JP2012131480A - Vehicle equipped with air conditioning apparatus - Google Patents

Vehicle equipped with air conditioning apparatus Download PDF

Info

Publication number
JP2012131480A
JP2012131480A JP2011275154A JP2011275154A JP2012131480A JP 2012131480 A JP2012131480 A JP 2012131480A JP 2011275154 A JP2011275154 A JP 2011275154A JP 2011275154 A JP2011275154 A JP 2011275154A JP 2012131480 A JP2012131480 A JP 2012131480A
Authority
JP
Japan
Prior art keywords
heat exchanger
air
heating
vehicle
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011275154A
Other languages
Japanese (ja)
Other versions
JP5942288B2 (en
Inventor
Dirk Schroeder
シュレーダー、ディルク
Hans Hammer
ハンマー、ハンス
Peter Dr Heyl
ハイル、ドクトル・ペーター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Visteon Global Technologies Inc
Original Assignee
Audi AG
Visteon Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG, Visteon Global Technologies Inc filed Critical Audi AG
Publication of JP2012131480A publication Critical patent/JP2012131480A/en
Application granted granted Critical
Publication of JP5942288B2 publication Critical patent/JP5942288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/0073Control systems or circuits characterised by particular algorithms or computational models, e.g. fuzzy logic or dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00828Ventilators, e.g. speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle including an air conditioning apparatus, which adjusts supplied air (I) flowing in a vehicle inside (2), and includes a heat exchanger (8) for heating which is thermally joined to a drive engine or the like through a cooling circulation system (13), and an auxiliary heat exchanger (7) connected to a refrigerant circulation system together with a compressor (3), wherein the compressor can be adjusted by an adjustment device (37) in response to setting (Qsoll) on a user side, and the auxiliary heat exchanger (7) operates as a condenser in a heating operation mode and emits heat to the supplied air (I) together with the heat exchanger for heating (8) to improve adjustment accuracy of the air conditioning apparatus.SOLUTION: The adjustment device (37) includes an evaluation unit (38). The evaluation unit compares a target heat supply amount (Qsoll) corresponding to setting on the user side and a calculated actual heat supply amount (Qist). The adjustment device (37) derives an adjustment amount (Y) for controlling the compressor (3) based on the comparison.

Description

本発明は、請求項1の前提部に係る空調設備を備えた車両、及びこうした車両における請求項10に係る空調設備の運転方法に関する。   The present invention relates to a vehicle equipped with an air conditioner according to the premise of claim 1 and a method for operating the air conditioner according to claim 10 in such a vehicle.

車両室内を暖房するため、例えば冷却循環系を介して内燃機関の排熱が送り込まれる暖房用熱交換器を用いて、車両室内に流入する供給空気を温めることができる。近年の車両においては、駆動機関での排熱はごくわずかしか発生しないので、通常は、暖房用熱交換器に、必要な熱出力の総量との差を補うことができる補助加熱器が添設されている。この補助加熱器は様々な形で実施することができ、例えばPTC加熱素子として実施することができる。   In order to heat the vehicle interior, the supply air flowing into the vehicle interior can be warmed by using, for example, a heating heat exchanger to which exhaust heat of the internal combustion engine is sent via a cooling circulation system. In recent vehicles, only a small amount of exhaust heat is generated in the drive engine, so an auxiliary heater that can compensate for the difference from the total required heat output is usually added to the heat exchanger for heating. Has been. This auxiliary heater can be implemented in various ways, for example as a PTC heating element.

特許文献1において知られているような、一般的な空調設備を備えた車両では、補助加熱器を空調設備の冷媒循環系に接続することができる。補助加熱器は空調設備の暖房運転モードでは凝縮器として動作することができ、暖房用熱交換器と共に供給空気へ熱を放出することができる。この空調設備は、ユーザ側の設定に応じて冷媒循環系を調節する調節装置を備えている。   In a vehicle equipped with a general air conditioning facility as known in Patent Document 1, the auxiliary heater can be connected to the refrigerant circulation system of the air conditioning facility. The auxiliary heater can operate as a condenser in the heating operation mode of the air conditioning equipment, and can release heat to the supply air together with the heating heat exchanger. This air conditioning equipment includes an adjusting device that adjusts the refrigerant circulation system in accordance with the setting on the user side.

独国特許出願公開10346827号明細書German Patent Application Publication No. 10346827

本発明の課題は、冷媒循環系を簡単により高い調節精度で調節できる、空調設備を備えた車両、及び空調設備の運転方法を提供することである。   The subject of this invention is providing the vehicle provided with the air conditioning equipment which can adjust a refrigerant | coolant circulation system with a higher adjustment precision easily, and the operating method of an air conditioning equipment.

