JP2012127659A - 放射性核種Ca−41の分析方法 - Google Patents

放射性核種Ca−41の分析方法 Download PDF

Info

Publication number
JP2012127659A
JP2012127659A JP2010276569A JP2010276569A JP2012127659A JP 2012127659 A JP2012127659 A JP 2012127659A JP 2010276569 A JP2010276569 A JP 2010276569A JP 2010276569 A JP2010276569 A JP 2010276569A JP 2012127659 A JP2012127659 A JP 2012127659A
Authority
JP
Japan
Prior art keywords
sample
precipitate
ray
count value
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010276569A
Other languages
English (en)
Inventor
Hideaki Ichige
秀明 市毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Power Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Japan Atomic Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Japan Atomic Power Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2010276569A priority Critical patent/JP2012127659A/ja
Publication of JP2012127659A publication Critical patent/JP2012127659A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

【課題】高価な装置を必要とすることなく、Ca-41を精度良く分析できる放射性核種Ca-41の分析方法を提供することである。
【解決手段】試料媒体をシュウ酸カルシウムとし水酸化鉄を含んだFe-55標準試料を作成し、Ge検出器でFe-55標準試料のX線の計数値を測定し、Ge検出器で測定したX線の計数値及びFe-55とCa-41とのX線減弱係数に基づいてCa-41に対する計数効率を求め、試料媒体をシュウ酸カルシウムとしたCa-41測定試料を作成し、Ge検出器で前記Ca-41測定試料のX線の計数値を計測し、Ca-41測定試料のX線の計数値及びCa-41に対する計数効率に基づいてCa-41の放射能濃度を求める。
【選択図】 図1

