JP2012130192A - Inner tube, method of passing inner tube into external piping, and piping structure - Google Patents

Inner tube, method of passing inner tube into external piping, and piping structure Download PDF

Info

Publication number
JP2012130192A
JP2012130192A JP2010280778A JP2010280778A JP2012130192A JP 2012130192 A JP2012130192 A JP 2012130192A JP 2010280778 A JP2010280778 A JP 2010280778A JP 2010280778 A JP2010280778 A JP 2010280778A JP 2012130192 A JP2012130192 A JP 2012130192A
Authority
JP
Japan
Prior art keywords
pipe
inner pipe
width
trough
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010280778A
Other languages
Japanese (ja)
Inventor
Yuzo Nakajima
裕造 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2010280778A priority Critical patent/JP2012130192A/en
Publication of JP2012130192A publication Critical patent/JP2012130192A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Electric Cable Installation (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inner tube that can be efficiently housed in an outer tube and can resist earth pressure.SOLUTION: An inner tube 1 is a flexible resin tube body. The inner tube 1 has crest portions 3 and trough portions 5 formed axially repeatedly on an outer circumferential region. The crest portions 3 and the trough portions 5 are formed independently in the axial direction of the inner tube 1. The crest portions 3 have an end width narrower than a bottom width of the trough portions 5. Since the crest portions 3 have a height (height relative to the trough portions 5) the same as a depth (depth relative to the crest portions 3) of the trough portions 5, the shape of the crest portions 3 can fit in the shape of the trough portions 5. Specifically, when adjacent inner tubes 1 are juxtaposed with the respective crest portions 3 and trough portions 5 positioned to each other, the crest portions 3 and the trough portions 5 engage with each other. The end (outer circumferential surface) of the crest portions 3 is thus in contact with the bottom (outer circumferential surface) of the trough portions 5.

Description

本発明は、1本のアウター管(外部配管)に複数のインナー管を挿通し、管路を分割することが可能なインナー管、外部配管へのインナー管の挿通方法、および配管構造に関するものである。   The present invention relates to an inner pipe capable of inserting a plurality of inner pipes into one outer pipe (external pipe) and dividing the pipe, a method for inserting the inner pipe into the external pipe, and a pipe structure. is there.

従来、地中にケーブルを埋設敷設する際には、1本の外部配管の内部に複数のインナー管を敷設し、内部のインナー管を分割させることで、管路を分岐させることが可能となる。   Conventionally, when a cable is buried and laid in the ground, a plurality of inner pipes are laid in one external pipe, and the inner pipe can be divided to branch the pipe. .

このようなインナー管は、ハンドホール等から地中に埋設された外部管路材の内部に複数配置され、可撓性を持たせるために、樹脂製の波付き管が用いられる場合がある(例えば特許文献1)。   A plurality of such inner pipes are arranged inside an external pipe line material buried in the ground through a hand hole or the like, and a resin corrugated pipe may be used to give flexibility ( For example, Patent Document 1).

特開2000−134780号公報JP 2000-134780 A

しかし、インナー管として波付き管を用いた場合、インナー管を外部配管の内部に挿通する際に、インナー管同士の波形状同士が引っ掛かるとインナー管の通線作業が困難となるため、通常、波付き管の波形同士が引っ掛からないように、波付き部の山部幅が谷部幅よりも大きく設定される。   However, when a corrugated pipe is used as the inner pipe, when the inner pipe is inserted into the external pipe, if the corrugations between the inner pipes are caught, it is difficult to wire the inner pipe. The crest width of the corrugated portion is set larger than the trough width so that the corrugations of the corrugated tubes are not caught.

一方、外部配管に対するインナー管の収納効率を高めるためには、同一サイズの外部配管に対して、より多くのインナー管を収納する必要がある。しかし、断面におけるインナー管同士の挿通間隔は、インナー管の外径以下にすることはできず限界があった。   On the other hand, in order to increase the storage efficiency of the inner pipe with respect to the external pipe, it is necessary to store a larger number of inner pipes with respect to the external pipe of the same size. However, the insertion interval between the inner tubes in the cross section cannot be less than or equal to the outer diameter of the inner tube, and there is a limit.

また、通常、外部配管は地中に埋設されて用いられるが、内部に挿通されるインナー管には土圧等が付与されていないため、外部配管が腐食や損傷を受けると、内部のインナー管が扁平し、内部のケーブルを十分に保護できなくなる恐れがある。しかしながら、より高い強度のインナー管の使用は、コスト増や、前述した収納効率の低下を招く恐れがある。   In addition, the external pipe is usually buried and used in the ground, but since the earth pressure is not applied to the inner pipe that is inserted inside, if the external pipe is corroded or damaged, the inner pipe May be flattened and the internal cable may not be sufficiently protected. However, the use of a higher strength inner tube may lead to an increase in cost and a decrease in the storage efficiency described above.

本発明は、このような問題に鑑みてなされたもので、外部配管の内部に高い効率で収容可能であり、土圧にも対しても対抗可能なインナー管等を提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide an inner pipe or the like that can be accommodated with high efficiency inside an external pipe, and that can also counteract earth pressure. .

前述した目的を達成するため、第1の発明は、外部配管に挿通されて用いられるインナー管であって、外周部に山部と谷部とが交互に形成される樹脂製の波付き管であり、前記山部の幅が前記谷部の幅よりも小さく、複数のインナー管を隣接させた際に、隣り合うインナー管のそれぞれの山部および谷部が互いに噛み合い、一方のインナー管の前記山部の先端が、他方のインナー管の前記谷部の底部に接触可能であることを特徴とするインナー管である。   In order to achieve the above-mentioned object, the first invention is an inner tube that is inserted into an external pipe and used, and is a resin corrugated pipe in which crests and troughs are alternately formed on the outer periphery. The width of the crest is smaller than the width of the trough, and when a plurality of inner pipes are adjacent to each other, each crest and trough of the adjacent inner pipes mesh with each other, The inner tube is characterized in that the tip of the crest can contact the bottom of the valley of the other inner tube.

