JP2012127884A - Torque sensor and drive device equipped with the same - Google Patents

Torque sensor and drive device equipped with the same Download PDF

Info

Publication number
JP2012127884A
JP2012127884A JP2010281180A JP2010281180A JP2012127884A JP 2012127884 A JP2012127884 A JP 2012127884A JP 2010281180 A JP2010281180 A JP 2010281180A JP 2010281180 A JP2010281180 A JP 2010281180A JP 2012127884 A JP2012127884 A JP 2012127884A
Authority
JP
Japan
Prior art keywords
groove
strain
torque
axial direction
groove portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010281180A
Other languages
Japanese (ja)
Inventor
Nobuhiro Saito
伸浩 齊藤
Kazunari Kitachi
一成 北地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2010281180A priority Critical patent/JP2012127884A/en
Publication of JP2012127884A publication Critical patent/JP2012127884A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a torque sensor with high stiffness which minimize the decrease of torsion stiffness, and improves detection sensitivity or accuracy.SOLUTION: A torque sensor comprises a strain generating portion 2 having a generally cylindrical shape, inputted driving force at one end in an axial direction and a load at the other end in the axial direction, and transmitting torque with torsion between a driving side and a load side; a groove portion 5 provided on an inner peripheral surface 2a of the strain generating portion 2, and extending from one end side in the axial direction toward the other end side; and a strain detecting portion 4 attached to the groove portion 5, and detecting strain amount corresponding to stress generated in the groove portion 5 by torque input to the strain generating portion 2; and calculates the magnitude of torque acting on the strain generating portion 2 on the basis of the detection result of the strain detecting portion 4. A groove bottom bm and a groove side wall bs for configuring the groove portion 5 on a cross section orthogonal to the axial direction are configured by a curved surface 50, and the groove is formed in a shape which makes stress generating on the groove bottom bm maximum out of stress generating in the groove portion 5 by the torque input on the cross section. The strain detecting portion 4 is attached to an area including the groove bottom bm.

Description

本発明は、検出感度や検出精度を向上させたトルクセンサ及びこれを備えた駆動装置に関する。   The present invention relates to a torque sensor with improved detection sensitivity and detection accuracy, and a drive device including the torque sensor.

従来から、電磁作用により回転駆動するモータ等の駆動装置のシャフトに作用するトルクを検出するトルクセンサが知られている。例えば特許文献1には、駆動装置及び負荷装置のシャフトにそれぞれ接続されるフランジ等の接続部と、接続部同士を連結し駆動側及び負荷側の間で捩りを伴いながらトルク伝達を行う円筒状の起歪部と、起歪部の内周面に軸方向に沿って延びる溝部と、溝部の溝底に貼付されトルク入力によって溝底に生じる応力に対応する歪量を検出する歪みゲージ等の歪検出部とを備え、歪検出部の検出結果に基づいて起歪部に作用するトルクの大きさを算出するトルクセンサが開示されている。   2. Description of the Related Art Conventionally, a torque sensor that detects torque acting on a shaft of a driving device such as a motor that is rotationally driven by electromagnetic action is known. For example, Patent Document 1 discloses a cylindrical shape that transmits torque while connecting a connecting portion such as a flange connected to a shaft of a driving device and a load device, and connecting the connecting portions to each other between the driving side and the load side. Such as a strain gauge that detects the amount of strain corresponding to the stress generated in the groove bottom by torque input, which is affixed to the groove bottom of the groove part. There is disclosed a torque sensor that includes a strain detection unit and calculates the magnitude of torque that acts on the strain generating unit based on the detection result of the strain detection unit.

独国特許出願公開第19936293号明細書German Patent Application Publication No. 1937293

この特許文献1に開示のトルクセンサは、図3(b)に例示するように、起歪部1002に形成される溝部1005の形状が、軸方向に直交する横断面において曲面1050と平面1051とで構成され、曲面1050と平面1051との入隅部が角部egとなる溝形状をなしており、歪検出部1004が、横断面において角部egを避けた部位に取り付けられている。この場合、起歪部1002に対するトルク入力によって溝部1005に生じる応力は角部egに集中していると考えられる。   In the torque sensor disclosed in Patent Document 1, as illustrated in FIG. 3B, the groove 1005 formed in the strain-generating portion 1002 has a curved surface 1050 and a flat surface 1051 in a cross section orthogonal to the axial direction. The curved corner 1050 and the flat surface 1051 have a groove shape in which the corners of the curved surface 1050 and the flat surface 1051 are corners eg, and the strain detection unit 1004 is attached to a portion where the corners eg are avoided in the cross section. In this case, it is considered that the stress generated in the groove part 1005 due to the torque input to the strain generating part 1002 is concentrated on the corner part eg.

しかしながら、歪検出部を取り付けた部位に生じる応力が増大するほど検出感度が向上するものの、応力集中する角部に歪検出部を取り付けることができないため、上記溝形状では、検出感度の向上を追求するうえで好ましいものとは言えない。   However, although the detection sensitivity improves as the stress generated at the part where the strain detection unit is attached increases, the strain detection unit cannot be attached to the corner where stress is concentrated. This is not preferable.

歪検出部の検出感度を上げるための一つの手段としては、横断面において溝部の占める面積を大きくして起歪部を捩れやすくすることが考えられるが、そうすると検出感度を上げる反面、トルクセンサの捩れ剛性が低下してしまう。   As one means for increasing the detection sensitivity of the strain detection unit, it is conceivable to increase the area occupied by the groove portion in the cross section to make the strain generation unit easier to twist. Torsional rigidity is reduced.

また、上記溝形状では、応力の集中する角部を避けた部位に歪検出部を取り付けているので、歪検出部の取り付け位置が少々ズレるだけでも検出値にバラつきが生じて検出精度が低減する場合がある。特に複数の歪検出部を組み合わせて検出する場合や検出信号を増幅する場合には、検出値のバラつきが顕著になり検出精度が低減してしまう。   Further, in the groove shape, since the strain detection unit is attached to a portion that avoids the corner where stress is concentrated, even if the installation position of the strain detection unit is slightly shifted, the detection value varies and the detection accuracy is reduced. There is a case. In particular, when detecting a combination of a plurality of distortion detectors or when amplifying a detection signal, variations in detection values become remarkable and detection accuracy is reduced.

本発明は、このような課題に着目してなされたものであって、その目的は、捩り剛性の低減を極力抑えて、検出感度や精度を向上させた高剛性のトルクセンサ及びこれを備えた駆動装置を提供することである。   The present invention has been made paying attention to such a problem, and the object thereof is to provide a high-rigidity torque sensor with improved detection sensitivity and accuracy by minimizing torsional rigidity reduction, and the same. It is to provide a driving device.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。   In order to achieve this object, the present invention takes the following measures.

