JP2012131673A - Fiber-reinforced cement composite material for cast molding and method for producing the same - Google Patents

Fiber-reinforced cement composite material for cast molding and method for producing the same Download PDF

Info

Publication number
JP2012131673A
JP2012131673A JP2010286846A JP2010286846A JP2012131673A JP 2012131673 A JP2012131673 A JP 2012131673A JP 2010286846 A JP2010286846 A JP 2010286846A JP 2010286846 A JP2010286846 A JP 2010286846A JP 2012131673 A JP2012131673 A JP 2012131673A
Authority
JP
Japan
Prior art keywords
fiber
composite material
cement composite
cement
reinforced cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010286846A
Other languages
Japanese (ja)
Other versions
JP5573658B2 (en
Inventor
Shigehiro Ando
重裕 安藤
Akita Kawakami
明大 川上
Daichi Orito
大智 織戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2010286846A priority Critical patent/JP5573658B2/en
Publication of JP2012131673A publication Critical patent/JP2012131673A/en
Application granted granted Critical
Publication of JP5573658B2 publication Critical patent/JP5573658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced cement composite material for cast molding capable of preventing entrained air from coming out from the material under vibration to suppress material shrinkage due to reduction of the entrained air, uniformly dispersing mixed fibers, exhibiting excellent fluidity and tenacity, and hardly causing material separation even under vibration.SOLUTION: The fiber-reinforced cement composite material for cast molding includes: rapid hardening cement; an inorganic admixture; a cement admixture polymer; a shrinkage reducing agent; fine aggregate; organic fibers; and water. In the fiber-reinforced cement composite material for cast molding, for 100 pts.mass of the rapid hardening cement: a content of the inorganic admixture is 30-200 pts.mass; a content of the cement admixture polymer is 1-10 pts.mass; a content of the shrinkage reducing agent is 0.5-8.0 pts.mass; and a fiber mixing ratio is 0.5-3.0 volume%.

Description

本発明は、流込成形用繊維補強セメント複合材料及びその製造方法に関し、特に、流込成形用として用いられ、振動下においても寸法安定性の良好な流込成形用繊維補強セメント複合材料及びその製造方法に関する。   The present invention relates to a fiber-reinforced cement composite material for casting and a method for producing the same, and more particularly to a fiber-reinforced cement composite material for casting which is used for casting and has good dimensional stability even under vibration. It relates to a manufacturing method.

従来、コンクリート構造物の劣化部分を補修するための補修材として、セメント組成物中に各種繊維が添加されてなる繊維補強セメント複合材料(FRC複合材料)が提案されている。
しかしながら、この種の繊維補強セメント複合材料を製造する際に、単にセメント系材料と繊維材料とを撹拌混合しようとすると、セメント系材料および繊維材料が均一になりにくく、例えば、繊維のダマ(ファイバーボール)が生じてしまう、といった問題が発生し、全体として均一な靭性を発揮しうる繊維補強セメント複合材料が得られないという問題がある。
Conventionally, a fiber reinforced cement composite material (FRC composite material) in which various fibers are added to a cement composition has been proposed as a repair material for repairing a deteriorated portion of a concrete structure.
However, when this type of fiber-reinforced cement composite material is manufactured, simply trying to stir and mix the cement-based material and the fiber material makes it difficult for the cement-based material and the fiber material to be uniform. Ball) occurs, and there is a problem that a fiber-reinforced cement composite material that can exhibit uniform toughness as a whole cannot be obtained.

繊維補強セメント複合材料において、良好な引張りひずみ硬化挙動を得るには、混練時の繊維の均一な分散が必要であり、製造方法等を工夫することで繊維の分散性が高められたり、材料に粘性を持たせることにより分散性の向上が図られている。
例えば特開2007−269537号公報(特許文献1)には、セメント、細骨材、再乳化形粉末樹脂、粘土鉱物系チクソ性付与材、および高強度有機短繊維を含有してなるプレミクス高靭性ポリマーセメントモルタル材料であって、セメント100質量部に対し、再乳化形粉末樹脂1〜10質量部、粘土鉱物系チクソ性付与材0.2〜10質量部、および高強度有機短繊維の繊維混入率が0.5〜2.0容積%で配合されていることを特徴とする、プレミクス高靭性ポリマーセメントモルタル材料が開示されている。
In fiber reinforced cement composite materials, to obtain good tensile strain hardening behavior, it is necessary to uniformly disperse the fibers during kneading, and the dispersibility of the fibers can be improved by devising the manufacturing method, etc. Dispersibility is improved by imparting viscosity.
For example, Japanese Unexamined Patent Application Publication No. 2007-269537 (Patent Document 1) discloses a premixed high toughness containing cement, fine aggregate, re-emulsified powder resin, clay mineral-based thixotropic agent, and high-strength organic short fibers. A polymer cement mortar material comprising 1 to 10 parts by weight of a re-emulsified powder resin, 0.2 to 10 parts by weight of a clay mineral-based thixotropic agent, and high-strength organic short fibers mixed with 100 parts by weight of cement A premixed high toughness polymer cement mortar material is disclosed, characterized in that it is compounded at a rate of 0.5-2.0% by volume.

また、特開2010−95406号公報(特許文献2)には、セメント、無機系混和材、細骨材、減水剤、水、および有機繊維を混合してなる繊維補強セメント複合材料であって、前記セメント100重量部に対して前記無機系混和材の配合量が50〜200重量部とされ、前記有機繊維以外の材料を混合した際の粘度が1000〜10000mPa・sとなるように配合量が調整され、前記有機繊維の含有量を1〜3体積%としたことを特徴とする繊維補強セメント複合材料が開示されている。   JP 2010-95406 A (Patent Document 2) discloses a fiber-reinforced cement composite material obtained by mixing cement, an inorganic admixture, a fine aggregate, a water reducing agent, water, and organic fibers. The blending amount of the inorganic admixture is 50 to 200 parts by weight with respect to 100 parts by weight of the cement, and the blending amount is 1000 to 10,000 mPa · s when the materials other than the organic fibers are mixed. A fiber reinforced cement composite material is disclosed which is adjusted and has a content of the organic fiber of 1 to 3% by volume.