Description

本発明は、原子力発電所の放射化コンクリート廃棄物に含まれる放射性核種Ca-41を分析する放射性核種Ca-41の分析方法に関する。
原子力発電所の廃止措置によって発生する廃棄物は、金属廃棄物及びコンクリートを主体とした低レベル放射性廃棄物が大量に発生する。これら廃棄物の処理処分にあたっては、廃棄物を放射能レベル別に区分すると共に、必要に応じて除染した後、レベル区分に応じた合理的な処分または再利用することである。
低レベル放射性廃棄物は、余裕深度処分放射性廃棄物(L1廃棄物)、浅地中ピット処分放射性廃棄物(L2廃棄物)、浅地中トレンチ処分放射性廃棄物(L3廃棄物)、放射性廃棄物として扱う必要のない物(クリアランス物)に区分され、それぞれの区分により処理方法が異なる。L1廃棄物は余裕深度埋設施設に埋設され、L2廃棄物は浅地中ピット埋設施設に埋設され、L3廃棄物は浅地中トレンチ埋設施設に埋設され、クリアランス物は再利用される。
原子力発電所の解体等で発生する放射化コンクリート廃棄物には、半減期が長い放射性核種であるCa-41を含む場合がある。Ca-41はコンクリート中の安定カルシウムCa-40(天然存在比:96.94%)の(n,γ)反応で生成し、コンクリート廃棄物の埋設処分にあたっては、安全評価上Ca-41が重要核種であるかどうかの評価・確認が必要である。すなわち、Ca-41を含む廃棄物がどの埋設処分の対象になるのか評価・確認が必要である。一般に、放射性核種の分析方法としては、質量分析法と放射能測定法とがあり、Ca-41についても、質量分析法あるいは放射能測定法で分析することが考えられる。
ここで、原子力施設の解体撤去に伴う解体廃棄物から分別されたクリアランス対象物を除染し、除染されたクリアランス対象物の表面汚染密度の測定を行い、クリアランス前測定の結果、汚染の高い部位がないことが確認されたクリアランス対象物について放射能濃度を測定するようにしたものがある(例えば、特許文献1参照)。
特開2007−248066号公報
しかし、質量分析法の場合には検出感度でみると極めて微量まで分析できるが、加速器質量分析器などの高価な装置が必要となる。一方、Ge検出器を用いた放射能測定法ではX線のエネルギーが低い場合には測定が困難となる。Ca-41は、半減期が1.03×105年と非常に長く、EC壊変(100%)に伴って放出されるX線のエネルギーが3.3keVと大変低く、また放射能濃度が低いので放射能測定が困難である。また、Ca-41の標準線源もなく、現在確立されたCa-41の分析手法がない。
本発明の目的は、高価な装置を必要とすることなく、Ca-41を精度良く分析できる放射性核種Ca-41の分析方法を提供することである。
請求項1の発明に係る放射性核種Ca-41の分析方法は、試料媒体をシュウ酸カルシウムとし水酸化鉄を含んだFe-55標準試料を作成し、Ge検出器でFe-55標準試料のX線の計数値を測定し、Ge検出器で測定したX線の計数値及びFe-55とCa-41とのX線減弱係数に基づいてCa-41に対する計数効率を求め、試料媒体をシュウ酸カルシウムとしたCa-41測定試料を作成し、Ge検出器で前記Ca-41測定試料のX線の計数値を計測し、前記Ca-41測定試料のX線の計数値及び前記Ca-41に対する計数効率に基づいてCa-41の放射能濃度を求めることを特徴とする。
請求項2の発明に係る放射性核種Ca-41の分析方法は、請求項1の発明において、前記Fe-55標準試料は、所定重量のCa担体溶液、Fe-55放射能標準溶液、Fe担体溶液に、純水及びシュウ酸を加えて撹拌・混合し、アンモニア水で所定のアルカリ性濃度に調整してシュウ酸カルシウム及び水酸化鉄の沈殿物を生成し、弱加温にて沈殿物を熟成させ、熟成させた沈殿物をろ過・回収して作成されることを特徴とする。
請求項3の発明に係る放射性核種Ca-41の分析方法は、請求項1の発明において、前記Ca-41測定試料は、コンクリート廃棄物の試料を粉砕して塩酸と硝酸とで溶解し、Fe担体溶液及びCo担体溶液を加えアンモニア水で所定のアルカリ性濃度に調整して沈殿物を生成し、生成した沈殿物は廃棄してFeとCoとを除去し、溶液に塩酸とシュウ酸とを加えアンモニア水で所定の酸性濃度に調整して沈殿物を生成し、沈殿物を塩酸で溶解し陽イオン交換分離を行い炭酸アンモニウムで所定のアルカリ性濃度に調整して沈殿物を生成し、その沈殿物を塩酸で溶解し、純水及びシュウ酸を加えて撹拌・混合し、アンモニア水で所定のアルカリ性濃度に調整してシュウ酸カルシウムの沈殿物を生成し、弱加温にて沈殿物を熟成させ、熟成させた沈殿物をろ過・回収して作成されることを特徴とする。
請求項1の発明によれば、Fe-55放射能標準溶液を用いてFe-55標準試料を作成し、Fe-55とCa-41との両核種のX線エネルギーの違いによる計数効率の補正を行ってCa-41に対する計数効率を求め、Ca-41に対する計数効率に基づいてCa-41の放射能濃度を求めるため、Ca-41標準試料は不要であり、また、質量分析器(加速器型,ICP-MS,他)など高価な装置を用いることなく簡便かつ低コストで、Ca-41の分析を行うことができる。