すなわち、本発明のトルクセンサは、略円筒状をなし軸方向一端に駆動力が入力され軸方向他端に負荷が入力されて駆動側と負荷側との間で捩りを伴いながらトルクを伝達する起歪部と、前記起歪部の内周面に設けられ軸方向一端側から他端側に向けて延びる溝部と、前記溝部に取り付けられ起歪部に対するトルク入力によって溝部に生じる応力に対応する歪量を検出する歪検出部とを具備し、歪検出部の検出結果に基づき起歪部に作用するトルクの大きさを算出するトルクセンサであって、軸方向に直交する横断面において前記溝部を構成する溝底及び溝側壁が曲面で構成され、横断面においてトルク入力により溝部に生じる応力のうち溝底に生じる応力が最大となるような溝形状にし、溝底を含む領域に前記歪検出部を取り付けたことを特徴とする。   That is, the torque sensor of the present invention has a substantially cylindrical shape, a driving force is input to one axial end, a load is input to the other axial end, and torque is transmitted while twisting between the driving side and the load side. Corresponding to the strain generating portion, the groove portion provided on the inner peripheral surface of the strain generating portion and extending from one end side in the axial direction toward the other end side, and the stress generated in the groove portion by torque input to the strain generating portion attached to the groove portion A torque sensor for detecting the amount of strain, and a torque sensor for calculating the magnitude of torque acting on the strain generating part based on the detection result of the strain detecting part, wherein the groove part in a cross section orthogonal to the axial direction The groove bottom and the groove side wall constituting the groove are curved surfaces, and the groove shape is such that the stress generated at the groove bottom is maximized among the stresses generated at the groove portion by torque input in the cross section, and the strain is detected in the region including the groove bottom. That the part was attached And butterflies.

溝底は、溝部のうち最も深い部分を意味する。   The groove bottom means the deepest part of the groove.

このように、軸方向に直交する横断面において溝底及び溝側壁が曲面で構成され、横断面においてトルク入力により溝部に生じる応力のうち溝底に生じる応力が最大となるような溝形状にし、溝底を含む領域に歪検出部を取り付けているので、溝部のうち歪検出部を取り付ける領域以外の領域である角部に応力集中していた場合に比べて歪検出部による歪量の検出感度を向上させて高感度にすることが可能となる。しかも、溝部に生じる応力のうち最大の応力が生じる溝底を含む領域に歪検出部を取り付けているので、歪検出部の取り付け位置が少々ズレた場合でも検出値のバラツキを抑えて検出精度を向上させることが可能となる。さらに、上記溝形状により検出感度が向上するので、横断面において溝部の占める面積を広げることを採用するのを極力避けることができ、捩り剛性の低減を抑えて高剛性且つ高感度のトルクセンサを実現することができる。   In this way, the groove bottom and the groove side wall are configured with curved surfaces in the cross section orthogonal to the axial direction, and the groove shape is such that the stress generated in the groove bottom becomes the maximum among the stress generated in the groove portion by torque input in the cross section, Since the strain detection unit is attached to the region including the groove bottom, the strain detection sensitivity of the strain detection unit is higher than when the stress is concentrated on the corner of the groove other than the region where the strain detection unit is attached. It is possible to improve the sensitivity and increase the sensitivity. In addition, since the strain detection unit is attached to the region including the groove bottom where the maximum stress is generated among the stresses generated in the groove, even if the mounting position of the strain detection unit is slightly shifted, the detection value variation is suppressed and detection accuracy is improved. It becomes possible to improve. Furthermore, since the detection sensitivity is improved by the groove shape described above, it is possible to avoid using as much as possible the widening of the area occupied by the groove portion in the cross section, and a torque sensor with high rigidity and high sensitivity can be achieved by suppressing the reduction of torsional rigidity. Can be realized.

歪検出部の取り付けを容易にするためには、前記溝部のうちトルク入力により生じる応力の最大となる部位が横断面において溝部の周方向ほぼ中央になるように、前記溝部の溝形状が形成されていることが好ましい。   In order to facilitate the mounting of the strain detecting portion, the groove shape of the groove portion is formed so that the portion of the groove portion having the maximum stress caused by torque input is substantially in the center in the circumferential direction of the groove portion in the cross section. It is preferable.

歪検出部の取り付け位置ズレによる検出値のバラツキを抑えて検出精度を向上させるためには、前記溝部は、横断面においてトルク入力により溝部に生じる応力の最大となる部位が軸方向に沿って配置されるような溝形状をなし、前記歪検出部は、前記軸方向に交差する所定方向に沿って延びた長尺状の受感領域を有し或る方向の歪量を検出する第一の受感部と、前記所定方向に沿って延びた長尺状の受感領域を有し第一の受感部とは異なる方向の歪量を検出する第二の受感部とを備えていることが効果的である。   In order to improve the detection accuracy by suppressing variation in the detection value due to the displacement of the strain detector mounting position, the groove portion is arranged along the axial direction in the cross section where the maximum stress generated in the groove portion by torque input is located. The strain detector has a long sensitive area extending along a predetermined direction intersecting the axial direction, and detects a strain amount in a certain direction. And a second sensing part that has a long sensing area extending along the predetermined direction and detects a strain amount in a direction different from the first sensing part. It is effective.

起歪部の捩り剛性の低減を必要最小限に留めつつ検出感度を向上させるためには、前記溝部の周方向の幅寸法は、単一の歪検出部の取付を許容し且つ二つ以上の歪検出部を周方向に並列した状態で取り付けることを許容しない寸法に設定されていることが好ましい。   In order to improve detection sensitivity while minimizing the torsional rigidity of the strain generating portion, the circumferential width dimension of the groove portion allows the mounting of a single strain detecting portion and two or more. It is preferable that the dimensions are set so as not to allow the strain detectors to be attached in a state of being parallel in the circumferential direction.

本発明のトルクセンサは、回転駆動する駆動装置に適用するのが好適である。   The torque sensor of the present invention is preferably applied to a drive device that rotates.

本発明は、以上説明したように、軸方向に直交する横断面において溝底及び溝側壁が曲面で構成され、横断面においてトルク入力により溝部に生じる応力のうち溝底に生じる応力が最大となるような溝形状にし、溝底を含む領域に歪検出部を取り付けているので、溝部のうち歪検出部を取り付ける領域以外の領域である角部に応力集中していた場合に比べて歪検出部による歪量の検出感度を向上させて高感度にすることが可能となる。しかも、溝部に生じる応力のうち最大の応力が生じる溝底を含む領域に歪検出部を取り付けているので、歪検出部の取り付け位置が少々ズレた場合でも検出値のバラツキを抑えて検出精度を向上させることが可能となる。さらに、上記溝形状により検出感度が向上するので、横断面において溝部の占める面積を広げることを採用するのを極力避けることができ、捩り剛性の低減を抑えて高剛性且つ高感度のトルクセンサを実現することが可能となる。したがって、検出感度及び精度を向上させた高剛性のトルクセンサを提供することが可能となる。   As described above, according to the present invention, the groove bottom and the side wall of the groove are configured with curved surfaces in the cross section orthogonal to the axial direction, and the stress generated at the groove bottom among the stresses generated at the groove portion by torque input in the cross section is maximized. Since the strain detection part is attached to the area including the groove bottom, the strain detection part is compared with the case where the stress is concentrated in the corner part of the groove part other than the area where the strain detection part is attached. It is possible to improve the sensitivity of detecting the amount of distortion due to the high sensitivity. In addition, since the strain detection unit is attached to the region including the groove bottom where the maximum stress is generated among the stresses generated in the groove, even if the mounting position of the strain detection unit is slightly shifted, the detection value variation is suppressed and detection accuracy is improved. It becomes possible to improve. Furthermore, since the detection sensitivity is improved by the groove shape described above, it is possible to avoid using as much as possible the widening of the area occupied by the groove portion in the cross section, and a torque sensor with high rigidity and high sensitivity can be achieved by suppressing the reduction of torsional rigidity. It can be realized. Therefore, it is possible to provide a highly rigid torque sensor with improved detection sensitivity and accuracy.