しかし、これらの従来の高靭性繊維補強セメント材料は、繊維を均一に分散させるために、モルタルの粘性が比較的高く、粘性の増大により、混練したモルタルへ混入する空気量が多くなり、モルタル空気量の増加が材料分離を起こしやすくなっていた。
特に、振動下においては、時間の経過とともに、連行された空気がモルタルから抜けることにより、寸法安定性が劣ることとなり、硬化したモルタル表面上にクレータ状のものができ、速硬性セメントを用いた場合には、このクレータ状の表面のまま硬化し、表面の仕上がり(外観)に問題があった。さらに速硬性セメントを用いた場合には、連行した空気の減少による材料収縮と硬化による材料収縮が同時に起きて、ポルトランドセメントを用いる場合より、硬化時の体積変化が大きく、モルタルの収縮率も大きくなってしまっていた。
However, these conventional high-toughness fiber-reinforced cement materials have a relatively high viscosity of the mortar in order to disperse the fibers uniformly, and the increase in the viscosity increases the amount of air mixed into the kneaded mortar. The increase in quantity was likely to cause material separation.
In particular, under vibration, with the passage of time, entrained air escapes from the mortar, resulting in poor dimensional stability, and a crater-like surface is formed on the hardened mortar surface, and a fast-curing cement is used. In this case, the crater-like surface was cured and there was a problem in the surface finish (appearance). In addition, when fast-curing cement is used, material shrinkage due to reduced entrained air and material shrinkage occur simultaneously, resulting in a larger volume change during curing and a larger shrinkage rate of mortar than when using Portland cement. It had become.

特開2007−269537号公報JP 2007-269537 A 特開2010−95406号公報JP 2010-95406 A

従って、本発明の目的は、上記問題点を解決し、振動下において、連行された空気が材料から抜けることを防止して、連行した空気の減少による材料収縮を抑制することができる、流込成形用繊維補強セメント複合材料及びその製造方法を提供することである。
さらに、配合される繊維の分散が均一にされ、流動性と靭性に優れた、流込成形用繊維補強セメント複合材料及びその製造方法を提供することである。
また、振動下においても材料分離が小さい、流込成形用繊維補強セメント複合材料及びその製造方法を提供することである。
Accordingly, an object of the present invention is to solve the above problems, prevent entrained air from escaping from the material under vibration, and suppress material shrinkage due to a decrease in entrained air. It is to provide a fiber-reinforced cement composite material for molding and a method for producing the same.
It is another object of the present invention to provide a fiber-reinforced cement composite material for casting and a method for producing the same, in which dispersion of the blended fibers is made uniform and fluidity and toughness are excellent.
It is another object of the present invention to provide a fiber-reinforced cement composite material for casting and a method for producing the same, in which material separation is small even under vibration.

本発明の流込成形用繊維補強セメント複合材料は、速硬性セメント、無機系混和材、セメント混和用ポリマー、収縮低減剤、細骨材、有機繊維及び水を含有してなる流込成形用繊維補強セメント複合材料であって、速硬性セメント100質量部に対し、無機系混和材30〜200質量部、セメント混和用ポリマー1〜10質量部、収縮低減剤0.5〜8.0質量部、および繊維混入率が0.5〜3.0容積%で含有されていることを特徴とする、流込成形用繊維補強セメント複合材料である。   The fiber-reinforced cement composite material for casting according to the present invention is a fiber for casting molding comprising a fast-setting cement, an inorganic admixture, a polymer for cement admixture, a shrinkage reducing agent, fine aggregate, organic fibers and water. It is a reinforced cement composite material, and 30 to 200 parts by weight of an inorganic admixture, 1 to 10 parts by weight of a cement-mixing polymer, 0.5 to 8.0 parts by weight of a shrinkage reducing agent, with respect to 100 parts by weight of a fast-curing cement, And a fiber-reinforced cement composite material for casting, characterized in that the fiber mixing rate is 0.5 to 3.0% by volume.

好適には、上記本発明の流込成形用繊維補強セメント複合材料において、水を、有機繊維を除く原材料粉体に対して、水/粉体比で12〜30質量%で含有されていることを特徴とする。
更に好適には、上記本発明の流込成形用繊維補強セメント複合材料において、JHS313によるフロー値が120mm以上であることを特徴とする。
Preferably, in the fiber reinforced cement composite material for casting according to the present invention, water is contained at a water / powder ratio of 12 to 30% by mass with respect to the raw material powder excluding organic fibers. It is characterized by.
More preferably, in the fiber-reinforced cement composite material for casting according to the present invention, the flow value according to JHS313 is 120 mm or more.

本発明の流込成形用繊維補強セメント複合材料の製造方法は、速硬性セメント100質量部に対し、無機系混和材30〜200質量部、セメント混和用ポリマー1〜10質量部、収縮低減剤0.5〜8.0質量部を配合し、更に有機繊維を繊維混入率0.5〜3.0容積%で配合することにより調製されることを特徴とする、流込成形用繊維補強セメント複合材料の製造方法である。   The method for producing a fiber-reinforced cement composite material for casting according to the present invention is based on 30 to 200 parts by mass of an inorganic admixture, 1 to 10 parts by mass of a cement admixing polymer, and 0 shrinkage reducing agent for 100 parts by mass of fast-curing cement. A fiber-reinforced cement composite for casting, characterized in that it is prepared by blending 0.5 to 8.0 parts by mass and further blending organic fibers at a fiber mixing rate of 0.5 to 3.0% by volume. It is a manufacturing method of material.

好適には、上記本発明の流込成形用繊維補強セメント複合材料の製造方法において、水を、有機繊維を除く原材料粉体に対して、水/粉体比で12〜30質量%で配合することを特徴とする。
更に好適には、上記本発明の流込成形用繊維補強セメント複合材料の製造方法において、有機繊維を除く原材料粉体を混練し、次いで水を添加して混練し、その後有機繊維を添加して混練することを特徴とする。
Preferably, in the method for producing a fiber-reinforced cement composite material for casting according to the present invention, water is blended at a water / powder ratio of 12 to 30% by mass with respect to the raw material powder excluding organic fibers. It is characterized by that.
More preferably, in the method for producing a fiber-reinforced cement composite material for casting according to the present invention, the raw material powder excluding organic fibers is kneaded, then water is added and kneaded, and then the organic fibers are added. It is characterized by kneading.