軸方向における断面において、前記山部の端部および前記谷部の底部には、それぞれ平坦部が形成され、前記山部の平坦部の幅が、前記谷部の平坦部の幅よりも小さいことが望ましい。   In the cross section in the axial direction, a flat portion is formed at each of the end portion of the peak portion and the bottom portion of the valley portion, and the width of the flat portion of the peak portion is smaller than the width of the flat portion of the valley portion. Is desirable.

前記山部の端部には凹部が形成され、前記谷部の底部には凸部が形成され、隣り合うインナー管同士の前記山部と前記谷部とを噛み合わせた際に、前記凸部が前記凹部に嵌り込むことが可能であってもよい。   A concave portion is formed at the end portion of the peak portion, and a convex portion is formed at the bottom portion of the valley portion, and the convex portion is formed when the peak portion and the valley portion of adjacent inner pipes are engaged with each other. It may be possible to fit into the recess.

第1の発明によれば、隣接するインナー管同士の外周の山部と谷部とが互いに噛み合うことが可能であるため、複数のインナー管の山部における外周同士が接触する場合と比較して、山谷の高さ分だけインナー管同士の距離を近づけることが可能である。したがって、所定の内径の外部配管に挿通可能なインナー管の本数を増やすことが可能である。すなわち、インナー管の設置密度を増やすことが可能である。   According to 1st invention, since the crest and trough of the outer periphery of adjacent inner pipes can mutually mesh, compared with the case where the outer peripheries in the crests of a plurality of inner pipes contact each other. It is possible to reduce the distance between the inner tubes by the height of the mountain valley. Therefore, it is possible to increase the number of inner pipes that can be inserted into an external pipe having a predetermined inner diameter. That is, the installation density of the inner pipe can be increased.

また、山部の端部と谷部の底部とが接触するため、インナー管同士の接触面積を増やすことが可能である。このため、複数の管を外管に挿入させた状態において、外管が潰れる方向に力が加わっても、管同士の応力集中が生じにくく、敷設状態のインナー管全体の圧縮強度を高めることができる。また、山部の高さを高くしても、山谷が互いに噛み合うため、断面における無駄なスペースが小さくなる。したがって、山部の高さを高くして土圧に対しても高い強度を確保しつつ、省スペース化を図ることができる。   Moreover, since the edge part of a peak part and the bottom part of a trough part contact, it is possible to increase the contact area of inner pipes. For this reason, in a state where a plurality of tubes are inserted into the outer tube, even if force is applied in the direction in which the outer tube is crushed, stress concentration between the tubes hardly occurs, and the compressive strength of the entire inner tube in the laid state can be increased. it can. Moreover, even if the height of the peak portion is increased, the valleys mesh with each other, so that a useless space in the cross section is reduced. Therefore, it is possible to save space while increasing the height of the mountain portion to ensure high strength against earth pressure.

特に、山部の端部と谷部の底部とに平坦部が形成されれば、山部と谷部とを噛み合わせた際に、確実に平坦部同士を接触させることができるため、インナー管の径方向に対する圧縮に対して受圧面積を大きくすることができる。   In particular, if a flat part is formed at the end part of the peak part and the bottom part of the valley part, when the peak part and the valley part are engaged, the flat parts can be reliably brought into contact with each other. The pressure receiving area can be increased with respect to compression in the radial direction.

また、山部と谷部のそれぞれに凹部と凸部を形成することで、インナー管の外径を大きくすることなく圧縮強度をより高めることができる。   Moreover, by forming the recesses and the projections in the peaks and valleys, the compressive strength can be further increased without increasing the outer diameter of the inner tube.

第2の発明は、外部配管へのインナー管の挿通方法であって、前記インナー管は、外周部に山部と谷部とが交互に形成される樹脂製の波付き管であり、前記山部の幅が前記谷部の幅よりも小さく、複数のインナー管を隣接させ、一方のインナー管の前記山部の先端が、他方のインナー管の前記谷部の底部に接触させることで、隣り合うインナー管のそれぞれの山部および谷部を互いに噛み合わせ、互いに噛み合った状態の複数のインナー管束を束ね、一括された前記インナー管束を前記外部配管に挿通することを特徴とする外部配管へのインナー管の挿通方法である。   The second invention is a method of inserting an inner pipe into an external pipe, wherein the inner pipe is a resin corrugated pipe in which crests and troughs are alternately formed on the outer periphery, The width of the part is smaller than the width of the valley part, a plurality of inner pipes are adjacent to each other, and the tip of the peak part of one inner pipe is brought into contact with the bottom part of the valley part of the other inner pipe, thereby The crests and troughs of the matching inner pipes are meshed with each other, a plurality of meshed inner pipe bundles are bundled together, and the bundled inner pipe bundles are inserted into the external pipe. This is an inner tube insertion method.