この課題は請求項1または請求項10の特徴によって解決される。本発明のより好ましい実施形態は従属請求項に開示されている。
請求項1の特徴部分によれば、調節装置は評価ユニットを備えており、この評価ユニットで、ユーザ側の設定に対応している目標熱供給量と、算出された実際の熱供給量との比較が行われる。この比較に基づき、調節装置が、圧縮器を制御するための調節量を導き出す。好ましくは、供給空気のパラメータのみを使用して実際の熱供給量を算出するようにできる。これにより、測定が困難な冷却循環系のパラメータや冷媒循環系のパラメータの検出を省略することができる。
This problem is solved by the features of claim 1 or claim 10. More preferred embodiments of the invention are disclosed in the dependent claims.
According to the characteristic part of claim 1, the adjusting device includes an evaluation unit, in which the target heat supply amount corresponding to the setting on the user side and the calculated actual heat supply amount are calculated. A comparison is made. Based on this comparison, the adjustment device derives an adjustment amount for controlling the compressor. Preferably, the actual heat supply can be calculated using only the parameters of the supply air. Thereby, it is possible to omit detection of a cooling circulation system parameter and a refrigerant circulation system parameter that are difficult to measure.

上記のような調節の主要目的は、発生する熱出力を少なくとも従来の補助加熱器(例えばPTC素子)と同等にすることである。ただしそうしたPTC補助加熱器とは異なり、本発明による補助熱交換器は、はるかにより高い効率で運転することができ、すなわち本発明によれば、従来の設計思想による補助加熱器より動力源エネルギーの使用がかなり少なくなる。   The main purpose of the adjustment as described above is to make the generated heat output at least equivalent to that of a conventional auxiliary heater (eg PTC element). However, unlike such PTC auxiliary heaters, the auxiliary heat exchanger according to the present invention can be operated with much higher efficiency, i.e., according to the present invention, the power source energy of the auxiliary heater according to the conventional design concept is higher than that of the auxiliary heater. Use is considerably less.

本発明による冷媒循環系のヒートポンプの使用例では、各実施形態次第ではすぐに「過剰加熱する」設計となりうる。ここで、出力値はエネルギー消費に正比例して上昇するので、予め設定された出力限界でのヒートポンプの運転を保証するよう調節するという設計が実現可能である。その際に好ましいのは、従来のPTC補助加熱器に比べて明らかに大きな熱出力が補助熱交換器によって達成できるように、調節装置で調整可能な圧縮器の最大出力が設定されていることである。   In the use case of the refrigerant circulation system heat pump according to the present invention, depending on each embodiment, the design can be “overheated” immediately. Here, since the output value increases in direct proportion to the energy consumption, it is possible to realize a design in which adjustment is performed so as to guarantee the operation of the heat pump at a preset output limit. In this case, it is preferable that the maximum output of the compressor, which can be adjusted by the adjusting device, is set so that an obviously large heat output can be achieved by the auxiliary heat exchanger compared to the conventional PTC auxiliary heater. is there.

実際の熱供給量を算出するために、補助熱交換器および暖房用熱交換器から成る集合熱源の空気流入温度および空気流出温度を検出する温度センサを設置することができる。両方の温度センサは、好ましくは、それぞれ集合熱源の下流および上流に配置することができる。   In order to calculate the actual heat supply amount, a temperature sensor for detecting the air inflow temperature and the air outflow temperature of the collective heat source including the auxiliary heat exchanger and the heating heat exchanger can be installed. Both temperature sensors can preferably be arranged downstream and upstream of the collecting heat source, respectively.

これに加え評価ユニットには、集合熱源を通過する供給空気の実際の空気質量流量を検出する測定ユニットが添設されている。供給空気の空気質量流量の検出は、専用の測定素子を用いて行うことができる。しかしながら好ましいのは、供給空気の空気質量流量を既設機器の構成要素の運転パラメータに基づいて間接的に算出することである。すなわち所定の通気構造では、供給空気の流路内に、詳しくは集合熱源の上流に、この空気質量流量を調整するための気流フラップおよび送風器を設けることができる。この気流フラップにより、集合熱源を通って流れる供給空気の空気質量流量、または集合熱源の傍らを通って流れるバイパス空気流を、フラップ位置に応じて調整することができる。   In addition, the evaluation unit is provided with a measurement unit that detects the actual air mass flow rate of the supply air that passes through the collective heat source. Detection of the air mass flow rate of the supply air can be performed using a dedicated measuring element. However, it is preferable to indirectly calculate the air mass flow rate of the supply air based on the operating parameters of the components of the existing equipment. That is, in a predetermined ventilation structure, an air flow flap and a blower for adjusting the air mass flow rate can be provided in the flow path of the supply air, specifically upstream of the collective heat source. With this airflow flap, the air mass flow rate of the supply air flowing through the collective heat source or the bypass air flow flowing beside the collective heat source can be adjusted according to the flap position.