本発明の流込成形用繊維補強セメント複合材料及びその製造方法は、速硬性セメント、セメント混和用ポリマー、収縮低減剤等が同時に存在することにより、バイブレータ等による振動を受けても、気泡の抜けがほとんどなく、骨材、繊維、セメントペースト等の材料の分離がほとんど生じない材料とすることができ、従って寸法安定性の良好な材料となる。
また、流動性も確保でき、速硬性であるため、早期に靭性性能を発揮することが可能となる。
According to the present invention, the fiber-reinforced cement composite material for casting and the method for producing the same are provided with a fast-curing cement, a cement admixing polymer, a shrinkage reducing agent, etc. Therefore, the material such as aggregate, fiber, cement paste and the like can be made a material that hardly separates. Therefore, the material has good dimensional stability.
In addition, fluidity can be secured, and since it is fast-curing, it becomes possible to exhibit toughness performance at an early stage.

更に、例えば、本発明の流込成形用繊維補強セメント複合材料によれば、道路、鉄道等の振動が伝わる箇所における補修、補強材料に求められる寸法安定性が増大させることができ早期に高靱性を発揮することができる。   Further, for example, according to the fiber reinforced cement composite material for casting according to the present invention, the dimensional stability required for repairing and reinforcing materials at locations where vibrations such as roads and railways are transmitted can be increased and high toughness can be increased early. Can be demonstrated.

本発明を以下の好適例により説明するが、これらに限定されるものではない。
本発明の流込成形用繊維補強セメント複合材料は、速硬性セメント、無機系混和材、セメント混和用ポリマー、収縮低減剤、細骨材、減水剤、有機繊維及び水を含有してなる流込成形用のセメント複合材料であって、該速硬性セメント100質量部に対し、無機系混和材30〜200質量部、セメント混和用ポリマー1〜10質量部、収縮低減剤0.5〜8.0質量部、および繊維混入率が0.5〜3.0容積%で配合されている、流込成形用繊維補強セメント複合材料である。
The present invention is illustrated by the following preferred examples, but is not limited thereto.
The fiber-reinforced cement composite material for casting according to the present invention comprises a fast-curing cement, an inorganic admixture, a polymer for cement admixture, a shrinkage reducing agent, a fine aggregate, a water reducing agent, an organic fiber and water. It is a cement composite material for molding, and 30 to 200 parts by mass of an inorganic admixture, 1 to 10 parts by mass of a cement admixing polymer, and 0.5 to 8.0 of a shrinkage reducing agent with respect to 100 parts by mass of the fast-curing cement. It is a fiber-reinforced cement composite material for casting, which is blended in a mass part and a fiber mixing rate of 0.5 to 3.0% by volume.

かかる特定の組成で上記成分を配合することで、振動下においても、連行された空気が時間の経過とともに抜けることがなく、材料分離を起こすこともなく、硬化後のモルタル表面がクレータ状となることがなく、寸法安定性に優れ、高靭性とすることができる。
具体的には、本発明の流込成形用繊維補強セメント複合材料は、JHS313フロー値が120mm以上で、該材料を用いて得られたモルタル硬化体は材齢1日後の曲げ靭性係数が7N/mm以上の性能を有することができるものである。
By blending the above components with such a specific composition, the entrained air does not escape over time, does not cause material separation even under vibration, and the mortar surface after curing becomes crater-like. No dimensional stability and high toughness.
Specifically, the fiber reinforced cement composite material for casting according to the present invention has a JHS313 flow value of 120 mm or more, and the cured mortar obtained using the material has a bending toughness coefficient of 7 N / day after the age of one day. It can have a performance of mm 2 or more.

本発明の流込成形用繊維補強セメント複合材料に用いるセメントとしては、速硬性セメントを用いる。
使用できる速硬性セメントは、特に限定されず、任意の速硬性セメントを用いることができる。特に、速硬セメントとしては、一般に「ジェットセメント」、「マイルドジェットセメント」と称されるカルシウムアルミネート類と無水石膏を主成分として、凝結調整材を含有するものを好適に使用することができる。
As the cement used for the fiber-reinforced cement composite material for casting according to the present invention, a fast-setting cement is used.
The fast-curing cement that can be used is not particularly limited, and any fast-curing cement can be used. In particular, as fast-hardening cements, those containing calcium aluminates and anhydrous gypsum generally called “jet cement” and “mild jet cement” and containing a setting modifier can be suitably used. .

また、本発明の流込成形用繊維補強セメント複合材料に用いる無機系混和材としては、粒径が80μm以下の無機系混和材を好適に使用することができ、平均粒径が1〜15μmである無機系混和材をより好適に使用することができる。平均粒径が1〜15μmである無機系混和材を使用した場合には、繊維分散性を高め、靭性性能を高めるという効果がある。   Moreover, as an inorganic type admixture used for the fiber-reinforced cement composite material for casting of the present invention, an inorganic type admixture having a particle size of 80 μm or less can be suitably used, and the average particle size is 1 to 15 μm. A certain inorganic type admixture can be used more suitably. In the case where an inorganic admixture having an average particle diameter of 1 to 15 μm is used, the fiber dispersibility is enhanced and the toughness performance is enhanced.

該無機系混和材としては、例えば、高炉スラグ、石灰石、珪石、フライアッシュ、シリカヒューム等の粉末を用いることができ、中でも、石灰石粉又は高炉スラグ粉の少なくとも何れか一方を用いることが好ましい。但し、本発明においては、無機系混和材には粘土鉱物は含まれない。   As the inorganic admixture, for example, powders such as blast furnace slag, limestone, silica stone, fly ash, and silica fume can be used, and among them, at least one of limestone powder and blast furnace slag powder is preferably used. However, in the present invention, the inorganic admixture does not include clay minerals.