請求項2、3の発明によれば、Fe-55標準試料やCa-41測定試料などの試料を溶液中に沈殿させてろ過する手法で作成するので、試料ホルダー内に均等に試料を広げる手法と比較して、簡易に、低コストかつ実用的な測定が実現できる。
本発明の実施形態に係る放射性核種Ca-41の分析方法の工程を示すフローチャート。 本発明の実施形態におけるFe-55標準試料の作成方法の工程を示すフローチャート。 本発明の実施形態におけるFe-55標準試料のX線スペクトル解析結果のグラフ。 本発明の実施形態におけるCa-41のX線及びFe-55のX線のシュウ酸カルシウムに対する質量減弱係数μ1、μ2とX線エネルギーとの関係を示すグラフ。 本発明の実施形態におけるCa-41測定試料の作成方法の工程を示すフローチャート。
以下、本発明の実施形態を説明する。まず、本発明に至った経緯を説明する。放射化コンクリート廃棄物に含まれるCa-41について、低エネルギー光子用Geスペクトロメータ(Ge検出器)を用いて放射能濃度を決定する方法について検討した。前述したように、Ca-41の標準線源は製造されていないことからCa-41の代替標準試料を検討した。
Ca-41の代替標準試料の検討にあたって、Ca-41のX線エネルギーに近いX線を放出する核種で、しかも標準試料がある核種に注目し、低エネルギーX線放出核種であるFe-55(2.73年、EC壊変100%)の標準試料を作成することを検討した。そして、Ca-41及びFe-55の両核種のX線に対する減弱係数の違いによる自己吸収等の補正法を適用することとした。すなわち、Fe-55のX線に対する計数効率に対してX線の減弱率などの補正を行ってCa-41に対する計数効率の校正を行うこととした。なお、スペクトル解析の対象となる放射線は、Ca-41(100%EC壊変)についてはK-Kα+βX線(3.31keV及び3.59keV、放出比=12.8%)、Fe-55(100%Ec壊変)についてはMn-KαX線(5.90keV、放出比=25.1%)である。
分析対象物はコンクリート廃棄物であるが、コンクリートは、天然核種(40K、ウラン及びトリウム系列核種など)を多く含んでいるので、化学分析によってカルシウムCaを分離・精製する必要がある。そこで、測定試料となるカルシウム化合物を生成することによって、測定試料中のカルシウム成分を濃縮することとした。本発明の実施形態では、シュウ酸カルシウム沈殿を測定試料とし、計数効率を決定するためにFe-55(水酸化鉄)を含むシュウ酸カルシウムの標準試料とすることとした。
図1は本発明の実施形態に係る放射性核種Ca-41の分析方法の工程を示すフローチャートである。まず、Fe-55標準試料を作成する(S1)。Fe-55標準試料はシュウ酸カルシウムを媒体試料とした水酸化鉄を含んだ標準試料である。Fe-55標準試料の作成方法の詳細については後述する。
次に、作成したFe-55の標準試料のX線スペクトル解析を行い、スペクトル解析の対象放射線であるMn-KαX線(5.90keV、放出比=25.1%)の計数値を測定する(S2)。
そして、Ca-41に対する計数効率εCaを求める(S3)。Ca-41に対する計数効率εCaを求めるにあたっては、まず、Fe-55の標準試料の計数値からFe-55に対する計数効率εFeを求め、Fe-55のX線に対する計数効率εFeに対してX線の減弱係数の補正を行ってCa-41に対する計数効率εCa を求める。Ca-41に対する計数効率εCaを求め方の詳細については後述する。
次に、Ca-41測定試料を作成する(S4)。Ca-41測定試料は、シュウ酸カルシウムを媒体試料とした測定試料である。Ca-41測定試料の作成方法の詳細については後述する。
次に、作成したCa-41測定試料のX線スペクトル解析を行い、スペクトル解析の対象放射線であるK-Kα+βX線(3.31keV、放出比=12.8%)の計数値を測定する(S5)。そして、計測したCa-41測定試料のX線の計数値及び工程S3で求めたCa-41に対する計数効率εCaに基づいてCa-41の放射能濃度を求める(S6)。Ca-41の放射能濃度を求め方の詳細については後述する。
次に、図2の工程S1でのFe-55標準試料の作成方法について説明する。図2は本発明の実施形態におけるFe-55標準試料の作成方法の工程を示すフローチャートである。まず、Ca担体溶液、Fe-55放射能標準溶液、Fe担体溶液に、純水、シュウ酸を加えて撹拌・混合する(S1)。例えば、秤量済みビーカに、Ca担体溶液(10mg/mL)W0g、Fe-55放射能標準溶液W1g(100〜500Bq相当)、Fe担体溶液(1mg/mL)W2gを順次加えながら各々の重量を測定する。そして、純水50mL、5%シュウ酸5mLを加え、撹拌・混合する。
そして、(1+1)アンモニア水を用いて所定のアルカリ性濃度(pH8〜9)に調整し、沈殿物(シュウ酸カルシウム+水酸化鉄)を生成させる(S2)。このとき、Fe-55が水酸化鉄と共に共沈する。