第3の発明は、配管構造であって、埋設された外部配管と、前記外部配管に挿通された複数のインナー管と、を具備し、前記インナー管は、外周部に山部と谷部とが交互に形成される樹脂製の波付き管であり、前記山部の幅が前記谷部の幅よりも小さく、隣接するインナー管において、一方のインナー管の前記山部の先端が、他方のインナー管の前記谷部の底部に接触することで、隣接するインナー管のそれぞれの山部および谷部が互いに噛み合わさることを特徴とする配管構造である。複数の第1のインナー管に加え、前記第1のインナー管と径の異なる波付管である第2のインナー管が前記外部配管に挿通され、前記第1のインナー管の山部の幅が、前記第2のインナー管の谷部の幅よりも小さく、前記第2のインナー管の山部の幅が、前記第1のインナー管の谷部の幅よりも小さく、前記第1のインナー管の山谷のピッチと、前記第2のインナー管の山谷のピッチとが略同一であり、隣接する第1のインナー管および第2のインナー管の山部と谷部とが互いに噛み合わさってもよい。   3rd invention is a piping structure, Comprising: It embed | buried external piping and the some inner pipe penetrated by the said external piping, The said inner pipe has a peak part and trough part in the outer peripheral part. Is a resin corrugated tube formed alternately, the width of the crest is smaller than the width of the trough, and in the adjacent inner pipe, the tip of the crest of one inner pipe is the other The piping structure is characterized in that the respective crests and troughs of the adjacent inner pipes mesh with each other by contacting the bottom of the trough part of the inner pipe. In addition to the plurality of first inner pipes, a second inner pipe, which is a corrugated pipe having a diameter different from that of the first inner pipe, is inserted into the external pipe, and the width of the peak portion of the first inner pipe is increased. The width of the valley of the second inner pipe is smaller than the width of the valley of the second inner pipe, and the width of the valley of the first inner pipe is smaller than the width of the first inner pipe. The pitch of the peaks and valleys of the second inner pipe and the pitch of the peaks and valleys of the second inner pipe may be substantially the same, and the peaks and valleys of the adjacent first inner pipe and second inner pipe may be engaged with each other. .

第2、第3の発明によれば、インナー管の設置密度が高く、圧縮強度に優れる配管構造を得ることができる。   According to the 2nd and 3rd invention, the installation density of an inner pipe is high and the piping structure which is excellent in compressive strength can be obtained.

本発明によれば、外部配管の内部に高い効率で収容可能であり、土圧にも対しても対抗可能なインナー管等を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the inner pipe | tube etc. which can be accommodated in the inside of external piping with high efficiency, and can also counter against earth pressure can be provided.

インナー管1を示す図。The figure which shows the inner pipe | tube 1. FIG. インナー管1を示す図で、(a)は軸方向断面図、(b)は(a)のA部拡大図。It is a figure which shows the inner pipe | tube 1, (a) is an axial sectional view, (b) is the A section enlarged view of (a). インナー管1同士をかみ合わせる状態を示す図。The figure which shows the state which meshes inner pipes 1 mutually. 複数のインナー管1を外部配管7に挿通した状態を示す図。The figure which shows the state which penetrated the some inner pipe | tube 1 to the external piping 7. FIG. 複数のインナー管を外部配管7に挿通した状態を示す断面図であり、(a)は従来のインナー管1aを用いた場合を示す図、(b)は本発明のインナー管1を用いた場合を示す図。It is sectional drawing which shows the state which penetrated the some inner pipe to the external piping 7, (a) is a figure which shows the case where the conventional inner pipe 1a is used, (b) is the case where the inner pipe 1 of this invention is used FIG. インナー管10を示す図。The figure which shows the inner pipe | tube 10. FIG. インナー管10を示す図で、(a)は軸方向断面図、(b)はインナー管10同士を噛み合わせる状態を示す図。It is a figure which shows the inner pipe | tube 10, (a) is an axial sectional view, (b) is a figure which shows the state which meshes inner pipes 10 mutually. 山部3と谷部5の他の形状を示す図。The figure which shows the other shape of the peak part 3 and the trough part 5. FIG. 複数のインナー管を外部配管7に挿通した状態を示す断面図。Sectional drawing which shows the state which penetrated the some inner pipe | tube to the external piping 7. FIG.

以下、本発明の実施の形態にかかるインナー管1について説明する。図1は、インナー管1を示す図である。インナー管1は、可撓性を有する樹脂製の管体である。インナー管1は、外周部に山部3と谷部5とが軸方向に繰り返し形成される。なお、インナー管1としては、例えばポリエチレン管を使用することができる。   Hereinafter, an inner pipe 1 according to an embodiment of the present invention will be described. FIG. 1 is a view showing an inner pipe 1. The inner tube 1 is a flexible resin tube. The inner pipe 1 has a crest 3 and a trough 5 repeatedly formed in the axial direction on the outer periphery. As the inner pipe 1, for example, a polyethylene pipe can be used.

図2(a)は、インナー管1の軸方向断面であり、図2(b)は図2(a)のA部拡大図である。図2(a)に示すように、山部3および谷部5は、インナー管1の軸方向にそれぞれ独立して形成される。   Fig.2 (a) is an axial cross section of the inner pipe | tube 1, FIG.2 (b) is the A section enlarged view of Fig.2 (a). As shown in FIG. 2A, the crest 3 and the trough 5 are formed independently in the axial direction of the inner tube 1.

山部3および谷部5は、略矩形断面であり、山部5の端部(山部5の外周面における最外部)および谷部5の底部(谷部3の外周面における最内部)に、それぞれ平坦部が形成される。なお、山部3の端部と谷部5の底部とをつなぐ壁部には、わずかにテーパが形成される。   The crest 3 and the trough 5 have a substantially rectangular cross section, and are located at the end of the crest 5 (the outermost part on the outer peripheral surface of the crest 5) and the bottom of the trough 5 (the innermost part on the outer peripheral surface of the trough 3). , Flat portions are formed respectively. In addition, a taper is slightly formed in the wall part which connects the edge part of the peak part 3, and the bottom part of the trough part 5. FIG.

図2(b)に示すように、山部3(の端部)の幅(図中B)は、谷部5(の底部)の幅(図中C)よりも狭い。山部3の高さ(谷部5に対する高さ)は、谷部5の深さ(山部3に対する深さ)と同一であるため、山部3の形状は谷部5の形状に嵌り込むことが可能である。   As shown in FIG. 2B, the width (B in the drawing) of the peak portion 3 (the end portion thereof) is narrower than the width (C in the drawing) of the valley portion 5 (the bottom portion thereof). Since the height of the crest 3 (height with respect to the trough 5) is the same as the depth of the trough 5 (depth with respect to the crest 3), the shape of the crest 3 fits into the shape of the trough 5. It is possible.