本発明の一実施形態に係るトルクセンサの構成を模式的に示す図。The figure which shows typically the structure of the torque sensor which concerns on one Embodiment of this invention. 図1のA−A部位断面図。AA site | part sectional drawing of FIG. 溝部の溝形状について本発明と従来例とを比較して示す図2のB−B部位端面図。The BB site | part end view of FIG. 2 which compares this invention and shows a conventional example about the groove shape of a groove part. 溝部に対する歪検出部の取り付け姿勢を示す図。The figure which shows the attachment attitude | position of the distortion | strain detection part with respect to a groove part. 本発明の他の実施形態において溝部に対する歪検出部の取り付け姿勢を示す図。The figure which shows the attachment attitude | position of the distortion | strain detection part with respect to a groove part in other embodiment of this invention. 本発明の上記以外の実施形態に係る溝部の溝形状を示す図。The figure which shows the groove shape of the groove part which concerns on embodiment other than the above of this invention. 本発明のトルクセンサを適用したモータ等の駆動装置を模式的に示す図。The figure which shows typically drive apparatuses, such as a motor, to which the torque sensor of this invention is applied.

以下、本発明の一実施形態に係るトルクセンサを、図面を参照して説明する。   Hereinafter, a torque sensor according to an embodiment of the present invention will be described with reference to the drawings.

トルクセンサTsは、図1及び図2に示すように、略円筒状をなし軸方向両端がそれぞれ駆動側(駆動装置)及び負荷側(負荷装置)に接続され駆動側及び負荷側の間で捩れを伴いながらトルクを伝達する起歪部2と、起歪部2の軸方向両端に設けられ駆動装置及び負荷装置のシャフトを接続するためのフランジ等の接続部3と、起歪部2に取り付けられトルク入力によって起歪部2に生じる応力に対応する歪量を検出する歪ゲージを用いた歪検出部4とを備え、歪検出部4の検出結果に基づいて起歪部2に作用するトルクの大きさを算出する装置である。すなわち、起歪部2の軸方向一端は、回転駆動するモータ等の駆動装置の駆動力出力軸(シャフト)と関連付けられて駆動装置により駆動力が入力され、起歪部2の軸方向他端は、負荷装置のシャフトと関連付けられて負荷装置により負荷が入力される。本実施形態のトルクセンサTsは、起歪部2の軸方向一端と駆動力出力軸(シャフト)とを接続してトルクセンサを備えた駆動装置を構成するために利用される。勿論、起歪部の軸方向一端と駆動力出力軸(シャフト)とを同一部材として一体に形成することで、トルクセンサが一体に組み込まれている駆動装置を構成してもよい。この場合、トルクセンサ及び駆動装置を合わせた装置全体の軸方向寸法を小形化することも可能となる。   As shown in FIGS. 1 and 2, the torque sensor Ts has a substantially cylindrical shape, and both ends in the axial direction are connected to the drive side (drive device) and the load side (load device), respectively, and twisted between the drive side and the load side. The strain generating portion 2 that transmits torque while being accompanied, the connecting portion 3 such as a flange for connecting the shaft of the driving device and the load device provided at both axial ends of the strain generating portion 2, and the strain generating portion 2 And a strain detection unit 4 using a strain gauge that detects a strain amount corresponding to the stress generated in the strain generation unit 2 by torque input, and torque acting on the strain generation unit 2 based on the detection result of the strain detection unit 4 It is an apparatus which calculates the magnitude | size of. That is, one end in the axial direction of the strain generating portion 2 is associated with a driving force output shaft (shaft) of a driving device such as a motor that is rotationally driven, and a driving force is input by the driving device, and the other end in the axial direction of the strain generating portion 2 The load is input by the load device in association with the shaft of the load device. The torque sensor Ts of the present embodiment is used to configure a driving device including a torque sensor by connecting one axial end of the strain generating portion 2 and a driving force output shaft (shaft). Of course, you may comprise the drive device in which the torque sensor is integrated integrally by integrally forming the axial direction end and driving force output shaft (shaft) of the strain generating part as the same member. In this case, it is possible to reduce the axial dimension of the entire device including the torque sensor and the drive device.

なお、図7に概念図を用いて模式的に示すように、駆動装置Mは周知のモータ等を用いたもので、ケーシングM1に固定され磁界を発生させる固定子M2と、固定子M2に対して回転可能な状態でケーシングM1に支持され磁界を受けて回る回転子M3とを有し、固定子M2への通電制御により磁界を変化させ、固定子M2と回転子M3との間に反発力や吸引力等を作用させて回転子M3を回転させ、電気エネルギーから回転駆動力を得るものである。回転子M3の駆動力出力軸M3a(シャフト)に前記起歪部2が関連付けられている。図7に示す駆動装置Mは概念図で示したものにすぎず、この図示の駆動装置に限定されるものではない。また駆動装置にはモータ以外のものを用いてもよい。   As schematically shown in FIG. 7 using a conceptual diagram, the driving device M uses a known motor or the like. The driving device M is fixed to the casing M1 and generates a magnetic field. And a rotor M3 that is supported by the casing M1 in a rotatable state and rotates by receiving a magnetic field. The magnetic field is changed by energization control of the stator M2, and a repulsive force is generated between the stator M2 and the rotor M3. The rotor M3 is rotated by applying a suction force or the like to obtain a rotational driving force from the electric energy. The strain generating portion 2 is associated with the driving force output shaft M3a (shaft) of the rotor M3. The driving device M shown in FIG. 7 is merely a conceptual diagram, and is not limited to the illustrated driving device. A drive device other than a motor may be used.

トルクセンサTsについての説明に戻ると、起歪部2及び接続部3は、図1及び図2に示すように、共に略円筒状をなし、起歪部2の軸方向両端に接続部3・3を連結した状態で両者を一体の部材としてシャフトを構成している。言い換えると、シャフトのうち軸方向両端部を接続部3・3に設定し、接続部3・3同士の間の部位を起歪部2に設定したものとも言える。起歪部2及び接続部3の内径は同一であるが、接続部3の外径を起歪部2の外径よりも大きくして接続部3をフランジ状に形成し、接続部3よりも起歪部2にトルク入力による捩れが発生しやすくしている。両接続部3・3のうち一方の接続部3に内部の中空空間SP1を閉止する閉止部3aを形成し、他方の接続部3に内部の中空空間SP1を軸方向に解放する開口部3bを設けるとともに、この開口部3bを塞ぐ位置に、封止板30をOリング等の封止部材31やネジ等の止着具voを介して着脱可能に構成している。このように、中空空間SP1に歪検出部4等の各部を収納した状態で容易に密閉可能にしたので、各部を油や埃等から保護することを可能としている。接続部3は、上記封止板30を装着するためのネジ孔32やOリング等の封止部材31が設けてある他、駆動装置や負荷装置のシャフトを接続するための接続用孔33が形成されている。   Returning to the description of the torque sensor Ts, the strain generating portion 2 and the connecting portion 3 are both substantially cylindrical as shown in FIGS. 1 and 2, and the connecting portions 3. In the state where 3 is connected, the shaft is constituted by using both as an integral member. In other words, it can be said that both end portions in the axial direction of the shaft are set to the connecting portions 3 and 3 and a portion between the connecting portions 3 and 3 is set to the strain generating portion 2. The inner diameters of the strain generating portion 2 and the connecting portion 3 are the same, but the outer diameter of the connecting portion 3 is made larger than the outer diameter of the strain generating portion 2 to form the connecting portion 3 in a flange shape. A twist due to torque input is likely to occur in the strain generating portion 2. A closing part 3a for closing the inner hollow space SP1 is formed in one of the connecting parts 3 and 3, and an opening 3b for releasing the inner hollow space SP1 in the axial direction is formed in the other connecting part 3. At the same time, the sealing plate 30 is configured to be detachable through a sealing member 31 such as an O-ring and a fastening tool vo such as a screw at a position that closes the opening 3b. As described above, since each part such as the strain detecting unit 4 is easily sealed in the hollow space SP1, each part can be protected from oil, dust, and the like. The connecting portion 3 is provided with a screw hole 32 for mounting the sealing plate 30 and a sealing member 31 such as an O-ring, and a connection hole 33 for connecting a shaft of a driving device or a load device. Is formed.