該無機系混和材の添加量は、セメント100質量部に対し、30〜200質量部、好ましくは、50〜150質量部である、該無機系混和材の添加量が、セメント100質量部に対して30質量部未満であると、繊維を添加した際にファイバーボールが生成されやすく、また、材料分離が生じやすくなるため、好ましくない。また、200質量部を超えて添加すると、流動性が低下し、流込成形が困難となる。   The addition amount of the inorganic admixture is 30 to 200 parts by mass, preferably 50 to 150 parts by mass with respect to 100 parts by mass of the cement. The addition amount of the inorganic admixture is 100 parts by mass of the cement. If the amount is less than 30 parts by mass, fiber balls are likely to be produced when fibers are added, and material separation is likely to occur. Moreover, when it adds exceeding 200 mass parts, fluidity | liquidity will fall and casting will become difficult.

また、本発明の流込成形用繊維補強セメント複合材料に用いるセメント混和用ポリマーとしては、例えば再乳化形粉末樹脂、JIS A 6203に規定されたものを使用することができ、ポリアクリル酸エステル、スチレンブタジエン、エチレン酢酸ビニル、酢酸ビニル/バーサック酸ビニルエステル、酢酸ビニル/バーサック酸ビニルエステル/アクリル酸エステル等の樹脂が例示され、これらの中から適宜、選択して単独、または混合して使用することができ、再乳化樹脂を含有することで接着性能を向上させることができる。
特に、耐水性等の耐久性が要求される部材に用いる場合には、酢酸ビニル/バーサック酸ビニルエステル/アクリル酸エステル等のアクリル系再乳化型粉末樹脂の使用が好ましい。
Moreover, as the polymer for cement admixture used for the fiber-reinforced cement composite material for casting according to the present invention, for example, a re-emulsified powder resin, those defined in JIS A 6203 can be used. Resin such as styrene butadiene, ethylene vinyl acetate, vinyl acetate / versacic acid vinyl ester, vinyl acetate / versacic acid vinyl ester / acrylic acid ester, and the like are exemplified, and these are appropriately selected and used alone or in combination. The adhesive performance can be improved by containing a re-emulsifying resin.
In particular, when used for a member requiring durability such as water resistance, it is preferable to use an acrylic re-emulsifying powder resin such as vinyl acetate / versacic acid vinyl ester / acrylic acid ester.

再乳化形粉末樹脂は、JIS A 6203に規定するポリマーディスパージョンを噴霧乾燥した粉末樹脂で、水を添加すると再度乳化するものをいい、ポリマーディスパージョンとは、上記ポリマーの微粒子が水中に分散し、浮遊している状態のものである。
ポリマーを安定化する方法としては、例えば、アクリル酸を共重合するカルボキシル方式(アニオン化方式)、水溶性ポリマー、例えばポリビニルアルコール等の水溶液中で重合する保護コロイド方式、重合反応性界面活性剤等を共重合する方式、非重合反応性界面活性剤による安定化方式がある。
The re-emulsified powder resin is a powder resin obtained by spray-drying a polymer dispersion specified in JIS A 6203, and emulsifies again when water is added. The polymer dispersion is a dispersion of the above-mentioned polymer fine particles in water. It is in a floating state.
Methods for stabilizing the polymer include, for example, a carboxyl method (anionization method) for copolymerization of acrylic acid, a protective colloid method for polymerization in an aqueous solution of a water-soluble polymer such as polyvinyl alcohol, a polymerization reactive surfactant, etc. There are a system for copolymerization and a stabilization system using a non-polymerization reactive surfactant.

かかる再乳化形粉末樹脂の製造方法は特に限定されることなく、これらのポリマーディスパージョンを粉末化方法やブロッキング防止法等の公知かつ任意の方法を用いて調製することができる。
再乳化形粉末樹脂の再乳化液としては、最低造膜温度が0℃以上であることが望ましい。
最低造膜温度が0℃以上であることにより、コンクリートとの付着性および早期強度発現性に優れることとなる。
The method for producing such a re-emulsifying powder resin is not particularly limited, and these polymer dispersions can be prepared using a known and arbitrary method such as a powdering method or an anti-blocking method.
The re-emulsified liquid of the re-emulsified powder resin preferably has a minimum film forming temperature of 0 ° C. or higher.
When the minimum film-forming temperature is 0 ° C. or higher, the adhesion with concrete and the early strength development are excellent.

かかる再乳化形粉末樹脂の配合量としては、セメント100質量部に対して、1〜10量部配合されてなり、好適には、3〜7質量部であることが望ましい。
これは、かかる配合比で、再乳化形粉末樹脂を混合することより、セメントモルタル材として使用した際に、コンクリートに対して、良好な付着性を有するものとなるからである。
再乳化形粉末樹脂がセメントに対して、1質量部未満では、コンクリートとの付着強度が低下し、連行空気が消泡しやすくなる。また、10質量部を超えると、ポリマーセメントモルタル材の流動性や強度が低下し、コンクリート構造物の断面修復または増厚材としての性能に支障が発生する恐れがあるからである。
再乳化樹脂粉末を含有することにより、繊維の分散効率を上げることができる。
As a compounding quantity of this re-emulsification type powder resin, 1-10 mass parts is mix | blended with respect to 100 mass parts of cement, It is desirable that it is 3-7 mass parts suitably.
This is because, when the re-emulsified powder resin is mixed at such a blending ratio, it has good adhesion to concrete when used as a cement mortar material.
If the re-emulsified powder resin is less than 1 part by mass with respect to the cement, the adhesion strength with the concrete is lowered, and the entrained air is easily defoamed. Moreover, when it exceeds 10 mass parts, the fluidity | liquidity and intensity | strength of a polymer cement mortar material will fall, and there exists a possibility that trouble may generate | occur | produce in the performance as a cross-section repair or thickening material of a concrete structure.
By containing the re-emulsified resin powder, the dispersion efficiency of the fibers can be increased.