図3(a)は、インナー管1同士を隣接させた状態を示す図である。まず、隣り合うインナー管1同士の互いの山部3の位置と谷部5の位置とを合わせて隣接させる。この状態で、図3(b)に示すようにインナー管同士を接触させると、山部3と谷部5とが互いに噛み合う。すなわち、山部3の端部(外周面)が谷部5の底部(外周面)に接触する。   FIG. 3A is a diagram showing a state in which the inner pipes 1 are adjacent to each other. First, the positions of the mountain portions 3 and the valley portions 5 of the adjacent inner pipes 1 are adjacent to each other. In this state, as shown in FIG. 3B, when the inner pipes are brought into contact with each other, the crest 3 and the trough 5 are engaged with each other. That is, the end portion (outer peripheral surface) of the peak portion 3 is in contact with the bottom portion (outer peripheral surface) of the valley portion 5.

なお、インナー管1同士の山部3および谷部5同士を噛み合わせた際に、山部3と谷部5の壁部同士の間には、多少の隙間が形成されることが望ましい。インナー管1同士を噛み合わせた状態でも、可撓性を確保するためである。   Note that when the crests 3 and the troughs 5 of the inner pipes 1 are engaged with each other, it is desirable that a slight gap is formed between the walls of the crests 3 and the troughs 5. This is to ensure flexibility even when the inner tubes 1 are engaged with each other.

図4は、複数のインナー管1が外部配管7に挿通された状態を示す図である。なお、外部配管7としては、金属配管や、図示を省略した波付形状を有する可撓性樹脂配管等を使用することができる。   FIG. 4 is a view showing a state in which a plurality of inner pipes 1 are inserted into the external pipe 7. As the external pipe 7, a metal pipe, a flexible resin pipe having a wavy shape (not shown), or the like can be used.

外部配管7へのインナー管1の挿通作業は、以下のように行われる。まず、複数のインナー管1同士を、前述したように、互いの山部と谷部とが噛み合うように束ねる。この状態で、束ねられた複数のインナー管1同士を、図示を省略したバンドや紐等によって保持する。すなわち、束ねられたインナー管1の両端部を含み、軸方向の所定間隔でバンド等を配置して保持する。   The operation of inserting the inner pipe 1 into the external pipe 7 is performed as follows. First, a plurality of inner pipes 1 are bundled so that their crests and troughs mesh with each other as described above. In this state, the bundled inner pipes 1 are held by a band, a string, or the like that is not shown. That is, the band etc. are arrange | positioned and hold | maintained by the predetermined interval of an axial direction including the both ends of the bundled inner pipe | tube 1.

束ねられて保持された複数のインナー管1は、外部配管7に挿通される。なお、あらかじめ外部配管7を敷設後に、インナー管1を挿通してもよく、外部配管7に複数のインナー管1を挿通後に敷設してもよい。   The plurality of inner pipes 1 held in a bundle are inserted into the external pipe 7. The inner pipe 1 may be inserted after the external pipe 7 is laid in advance, or a plurality of inner pipes 1 may be laid after being inserted into the external pipe 7.

図5は、複数のインナー管が外部配管に挿通された状態における断面の概念図である。従来のインナー管1aは、山部3の端部の幅が谷部5の底部の幅よりも大きい。通常、波付管の形状は、可撓性や製造性の観点から、山部3の外周面の端部の幅と谷部5の内周面の端部の幅が略一致するように設計される。したがって、谷部5の外周面の幅は、山部3の端部の幅に対して肉厚分だけ狭くなる。このようにすることで、山部3と谷部5とが噛み合うことがなく、隣接させて敷設する際にも作業性に優れる。例えば、内径φ24では、山部の外径が32mm、谷部の外径が26mm。内径φ36では、山部の外径が43mm、谷部の外径が38mm程度である。図5のように配管すると、内管をまとめた外径は、波同士が噛み合わないとすると最大で32×2+43=107mmとなるが、噛み合うと32÷2×2+26÷2×2+43=101mmとなり、最大6mm小さくなる。したがって、最大で波付け部の外周の山部と谷部の高さの差2倍程度外管の寸法を小さくすることができる。また、中心に内径φ36を配置して、外周に寸法の小さい内径φ24の管を配置する場合も、管の勘合による外管の波付け管の断面のコンパクト化の程度は、内径の大きい管に当接する内径の小さい管の山部と谷部の高さの差2倍程度になることは変わりない。このように、外管を構成する波付け管がコンパクト化されることで、材料費が減少するだけでなく、工事の際の土砂の掘削量の減少効果も認められる。   FIG. 5 is a conceptual diagram of a cross section in a state where a plurality of inner pipes are inserted into an external pipe. In the conventional inner pipe 1 a, the width of the end portion of the peak portion 3 is larger than the width of the bottom portion of the valley portion 5. Usually, the shape of the corrugated tube is designed so that the width of the end portion of the outer peripheral surface of the peak portion 3 and the width of the end portion of the inner peripheral surface of the valley portion 5 are substantially the same from the viewpoint of flexibility and manufacturability Is done. Therefore, the width of the outer peripheral surface of the valley portion 5 is narrower by the thickness than the width of the end portion of the peak portion 3. By doing in this way, the peak part 3 and the trough part 5 do not mesh, but it is excellent in workability | operativity also when laying adjacently. For example, in the inner diameter φ24, the outer diameter of the peak is 32 mm and the outer diameter of the valley is 26 mm. In the inner diameter φ36, the outer diameter of the crest is 43 mm and the outer diameter of the trough is about 38 mm. When piping as shown in FIG. 5, the outer diameter of the inner pipe is 32 × 2 + 43 = 107 mm at maximum if the waves do not mesh with each other, but when meshed, 32 ÷ 2 × 2 + 26 ÷ 2 × 2 + 43 = 101 mm, The maximum is 6 mm smaller. Therefore, the dimension of the outer tube can be reduced by about twice the difference in height between the crest and trough on the outer periphery of the corrugation. Also, when the inner diameter φ36 is arranged at the center and the small-diameter φ24 pipe is arranged on the outer circumference, the degree of compaction of the cross section of the corrugated pipe of the outer pipe due to the fitting of the pipe can be reduced to The difference between the heights of the crests and troughs of the tube with a small inner diameter that abuts is about double. As described above, the corrugated pipe constituting the outer pipe is made compact, so that not only the material cost is reduced, but also the effect of reducing the excavation amount of earth and sand at the time of construction is recognized.