この構成において、測定ユニットは、送風器の電気出力および気流フラップのフラップ位置に基づいて供給空気の空気質量流量を割り出すことができる。この目的のために、測定ユニット内には、送風器出力とフラップ位置とから成る値のペアを入力することで空気質量流量が得られ、その空気質量流量を読み出すことができる特性テーブルを格納することができる。この特性テーブルは、試験に基づいて実験的に定めることができる。   In this configuration, the measurement unit can determine the air mass flow rate of the supply air based on the electrical output of the blower and the flap position of the airflow flap. For this purpose, a characteristic table is stored in the measurement unit, where the air mass flow rate can be obtained by inputting a pair of values consisting of the blower output and the flap position, and the air mass flow rate can be read out. be able to. This characteristic table can be determined experimentally based on tests.

空調ユニットは、集合熱源の上流に蒸発器を備えることができ、この蒸発器は補助熱交換器と共に冷媒循環系に接続されている。暖房運転モードを実施する場合、冷媒循環系の構成要素は、例えば蒸発器が停止している一方で補助熱交換器だけが凝縮器として動作するように制御することができる。これに対し冷房運転モードでは、補助熱交換器が停止しており、その一方で蒸発器が供給空気から熱を吸収する。   The air conditioning unit may include an evaporator upstream of the collective heat source, and the evaporator is connected to the refrigerant circulation system together with the auxiliary heat exchanger. When implementing the heating operation mode, the components of the refrigerant circulation system can be controlled so that, for example, only the auxiliary heat exchanger operates as a condenser while the evaporator is stopped. In contrast, in the cooling operation mode, the auxiliary heat exchanger is stopped, while the evaporator absorbs heat from the supply air.

冷房運転モードにおいて冷媒循環系を調節するために、蒸発器には、蒸発器温度を検出する温度センサを添設させることができる。この温度センサは、好ましくは蒸発器の外側に設置することができる。部品を少なくすることを考慮すると、蒸発器側の温度センサが、蒸発器の温度を検出するだけでなく、暖房運転モードではさらに集合熱源の空気流入温度も検出するという二つの役割を果たすように調整されているのが特に好ましい。   In order to adjust the refrigerant circulation system in the cooling operation mode, the evaporator can be provided with a temperature sensor for detecting the evaporator temperature. This temperature sensor can preferably be installed outside the evaporator. In consideration of reducing the number of components, the temperature sensor on the evaporator side not only detects the temperature of the evaporator, but also plays the role of detecting the air inflow temperature of the collective heat source in the heating operation mode. It is particularly preferred that it is adjusted.

以下に本発明の例示的実施形態を、添付の図面に基づいて説明する。   Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

暖房運転モード実施時の自動車の空調設備の回路図。The circuit diagram of the air-conditioning equipment of the motor vehicle at the time of heating operation mode implementation. 冷房運転モード実施時の空調設備の図1に対応した図。The figure corresponding to FIG. 1 of the air-conditioning equipment at the time of cooling operation mode implementation.

図1および図2には、自動車室内2を冷房または暖房することができる、自動車の空調設備が示されている。図1により、自動車室内2を暖房するための暖房運転モードが示されており、冷媒が流れる部分は、暖房運転モードでは停止している部分より太い線で強調されている。すなわち、冷媒は圧縮器3から3/2方弁5を通って第1の高圧配管6内に案内され、この第1の高圧配管は、矢印方向においては第1の熱交換器7まで延びている。第1の熱交換器7は、空気ダクト内における破線で示した空調ユニット9内に配置されており、この空気ダクトを通って供給空気Iが自動車室内2に送り込まれる。   FIG. 1 and FIG. 2 show an automobile air conditioning system that can cool or heat the automobile cabin 2. FIG. 1 shows a heating operation mode for heating the vehicle interior 2, and a portion where the refrigerant flows is emphasized by a thicker line than a portion where the refrigerant is stopped in the heating operation mode. That is, the refrigerant is guided from the compressor 3 through the 3 / 2-way valve 5 into the first high-pressure pipe 6, and the first high-pressure pipe extends to the first heat exchanger 7 in the direction of the arrow. Yes. The first heat exchanger 7 is disposed in the air conditioning unit 9 indicated by a broken line in the air duct, and the supply air I is sent into the vehicle interior 2 through this air duct.

第1の熱交換器7は暖房用熱交換器8と共に集合熱源10を形成しており、この集合熱源を供給空気Iが通過する。その際、暖房用熱交換器8は、破線によって省略的に示す冷却循環系13内に配置されており、この冷却循環系により、図示されていない内燃機関内で生じた排熱を暖房用熱交換器8に送り込むことができる。   The first heat exchanger 7 forms a collective heat source 10 together with the heating heat exchanger 8, and the supply air I passes through the collective heat source. At that time, the heating heat exchanger 8 is disposed in a cooling circulation system 13 which is omitted by a broken line, and exhaust heat generated in an internal combustion engine (not shown) is converted into heating heat by the cooling circulation system. It can be fed into the exchanger 8.