この沈殿物に対して、弱加温にて沈殿物を熟成させた後、1日間程度放置して、さらに沈殿物を熟成させる(S3)。熟成させた後に、ろ過装置を用い、あらかじめ乾燥重量を測定した20mmφのろ紙(5C)上にビーカ内の沈殿(シュウ酸カルシウム+水酸化鉄)を十分混合させながら、ろ過・回収する(S4)。ろ過・回収した沈殿物(シュウ酸カルシウム+水酸化鉄)を乾燥させて冷却し、Fe-55標準試料とする(S5)。ここで、標準試料及び実試料の厚さは、計数率が飽和する厚さ以上にする必要がある。飽和厚以上では、効率と試料重量の積は試料の厚さに依存せず一定になるため、放射能濃度は測定試料の厚さやその不均一性の影響を受けない。
このように、本発明の実施形態では、Ca担体溶液及びFe担体溶液をFe-55放射能標準溶液に入れ、純水及びシュウ酸を加えて、試料を溶液中に沈殿させてろ過する手法でFe-55標準試料を作成した。そのため、質量分析器などの高価な装置を用いなくても、簡易に、低コストかつ実用的な測定が実現できる。ここで、Fe-55は放射性標準溶液として入手可能である。
次に、図1の工程S3でのCa-41に対する計数効率εCaを求め方について説明する。Ca-41に対する計数効率εCaを求めるにあたっては、まず、Fe-55の標準試料のMn-KαX線(5.90keV、放出比=25.1%)の計数値NからFe-55に対する計数効率εFeを求める。そして、求めたFe-55のX線に対する計数効率εFeに対してX線の減弱係数の補正を行ってCa-41に対する計数効率εCa を求める。
いま、Fe-55標準試料の放射能をA(Bq)、Fe-55のX線放出比をax(=0.251)、Fe-55標準試料のX線スペクトル中のピークの正味計数値をN、測定時間をt(s)とすると、Fe-55に対する計数効率εFeは(1)式で示される。
Figure 2012127659
Fe-55標準試料のX線スペクトル中のピークの正味計数値Nは、Fe-55標準試料のX線スペクトル解析を行い、Mn-KαX線(5.90keV、放出比=25.1%)の計数値より求められる。
図3はFe-55標準試料のX線スペクトル解析結果のグラフである。シュウ酸カルシウムを媒体とするFe-55標準試料のX線スペクトルは、図3に示すように、Mn-X線が放出される。すなわち、Fe-55は100%軌道電子捕獲(EC)壊変でMn-55(安定核)になり、EC壊変に伴ってMn-X線が放出される。壊変あたりのX線放出比は、Kα(=Kα1+Kα2)X線が25.1%、KβX線が3.3%の割合である。
図3のMn-KαX線(5.90keV、放出比=25.1%)を測定時間tで測定することによりFe-55のX線の計数値Nを求め、(1)式により、Fe-55に対する計数効率εFeを求める。
ここで、図3において、Caの特性X線(3.69keV,4.01keV)が放出されているが、これは、Mn-X線によるシュウ酸カルシウムのCa原子との光電効果に伴って放出されるX線である。このCaの特性X線(3.69keV,4.01keV)は、Mn-X線によるシュウ酸カルシウムのCa原子との光電効果に伴って放出されるものであるので、Fe-55を含まない分析試料(シュウ酸カルシウム)ではほとんど放出されない。従って、後述のFe-55を含まないCa-41測定試料の定量解析{Ca-41のK-Kα+βX線(3.31keV及び3.59keV、放出比=12.8%)の定量解析}は、Caの特性X線(3.69keV,4.01keV)により妨害されることはない。
次に、シュウ酸カルシウムにおける3.3keV(Ca-41のK-Kα+βX線)に対する質量減弱係数をμ1、シュウ酸カルシウムにおける5.9keV(Fe-55のMn-KαX線)に対する質量減弱係数をμ2、3.3keVに対するGe検出器の効率をη1、5.9keVに対するGe検出器の効率をη2、試料の厚さをd、試料保持及び検出器保護のマイラー膜の補正係数をfAとすると、Ca-41に対する計数効率εCa は(2)式で求められる。
Figure 2012127659
すなわち、(1)式で求めたFe-55に対する計数効率εFeを、(2)式に代入して、Ca-41に対する計数効率εCa を求める。
ここで、計数効率εは主として試料媒体中におけるX線の自己吸収、Ge検出器入射窓及び試料保持膜などにおける減弱のみに依存する。
試料媒体中におけるX線の自己吸収については、減弱係数μ1、μ2により補正し、Ge検出器入射窓及び試料保持膜などにおける減弱については、補正係数をfAにより、試料の自己吸収及び検出器入射窓Beとマイラー薄膜による吸収の違いとを補正する。