すなわち、図5(a)に示すように、従来のインナー管1aを用いると、外部配管7aの断面においては、インナー管1a同士は、互いの山部3の端部同士が接触する。すなわち、インナー管1aの配置密度は、山部3の最外径のみよって決定される。   That is, as shown in FIG. 5A, when the conventional inner pipe 1a is used, the ends of the crests 3 of the inner pipes 1a are in contact with each other in the cross section of the external pipe 7a. That is, the arrangement density of the inner pipes 1 a is determined only by the outermost diameter of the peak portion 3.

したがって、必要本数のインナー管1aを挿通するためには、外部配管7aの外径を大きくする必要がある。また、インナー管1aの圧縮強度等を高めようとして、山部3の高さを高くすると、さらに配置密度が小さくなり、より大きな外部配管7aが必要となる。または、所定サイズの外部配管7aに挿通可能なインナー管1aの本数が少なくなる。   Therefore, in order to insert the required number of inner pipes 1a, it is necessary to increase the outer diameter of the external pipe 7a. Further, if the height of the peak portion 3 is increased in order to increase the compressive strength or the like of the inner pipe 1a, the arrangement density is further reduced, and a larger external pipe 7a is required. Alternatively, the number of inner pipes 1a that can be inserted into the external pipe 7a having a predetermined size is reduced.

これに対し、図5(b)に示すように、本発明のインナー管1を用いると、隣り合うインナー管1同士の山部3と谷部5とを互いに噛み合わせることができる。このため、断面において複数本のインナー管1の一部が重なり合う。したがって、インナー管1の外径(山部の外径)のみで配置密度が決まるのではなく、山部3の高さ分だけインナー管1同士の距離を近づけることができる。   On the other hand, as shown in FIG. 5B, when the inner pipe 1 of the present invention is used, the crests 3 and the troughs 5 of the adjacent inner pipes 1 can be engaged with each other. For this reason, some inner pipes 1 overlap in a section. Therefore, the arrangement density is not determined only by the outer diameter of the inner pipe 1 (the outer diameter of the peak portion), but the distance between the inner pipes 1 can be reduced by the height of the peak portion 3.

したがって、従来のインナー管1aと比較して、同一本数のインナー管1を敷設する際に必要な外部配管7の外径を小さくすることができる。または、同一サイズの外部配管7に対して、より多くのインナー管1を挿通することができる。   Therefore, the outer diameter of the external pipe 7 required when laying the same number of inner pipes 1 can be reduced as compared with the conventional inner pipe 1a. Alternatively, more inner pipes 1 can be inserted into the external pipe 7 having the same size.

また、山部3の高さを高くして強度向上を図る場合であっても、従来のインナー管1aと比較して、配置密度の低下は半分で済み、高い配置密度を確保しつつ、強度向上を図ることが可能である。なお、インナー管1を用いることで、インナー管1同士が互いに噛み合うため、1本ずつ外部配管に挿通することは困難である。したがって、前述したように、全インナー管を束ねた状態で保持し、一括して外部配管7に挿通すればよい。   Further, even when the height of the peak portion 3 is increased to improve the strength, the arrangement density can be reduced by half as compared with the conventional inner pipe 1a, and the strength is secured while ensuring a high arrangement density. It is possible to improve. In addition, since the inner pipes 1 mesh with each other by using the inner pipe 1, it is difficult to insert them one by one into the external pipe. Therefore, as described above, all the inner pipes may be held in a bundled state and collectively inserted into the external pipe 7.

以上説明したように、第1の実施の形態によれば、高い敷設効率と高い強度とを両立可能なインナー管を得ることができる。   As described above, according to the first embodiment, it is possible to obtain an inner pipe that can achieve both high laying efficiency and high strength.

次に、第2の実施の形態にかかるインナー管10について説明する。なお、インナー管1と同一の機能を奏する構成については、図1と同様の符号を付し、重複した説明を省略する。インナー管10は、インナー管1と略同様の構成であるが、山部3の端部に凹部11が形成され、谷部5の底部に凸部13が形成される点でインナー管1と異なる。   Next, the inner pipe 10 according to the second embodiment will be described. In addition, about the structure which show | plays the same function as the inner pipe | tube 1, the code | symbol similar to FIG. 1 is attached | subjected and the overlapping description is abbreviate | omitted. The inner tube 10 has substantially the same configuration as the inner tube 1, but differs from the inner tube 1 in that a recess 11 is formed at the end of the peak 3 and a protrusion 13 is formed at the bottom of the valley 5. .

凹部11および凸部13は、インナー管10の周方向に渡って形成される。なお、凹部11および凸部13は、必ずしも山部3および谷部5に1本ずつ形成される必要はなく、それぞれ2本以上形成されてもよい。   The concave portion 11 and the convex portion 13 are formed over the circumferential direction of the inner tube 10. In addition, the recessed part 11 and the convex part 13 do not necessarily need to be formed one each in the peak part 3 and the trough part 5, and may each be formed two or more.