図1に示されているように、凝縮器として動作する補助熱交換器7は、第2の高圧配管11と3/2方弁12と膨張装置15とを経由して、熱交換器17と流体的に結合している。熱交換器17は、暖房運転モードでは周囲空気から熱を奪う蒸発器として動作する。熱交換器17の下流は、低圧配管19により圧縮器3の吸引側まで延びている。ここで、低圧配管19は内部熱交換器21を通って延びており、この内部熱交換器内では高圧側に対し、つまり高圧配管11に対して熱交換を行うことができる。   As shown in FIG. 1, the auxiliary heat exchanger 7 operating as a condenser is connected to the heat exchanger 17 via the second high-pressure pipe 11, the 3 / 2-way valve 12, and the expansion device 15. Fluidly coupled. The heat exchanger 17 operates as an evaporator that removes heat from ambient air in the heating operation mode. A downstream of the heat exchanger 17 extends to the suction side of the compressor 3 by a low pressure pipe 19. Here, the low-pressure pipe 19 extends through the internal heat exchanger 21, and heat exchange can be performed on the high-pressure side, that is, the high-pressure pipe 11 in the internal heat exchanger.

図1から分かるように、空気の流れにおける冷房ユニット9より上流には、空気ダクト部31が配置されている。このダクト部31内には供給空気Iを調整するための送風器33が配置されている。送風器33の下流には分岐部があり、この分岐部では空気ダクトが、バイパス配管34と、供給空気Iを空調ユニット9に送り込む供給管35とに分割されている。分岐部にはさらに温度混合フラップ36が配置されている。フラップ位置に応じて供給管35内の流れ断面積を調整することができる。   As can be seen from FIG. 1, an air duct portion 31 is disposed upstream of the cooling unit 9 in the air flow. A blower 33 for adjusting the supply air I is disposed in the duct portion 31. A branch portion is provided downstream of the blower 33, and the air duct is divided into a bypass pipe 34 and a supply pipe 35 that feeds the supply air I to the air conditioning unit 9. A temperature mixing flap 36 is further arranged at the branch portion. The flow cross-sectional area in the supply pipe 35 can be adjusted according to the flap position.

空調設備を調節するために、調節装置37が設けられており、この調節装置は冷媒循環系をユーザ側の設定に調節する。そのために調節装置37は、圧縮器3を制御する調節信号Yを生成する。調節装置37は、供給空気のパラメータを検出することで調節信号Yを生成する。そのために空調ユニット9内には温度センサ39、40が設置されており、これらの温度センサはそれぞれ集合熱源10の上流および下流に配置されている。この両方のセンサ39、40は、集合熱源10の空気流入温度Teおよび空気流出温度Taを検出する。そして、図1に示されているように、気流フラップ36のその時点での角度位置Wが位置センサ41により検出され、測定ユニット42、43に送られる。   In order to adjust the air conditioning equipment, an adjustment device 37 is provided, and this adjustment device adjusts the refrigerant circulation system to the setting on the user side. For this purpose, the adjusting device 37 generates an adjusting signal Y for controlling the compressor 3. The adjustment device 37 generates the adjustment signal Y by detecting the parameter of the supply air. For this purpose, temperature sensors 39 and 40 are installed in the air conditioning unit 9, and these temperature sensors are arranged upstream and downstream of the collective heat source 10, respectively. Both the sensors 39 and 40 detect the air inflow temperature Te and the air outflow temperature Ta of the collective heat source 10. Then, as shown in FIG. 1, the current angular position W of the airflow flap 36 is detected by the position sensor 41 and sent to the measurement units 42 and 43.

気流フラップ36の角度位置Wに加え、送風器出力と相関関係にある送風器33の電圧Uも検出され、測定ユニット42、43に転送される。測定ユニットのプログラムモジュール42内には、角度位置Wおよび送風器電圧Uを入力することでその時点での供給空気Iの空気質量流量を読み出すことができる特性テーブルが格納されている。このプログラムモジュール42は他のプログラムモジュール43と信号を通信しており、この他のプログラムモジュール43は、空気流入温度と空気流出温度の温度差および測定された空気質量流量mに基づき実際の熱供給量Qistを算出する。算出された実際の熱供給量Qistは、調節装置37の評価ユニット38によって、ユーザ側の設定に対応している目標熱供給量Qsollと比較することができる。制御機構37はこの比較を基に、圧縮器3を制御するための調節信号Yを生成することができる。 In addition to the angular position W of the airflow flap 36, a voltage U G blower 33 is correlated with the blower output is also detected and transferred to the measuring unit 42, 43. The program module 42 of the measurement unit, characteristic table can be read air mass flow rate of the supply air I at that time by entering the angular position W and blower voltage U G is stored. This program module 42 communicates signals with other program modules 43, which are responsible for the actual heat supply based on the temperature difference between the air inflow temperature and the air outflow temperature and the measured air mass flow rate m. The quantity Qist is calculated. The calculated actual heat supply amount Qist can be compared with the target heat supply amount Qsoll corresponding to the setting on the user side by the evaluation unit 38 of the adjusting device 37. Based on this comparison, the control mechanism 37 can generate an adjustment signal Y for controlling the compressor 3.