図4はCa-41のX線及びFe-55のX線のシュウ酸カルシウムに対する質量減弱係数μ1、μ2とX線エネルギーとの関係を示すグラフである。低エネルギーX線の測定においては、試料(シュウ酸カルシウム)によるX線の吸収(自己吸収)が検出効率に大きく影響する。自己吸収はX線エネルギーによって異なるが、図4に示すように、Ca-41のX線(K-KαX線;3.3keV)とFe-55のX線(Mn-Kα線;5.9keV)とでは、シュウ酸カルシウムに対する質量減弱係数にそれほど大きな違いはない。これが、本発明の実施の形態で、Ca-41の代替標準試料の核種としてFe-55を選んだ理由である。すなわち、質量減弱係数にそれほど大きな違いがないので、試料媒体(シュウ酸カルシウム)中におけるX線減弱(自己吸収)の補正の誤差を小さくできる。そこで、本発明の実施形態では、放射能標準溶液の入手が可能な低エネルギーX線放出核種であるFe-55(E=5.9keV)を用いて、Ca-41に対する計数効率εCa を決定するようにしている。
次に、図1の工程S4でのCa-41測定試料の作成方法について説明する。図5は本発明の実施形態におけるCa-41測定試料の作成方法の工程を示すフローチャートである。
まず、採取したコンクリート廃棄物の試料を乳鉢等で粉砕し、塩酸と硝酸で溶解する(S1)。この状態で、ICP発光分析器を用いて試料中のCa濃度Rwを測定する。これは、試料媒体をシュウ酸カルシウムCaC2O4としたことから、Caの濃縮率CR を求めるためである。Caとシュウ酸カルシウムCaC2O4の原子量の比は(40.08/128.1)=0.313であるから、コンクリート生試料に含まれるCaの濃度(重量比)をRwとすると、測定試料中のCaは(0.313/Rw)倍に濃縮されたことになる。例えば、Ca濃度Rwはコンクリートの種類によって8〜10%であるので、代表的な例として、Rw=0.0826という値を使うと、Caの濃縮率CRはCR=3.79となる。このCaの濃縮率CRは、コンクリート生試料の放射能濃度を求める場合に用いられる。すなわち、Ca-41の放射能濃度をCaの濃縮率CRで除算して、コンクリート生試料の放射能濃度を求めることになる。
次に、Fe担体溶液及びCo担体溶液を加え、アンモニア水で所定のアルカリ性濃度(pH8〜9)に調整して沈殿物を生成する(S2)。そして、その沈殿物を廃棄してFeとCoとを除去する(S3)。
このろ液に(1+1)塩酸とシュウ酸とを加え、アンモニア水で所定の酸性濃度(pH4.2〜4.5)に調整して沈殿物を生成する(S4)。この沈殿物を(1+1)塩酸で溶解し、陽イオン交換分離を行い、炭酸アンモニウムで所定のアルカリ性濃度(pH8〜9)に調整して沈殿物を生成する(S5)。そして、この沈殿物を(1+1)塩酸で溶解する(S6)。
次に、この溶解液に純水及びシュウ酸を加え撹拌・混合する(S7)。さらに、(1+1)アンモニア水を用いて所定のアルカリ性濃度(pH8〜9)に調整し沈殿物(シュウ酸カルシウム)を生成させる(S8)。
この沈殿物に対して、弱加温にて沈殿物を熟成させた後、1日間程度放置して、さらに沈殿物を熟成させる(S9)。熟成させた後に、ろ過装置を用い、あらかじめ乾燥重量を測定した20mmφのろ紙(5C)上にビーカ内の沈殿(シュウ酸カルシウム)を十分混合させながら、ろ過・回収する(S10)。ろ過・回収した沈殿物(シュウ酸カルシウム)を乾燥させて冷却し、Ca-41測定試料とする(S11)。
このように、Ca-41測定試料についても、Fe-55標準試料の作成の場合と同様に、試料を溶液中に沈殿させてろ過する手法としたため、質量分析器などの高価な装置を用いなくても、簡易に、低コストかつ実用的な測定が実現できる。従って、従来のように、試料ホルダー内に均等に試料を広げる必要がなく、作業者の習熟度が要求されない。
次に、図1の工程S6でのCa-41測定試料の作成方法について説明する。
図1の工程S6では、図1の工程5により、Ca-41のピーク領域{K-Kα+βX線(3.31keV及び3.59keV、放出比=12.8%)}の計数値N及び工程S3で求めたCa-41に対する計数効率εCaに基づいて、(3)式よりCa-41の放射能濃度ADを求める。
Figure 2012127659
ここで、Nはスペクトル中のピークの正味計数値、tは測定時間(s)、axはX線放出比(Caではax=0.128)、εは計数効率、Wは測定試料重量である。
(3)式のNに、Ca-41のピーク領域{K-KαX線(3.31keV、放出比=12.8%)}の計数値Nを代入し、εに工程S3で求めたCa-41に対する計数効率εCa を代入する。測定時間tは試料の放射能に応じてt=1×103〜8×104とし、測定試料の重量は予め計測しておく。 なお、コンクリート生試料の放射能濃度を求める場合は、前述したように、濃縮率CRで割って生試料の放射能濃度AD[Bq/(gConcrete)]を求めることになる。
本発明の実施形態によれば、Fe-55標準試料を作成し、各種の補正を行って、Ca-41に対する計数効率に基づいてCa-41の放射能濃度を求めるので、Ca-41標準試料がなくても、質量分析器(加速器型,ICP-MS,他)など高価な装置を用いることなく簡便かつ低コストで、Ca-41の分析を行うことができる。また、Fe-55標準試料やCa-41測定試料を溶液中に沈殿させてろ過する手法で作成するので、試料ホルダー内に均等に試料を広げる手法と比較して、簡易に、低コストかつ実用的な測定が実現できる。