図7(a)は、インナー管10の軸方向断面を示す図である。凹部11および凸部13は、それぞれ略矩形の形状である。ここで、凹部11の底面(山部3の外周面側の端面)の幅(図中D)は、凸部13の端面(谷部5の外周面側の端面)の幅(図中E)よりも大きい。また、凹部11と凸部13とは、互いに対応した形状を有するため、凸部13の形状は、凹部11の形状に対して嵌り込むことが可能である。   FIG. 7A is a diagram showing an axial cross section of the inner tube 10. The concave portion 11 and the convex portion 13 each have a substantially rectangular shape. Here, the width (D in the drawing) of the bottom surface (end surface on the outer peripheral surface side of the peak 3) of the concave portion 11 is the width (E in the drawing) of the end surface (end surface on the outer peripheral surface side of the valley portion 5) of the convex portion 13. Bigger than. Further, since the concave portion 11 and the convex portion 13 have shapes corresponding to each other, the shape of the convex portion 13 can be fitted into the shape of the concave portion 11.

図7(b)は、隣り合うインナー管10を噛み合わせる状態を示す図である。前述の通り、山部3と谷部5とは互いに噛み合うことができる。この際、谷部5の凸部13は、山部3の凹部11に嵌り込む。したがって。山部3の端面と谷部5との底面とを接触させることができる。   FIG. 7B is a diagram illustrating a state in which the adjacent inner pipes 10 are engaged with each other. As described above, the peak portion 3 and the valley portion 5 can mesh with each other. At this time, the convex portion 13 of the valley portion 5 is fitted into the concave portion 11 of the peak portion 3. Therefore. The end surface of the peak portion 3 and the bottom surface of the valley portion 5 can be brought into contact with each other.

なお、凹部11と凸部13とは、図示したような略矩形形状である必要はない。例えば、円弧状や三角形など、互いに嵌り込むことが可能なように対応する形状であればよい。   In addition, the recessed part 11 and the convex part 13 do not need to be a substantially rectangular shape as illustrated. For example, it may be a shape corresponding to an arc shape, a triangle shape, or the like so as to fit each other.

第2の実施形態によれば、第1の実施形態と同様の効果を得ることができる。また、山部3および谷部5にリブ状の凹部11、凸部13がそれぞれ形成されるため、より高い圧縮強度を得ることができる。この際、隣り合うインナー管10同士は互いに噛み合うことができるため、高い配置密度を得ることができる。   According to the second embodiment, an effect similar to that of the first embodiment can be obtained. Moreover, since the rib-shaped recessed part 11 and the convex part 13 are each formed in the peak part 3 and the trough part 5, higher compressive strength can be obtained. At this time, since the adjacent inner tubes 10 can mesh with each other, a high arrangement density can be obtained.

なお、山部3の端面を凹部とすることで、インナー管10自体の外径が山部3の外径よりも大きくならず、また、谷部5の底面を凸部とすることで、インナー管10の最内径が小さくなることがない。   The outer surface of the inner pipe 10 itself does not become larger than the outer diameter of the peak portion 3 by making the end surface of the peak portion 3 a concave portion, and the bottom surface of the valley portion 5 is a convex portion, The innermost diameter of the tube 10 is not reduced.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

例えば、山部3と谷部5の断面形状は、図1等に示したような略矩形である必要はない。図8は、山部3、谷部5の変形例を示す図である。図8に示すように、山部3、谷部5を直線および円弧を組み合わせたような波付形状としてもよい。この場合、直線部と円弧部との境界の幅を、山部3の端面の幅(図中F)および谷部5の底面の幅(図中G)とすればよい。この場合でも、山部3の端面の幅(図中F)よりも谷部5の底面の幅(図中G)を大きくすることで、山部3と谷部5とを互いに噛み合わせることができる。   For example, the cross-sectional shapes of the peak portion 3 and the valley portion 5 do not need to be substantially rectangular as shown in FIG. FIG. 8 is a diagram illustrating a modified example of the peak portion 3 and the valley portion 5. As shown in FIG. 8, the crest 3 and the trough 5 may have a wavy shape in which straight lines and arcs are combined. In this case, the width of the boundary between the straight line portion and the arc portion may be the width of the end face of the peak portion 3 (F in the figure) and the width of the bottom face of the valley portion 5 (G in the figure). Even in this case, the peak portion 3 and the valley portion 5 can be engaged with each other by making the width of the bottom surface of the valley portion 5 (G in the drawing) larger than the width of the end surface of the peak portion 3 (F in the drawing). it can.

以上のように、山部3と谷部5とは、互いに噛み合うことが可能なように、対応する形状であって、かつ、山部3の幅が谷部5の幅よりも狭ければよい。なお、山部3および谷部5が、前述したような平坦部を有さず、また、直線と円弧との境界等がないような正弦波などの場合には、例えば、山部高さの中央における山部の幅を、谷部深さの中央における谷部の幅よりも小さくすればよい。   As described above, the crest 3 and the trough 5 may have a corresponding shape so that they can be engaged with each other, and the crest 3 may be narrower than the trough 5. . In the case of a sine wave or the like in which the crest 3 and the trough 5 do not have a flat portion as described above and there is no boundary between a straight line and an arc, for example, What is necessary is just to make the width | variety of the peak part in the center smaller than the width | variety of the trough part in the center of trough depth.