従来のPTC補助加熱器に比べると、本発明による補助熱交換器7は、圧縮器3を適切に制御することで、従来のPTC加熱素子の熱出力をはるかに上回ることができる。これによりはるかに高いレベルの快適さを顧客に提供することができる。その一方で、圧縮器3の出力上限が所定の上限となるよう調節すれば、従来において保証されていた室内の快適さを保つこともできる。   Compared to the conventional PTC auxiliary heater, the auxiliary heat exchanger 7 according to the present invention can far exceed the heat output of the conventional PTC heating element by appropriately controlling the compressor 3. This can provide customers with a much higher level of comfort. On the other hand, if the output upper limit of the compressor 3 is adjusted to be a predetermined upper limit, the indoor comfort guaranteed in the past can be maintained.

図2には空調設備の冷房運転モードが図示されており、冷媒が流れる配管が太い線で強調されている。冷房運転モードでは、3/2方弁5が、空調ユニット9内の第1の熱交換器7に至る配管6を圧縮器3の下流で遮断し、その一方で配管19に至る中間配管23を開放する。配管19への分岐部では、熱交換器17とは反対側の遮断弁25が閉じた状態になっており、これにより冷媒を熱交換器17に通して流すことができ、この熱交換器は冷房運転モードでは凝縮器として周囲の空気に熱を放出する。   FIG. 2 shows the cooling operation mode of the air conditioning equipment, and the piping through which the refrigerant flows is highlighted with a thick line. In the cooling operation mode, the 3 / 2-way valve 5 shuts off the pipe 6 that reaches the first heat exchanger 7 in the air conditioning unit 9 downstream of the compressor 3, while the intermediate pipe 23 that reaches the pipe 19 is disconnected. Open. At the branching portion to the pipe 19, the shutoff valve 25 on the opposite side to the heat exchanger 17 is in a closed state, so that the refrigerant can flow through the heat exchanger 17. In the cooling operation mode, heat is released to the surrounding air as a condenser.

そして、冷媒は、膨張装置15に並列に接続された一方向弁27と、内部熱交換器21と、3/2方弁12とを通って、空調ユニット9内の蒸発器29へと導かれる。蒸発器29の上流には空気ダクト部31が配置されている。冷房運転モードでの冷媒循環系の調節は、調節装置37によって、暖房運転モードと類似した方法で行うことができる。図1とは異なり、図2の冷房運転モードでは、蒸発器流入温度と蒸発器流出温度の温度差に基づき、供給空気Iから奪う実際の熱流量を算出することができる。図2においては、蒸発器流入温度が温度センサ45により検出される一方、蒸発器流出温度は温度センサ40により検出される。   The refrigerant is guided to the evaporator 29 in the air conditioning unit 9 through the one-way valve 27 connected in parallel to the expansion device 15, the internal heat exchanger 21, and the 3 / 2-way valve 12. . An air duct portion 31 is disposed upstream of the evaporator 29. Adjustment of the refrigerant circulation system in the cooling operation mode can be performed by the adjustment device 37 in a manner similar to that in the heating operation mode. Unlike FIG. 1, in the cooling operation mode of FIG. 2, the actual heat flow taken from the supply air I can be calculated based on the temperature difference between the evaporator inflow temperature and the evaporator outflow temperature. In FIG. 2, the evaporator inflow temperature is detected by the temperature sensor 45, while the evaporator outflow temperature is detected by the temperature sensor 40.

Claims (10)