Claims (3)

  1. 試料媒体をシュウ酸カルシウムとし水酸化鉄を含んだFe-55標準試料を作成し、Ge検出器でFe-55標準試料のX線の計数値を測定し、Ge検出器で測定したX線の計数値及びFe-55とCa-41とのX線減弱係数に基づいてCa-41に対する計数効率を求め、試料媒体をシュウ酸カルシウムとしたCa-41測定試料を作成し、Ge検出器で前記Ca-41測定試料のX線の計数値を計測し、前記Ca-41測定試料のX線の計数値及び前記Ca-41に対する計数効率に基づいてCa-41の放射能濃度を求めることを特徴とする放射性核種Ca-41の分析方法。
  2. 前記Fe-55標準試料は、所定重量のCa担体溶液、Fe-55放射能標準溶液、Fe担体溶液に、純水及びシュウ酸を加えて撹拌・混合し、アンモニア水で所定のアルカリ性濃度に調整してシュウ酸カルシウム及び水酸化鉄の沈殿物を生成し、弱加温にて沈殿物を熟成させ、熟成させた沈殿物をろ過・回収して作成されることを特徴とする請求項1記載の放射性核種Ca-41の分析方法。
  3. 前記Ca-41測定試料は、コンクリート廃棄物の試料を粉砕して塩酸と硝酸とで溶解し、Fe担体溶液及びCo担体溶液を加えアンモニア水で所定のアルカリ性濃度に調整して沈殿物を生成し、生成した沈殿物は廃棄してFeとCoとを除去し、溶液に塩酸とシュウ酸とを加えアンモニア水で所定の酸性濃度に調整して沈殿物を生成し、沈殿物を塩酸で溶解し陽イオン交換分離を行い炭酸アンモニウムで所定のアルカリ性濃度に調整して沈殿物を生成し、その沈殿物を塩酸で溶解し、純水及びシュウ酸を加えて撹拌・混合し、アンモニア水で所定のアルカリ性濃度に調整してシュウ酸カルシウムの沈殿物を生成し、弱加温にて沈殿物を熟成させ、熟成させた沈殿物をろ過・回収して作成されることを特徴とする請求項1記載の放射性核種Ca-41の分析方法。
JP2010276569A 2010-12-13 2010-12-13 放射性核種Ca−41の分析方法 Pending JP2012127659A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276569A JP2012127659A (ja) 2010-12-13 2010-12-13 放射性核種Ca−41の分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010276569A JP2012127659A (ja) 2010-12-13 2010-12-13 放射性核種Ca−41の分析方法

