46647775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284553A Pending JP2012131730A (en) 2010-12-21 2010-12-21 Method of producing vinyl chloride monomer

Country Status (1)

Country Link
JP (1) JP2012131730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023505709A (en) * 2019-12-12 2023-02-10 中国科学院大▲連▼化学物理研究所 Catalyst for vinyl chloride production by decomposition of 1,2-dichloroethane, production method, use and regeneration method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023505709A (en) * 2019-12-12 2023-02-10 中国科学院大▲連▼化学物理研究所 Catalyst for vinyl chloride production by decomposition of 1,2-dichloroethane, production method, use and regeneration method
JP7360551B2 (en) 2019-12-12 2023-10-12 中国科学院大▲連▼化学物理研究所 Catalyst and manufacturing method for producing vinyl chloride by decomposition of 1,2-dichloroethane

Similar Documents

Publication Publication Date Title
JP5861725B2 (en) Catalyst carrier containing chabazite-type zeolite and substrate for adsorbent
JP6082035B2 (en) Process for producing acetic acid and dimethyl ether
RU2658005C2 (en) Carbonylation method
JP6909225B2 (en) Manufacturing method of oligosilane
JP6842310B2 (en) Method for Producing 1-Chloro-2,2-Difluoroethylene
JP5767559B2 (en) Method for producing vinyl chloride monomer
JP2012131730A (en) Method of producing vinyl chloride monomer
JP5309750B2 (en) Process for producing 1,2-dichloroethane
JP2009215244A (en) Method for producing ethylene
JP2012211097A (en) Method of producing vinyl chloride monomer
JP2010024186A (en) Method for producing 1,2-dichloroethane
JP6721434B2 (en) Method for producing 1,5-dibromonaphthalene
JP6451311B2 (en) Method for producing piperazine and triethylenediamine
US7208610B2 (en) Process for isomerization of 2-halothiophene to 3-halothiophene
Sakai et al. Transesterification of Methyl Acetate Using a Flow-Type Membrane Reactor with a Zeolite Membrane
US9365492B2 (en) 2-(ethylamino)ethanol production method
JP5836480B2 (en) Method for producing vinyl chloride monomer
JP6966938B2 (en) Method for producing 1,2-cyclohexanediol
JP2011236173A (en) Method for producing chloroethanol
JP2015067555A (en) Method of producing vinyl chloride monomer
JP5883753B2 (en) Method for producing vinyl chloride monomer
JP2015147738A (en) Method for producing 1,2-dichloroethane
JPH01246231A (en) Highly selective production of p-dichlorobenzene
JP2015086185A (en) Method of producing methylacetylene
JP2015086184A (en) Method for producing vinyl chloride monomer