車両室内(2)に流れ込む供給空気(I)を調節するための空調設備を備えた車両であって、前記空調設備は、暖房用熱交換器(8)と、補助熱交換器(7)とを具備しており、前記暖房用熱交換器は、冷却循環系(13)を介して駆動機関等と熱的に結合されており、前記補助熱交換器は、圧縮器(3)と共に冷媒循環系に接続されており、前記圧縮器は、調節装置(37)によってユーザ側の設定(Qsoll)に応じて調節可能であり、前記補助熱交換器(7)が、暖房運転モードでは凝縮器として動作し前記暖房用熱交換器(8)と共に供給空気(I)へ熱を放出する車両において、
前記調節装置(37)が評価ユニット(38)を備えており、
前記評価ユニットでは、ユーザ側の設定に対応した目標熱供給量(Qsoll)と算出された実際の熱供給量(Qist)との比較が行われ、
前記調節装置(37)が、前記比較に基づき、前記圧縮器(3)を制御するための調節量(Y)を導出すること
を特徴とする車両。
A vehicle provided with an air conditioning facility for adjusting the supply air (I) flowing into the vehicle compartment (2), the air conditioning facility comprising a heating heat exchanger (8), an auxiliary heat exchanger (7), The heating heat exchanger is thermally coupled to a drive engine or the like via a cooling circulation system (13), and the auxiliary heat exchanger is configured to circulate refrigerant together with the compressor (3). Connected to the system, the compressor can be adjusted according to the setting (Qsoll) on the user side by the adjusting device (37), and the auxiliary heat exchanger (7) serves as a condenser in the heating operation mode. In a vehicle that operates and releases heat to the supply air (I) together with the heating heat exchanger (8),
The adjusting device (37) comprises an evaluation unit (38);
In the evaluation unit, the target heat supply amount (Qsoll) corresponding to the setting on the user side is compared with the calculated actual heat supply amount (Qist),
The vehicle characterized in that the adjustment device (37) derives an adjustment amount (Y) for controlling the compressor (3) based on the comparison.
前記補助熱交換器(7)による熱出力が、従来の補助加熱器、例えばPTC加熱素子に比べてはるかに大きく調整できるよう、前記調節装置(37)によって調整可能な前記圧縮器(3)の最大出力が設定されていることを特徴とする請求項1に記載の車両。   Of the compressor (3) adjustable by the adjusting device (37) so that the heat output by the auxiliary heat exchanger (7) can be adjusted much larger than that of a conventional auxiliary heater, for example a PTC heating element. The vehicle according to claim 1, wherein a maximum output is set. 実際の熱供給量(Qist)の算出が、供給空気(I)のパラメータ(m、Ta、Te)だけで行われることを特徴とする請求項1または請求項2に記載の車両。   3. The vehicle according to claim 1, wherein the actual heat supply amount (Qist) is calculated only by parameters (m, Ta, Te) of the supply air (I). 実際の熱供給量(Qist)を算出するために、前記補助熱交換器(7)および前記暖房用熱交換器(8)から成る集合熱源(10)の空気流入温度(Te)および空気流出温度(Ta)を検出する温度センサ(39、40)が設けられていることを特徴とする請求項1、請求項2、または請求項3に記載の車両。   In order to calculate the actual heat supply amount (Qist), the air inflow temperature (Te) and the air outflow temperature of the collective heat source (10) comprising the auxiliary heat exchanger (7) and the heating heat exchanger (8) The vehicle according to claim 1, 2 or 3, wherein a temperature sensor (39, 40) for detecting (Ta) is provided. 前記評価ユニット(38)には、実際の熱供給量(Qist)を算出するために供給空気(I)の空気質量流量(m)を測定する測定ユニット(42、43)が添設されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載の車両。   The evaluation unit (38) is provided with measurement units (42, 43) for measuring the air mass flow rate (m) of the supply air (I) in order to calculate the actual heat supply amount (Qist). The vehicle according to any one of claims 1 to 4, characterized in that: 暖房用熱交換器(8)および補助熱交換器(7)から成る集合熱源(10)の上流に、空気質量流量(m)を調整するための気流フラップ(36)および送風器(33)が設けられており、前記気流フラップおよび前記送風器により、供給空気(I)の流れ断面積および流速を調整できることを特徴とする請求項1ないし請求項5のいずれか1項に記載の車両。   An airflow flap (36) and a blower (33) for adjusting the air mass flow rate (m) are arranged upstream of the collective heat source (10) including the heating heat exchanger (8) and the auxiliary heat exchanger (7). The vehicle according to any one of claims 1 to 5, wherein the vehicle is provided, and the flow cross-sectional area and flow velocity of the supply air (I) can be adjusted by the airflow flap and the blower. 暖房用熱交換器(8)および補助熱交換器(7)から成る集合熱源(10)の上流に、空気質量流量(m)を調整するための気流フラップ(36)および送風器(33)が設けられており、
前記測定ユニット(42、43)が、前記送風器の電気出力もしくはそれに相関する送風器パラメータ(U)および前記気流フラップ(36)のフラップ位置(W)に基づいて空気質量流量(m)を割り出すことを特徴とする請求項5に記載の車両。
An airflow flap (36) and a blower (33) for adjusting the air mass flow rate (m) are arranged upstream of the collective heat source (10) including the heating heat exchanger (8) and the auxiliary heat exchanger (7). Provided,
Wherein the measuring unit (42, 43), the air mass flow (m) on the basis of the flap position (W) blower parameters that correlate to the electrical output or that of the blower (U G) and the air flow flap (36) The vehicle according to claim 5, wherein the vehicle is determined.
空調ユニット(9)が、集合熱源(10)の上流に蒸発器(29)を備えており、前記蒸発器が前記補助熱交換器(7)と共に冷媒循環系に接続されており、前記蒸発器(29)が、特に暖房運転モードでは停止しており、前記補助熱交換器(7)が停止している冷房運転モードでは供給空気(I)から熱を吸収することを特徴とする請求項1ないし請求項7のいずれか1項に記載の車両。   The air conditioning unit (9) includes an evaporator (29) upstream of the collective heat source (10), and the evaporator is connected to a refrigerant circulation system together with the auxiliary heat exchanger (7). (29) is stopped particularly in the heating operation mode, and absorbs heat from the supplied air (I) in the cooling operation mode in which the auxiliary heat exchanger (7) is stopped. The vehicle according to claim 7. 前記蒸発器(29)には、冷房運転モードでの蒸発器温度(T)を検出する温度センサ(40)が添設されており、前記温度センサ(40)が暖房運転モードでは集合熱源(10)の空気流入温度(Te)を検出することを特徴とする請求項8に記載の車両。 The evaporator (29) is provided with a temperature sensor (40) for detecting the evaporator temperature (T V ) in the cooling operation mode, and the temperature sensor (40) is a collective heat source (in the heating operation mode). 10. The vehicle according to claim 8, wherein the air inflow temperature (Te) of 10) is detected. 請求項1ないし請求項9のいずれか1項に記載の車両の空調設備の運転方法。
The driving method of the air conditioning equipment for a vehicle according to any one of claims 1 to 9.
JP2011275154A 2010-12-17 2011-12-16 Vehicle with air conditioning Active JP5942288B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010054957.6 2010-12-17
DE102010054957A DE102010054957A1 (en) 2010-12-17 2010-12-17 Vehicle for use with air conditioner for conditioning supply air flowing in vehicle interior, has heat exchanger, which is coupled with drive unit thermally over coolant circuit