本発明の流込成形用繊維補強セメント複合材料に使用する収縮低減剤としては、特に限定されるものではなく、例えば、低級アルコールアルキレン付加物、アルコール系、グリコールエーテル、アミノアルコール誘導体、ポリエーテル系やアルキレン共重合体等が等の種々の収縮低減剤を使用することができる。
収縮低減剤を添加することにより、セメントの硬化収縮を低減するだけでなく、連行した空気の安定性が向上し、特に、セメント混和用ポリマーと併用することにより空気の安定性は著しく向上する。
The shrinkage reducing agent used in the fiber reinforced cement composite material for casting according to the present invention is not particularly limited, and examples thereof include lower alcohol alkylene adducts, alcohols, glycol ethers, amino alcohol derivatives, and polyethers. And various shrinkage reducing agents such as alkylene copolymers can be used.
The addition of a shrinkage reducing agent not only reduces the hardening shrinkage of the cement, but also improves the stability of the entrained air. In particular, the stability of the air is remarkably improved when used in combination with a cement-mixing polymer.

また、該収縮低減剤の添加量は、セメント100重量部に対して0.5〜8.0質量部、好適には、2〜5質量部となる量が好ましい。このような添加量とすることにより、材料分離を防止しつつ優れた流動性向上作用を発揮させることができる。   The amount of the shrinkage reducing agent added is preferably 0.5 to 8.0 parts by mass, and preferably 2 to 5 parts by mass with respect to 100 parts by weight of cement. By setting it as such addition amount, the outstanding fluidity improvement effect | action can be exhibited, preventing material separation.

本発明の流込成形用繊維補強セメント複合材料に使用する細骨材としては、川砂、海砂、山砂、砕砂、3〜8号珪砂、石灰石、及びスラグ細骨材等を使用することができ、微細な粉や粗い骨材を含まない粒度調整した珪砂や石灰石等の細骨材を用いることが好ましい。
その配合割合は、上記セメント100質量部に対して、20〜100質量部、好ましくは30〜70質量部とすることが望ましい。
これは、かかる配合比で細骨材を混合することより、強度発現性、作業性が良く、実用的な強度発現性を有し、実用上問題のない流込材料となるからである。
細骨材がセメントに対して20質量部未満では、水和熱によるひび割れが発生するおそれがあり、また、100質量部を超えると、強度が低下し、曲げ靭性性能が得られないおしれがあるからである。
As fine aggregates used in the fiber-reinforced cement composite material for casting of the present invention, river sand, sea sand, mountain sand, crushed sand, No. 3-8 silica sand, limestone, slag fine aggregate, etc. may be used. It is preferable to use fine aggregates such as silica sand and limestone that are fine-grained and do not contain fine powder or coarse aggregates.
The blending ratio is 20 to 100 parts by mass, preferably 30 to 70 parts by mass with respect to 100 parts by mass of the cement.
This is because, by mixing fine aggregates at such a blending ratio, the strength developability and workability are good, the practical strength developability is obtained, and the cast material has no practical problems.
If the fine aggregate is less than 20 parts by mass with respect to the cement, there is a risk of cracking due to heat of hydration, and if it exceeds 100 parts by mass, the strength decreases and bending toughness performance may not be obtained. Because there is.

本発明の流込成形用繊維補強セメント複合材料において、混入される有機繊維としては、特に限定されないが、例えば、PVA繊維、PE繊維、アクリル繊維、ポリアミド繊維、レーヨン繊維等、種々の有機繊維を用いることができ、これらの一種を、又は二種以上を組み合わせて、使用することができる。   In the fiber reinforced cement composite material for casting according to the present invention, the organic fiber to be mixed is not particularly limited. For example, various organic fibers such as PVA fiber, PE fiber, acrylic fiber, polyamide fiber, rayon fiber are used. These can be used, and one of these or a combination of two or more can be used.

また、上記有機維は、通常、直径50μm以下程度、長さ3〜20mm程度のモノフィラメント繊維であるのが、繊維混入による補強効果、即ち高強度・高靱性付与の観点から、好ましい。
該モノフィラメント繊維の直径は、5〜30μm程度、長さは4〜15mm程度であるのがより好ましい。
The organic fibers are usually monofilament fibers having a diameter of about 50 μm or less and a length of about 3 to 20 mm, from the viewpoint of reinforcing effect due to fiber mixing, that is, imparting high strength and high toughness.
More preferably, the monofilament fiber has a diameter of about 5 to 30 μm and a length of about 4 to 15 mm.

また、該有機繊維は、高強度であると好ましく、具体的には、該繊維の引張強度が1500〜6000N/mm程度であると特に好ましい。 In addition, the organic fiber is preferably high strength, and specifically, the tensile strength of the fiber is particularly preferably about 1500 to 6000 N / mm 2 .

引張強度が1500N/mm以上であるとセメント複合体の強度が更に向上でき、一方6,000N/mmを超えるような繊維は入手困難である。 If the tensile strength is 1500 N / mm 2 or more, the strength of the cement composite can be further improved, while fibers exceeding 6,000 N / mm 2 are difficult to obtain.

また、上記有機繊維の繊維混入率は0.5〜3.0容積%程度であることが必要である。
該繊維混入率が0.5容積%未満では強度や靱性が十分ではない場合があり、一方3.0容積%を超えると、繊維の分散が不完全となり、繊維混入率に見合う靭性改善効果が得られなくなるので好ましくない。
特に、該繊維混入率は、1.0〜2.0容積%であることが好ましい。
Moreover, the fiber mixing rate of the organic fiber needs to be about 0.5 to 3.0% by volume.
If the fiber mixing rate is less than 0.5% by volume, the strength and toughness may not be sufficient. On the other hand, if the fiber mixing rate exceeds 3.0% by volume, fiber dispersion becomes incomplete, and an effect of improving toughness commensurate with the fiber mixing rate is obtained. Since it cannot be obtained, it is not preferable.
In particular, the fiber mixing rate is preferably 1.0 to 2.0% by volume.

ここで、本発明における繊維混入率(V、fiber volume fraction)は、次式;V=(V/V)×100 (I)
(式中、Vは繊維補強セメント複合体の単位体積(1,000リットル=1m)中に混入された補強繊維の容積(リットル)を示し、Vは繊維補強セメント複合体の単位容積(1,000リットル=1m)を示す。)で表される割合(容積%)である。
Here, the fiber mixing ratio (V f , fiber volume fraction) in the present invention is the following formula: V f = (V 1 / V 2 ) × 100 (I)
(In the formula, V 1 represents the volume (liter) of the reinforcing fiber mixed in the unit volume (1,000 liters = 1 m 3 ) of the fiber-reinforced cement composite, and V 2 represents the unit volume of the fiber-reinforced cement composite. (1,000 liters = 1 m 3 ).) (Volume%).