起歪部2は、図1及び図2に示すように、その内部が肉抜きされて軸心Cnを中心とする円弧に沿った内周面2aが形成されている。内周面2aには、外周面2b及び内周面2aの間の肉厚すなわち径方向の肉厚を薄くする溝部5が軸方向一端側から他端側に向けて延びた状態で形成されており、この溝部5が周方向に沿って等間隔で複数設けられている。各々の溝部5は、図1に示すように、他の一つの溝部5と軸心Cnを中心として互いに対称となる位置に配置されて対をなしている。また、溝部5は、図2に示すように、一方の接続部3の軸方向一端から起歪部2を経由して他方の接続部3に至るまで軸方向に沿って肉抜きした状態で設けられており、起歪部2の軸方向全域に亘り形成されている。なお、本実施形態では、溝部5は、軸方向に沿って延在しているが、軸方向一端側から他端側に向けて延びていれば、これに限定されるものではない。例えば、溝部が起歪部の軸方向に対して傾斜していてもよい。   As shown in FIGS. 1 and 2, the strain generating portion 2 is thinned to form an inner peripheral surface 2a along an arc centered on the axis Cn. The inner peripheral surface 2a is formed with a groove portion 5 that reduces the thickness between the outer peripheral surface 2b and the inner peripheral surface 2a, that is, the radial thickness, extending from one axial end toward the other end. A plurality of the groove portions 5 are provided at equal intervals along the circumferential direction. As shown in FIG. 1, each groove 5 is paired with another groove 5 that is disposed at a position that is symmetrical with respect to the axis Cn. Further, as shown in FIG. 2, the groove portion 5 is provided in a state where it is thinned along the axial direction from one end in the axial direction of one connection portion 3 to the other connection portion 3 via the strain generating portion 2. It is formed over the entire axial direction of the strain generating portion 2. In addition, in this embodiment, although the groove part 5 is extended along the axial direction, if it extends toward the other end side from the axial direction one end side, it will not be limited to this. For example, the groove portion may be inclined with respect to the axial direction of the strain generating portion.

溝部5は、図3(a)に示すように、軸方向に直交する横断面において起歪部2の内周面2a上の一点P1を中心とする半径r1の円弧に沿った部分円柱状の曲面50で構成されており、その結果、横断面において溝の最も深い部位である溝底bmにトルク入力により生じる応力が集中して、溝部5に生じる応力のうち溝底bmに生じる応力が最大となっている。溝底bmは、溝の最も深い部分である。溝部5における径方向の肉厚は、溝部5の周方向中央の溝底bmが一番薄く、周方向中央の溝底bmから周方向へ沿って変位するにつれて徐々に肉厚が厚くなるように溝部5の溝形状が形成されている。すなわち、溝部5を構成する溝底bm及び溝側壁bsが曲面50で構成され、横断面においてトルク入力により溝部5に生じる応力のうち溝底bmに生じる応力が最大となるような溝形状に設定されている。溝底bm及び溝側壁bsを構成する曲面50は、歪ゲージ等の歪検出部4を貼付(取り付け)可能な大きさの曲率に設定されて、角のない連続曲面をなしており、さらに溝底bm以外の部位で応力集中を生じない程度の曲率に設定されている。この溝部5の溝形状は、トルク入力により生じる応力の最大となる部位(溝底bm)が横断面において溝部5の周方向ほぼ中央に位置づけられている。また、溝部5は、その溝の横断面が軸方向に沿って同一形状をなしているので、図4において一点鎖線で示すように、横断面においてトルク入力により溝部5に生じる応力の最大となる部位(溝底bm)が軸方向に沿って配置されることになる。また言い換えると、本実施形態では、溝部5において応力集中する部位が横断面において溝底bmの一箇所になるような溝形状にしている。   As shown in FIG. 3A, the groove portion 5 has a partial cylindrical shape along an arc having a radius r1 centered at one point P1 on the inner peripheral surface 2a of the strain-generating portion 2 in a cross section orthogonal to the axial direction. As a result, the stress generated by the torque input is concentrated on the groove bottom bm, which is the deepest part of the groove in the cross section, and the stress generated on the groove bottom bm is the maximum of the stress generated on the groove portion 5 as a result. It has become. The groove bottom bm is the deepest part of the groove. The thickness in the radial direction of the groove portion 5 is such that the groove bottom bm at the center in the circumferential direction of the groove portion 5 is the thinnest, and the thickness gradually increases as the groove bottom bm is displaced along the circumferential direction from the groove bottom bm at the center in the circumferential direction. The groove shape of the groove part 5 is formed. That is, the groove bottom bm and the groove side wall bs constituting the groove 5 are formed by the curved surface 50, and the groove shape is set such that the stress generated in the groove bottom bm is the maximum among the stress generated in the groove 5 due to torque input in the cross section. Has been. The curved surface 50 constituting the groove bottom bm and the groove side wall bs is set to a curvature having a size that allows the strain detector 4 such as a strain gauge to be attached (attached), and has a continuous curved surface with no corners. The curvature is set so as not to cause stress concentration at a portion other than the bottom bm. In the groove shape of the groove portion 5, a portion (groove bottom bm) where the stress caused by torque input is maximized is positioned substantially at the center in the circumferential direction of the groove portion 5 in the cross section. Further, since the groove 5 has the same cross section along the axial direction, the maximum stress generated in the groove 5 due to torque input in the cross section is shown in FIG. A site | part (groove bottom bm) will be arrange | positioned along an axial direction. In other words, in the present embodiment, the groove portion 5 has a groove shape in which a portion where stress is concentrated becomes one portion of the groove bottom bm in the cross section.

歪検出部4は、図4に示すように、トルクが起歪部2に作用することで起歪部2に生じる機械的な寸法の微小な変化(ひずみ)を電気信号として検出するシート状の歪ゲージを用いたもので、溝部5のうち溝底bmを含む領域に接着剤を介して貼付されている。このように歪検出部4を起歪部2の内周面2a(溝部5)に設けることで、高速回転時の遠心力によって歪検出部4の損傷や起歪部2と離反することを有効に防止している。   As shown in FIG. 4, the strain detection unit 4 is a sheet-like component that detects a minute change (strain) in the mechanical dimension generated in the strain generation unit 2 as a result of torque acting on the strain generation unit 2. A strain gauge is used, and is attached to an area including the groove bottom bm in the groove 5 via an adhesive. By providing the strain detecting unit 4 on the inner peripheral surface 2a (groove 5) of the strain generating unit 2 in this way, it is effective that the strain detecting unit 4 is damaged or separated from the strain generating unit 2 by centrifugal force during high-speed rotation. To prevent.