Publications (2)

Publication Number Publication Date
JP2012131480A true JP2012131480A (en) 2012-07-12
JP5942288B2 JP5942288B2 (en) 2016-06-29

Family

ID=46512088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275154A Active JP5942288B2 (en) 2010-12-17 2011-12-16 Vehicle with air conditioning

Country Status (3)

Country Link
US (1) US20120318000A1 (en)
JP (1) JP5942288B2 (en)
DE (1) DE102010054957A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121823A (en) * 2014-12-24 2016-07-07 株式会社デンソー Refrigeration cycle apparatus
JP2020510580A (en) * 2017-03-13 2020-04-09 アウディ アクチェンゲゼルシャフトAudi Ag A vehicle cooling system including a refrigerant circuit operable as a cooling circuit for AC operation and operable as a heat pump circuit for heating operation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014003908B4 (en) 2014-03-19 2015-10-15 Audi Ag Vehicle air conditioning with a refrigerant circuit
DE102016002429B4 (en) 2016-03-01 2022-09-08 Audi Ag Method for determining the air mass flow of an air flow for air conditioning and vehicle with it
DE102018114762B4 (en) * 2017-07-10 2023-12-28 Hanon Systems Method for operating an air conditioning system in a motor vehicle
DE102017211891A1 (en) * 2017-07-12 2019-01-17 Audi Ag Valve arrangement for a refrigerant circuit

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229333A (en) * 1991-12-27 1993-09-07 Nissan Motor Co Ltd Heat pump type air-conditioning device for vehicle
JPH05229334A (en) * 1991-12-27 1993-09-07 Nippondenso Co Ltd Airconditioner
JPH06191253A (en) * 1992-12-24 1994-07-12 Nippondenso Co Ltd Air conditioner for vehicle
JPH11170848A (en) * 1997-12-16 1999-06-29 Nissan Motor Co Ltd Air conditioner for hybrid type vehicle
JPH11334354A (en) * 1998-05-27 1999-12-07 Zexel:Kk Air conditioner for vehicle
US6118099A (en) * 1998-11-12 2000-09-12 Daimlerchrysler Corporation Controller for heating in reversible air conditioning and heat pump HVAC system for electric vehicles
JP2002283840A (en) * 2001-01-18 2002-10-03 Denso Corp Vapor-compression refrigeration cycle
JP2003127632A (en) * 2001-10-29 2003-05-08 Denso Corp Air conditioner for vehicle
JP2004028421A (en) * 2002-06-25 2004-01-29 Shinwa Controls Co Ltd Industrial air conditioner
JP2008296646A (en) * 2007-05-29 2008-12-11 Toyota Motor Corp Air conditioning control device for hybrid vehicle
JP2009149288A (en) * 2007-11-28 2009-07-09 Nissan Motor Co Ltd Vehicular air conditioner
JP2010223488A (en) * 2009-03-23 2010-10-07 Osaka Gas Co Ltd Ventilation type heating terminal device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237463B2 (en) * 1995-05-17 2001-12-10 松下電器産業株式会社 Air conditioning controller for electric vehicles
DE69720727T2 (en) * 1997-10-31 2003-11-06 Calsonic Kansei Corp Vehicle air conditioning
JPH11235919A (en) * 1998-02-20 1999-08-31 Calsonic Corp Air conditioner for heat pump type automobile
JP4465903B2 (en) * 2000-04-28 2010-05-26 株式会社デンソー Air conditioner for vehicles
DE10047710C1 (en) * 2000-09-25 2002-06-06 Behr Hella Thermocontrol Gmbh Regulation of the heating and cooling capacity in vehicle air conditioning
EP1344667B1 (en) * 2002-03-15 2006-01-04 Calsonic Kansei Corporation Vehicle air conditioning apparatus
DE10346827B4 (en) 2003-10-06 2017-07-13 Mahle International Gmbh Method for regulating the air temperature of a motor vehicle air conditioning system with auxiliary heating function