本発明のセメント複合材料においては、上記材料のほかに、凝結遅延剤、硬化促進剤、増粘剤、消泡剤、発泡剤、防錆剤、防凍剤、着色剤、保水剤、減水剤等の添加剤を、本発明の目的を実質的に阻害しない範囲で使用することができるが、有機系の増粘剤は使用しない。   In the cement composite material of the present invention, in addition to the above materials, a setting retarder, a curing accelerator, a thickener, an antifoaming agent, a foaming agent, a rust inhibitor, a defrosting agent, a colorant, a water retention agent, a water reducing agent, etc. These additives can be used within a range that does not substantially impair the object of the present invention, but organic thickeners are not used.

本発明の流込成形用繊維補強セメント複合材料は、それぞれの材料を施工時に混合しても、予め一部を混合してもかまわないが、予め粉末成分を混合した材料と水とを混合することが、施工現場での計量手間や計量ミスをなくす点で好ましい。
特に、まず有機繊維及び水を除く、速硬性セメント、無機系混和材、セメント混和用ポリマー及び収縮低減剤等の原材料粉体を混練し、次いで水を添加して混練し、その後繊維を添加して混練して、流込成形用繊維補強セメント複合材料を製造するのが、材料を均一に混練し、かつ繊維の分散性を高めることができる点から望ましい。
混合は汎用モルタルミキサーで、繊維プレミクスの粉体に所定量の水を投入するだけで製造が可能となり、これまで同等の高い曲げ靭性性能が得られるものである。
The fiber-reinforced cement composite material for casting according to the present invention may be mixed at the time of construction or may be mixed in advance, but the material mixed with the powder component and water are mixed in advance. It is preferable in that it eliminates the measurement labor and measurement errors at the construction site.
In particular, first knead raw material powder such as fast-curing cement, inorganic admixture, cement admixture polymer and shrinkage reducing agent, excluding organic fiber and water, then add water and knead, then add fiber. It is desirable to produce a fiber-reinforced cement composite material for casting by kneading from the viewpoint that the material can be uniformly kneaded and the dispersibility of the fibers can be improved.
Mixing is a general-purpose mortar mixer, which can be produced simply by adding a predetermined amount of water to the fiber premix powder, and the same high bending toughness performance can be obtained.

更に、本発明の練混水量は、有機繊維を除く原材料粉体に対して、水/粉体比で12〜30質量%で混合、好ましくは15〜25質量%混合される。
また、水は、セメント等の硬化に悪影響を及ぼす成分を含有していなければ、水道水や地下水、河川水等の水を用いることができ、例えば、「JIS A 5308 付属書9 レディーミクストコンクリートの練混ぜに用いる水」に適合するものが好ましい。
Further, the amount of the kneaded water of the present invention is mixed at a water / powder ratio of 12 to 30% by mass, preferably 15 to 25% by mass, with respect to the raw material powder excluding organic fibers.
In addition, water such as tap water, ground water, river water and the like can be used as long as it does not contain components that adversely affect the hardening of cement and the like. For example, “JIS A 5308 Annex 9 Ready mixed concrete Those suitable for “water used for kneading” are preferable.

このようにして得られた流込成形用繊維補強セメント複合材料は、振動下での寸法安定性に優れるため、道路、鉄道、橋梁等の振動の影響を受ける、建築・土木分野での緊急工事に有効に適用できる。また、当該流込成形用繊維補強セメント複合材料は、ひび割れ抵抗性が高く、耐久性も良好である。   Since the fiber reinforced cement composite material for casting obtained in this way has excellent dimensional stability under vibration, it is affected by the vibration of roads, railways, bridges, etc. It can be effectively applied to. Moreover, the fiber-reinforced cement composite material for casting is highly resistant to cracking and has good durability.

本発明を次の実施例、比較例及び試験例により詳述する。
(使用材料)
下記表1に示す各原材料を用いて、実施例及び比較例を実施した。
The present invention will be described in detail by the following examples, comparative examples and test examples.
(Materials used)
Examples and Comparative Examples were carried out using the raw materials shown in Table 1 below.

Figure 2012131673
Figure 2012131673

(実施例1〜11、比較例1〜10)
上記表1の各原料を用いて、表2及び表3に示す配合割合で、各材料を均一に混合して、流込用セメント複合材料を調製した。具体的には、水及び有機繊維を除いて、まず上記原材料粉体を配合して混練し、次いで水を添加して混練し、その後有機繊維を添加して20℃、85%RH条件下混練して繊維補強セメント複合材料を調製した。
なお、表2及び表3中の水量の水/粉体比(質量%)の粉体は、表1に記載した使用材料中の繊維以外の全ての材料(水は除く)の粉体を意味する。
(Examples 1-11, Comparative Examples 1-10)
Using the raw materials of Table 1 above, the materials were uniformly mixed at the blending ratios shown in Tables 2 and 3 to prepare cement composite materials for pouring. Specifically, with the exception of water and organic fibers, the raw material powder is first blended and kneaded, then water is added and kneaded, and then organic fibers are added and kneaded at 20 ° C. and 85% RH. Thus, a fiber reinforced cement composite material was prepared.
In addition, the water / powder ratio (mass%) powder in Table 2 and Table 3 means the powder of all materials (except water) in the materials used in Table 1. To do.

Figure 2012131673
Figure 2012131673

Figure 2012131673
Figure 2012131673

(試験例)
上記各実施例1〜11及び比較例1〜10で得られた各繊維補強セメント複合材料について、以下の試験を行い、その結果を表4及び表5に示す。
1)JHS313フロー
得られた各繊維補強セメント複合材料のフロー値を、JHS313「エアモルタルおよびエアミルクの試験」に準拠して、フロー値を測定した。
(Test example)
The following tests were conducted on the fiber reinforced cement composite materials obtained in Examples 1 to 11 and Comparative Examples 1 to 10, and the results are shown in Tables 4 and 5.
1) JHS313 flow The flow value of each fiber-reinforced cement composite material obtained was measured according to JHS313 "Testing of air mortar and air milk".