本実施形態の歪検出部4は、図4に示すように、溝部5に取り付けた状態において、起歪部2の軸方向に直交(交差でもよい)する所定方向に沿って延びた長尺状の受感領域40を有し或る方向(図4で矢印Y1で示す方向であり、軸方向に対して45度傾斜する方向)の歪量を検出する第一の受感部4aと、所定方向に沿って延びた長尺状の受感領域41を有し第一の受感部4aとは異なる方向(具体的には矢印Y1に直交する方向であり、矢印Y2で示す方向)の歪量を検出する第二の受感部4bとを備え、所定方向に向かってリード線Liが延び出ている。すなわち、歪検出部4は、所定方向に沿って延びた長尺状の受感領域40、41をそれぞれ有する複数の受感部4a,4bを備え、所定方向が軸方向に直交(又は交差)する姿勢で溝部5に貼付されている。受感領域40、41には、金属箔等の金属抵抗体が配列されており、歪検出部4の貼付面に生じた歪みが受感領域40、41に伝達して金属抵抗体が伸縮した場合に抵抗値が変化することを利用して歪量を検出するものである。本実施形態では、互いに軸心Cnを中心として対称となる位置にある対をなす溝部5に歪検出部をそれぞれ取り付けて歪検出部を一対又は複数対とし、複数(例えば8つ)の歪ゲージを既知の4ゲージ法でブリッジ回路を構成して接続している。なお、図4に示す受感領域40、41は、あくまでも歪ゲージのゲージパターンのイメージ図であり、本発明に適用可能な歪検出部が図4に示すゲージパターンに限定されることを意味するものではない。   As shown in FIG. 4, the strain detection unit 4 of the present embodiment has a long shape extending along a predetermined direction orthogonal (or crossing) to the axial direction of the strain generation unit 2 when attached to the groove 5. A first sensitive part 4a for detecting a strain amount in a certain direction (a direction indicated by an arrow Y1 in FIG. 4 and a direction inclined by 45 degrees with respect to the axial direction); Distortion in the direction different from the first sensitive part 4a (specifically, the direction perpendicular to the arrow Y1 and the direction indicated by the arrow Y2) having the elongated sensitive area 41 extending along the direction. And a second sensing part 4b for detecting the amount, and a lead wire Li extends in a predetermined direction. In other words, the strain detection unit 4 includes a plurality of sensory parts 4a and 4b each having a long sensory region 40 and 41 extending along a predetermined direction, and the predetermined direction is orthogonal (or intersects) with the axial direction. It is affixed on the groove portion 5 in such a posture. Metal sensitive elements such as metal foils are arranged in the sensitive areas 40 and 41, and the strain generated on the pasting surface of the strain detecting unit 4 is transmitted to the sensitive areas 40 and 41 so that the metal resistive elements expand and contract. In this case, the amount of distortion is detected by utilizing the change in resistance value. In the present embodiment, a plurality of (for example, eight) strain gauges are formed by attaching a strain detection unit to each pair of groove portions 5 that are symmetrical with respect to the axis Cn to form a pair or a plurality of pairs. Are connected by configuring a bridge circuit by a known 4-gauge method. Note that the sensitive areas 40 and 41 shown in FIG. 4 are merely image diagrams of the gauge pattern of the strain gauge, which means that the strain detection unit applicable to the present invention is limited to the gauge pattern shown in FIG. is not.

図3(a)に示すように、溝部5の周方向の幅寸法w1が大きくなるほど起歪部2の捩り剛性が低減するので、溝部5の周方向の幅寸法w1は、単一の歪検出部4の取り付けを許容し且つ二つ以上の歪検出部4を周方向に沿って並列した状態で取り付けることを許容しない寸法に設定して、捩り剛性の低減を必要最低限に留めている。   As shown in FIG. 3A, the torsional rigidity of the strain-generating portion 2 decreases as the circumferential width dimension w1 of the groove portion 5 increases. Therefore, the circumferential width dimension w1 of the groove portion 5 is a single strain detection. The dimension of the torsional rigidity is reduced to the minimum necessary by setting the dimensions so as to permit the attachment of the part 4 and not allow the two or more strain detection parts 4 to be attached in parallel in the circumferential direction.

図2に示すように、起歪部2及び接続部3の内部にある中空空間SP1には、歪ゲージたる歪検出部4に電圧を印加し且つ歪検出部4で検出した歪信号を中空空間SP1の外部へ送信するテレメータ等の送信部60が設けられている。また、起歪部2の外部には、送信部60から送信された歪信号を受信してトルクの大きさを演算処理により算出する演算部61と、送信部60に電力を非接触で供給する電力供給部62とが設けられている。すなわち、電力供給部62からアンテナコイル(図示せず)を介して送信部60に電力が供給され、歪検出部4に電圧が印加される。そして、起歪部2にトルクが作用すると、起歪部2に捩れが生じ、この捩れが溝底bmを含む領域に取り付けられた歪検出部4によって歪量として検出される。歪検出部4は、トルク入力によって溝部5に生じる応力のうち応力が最大となる溝底bmを含む領域に貼付されているので、歪量を効率的に且つ高感度で検出することになる。歪検出部4で検出した歪量に対応する歪信号が送信部60から演算部61に送信され、演算部61によって歪信号(歪検出部の検出結果)に基づいてトルクの大きさが算出される。   As shown in FIG. 2, in the hollow space SP1 inside the strain generating portion 2 and the connecting portion 3, a voltage is applied to the strain detecting portion 4 that is a strain gauge, and the strain signal detected by the strain detecting portion 4 is transmitted to the hollow space SP1. A transmission unit 60 such as a telemeter for transmission to the outside of SP1 is provided. Further, outside the strain generating unit 2, a distortion signal transmitted from the transmission unit 60 is received, and a calculation unit 61 that calculates the magnitude of torque by calculation processing, and power is supplied to the transmission unit 60 in a contactless manner. A power supply unit 62 is provided. That is, power is supplied from the power supply unit 62 to the transmission unit 60 via an antenna coil (not shown), and a voltage is applied to the distortion detection unit 4. When a torque acts on the strain generating portion 2, the strain generating portion 2 is twisted, and this twist is detected as a strain amount by the strain detecting portion 4 attached to the region including the groove bottom bm. Since the strain detection unit 4 is affixed to a region including the groove bottom bm where the stress is maximized among the stresses generated in the groove 5 by torque input, the strain amount is detected efficiently and with high sensitivity. A distortion signal corresponding to the amount of distortion detected by the distortion detector 4 is transmitted from the transmitter 60 to the calculator 61, and the calculator 61 calculates the magnitude of torque based on the distortion signal (detection result of the distortion detector). The

以上のように、本実施形態に係るトルクセンサは、略円筒状をなし軸方向一端に駆動力が入力され軸方向他端に負荷が入力されて駆動側と負荷側との間で捩りを伴いながらトルクを伝達する起歪部2と、起歪部2の内周面2aに設けられ軸方向一端側から他端側に向けて延びる溝部5と、溝部5に取り付けられ起歪部2に対するトルク入力によって溝部5に生じる応力に対応する歪量を検出する歪検出部4とを具備し、歪検出部4の検出結果に基づき起歪部2に作用するトルクの大きさを算出するトルクセンサであって、軸方向に直交する横断面において溝部5を構成する溝底bm及び溝側壁bsが曲面50で構成され、横断面においてトルク入力により溝部5に生じる応力のうち溝底bmに生じる応力が最大となるような溝形状にし、溝底bmを含む領域に歪検出部4を取り付けている。   As described above, the torque sensor according to the present embodiment has a substantially cylindrical shape, and a driving force is input to one end in the axial direction and a load is input to the other end in the axial direction, causing torsion between the driving side and the load side. The strain generating portion 2 that transmits torque, the groove portion 5 that is provided on the inner peripheral surface 2a of the strain generating portion 2 and extends from one end side in the axial direction toward the other end side, and the torque applied to the strain generating portion 2 that is attached to the groove portion 5 A torque sensor that includes a strain detector 4 that detects a strain amount corresponding to the stress generated in the groove 5 by input, and that calculates the magnitude of the torque acting on the strain generating unit 2 based on the detection result of the strain detector 4. In addition, the groove bottom bm and the groove side wall bs constituting the groove portion 5 in the cross section orthogonal to the axial direction are formed by the curved surface 50, and the stress generated in the groove bottom bm among the stresses generated in the groove portion 5 by torque input in the cross section. Groove shape to maximize the groove Attach the strain detecting section 4 in a region including the m.