また、図9に示すように、一つの外部配管7に径の異なる数種類(図では2種類)のインナー管を設けてもよい。図9に示す例では、中央に外径の大きなインナー管1bを配置し、インナー管1bの外周に、複数のインナー管1を配置される。なお、インナー管の配置やサイズは図示した例には限られない。   Moreover, as shown in FIG. 9, you may provide several types (two types in a figure) inner pipe from which a diameter differs in the one external piping 7. As shown in FIG. In the example shown in FIG. 9, an inner tube 1b having a large outer diameter is disposed at the center, and a plurality of inner tubes 1 are disposed on the outer periphery of the inner tube 1b. The arrangement and size of the inner pipe are not limited to the illustrated example.

また、インナー管1bとインナー管1は、外周に山谷が連続して形成される波付管である。インナー管1bの外周の山部の幅は、インナー管1の外周の谷部の幅よりも小さい。同様に、インナー管1の外周の山部の幅は、インナー管1bの外周の谷部の幅よりも小さい。また、インナー管1、1bは同一のピッチの山谷の波形状で形成される。したがって、インナー管1bの山谷形状と、インナー管1の山谷形状とは互いに噛み合うことが可能である。   The inner tube 1b and the inner tube 1 are corrugated tubes in which peaks and valleys are continuously formed on the outer periphery. The width of the outer periphery of the inner tube 1 b is smaller than the width of the valley on the outer periphery of the inner tube 1. Similarly, the width of the outer periphery of the inner tube 1 is smaller than the width of the outer periphery of the inner tube 1b. Further, the inner pipes 1 and 1b are formed in a wave shape of peaks and valleys having the same pitch. Therefore, the peak shape of the inner tube 1b and the peak shape of the inner tube 1 can be engaged with each other.

この場合、インナー管1、1bのそれぞれの山谷深さを略同じとすれば、互いの山部の先端を相手方の谷部の底部と接触させることができる。したがって、外部配管7の圧縮に対しても十分な圧縮強度を確保することができる。   In this case, if the depths of the peaks and valleys of the inner pipes 1 and 1b are substantially the same, the tips of the peaks can be brought into contact with the bottom of the other valley. Therefore, sufficient compressive strength can be secured even for compression of the external pipe 7.

1、1a、1b、10………インナー管
3………山部
5………谷部
7。7a………外部配管
9………本線保持部
11………凹部
13………凸部
1, 1a, 1b, 10 ......... Inner tube 3 ......... Mountain portion 5 ......... Valley portion 7.7a ......... External piping 9 ......... Main line holding portion 11 ......... Recess portion 13 ......... Protrusion portion

Claims (6)

外部配管に挿通されて用いられるインナー管であって、
外周部に山部と谷部とが交互に形成される樹脂製の波付き管であり、
前記山部の幅が前記谷部の幅よりも小さく、
複数のインナー管を隣接させた際に、隣り合うインナー管のそれぞれの山部および谷部が互いに噛み合い、一方のインナー管の前記山部の先端が、他方のインナー管の前記谷部の底部に接触可能であることを特徴とするインナー管。
An inner pipe that is inserted into an external pipe and used.
A corrugated tube made of resin in which peaks and valleys are alternately formed on the outer periphery,
The width of the peak is smaller than the width of the valley,
When a plurality of inner pipes are adjacent to each other, the crests and valleys of adjacent inner pipes mesh with each other, and the tip of the crest of one inner pipe is in contact with the bottom of the trough of the other inner pipe. An inner tube characterized in that it can be contacted.
軸方向における断面において、前記山部の端部および前記谷部の底部には、それぞれ平坦部が形成され、前記山部の平坦部の幅が、前記谷部の平坦部の幅よりも小さいことを特徴とする請求項1記載のインナー管。   In the cross section in the axial direction, a flat portion is formed at each of the end portion of the peak portion and the bottom portion of the valley portion, and the width of the flat portion of the peak portion is smaller than the width of the flat portion of the valley portion. The inner pipe according to claim 1. 前記山部の端部には凹部が形成され、前記谷部の底部には凸部が形成され、隣り合うインナー管同士の前記山部と前記谷部とを噛み合わせた際に、前記凸部が前記凹部に嵌り込むことが可能であることを特徴とする請求項1または請求項2に記載のインナー管。   A concave portion is formed at the end portion of the peak portion, and a convex portion is formed at the bottom portion of the valley portion, and the convex portion is formed when the peak portion and the valley portion of adjacent inner pipes are engaged with each other. The inner pipe according to claim 1, wherein the inner pipe can be fitted into the recess. 外部配管へのインナー管の挿通方法であって、
前記インナー管は、外周部に山部と谷部とが交互に形成される樹脂製の波付き管であり、前記山部の幅が前記谷部の幅よりも小さく、
複数のインナー管を隣接させ、一方のインナー管の前記山部の先端が、他方のインナー管の前記谷部の底部に接触させることで、隣り合うインナー管のそれぞれの山部および谷部を互いに噛み合わせ、互いに噛み合った状態の複数のインナー管束を束ね、一括された前記インナー管束を前記外部配管に挿通することを特徴とする外部配管へのインナー管の挿通方法。
A method for inserting an inner pipe into an external pipe,
The inner tube is a corrugated tube made of resin in which ridges and valleys are alternately formed on the outer periphery, and the width of the ridges is smaller than the width of the valleys,
A plurality of inner pipes are adjacent to each other, and a tip of the crest of one inner pipe is brought into contact with a bottom of the trough of the other inner pipe, so that each crest and trough of adjacent inner pipes are mutually connected. A method of inserting an inner pipe into an external pipe, characterized in that a plurality of inner pipe bundles that are meshed with each other are bundled, and the bundled inner pipe bundle is inserted into the external pipe.
配管構造であって、
埋設された外部配管と、
前記外部配管に挿通された複数の第1のインナー管と、
を具備し、
前記第1のインナー管は、外周部に山部と谷部とが交互に形成される樹脂製の波付き管であり、前記山部の幅が前記谷部の幅よりも小さく、
隣接する第1のインナー管において、一方の第1のインナー管の前記山部の先端が、他方の第1のインナー管の前記谷部の底部に接触することで、隣接する第1のインナー管のそれぞれの山部および谷部が互いに噛み合わさることを特徴とする配管構造。
A piping structure,
Buried external piping,
A plurality of first inner pipes inserted through the external pipe;
Comprising
The first inner pipe is a resin corrugated pipe in which crests and troughs are alternately formed on the outer periphery, and the crest has a width smaller than the trough,
In the adjacent first inner pipe, the tip of the peak portion of one first inner pipe is in contact with the bottom of the valley portion of the other first inner pipe, so that the adjacent first inner pipe is A piping structure characterized in that each peak portion and trough portion of each other mesh with each other.
複数の第1のインナー管に加え、前記第1のインナー管と径の異なる波付管である第2のインナー管が前記外部配管に挿通され、
前記第1のインナー管の山部の幅が、前記第2のインナー管の谷部の幅よりも小さく、前記第2のインナー管の山部の幅が、前記第1のインナー管の谷部の幅よりも小さく、
前記第1のインナー管の山谷のピッチと、前記第2のインナー管の山谷のピッチとが略同一であり、
隣接する第1のインナー管および第2のインナー管の山部と谷部とが互いに噛み合わさることを特徴とする請求項5記載の配管構造。
In addition to the plurality of first inner pipes, a second inner pipe that is a corrugated pipe having a diameter different from that of the first inner pipe is inserted into the external pipe,
The width of the peak of the first inner pipe is smaller than the width of the valley of the second inner pipe, and the width of the peak of the second inner pipe is the valley of the first inner pipe. Smaller than the width of
The pitch of the valleys of the first inner tube and the pitch of the peaks and valleys of the second inner tube are substantially the same,
6. The piping structure according to claim 5, wherein the crests and troughs of the adjacent first inner pipe and second inner pipe mesh with each other.
JP2010280778A 2010-12-16 2010-12-16 Inner tube, method of passing inner tube into external piping, and piping structure Pending JP2012130192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280778A JP2012130192A (en) 2010-12-16 2010-12-16 Inner tube, method of passing inner tube into external piping, and piping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280778A JP2012130192A (en) 2010-12-16 2010-12-16 Inner tube, method of passing inner tube into external piping, and piping structure