Publications (1)

Publication Number Publication Date
JP2012127659A true JP2012127659A (ja) 2012-07-05

Family

ID=46644897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276569A Pending JP2012127659A (ja) 2010-12-13 2010-12-13 放射性核種Ca−41の分析方法

Country Status (1)

Country Link
JP (1) JP2012127659A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017518492A (ja) * 2014-05-13 2017-07-06 パウル・シェラー・インスティトゥート 陽電子放出断層撮影法で使用するための43Sc放射性核種およびその放射性医薬品の製造
KR20200123675A (ko) * 2019-04-22 2020-10-30 한국원자력연구원 방사성 핵종의 분석 방법 및 방사성 핵종의 분석 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017518492A (ja) * 2014-05-13 2017-07-06 パウル・シェラー・インスティトゥート 陽電子放出断層撮影法で使用するための43Sc放射性核種およびその放射性医薬品の製造
KR101948404B1 (ko) * 2014-05-13 2019-02-14 폴 슈레 앙스띠뛰 양전자 방출 단층촬영에 사용하기 위한 43sc 방사성핵종 및 그의 방사성제약의 제조
US10357578B2 (en) 2014-05-13 2019-07-23 Paul Scherrer Institut Production of 43SC radionuclide and radiopharmaceuticals thereof for use in positron emission tomography
KR20200123675A (ko) * 2019-04-22 2020-10-30 한국원자력연구원 방사성 핵종의 분석 방법 및 방사성 핵종의 분석 장치
KR102288407B1 (ko) * 2019-04-22 2021-08-11 한국원자력연구원 방사성 핵종의 분석 방법 및 방사성 핵종의 분석 장치

Similar Documents

Publication Publication Date Title
Quiter et al. Nuclear resonance fluorescence for materials assay
Salminen-Paatero et al. Identification of Pu and U isotopic composition and its applications in environmental and CBRN research
JP2012127659A (ja) 放射性核種Ca−41の分析方法
Angell et al. Nuclear resonance fluorescence of Np 237
Ozden et al. A modified method for the sequential determination of 210 Po and 210 Pb in Ca-rich material using liquid scintillation counting
Kaspar et al. Evaluation of Uranium-235 Measurement Techniques
Török et al. Comparison of nuclear and X-ray techniques for actinide analysis of environmental hot particles
Sengupta et al. Characterization of purified 241 Am for common impurities by instrumental neutron activation analysis
JP4543195B2 (ja) 多重ガンマ線検出による高感度核種分析方法
De Vol et al. Isotopic analysis of plutonium using a combination of alpha and internal conversion electron spectroscopy
Hoang Field method for gross alpha-and beta-emitting radionuclide detection in environmental aqueous solutions
Senhou et al. Comparison of 14 MeV-NAA, k 0-NAA and ED-XRF for air pollution bio-monitoring
Mahmoud et al. Multi-element determination in sandstone rock by instrumental neutron activation analysis
Iso-Markku Difficult-to-measure beta active radionuclides in nuclear decommissioning waste
Latif et al. Neutron-induced prompt gamma-ray analysis of standard reference materials of international atomic energy agency and tannery sediment of Bangladesh
Hagura et al. PIXE analysis of concrete composition in a research reactor facility under decommissioning
Yoshii et al. X‐Ray Fluorescence for Rapid Detection of Uranium in Blood Extracted from Wounds
Pillay A review of accelerator-based techniques in analytical studies
Ni et al. Study of sediment samples using instrumental photon activiation multi-elemental analysis
Reis et al. Radiochemical separation of nickel for 59Ni and 63Ni activity determination in nuclear waste samples
: andsberger The instrumental determination of cadmium in biological samples at nanogram levels with the aid of a Compton suppression system and epithermal neutron activation analysis
Kondo et al. Simple measurement method with high detection efficiency to evaluate Sr-90 concentration in water by measuring β rays from Y-90 using GM-detector
Latif et al. Particle-induced X-ray emission analysis of IAEA standard reference materials, NIST standard reference materials and soils and sediments of Bangladesh
Sevastyanov et al. The possibility of 93mNb radionuclide production in the nuclear reactor BR-10 and its application in the radiation sources for x-ray fluorescence analysis
Hamid Determination of k 0-values for some elements in neutron capture gamma-ray for prompt gamma activation analysis