溝底bmは、溝部5のうち最も深い部位を意味する。   The groove bottom bm means the deepest part of the groove part 5.

このように、軸方向に直交する横断面において溝底bm及び溝側壁bsが曲面50で構成され、横断面においてトルク入力により溝部5に生じる応力のうち溝底bmに生じる応力が最大となるような溝形状にし、溝底bmを含む領域に歪検出部4を取り付けているので、溝部のうち歪検出部を取り付ける領域以外の領域である角部に応力集中していた場合に比べて歪検出部4による歪量の検出感度を向上させて高感度にすることが可能となる。しかも、溝部5に生じる応力のうち最大の応力が生じる溝底bmを含む領域に歪検出部4を取り付けているので、歪検出部4の取り付け位置が少々ズレた場合でも検出値のバラツキを抑えて検出精度を向上させることが可能となる。さらに、上記溝形状により検出感度が向上するので、横断面において溝部5の占める面積を広げることを採用するのを極力避けることができ、捩り剛性の低減を抑えて高剛性且つ高感度のトルクセンサを実現することが可能となる。   As described above, the groove bottom bm and the groove side wall bs are configured by the curved surface 50 in the cross section orthogonal to the axial direction, and the stress generated in the groove bottom bm is maximized in the stress generated in the groove portion 5 by torque input in the cross section. Since the strain detection unit 4 is attached to the region including the groove bottom bm, the strain detection is performed as compared with the case where the stress is concentrated on the corner portion of the groove portion other than the region to which the strain detection unit is attached. It is possible to improve the detection sensitivity of the distortion amount by the unit 4 and to increase the sensitivity. In addition, since the strain detection unit 4 is attached to a region including the groove bottom bm where the maximum stress among the stresses generated in the groove 5 is generated, even when the mounting position of the strain detection unit 4 is slightly shifted, variation in the detection value is suppressed. Thus, the detection accuracy can be improved. Furthermore, since the detection sensitivity is improved by the groove shape, it is possible to avoid using as much as possible the widening of the area occupied by the groove portion 5 in the cross section, and the torque sensor having high rigidity and high sensitivity by suppressing the reduction of torsional rigidity. Can be realized.

特に、本実施形態では、溝部5のうちトルク入力により生じる応力の最大となる部位(溝底bm)が横断面において溝部5の周方向ほぼ中央になるように、溝部5の溝形状が形成されているので、溝底bmが横断面において溝部5の周方向ほぼ中央から側方へ偏る場合に比べて歪検出部4の取り付けを容易にすることが可能となる。   In particular, in the present embodiment, the groove shape of the groove portion 5 is formed so that the portion (groove bottom bm) in the groove portion 5 where the stress generated by torque input is maximum is approximately the center in the circumferential direction of the groove portion 5 in the cross section. Therefore, it is possible to facilitate the attachment of the strain detecting unit 4 as compared with the case where the groove bottom bm is deviated from the substantially center in the circumferential direction of the groove 5 in the transverse section.

さらに、本実施形態では、溝部5は、横断面においてトルク入力により溝部5に生じる応力の最大となる部位(溝底bm)が軸方向に沿って配置されるような溝形状をなし、歪検出部4は、軸方向に交差する所定方向に沿って延びた長尺状の受感領域40を有し或る方向(Y1)の歪量を検出する第一の受感部4aと、所定方向に沿って延びた長尺状の受感領域41を有し第一の受感部4aとは異なる方向(Y2)の歪量を検出する第二の受感部4bとを備えているので、歪検出部4の取り付け位置が例えば軸方向又は周方向にズレたとしても、複数の受感領域40、41が応力集中部位たる溝底bmを同時にまたがる状態が維持され、取り付け位置ズレによる検出値のバラツキを抑えて検出精度を向上させることが可能となる。   Further, in the present embodiment, the groove portion 5 has a groove shape in which a portion (groove bottom bm) having the maximum stress generated in the groove portion 5 due to torque input in the cross section is arranged along the axial direction, thereby detecting strain. The unit 4 has a long sensitive region 40 extending along a predetermined direction that intersects the axial direction, a first sensitive unit 4a that detects a strain amount in a certain direction (Y1), and a predetermined direction. And a second sensing part 4b for detecting a strain amount in a direction (Y2) different from that of the first sensing part 4a. Even when the attachment position of the strain detection unit 4 is displaced in the axial direction or the circumferential direction, for example, the state where the plurality of sensitive areas 40 and 41 simultaneously straddle the groove bottom bm that is the stress concentration portion is maintained, and the detected value due to the attachment position displacement It is possible to improve the detection accuracy by suppressing the variation of the above.

その他、溝部5の周方向の幅寸法w1が大きくなるほど、起歪部2の捩り剛性が損なわれてしまうものの、本実施形態では、溝部5の周方向の幅寸法w1は、単一の歪検出部4の取付を許容し且つ二つ以上の歪検出部4を周方向に並列した状態で取り付けることを許容しない寸法に設定しているので、起歪部2の捩り剛性の低減を必要最低限に留めつつ検出感度を有効に確保している。   In addition, although the torsional rigidity of the strain generating portion 2 is impaired as the circumferential width dimension w1 of the groove portion 5 is increased, in the present embodiment, the circumferential width dimension w1 of the groove portion 5 is a single strain detection. Since the dimension is set so as to permit the attachment of the portion 4 and not allow the two or more strain detection portions 4 to be attached in the circumferential direction, it is necessary to reduce the torsional rigidity of the strain-generating portion 2 to the minimum necessary. The detection sensitivity is effectively secured.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、本実施形態では、図4に示すように、所定方向に沿って延び互いに平行な長尺状の受感領域40、41をそれぞれ有する複数の受感部4a,4bを備えた歪検出部4を、所定方向が軸方向に直交する姿勢で溝部5に貼付しているが、図5に示すように、歪検出部4を所定方向と軸方向とをほぼ一致する姿勢で溝部5に貼付してもよい。このようにすると、歪検出部4の取り付けに必要な溝部5の周方向の幅寸法を低減することが可能となる。なお、この場合、第一の受感部4aは、図中矢印Y1で示す方向の歪量を検出し、第二の受感部4bは、図中矢印Y2で示す方向の歪量を検出する。また、本実施形態では、二つの受感部4a,4bが一組となった歪検出部4を用いて起歪部2の捩れに対応する二方向の歪量を検出しているが、第一,第二の受感部4a,4bが別々に構成された歪検出部を複数一組として用いてもよい。   For example, in the present embodiment, as shown in FIG. 4, the strain detection unit includes a plurality of sensory parts 4 a and 4 b each having a long sensory area 40 and 41 extending in a predetermined direction and parallel to each other. 4 is affixed to the groove 5 in a posture in which the predetermined direction is orthogonal to the axial direction. However, as shown in FIG. 5, the strain detector 4 is affixed to the groove 5 in a posture in which the predetermined direction and the axial direction are substantially coincident. May be. If it does in this way, it will become possible to reduce the width dimension of the circumferential direction of the groove part 5 required for attachment of the distortion | strain detection part 4. FIG. In this case, the first sensor 4a detects the amount of distortion in the direction indicated by the arrow Y1 in the figure, and the second sensor 4b detects the amount of distortion in the direction indicated by the arrow Y2 in the figure. . In the present embodiment, the strain amount in two directions corresponding to the torsion of the strain generating portion 2 is detected using the strain detecting portion 4 in which the two sensitive portions 4a and 4b are paired. A plurality of strain detection units in which the first and second sensing units 4a and 4b are separately configured may be used as a set.