Publications (1)

Publication Number Publication Date
JP2012130192A true JP2012130192A (en) 2012-07-05

Family

ID=46646601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280778A Pending JP2012130192A (en) 2010-12-16 2010-12-16 Inner tube, method of passing inner tube into external piping, and piping structure

Country Status (1)

Country Link
JP (1) JP2012130192A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059940A (en) * 1998-08-18 2000-02-25 Kana Flex Corporation Kk Pipe laying method and pipe unit
JP2000134780A (en) * 1998-10-20 2000-05-12 Tigers Polymer Corp Inner tube fixing device
JP2001200953A (en) * 2000-01-13 2001-07-27 Furukawa Electric Co Ltd:The Porous pipeline and corrugated pipe used therefor
JP2003042347A (en) * 2001-07-27 2003-02-13 Sekisui Chem Co Ltd Corrugated pipe binding body
JP2010223409A (en) * 2009-03-25 2010-10-07 Furukawa Electric Co Ltd:The Corrugated pipe and corrugated pipe connecting structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059940A (en) * 1998-08-18 2000-02-25 Kana Flex Corporation Kk Pipe laying method and pipe unit
JP2000134780A (en) * 1998-10-20 2000-05-12 Tigers Polymer Corp Inner tube fixing device
JP2001200953A (en) * 2000-01-13 2001-07-27 Furukawa Electric Co Ltd:The Porous pipeline and corrugated pipe used therefor
JP2003042347A (en) * 2001-07-27 2003-02-13 Sekisui Chem Co Ltd Corrugated pipe binding body
JP2010223409A (en) * 2009-03-25 2010-10-07 Furukawa Electric Co Ltd:The Corrugated pipe and corrugated pipe connecting structure

Similar Documents

Publication Publication Date Title
RU1831631C (en) Flexible pipe-line
RU2341716C2 (en) Method of threaded pipe joint fatigue strength improvement
RU2518731C2 (en) Connection device
JP4588516B2 (en) Corrugated tube for harness and wire harness using the same
JP2008120415A (en) Tape material for wire harness bundling
AU1107197A (en) Subsea flexible pipe
JP2012130192A (en) Inner tube, method of passing inner tube into external piping, and piping structure
CN116379230B (en) Steel wire braiding reinforced hydraulic rubber hose
JPH0611076A (en) Pressure proof helical corrugated pipe
KR20040049948A (en) Double lay pipe and manufacturing method thereof
CN218456284U (en) High-strength anti-seismic polypropylene (MPP) hexagonal corrugated pipe for power cable conduit
JP2010223409A (en) Corrugated pipe and corrugated pipe connecting structure
JP4413354B2 (en) Perforated pipe and corrugated pipe used therefor
KR930001092Y1 (en) Plastic pipe
KR100673059B1 (en) Plastic pipe and method of making thereof
JPH08270843A (en) Flexible corrugated pipe
CN213637030U (en) Modified polypropylene inner flat wall outer corrugated pipe for communication
JP7273706B2 (en) Corrugated tube
JP2015143570A (en) Piping structure and ribbed corrugated tube
CN216215583U (en) Double-hole SFIP square single-wall corrugated pipe
RU212476U1 (en) Spiral Corrugated Conduit
CN219527733U (en) Polymer pit shaft
KR102364732B1 (en) Cable installing pipe line
JP2016127616A (en) Wiring harness and corrugated tube
JP3927963B2 (en) Expanded graphite knitting yarn and gland packing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106