2)曲げ靭性係数
JSCE−G552「鋼繊維補強コンクリートの曲げ強度および曲げタフネス試験方法(案)」に準拠して、材齢1日(1d)における曲げ靭性係数を測定した。
2) Bending toughness coefficient Based on JSCE-G552 “Testing method for bending strength and bending toughness of steel fiber reinforced concrete (draft)”, the bending toughness coefficient at the age of 1 day (1d) was measured.

3)振動機による分離状態
3−1)単位容積質量
Φ50×100mmの型枠に各繊維補強セメント複合材料を流込んで打設し、振動機により120秒間振動を与えて、1日後脱型を行い、硬化後のモルタル体の体積、重量を測定して、単位容積質量を算出した。
但し、振動機は、JIS R 5201に規定されるものを使用した(回転数2800回転/分、振幅0.8mm)。
3−2)ペースト分離深さ
前記単位容積質量試験において振動機により振動を与えた硬化後の各モルタル体について、Φ50mmに対して鉛直方向に各モルタル体を切断して切断面より分離深さを測定した。分離深さの測定は、打設面上部より含まれる骨材が最初に目視で観察されはじめる箇所までの深さとした。
3) Separation state with vibrator 3-1) Unit volume mass Each fiber reinforced cement composite material was poured into a mold with a diameter of 50 x 100 mm, and vibration was applied for 120 seconds with a vibrator to remove the mold after one day. The volume and weight of the cured mortar body were measured to calculate the unit volume mass.
However, the vibrator specified in JIS R 5201 was used (the number of rotations was 2800 rotations / minute, the amplitude was 0.8 mm).
3-2) Paste Depth of Depth For each cured mortar body that has been vibrated by a vibrator in the unit volume mass test, each mortar body is cut in the vertical direction with respect to Φ50 mm, and the separation depth is set from the cut surface. It was measured. The separation depth was measured from the upper part of the placement surface to the depth at which the aggregate contained first begins to be visually observed.

Figure 2012131673
Figure 2012131673

Figure 2012131673
Figure 2012131673

また、上記3−1)の試験において、振動を与えた後の各供試体についての表面外観を目視で観察したところ、実施例のものはすべて表面に空気が抜けたあとのクレータ状の形状を有さなかった。一方、比較例2、5では、大きなクレータ表面形状が観察され、その他の比較例についてもクレータ形状が観察された。
本発明の流込成形用速硬性繊維補強セメント複合材料から得られるモルタル中の繊維は均一に分散しており、流動性が良好であり、靭性性能を早期に発揮することができ、振動下においても単位容積質量がほとんど変化せず、連行された空気が抜けることなく、寸法安定性が良好である。さらに、振動下においても材料分離性に優れることが明らかである。
Moreover, in the test of said 3-1), when the surface external appearance about each test piece after giving a vibration was observed visually, all the things of an Example have the shape of a crater after air escapes on the surface. I didn't have it. On the other hand, in Comparative Examples 2 and 5, a large crater surface shape was observed, and crater shapes were also observed in other comparative examples.
The fibers in the mortar obtained from the fast-curing fiber-reinforced cement composite material for casting according to the present invention are uniformly dispersed, the fluidity is good, the toughness performance can be exhibited early, and under vibration However, the unit volume mass hardly changes, the entrained air does not escape, and the dimensional stability is good. Furthermore, it is clear that the material separability is excellent even under vibration.

本発明の流込成形用速硬性繊維補強セメント複合材料を用いることで、例えば、鉄道、高架橋、道路橋、トンネル等の振動下での土木・建築構造物の補修・補強、特に緊急工事に有効に用いることができる。   By using the rapid-hardening fiber reinforced cement composite material for casting of the present invention, it is effective for repair and reinforcement of civil engineering and building structures under vibrations of railways, viaducts, road bridges, tunnels, etc., especially for emergency construction. Can be used.

Claims (6)

速硬性セメント、無機系混和材、セメント混和用ポリマー、収縮低減剤、細骨材、有機繊維及び水を含有してなる流込成形用繊維補強セメント複合材料であって、速硬性セメント100質量部に対し、無機系混和材30〜200質量部、セメント混和用ポリマー1〜10質量部、収縮低減剤0.5〜8.0質量部、および繊維混入率が0.5〜3.0容積%で含有されていることを特徴とする、流込成形用繊維補強セメント複合材料。   A fast-hardening cement, an inorganic admixture, a cement-mixing polymer, a shrinkage reducing agent, a fine aggregate, an organic fiber, and a water-reinforced fiber-reinforced cement composite material containing 100 parts by weight of a fast-setting cement In contrast, 30 to 200 parts by weight of an inorganic admixture, 1 to 10 parts by weight of a cement-mixing polymer, 0.5 to 8.0 parts by weight of a shrinkage reducing agent, and a fiber mixing ratio of 0.5 to 3.0% by volume. A fiber-reinforced cement composite material for casting, characterized by being contained in 請求項1記載の流込成形用繊維補強セメント複合材料において、水を、有機繊維を除く原材料粉体に対して、水/粉体比で12〜30質量%で含有されていることを特徴とする、流込成形用繊維補強セメント複合材料。   The fiber-reinforced cement composite material for casting according to claim 1, wherein water is contained at a water / powder ratio of 12 to 30% by mass with respect to the raw material powder excluding organic fibers. Fiber casting cement composite material for casting. 請求項1又は2記載の流込成形用繊維補強セメント複合材料において、JHS313によるフロー値が120mm以上であることを特徴とする、流し込み成形用繊維補強セメント複合材料。   The fiber-reinforced cement composite material for casting according to claim 1 or 2, wherein the flow value according to JHS313 is 120 mm or more. 速硬性セメント100質量部に対し、無機系混和材30〜200質量部、セメント混和用ポリマー1〜10質量部、収縮低減剤0.5〜8.0質量部を配合し、更に有機繊維を繊維混入率0.5〜3.0容積%で配合することにより調製されることを特徴とする、流込成形用繊維補強セメント複合材料の製造方法。   30 to 200 parts by weight of an inorganic admixture, 1 to 10 parts by weight of a cement-mixing polymer, and 0.5 to 8.0 parts by weight of a shrinkage reducing agent are blended with 100 parts by weight of fast-curing cement, and organic fibers are added to the fiber. A method for producing a fiber-reinforced cement composite material for casting, which is prepared by blending at a mixing rate of 0.5 to 3.0% by volume. 請求項4記載の流込成形用繊維補強セメント複合材料の製造方法において、水を、有機繊維を除く原材料粉体に対して、水/粉体比で12〜30質量%で配合することを特徴とする、流込成形用繊維補強セメント複合材料の製造方法。   5. The method for producing a fiber-reinforced cement composite material for casting according to claim 4, wherein water is blended at a water / powder ratio of 12 to 30% by mass with respect to the raw material powder excluding organic fibers. A method for producing a fiber-reinforced cement composite material for casting. 請求項4又は5記載の流込成形用繊維補強セメント複合材料の製造方法において、有機繊維を除く原材料粉体を混練し、次いで水を添加して混練し、その後有機繊維を添加して混練することを特徴とする、流込成形用繊維補強セメント複合材料の製造方法。   6. The method for producing a fiber-reinforced cement composite material for casting according to claim 4 or 5, wherein raw material powder excluding organic fibers is kneaded, then water is added and kneaded, and then organic fibers are added and kneaded. A method for producing a fiber-reinforced cement composite material for casting.
JP2010286846A 2010-12-24 2010-12-24 Fiber-reinforced cement composite material for casting and method for producing the same Active JP5573658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010286846A JP5573658B2 (en) 2010-12-24 2010-12-24 Fiber-reinforced cement composite material for casting and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010286846A JP5573658B2 (en) 2010-12-24 2010-12-24 Fiber-reinforced cement composite material for casting and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012131673A true JP2012131673A (en) 2012-07-12
JP5573658B2 JP5573658B2 (en) 2014-08-20