また、本実施形態では、図3(a)に示すように、起歪部2に形成される溝部5の溝形状が、横断面において円弧に沿った部分円柱状の曲面50で構成されているが、図6(a)に示すように、起歪部102に形成される溝部105の溝形状が、横断面において部分放物線に沿った曲面150で構成されていてもよい。また、図6(b)に示すように、起歪部202に形成される溝部205の溝形状が、横断面において部分楕円形に沿った曲面250で構成されていてもよい。これらの溝部105,205における径方向の肉厚は、周方向中央の溝底bmが一番薄く、中央の溝底bmから周方向へ沿って変位するにつれて徐々に肉厚が厚くなるようにその溝形状が形成されている。   Moreover, in this embodiment, as shown to Fig.3 (a), the groove shape of the groove part 5 formed in the strain generation part 2 is comprised by the partial cylindrical-shaped curved surface 50 along the circular arc in the cross section. However, as shown to Fig.6 (a), the groove shape of the groove part 105 formed in the strain generation part 102 may be comprised by the curved surface 150 along the partial parabola in the cross section. Further, as shown in FIG. 6B, the groove shape of the groove portion 205 formed in the strain-generating portion 202 may be constituted by a curved surface 250 along a partial ellipse in the cross section. The thickness in the radial direction of these groove portions 105 and 205 is such that the groove bottom bm at the center in the circumferential direction is the thinnest, and the wall thickness gradually increases with displacement from the center groove bottom bm along the circumferential direction. A groove shape is formed.

その他の溝として図6(c)に示すものが挙げられる。すなわち、起歪部302に形成される溝部305の溝形状を、横断面において互いに異なる点を中心とする円弧に沿った複数の曲面を連続接続した曲面350で構成してもよい。この溝部305の溝底bmは、溝部305の周方向中央よりも周方向に変位している。他には、横断面において小判形状に沿った曲面で溝形状を構成してもよい。   Other grooves include those shown in FIG. That is, the groove shape of the groove portion 305 formed in the strain generating portion 302 may be configured by a curved surface 350 in which a plurality of curved surfaces along arcs centering on different points in the cross section are continuously connected. The groove bottom bm of the groove 305 is displaced in the circumferential direction from the circumferential center of the groove 305. Alternatively, the groove shape may be formed by a curved surface along an oval shape in the cross section.

また、起歪部の内周面に設けられる溝部の数は、歪検出部が取り付けられる溝部の数よりも多くてもよい。溝部の周方向の溝幅は、適宜変更可能である。溝部を複数形成した場合には各々の溝部の形状や寸法が異なっていてもよい。また、単一の溝部に軸方向に沿って複数の歪検出部を取り付けてもよい。また、起歪部に形成された溝部は、歪検出部を取り付ける位置と少なくとも径方向で重なる位置まで設けられていれば、起歪部2の軸方向全域に亘り形成されている必要はない。勿論、溝部は、起歪部2や接続部3などの部材を貫通していてもよいし、貫通していなくてもよい。起歪部2の捩り剛性は、起歪部2の内外径の大きさと、溝部の周方向の幅寸法とその数によって上記発明の範囲において調整可能である。溝部5に生じる応力すなわち検出感度は、溝部の形状や溝部の底と起歪部外周面との距離によって上記発明の範囲において調整可能である。   Moreover, the number of the groove parts provided in the inner peripheral surface of the strain generating part may be larger than the number of the groove parts to which the strain detecting part is attached. The groove width in the circumferential direction of the groove portion can be changed as appropriate. When a plurality of groove portions are formed, the shape and size of each groove portion may be different. In addition, a plurality of strain detectors may be attached to the single groove portion along the axial direction. Further, the groove portion formed in the strain generating portion does not need to be formed over the entire region in the axial direction of the strain generating portion 2 as long as the groove portion is provided at a position overlapping at least the radial position with the position where the strain detecting portion is attached. Of course, the groove portion may or may not penetrate through the members such as the strain generating portion 2 and the connecting portion 3. The torsional rigidity of the strain generating portion 2 can be adjusted within the scope of the above invention according to the size of the inner and outer diameters of the strain generating portion 2, the width dimension in the circumferential direction of the groove portion, and the number thereof. The stress generated in the groove 5, that is, the detection sensitivity can be adjusted within the scope of the invention by the shape of the groove and the distance between the bottom of the groove and the outer peripheral surface of the strain generating part.

また、歪検出部として歪ゲージを例として述べているが、起歪部に生じる歪みを検出できるものであれば歪ゲージ以外のものでもよい。例えば、圧電素子を用いてもよいし、起歪部の内周面に応力に応じて発光する材を塗布して受光センサで検出するようにしてもよい。   In addition, although a strain gauge is described as an example of the strain detection unit, a strain gauge other than the strain gauge may be used as long as the strain generated in the strain generation unit can be detected. For example, a piezoelectric element may be used, or a material that emits light according to the stress may be applied to the inner peripheral surface of the strain generating portion and detected by a light receiving sensor.

さらにまた、接続部3は、駆動装置又は負荷装置のシャフトに接続できるものであれば、フランジに限定されるものではない。例えば、スプライン形状やキーによって接続する形状でもよい。本実施形態では、接続部3及び起歪部2を一体の部材で形成しているが、別々の部材をネジや圧入などの連結方法で結合してもよい。   Furthermore, the connection part 3 is not limited to a flange as long as it can be connected to the shaft of the drive device or the load device. For example, a spline shape or a shape connected by a key may be used. In the present embodiment, the connecting portion 3 and the strain generating portion 2 are formed as an integral member, but separate members may be coupled by a connecting method such as a screw or press fitting.

その他、検出した歪信号の演算部61への伝送や電力供給部62から歪検出部4への電力供給は無線だけでなく、例えばスリップリングを用いた有線で行ってもよい。   In addition, the transmission of the detected distortion signal to the calculation unit 61 and the power supply from the power supply unit 62 to the distortion detection unit 4 may be performed not only wirelessly but also by wire using a slip ring, for example.

なお、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

Ts…トルクセンサ
2…起歪部
2a…内周面
4…歪検出部
40、41…受感領域
4a…第一の受感部
4b…第二の受感部
5…溝部
50…曲面
bm…溝底
bs…溝側壁
w1…幅寸法
Ts ... torque sensor 2 ... strain generating portion 2a ... inner peripheral surface 4 ... strain detecting portions 40, 41 ... sensitive region 4a ... first sensitive portion 4b ... second sensitive portion 5 ... groove 50 ... curved surface bm ... Groove bottom bs ... groove side wall w1 ... width dimension

Claims (5)