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229333A (en) * 1991-12-27 1993-09-07 Nissan Motor Co Ltd Heat pump type air-conditioning device for vehicle
JPH05229334A (en) * 1991-12-27 1993-09-07 Nippondenso Co Ltd Airconditioner
JPH06191253A (en) * 1992-12-24 1994-07-12 Nippondenso Co Ltd Air conditioner for vehicle
JPH11170848A (en) * 1997-12-16 1999-06-29 Nissan Motor Co Ltd Air conditioner for hybrid type vehicle
JPH11334354A (en) * 1998-05-27 1999-12-07 Zexel:Kk Air conditioner for vehicle
US6118099A (en) * 1998-11-12 2000-09-12 Daimlerchrysler Corporation Controller for heating in reversible air conditioning and heat pump HVAC system for electric vehicles
JP2002283840A (en) * 2001-01-18 2002-10-03 Denso Corp Vapor-compression refrigeration cycle
JP2003127632A (en) * 2001-10-29 2003-05-08 Denso Corp Air conditioner for vehicle
JP2004028421A (en) * 2002-06-25 2004-01-29 Shinwa Controls Co Ltd Industrial air conditioner
JP2008296646A (en) * 2007-05-29 2008-12-11 Toyota Motor Corp Air conditioning control device for hybrid vehicle
JP2009149288A (en) * 2007-11-28 2009-07-09 Nissan Motor Co Ltd Vehicular air conditioner
JP2010223488A (en) * 2009-03-23 2010-10-07 Osaka Gas Co Ltd Ventilation type heating terminal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121823A (en) * 2014-12-24 2016-07-07 株式会社デンソー Refrigeration cycle apparatus
JP2020510580A (en) * 2017-03-13 2020-04-09 アウディ アクチェンゲゼルシャフトAudi Ag A vehicle cooling system including a refrigerant circuit operable as a cooling circuit for AC operation and operable as a heat pump circuit for heating operation
US11884134B2 (en) 2017-03-13 2024-01-30 Audi Ag Cooling system of a vehicle, comprising a coolant circuit which can be operated as a cooling circuit for an AC operation and as a heat pump circuit for a heating operation

Also Published As

Publication number Publication date
DE102010054957A1 (en) 2012-06-21
JP5942288B2 (en) 2016-06-29
US20120318000A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP5942288B2 (en) Vehicle with air conditioning
US11279205B2 (en) Method for operating a coolant circuit and vehicle air-conditioning system
CN104175833B (en) The control device of vehicle air-conditioning systems
EP1588874B1 (en) Solar radiation compensation method for a vehicle climate control
US20130319029A1 (en) Vehicle thermal system
WO2014002370A1 (en) Vehicle air-conditioning device
CN102307740A (en) Ventilation system for a motor vehicle, method for air conditioning a motor vehicle
US10059168B2 (en) Vehicle air conditioner device
JP2016022899A5 (en)
CN109599605A (en) The temperature control method and humidity control system of on-vehicle battery
JP2009216332A (en) Precision air conditioner
WO2018012098A1 (en) Dust measuring system for vehicles and air-conditioning apparatus for vehicles
JP6075529B2 (en) Air conditioner for idling stop vehicle
KR101659885B1 (en) Air conditioner for vehicle and its control method
JP2013220742A (en) Vehicle air conditioner
KR101824875B1 (en) Air conditioning system for saving heating load
WO2017163687A1 (en) Air conditioning device for vehicle, and air conditioning control method
CN116390863A (en) Refrigerating device with heat pump function for motor vehicle with single low-pressure sensor device
JP2011230659A (en) Air conditioning system for vehicle and control method of the same
JP3750291B2 (en) Air conditioner for vehicles
US20100017038A1 (en) Device For Controlling A Fixed-Capacity Compressor
US20220097476A1 (en) Control device and control method
KR102615343B1 (en) Electric vehicle air conditioning system and its control method
JP7363721B2 (en) Vehicle air conditioning control device
JP7047740B2 (en) Air conditioner for fuel cell vehicles

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R150 Certificate of patent or registration of utility model

Ref document number: 5942288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250