Family

ID=46647733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010286846A Active JP5573658B2 (en) 2010-12-24 2010-12-24 Fiber-reinforced cement composite material for casting and method for producing the same

Country Status (1)

Country Link
JP (1) JP5573658B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016107577A (en) * 2014-12-10 2016-06-20 新日鐵住金株式会社 Repair method of facility foundation
JP2019116393A (en) * 2017-12-26 2019-07-18 株式会社クラレ Geopolymer molding formed from curable composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663284B1 (en) 2018-12-07 2021-02-03 Evonik Operations GmbH Improved method for the preparation of triacetonamine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141632A (en) * 1995-11-27 1997-06-03 Sekisui Chem Co Ltd Manufacture of cement molded body
JPH11278903A (en) * 1998-03-27 1999-10-12 Sumitomo Osaka Cement Co Ltd Concrete cross section-repairing material
JP2003306367A (en) * 2002-04-11 2003-10-28 Toagosei Co Ltd Composition for repairing reinforced concrete and repairing method using it
JP2004123401A (en) * 2002-09-30 2004-04-22 Kindai Unit Kk Integral-type cement-based mortar composition containing powdery admixture
JP2005314220A (en) * 2004-03-29 2005-11-10 Sumitomo Osaka Cement Co Ltd Polymer cement mortar for tile adhesion
JP2010095406A (en) * 2008-10-17 2010-04-30 Sumitomo Osaka Cement Co Ltd Fiber-reinforced cement composite material and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141632A (en) * 1995-11-27 1997-06-03 Sekisui Chem Co Ltd Manufacture of cement molded body
JPH11278903A (en) * 1998-03-27 1999-10-12 Sumitomo Osaka Cement Co Ltd Concrete cross section-repairing material
JP2003306367A (en) * 2002-04-11 2003-10-28 Toagosei Co Ltd Composition for repairing reinforced concrete and repairing method using it
JP2004123401A (en) * 2002-09-30 2004-04-22 Kindai Unit Kk Integral-type cement-based mortar composition containing powdery admixture
JP2005314220A (en) * 2004-03-29 2005-11-10 Sumitomo Osaka Cement Co Ltd Polymer cement mortar for tile adhesion
JP2010095406A (en) * 2008-10-17 2010-04-30 Sumitomo Osaka Cement Co Ltd Fiber-reinforced cement composite material and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016107577A (en) * 2014-12-10 2016-06-20 新日鐵住金株式会社 Repair method of facility foundation
JP2019116393A (en) * 2017-12-26 2019-07-18 株式会社クラレ Geopolymer molding formed from curable composition
JP7143077B2 (en) 2017-12-26 2022-09-28 株式会社クラレ Geopolymer molded body formed from curable composition

Also Published As

Publication number Publication date
JP5573658B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP6022747B2 (en) High strength mortar composition
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
JP6732404B2 (en) Fiber-reinforced cement composite material and manufacturing method thereof
JP5702608B2 (en) High strength mortar composition
JP5573658B2 (en) Fiber-reinforced cement composite material for casting and method for producing the same
JP2010155755A (en) High inflation lightweight grout mortar composition
JP2007045650A (en) Polymer cement grout material
JP2013256433A (en) Grout material powder composition, cured product of the same, and lining construction method of existing tube
JP2019218224A (en) Polymer cement mortar composition and polymer cement mortar
JP5735288B2 (en) High strength paste composition
JP2009023878A (en) Concrete for repairing cross section, and construction method for repairing cross section of concrete structure using the same
JP5997807B2 (en) High strength mortar composition
JP5399969B2 (en) Slump loss reduction method for expanded concrete
JP5378754B2 (en) Polymer cement composition
JP2007270470A (en) Construction method for repairing/reinforcing concrete structure
JP6591784B2 (en) Construction method for concrete floor structures
KR100814148B1 (en) Concrete composition
JP2004043207A (en) Premix powder for filler for slab track
JP3806420B2 (en) Low strength mortar filler using shirasu
JP5709046B2 (en) Cement composition
JP3471296B2 (en) Manufacturing method of cement slurry
JP3312641B2 (en) One-powder type polymer cement composition for semi-flexible pavement
JP2013082597A (en) Acid-resistant mortar material for dry spraying and manufacturing method therefor
JP5731848B2 (en) High strength paste composition
JP5592807B2 (en) High toughness and high strength mortar composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150