略円筒状をなし軸方向一端に駆動力が入力され軸方向他端に負荷が入力されて駆動側と負荷側との間で捩りを伴いながらトルクを伝達する起歪部と、前記起歪部の内周面に設けられ軸方向一端側から他端側に向けて延びる溝部と、前記溝部に取り付けられ起歪部に対するトルク入力によって溝部に生じる応力に対応する歪量を検出する歪検出部とを具備し、歪検出部の検出結果に基づき起歪部に作用するトルクの大きさを算出するトルクセンサであって、
軸方向に直交する横断面において前記溝部を構成する溝底及び溝側壁が曲面で構成され、横断面においてトルク入力により溝部に生じる応力のうち溝底に生じる応力が最大となるような溝形状にし、溝底を含む領域に前記歪検出部を取り付けたことを特徴とするトルクセンサ。
A strain generating portion that is substantially cylindrical and has a driving force input to one axial end and a load input to the other axial end to transmit torque while twisting between the driving side and the load side, and the strain generating portion A groove portion that is provided on the inner peripheral surface of the groove portion and extends from one end side in the axial direction toward the other end side, and a strain detection portion that is attached to the groove portion and detects a strain amount corresponding to a stress generated in the groove portion by torque input to the strain generating portion. A torque sensor for calculating the magnitude of torque acting on the strain generating portion based on the detection result of the strain detecting portion,
The groove bottom and the groove side wall constituting the groove part are configured with curved surfaces in a cross section perpendicular to the axial direction, and the groove shape is such that the stress generated at the groove bottom is maximized among the stresses generated in the groove part by torque input in the cross section. A torque sensor, wherein the strain detector is attached to a region including a groove bottom.
前記溝部のうちトルク入力により生じる応力の最大となる部位が横断面において溝部の周方向ほぼ中央になるように、前記溝部の溝形状が形成されている請求項1に記載のトルクセンサ。   2. The torque sensor according to claim 1, wherein a groove shape of the groove portion is formed such that a portion of the groove portion having the maximum stress generated by torque input is substantially in the center in the circumferential direction of the groove portion in a cross section. 前記溝部は、横断面においてトルク入力により溝部に生じる応力の最大となる部位が軸方向に沿って配置されるような溝形状をなし、
前記歪検出部は、前記軸方向に交差する所定方向に沿って延びた長尺状の受感領域を有し或る方向の歪量を検出する第一の受感部と、前記所定方向に沿って延びた長尺状の受感領域を有し第一の受感部とは異なる方向の歪量を検出する第二の受感部とを備えている請求項1又は2に記載のトルクセンサ。
The groove portion has a groove shape in which a portion where the stress generated in the groove portion by the torque input in the cross section is maximum is arranged along the axial direction,
The strain detection unit includes a first sensor unit that has a long sensory region extending along a predetermined direction intersecting the axial direction, and detects a strain amount in a certain direction. The torque according to claim 1, further comprising: a second sensing part that has a long sensing area extending along the first sensing part and detects a strain amount in a direction different from that of the first sensing part. Sensor.
前記溝部の周方向の幅寸法は、単一の歪検出部の取付を許容し且つ二つ以上の歪検出部を周方向に並列した状態で取り付けることを許容しない寸法に設定されている請求項1〜3のいずれかに記載のトルクセンサ。   The circumferential width dimension of the groove part is set to a dimension that allows attachment of a single strain detection part and does not allow attachment of two or more strain detection parts in parallel with each other in the circumferential direction. The torque sensor in any one of 1-3. 請求項1〜4のいずれかに記載のトルクセンサを備えた駆動装置。   The drive device provided with the torque sensor in any one of Claims 1-4.
JP2010281180A 2010-12-17 2010-12-17 Torque sensor and drive device equipped with the same Pending JP2012127884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281180A JP2012127884A (en) 2010-12-17 2010-12-17 Torque sensor and drive device equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281180A JP2012127884A (en) 2010-12-17 2010-12-17 Torque sensor and drive device equipped with the same

Publications (1)

Publication Number Publication Date
JP2012127884A true JP2012127884A (en) 2012-07-05

Family

ID=46645078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281180A Pending JP2012127884A (en) 2010-12-17 2010-12-17 Torque sensor and drive device equipped with the same

Country Status (1)

Country Link
JP (1) JP2012127884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020582A (en) * 2018-07-30 2020-02-06 ユニパルス株式会社 Torque converter
CN113176024A (en) * 2021-04-16 2021-07-27 西安交通大学 Non-linear split cylinder type torque sensor
CN114526853A (en) * 2022-02-23 2022-05-24 深圳瑞湖科技有限公司 Shaft torque detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800591A (en) * 1972-03-27 1974-04-02 Himmelstein & Co S Hollow reaction torquemeter
JPS5686535U (en) * 1979-12-06 1981-07-11
JPH07229802A (en) * 1994-02-16 1995-08-29 Kyowa Electron Instr Co Ltd High rigidity torque converter
DE19936293A1 (en) * 1999-08-02 2001-02-15 Hbm Mes Und Systemtechnik Gmbh Torque sensor
JP2005134220A (en) * 2003-10-29 2005-05-26 Kyowa Electron Instr Co Ltd Shaft grip sensor
JP2009058388A (en) * 2007-08-31 2009-03-19 Tetsuya Mori Torque sensor and motor with torque sensor
JP2010281783A (en) * 2009-06-08 2010-12-16 Hitachi Constr Mach Co Ltd Working machine and pin-type load cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800591A (en) * 1972-03-27 1974-04-02 Himmelstein & Co S Hollow reaction torquemeter
JPS5686535U (en) * 1979-12-06 1981-07-11
JPH07229802A (en) * 1994-02-16 1995-08-29 Kyowa Electron Instr Co Ltd High rigidity torque converter
DE19936293A1 (en) * 1999-08-02 2001-02-15 Hbm Mes Und Systemtechnik Gmbh Torque sensor
JP2005134220A (en) * 2003-10-29 2005-05-26 Kyowa Electron Instr Co Ltd Shaft grip sensor
JP2009058388A (en) * 2007-08-31 2009-03-19 Tetsuya Mori Torque sensor and motor with torque sensor
JP2010281783A (en) * 2009-06-08 2010-12-16 Hitachi Constr Mach Co Ltd Working machine and pin-type load cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020582A (en) * 2018-07-30 2020-02-06 ユニパルス株式会社 Torque converter
JP7204091B2 (en) 2018-07-30 2023-01-16 ユニパルス株式会社 torque transducer
CN113176024A (en) * 2021-04-16 2021-07-27 西安交通大学 Non-linear split cylinder type torque sensor
CN114526853A (en) * 2022-02-23 2022-05-24 深圳瑞湖科技有限公司 Shaft torque detection device

Similar Documents

Publication Publication Date Title
JP7075815B2 (en) Torque sensor with mathematically smooth claws
JP2012521547A (en) Torque sensor
JP2007040774A (en) Torquemeter
JP5790205B2 (en) Torque sensor
JP2010169586A (en) Torque amount converter
JP2012149939A (en) Torque sensor and drive unit with the same
JP5768544B2 (en) Torque sensor
JP2012127884A (en) Torque sensor and drive device equipped with the same
JP5710036B2 (en) Torque sensor
US10352730B2 (en) Inductive rotation sensor with improved accuracy
JP6850304B2 (en) Rotation position detector
JP2012127883A (en) Torque sensor and drive device equipped with the same
JP5678642B2 (en) Torque sensor and driving device
JP2005326369A (en) Torque detection device
JP2005326368A (en) Torque detection device
KR20140083782A (en) Non-contacting type torque sensor for magnet prevention
WO2020008836A1 (en) Torque sensor
JP4704018B2 (en) Torque sensor
KR100855794B1 (en) Contactless torque sensor for electronic power steering system
JP2019163958A (en) Torque sensor
JP7204091B2 (en) torque transducer
WO2021111892A1 (en) Torque sensor
JP7021835B2 (en) Torque sensor
JP2545317Y2 (en) Torque detection device for wave gear transmission
WO2021033557A1 (en) Direct drive motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007