JP2012124261A - Laminated type cooler - Google Patents

Laminated type cooler Download PDF

Info

Publication number
JP2012124261A
JP2012124261A JP2010272614A JP2010272614A JP2012124261A JP 2012124261 A JP2012124261 A JP 2012124261A JP 2010272614 A JP2010272614 A JP 2010272614A JP 2010272614 A JP2010272614 A JP 2010272614A JP 2012124261 A JP2012124261 A JP 2012124261A
Authority
JP
Japan
Prior art keywords
flow path
refrigerant flow
refrigerant
substrate
supply header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010272614A
Other languages
Japanese (ja)
Other versions
JP5707910B2 (en
Inventor
Hiroto Kusaka
博人 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010272614A priority Critical patent/JP5707910B2/en
Publication of JP2012124261A publication Critical patent/JP2012124261A/en
Application granted granted Critical
Publication of JP5707910B2 publication Critical patent/JP5707910B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cooling performance of a substrate and reduce a space with simple structure in a laminated type cooler which cools electronic components from both sides.SOLUTION: A laminated type cooler 10 has: coolant passages 14 holding electronic components 12 from both sides and in which a coolant flows; a supply header part 16 extending toward one side in the lamination direction and supplying the coolant to each coolant passage 14; and a discharge header part 18 extending in the same direction as the supply header part 16 and discharging the coolant from each coolant passage 14. Further, the laminated type cooler 10 has a substrate 32 controlling the electronic components 12 and support members 34 connecting with at least one of the cooling passages 14, the supply header part 16, and the discharge header part 18 and supporting the substrate 32. This structure improves the cooling performance of the substrate 32 and reduce a space.

Description

本発明は、電子部品を両面から冷却する積層型冷却器の構造の改良に関する。   The present invention relates to an improvement in the structure of a stacked cooler that cools electronic components from both sides.

従来から、冷媒が流れる冷媒流路を、発熱体である電子部品の両面にそれぞれ接触させて、この電子部品を冷却する積層型冷却器が知られている。   2. Description of the Related Art Conventionally, a multilayer cooler is known that cools an electronic component by bringing a refrigerant flow path through which the refrigerant flows into contact with both surfaces of the electronic component that is a heating element.

下記特許文献1には、冷却媒体が流れる複数の冷却管を、発熱体である半導体素子を内蔵する半導体モジュールの両面にそれぞれ接触させて、半導体モジュールを冷却する電力変換装置が記載されている。   Patent Document 1 below describes a power conversion device that cools a semiconductor module by bringing a plurality of cooling pipes through which a cooling medium flows into contact with both surfaces of the semiconductor module containing a semiconductor element that is a heating element.

この電力変換装置は、冷却管と半導体モジュールが積層する積層方向の一方側に延在し、各冷媒管に冷媒を導入する導入管と、導入管と同じ方向に延在し、各冷却管から冷媒を導出する導出管とを有する。   This power conversion device extends to one side of the stacking direction in which the cooling pipe and the semiconductor module are stacked, introduces a refrigerant into each refrigerant pipe, extends in the same direction as the introduction pipe, and extends from each cooling pipe. A lead-out pipe for leading out the refrigerant.

このように構成される電力変換装置においては、半導体モジュールの熱が、半導体モジュールの両面から冷却管の冷媒に伝達され、半導体モジュールが効率よく冷却される。   In the power conversion device configured as described above, the heat of the semiconductor module is transmitted from both surfaces of the semiconductor module to the refrigerant in the cooling pipe, and the semiconductor module is efficiently cooled.

特開2009−59887号公報JP 2009-59887 A

従来の積層型冷却器は、電子部品を制御する基板とともにケースに収容される。ケースに収容される基板は、通常、ブラケットを介してケースの内壁に支持される。   A conventional stacked cooler is housed in a case together with a substrate for controlling electronic components. The substrate accommodated in the case is usually supported on the inner wall of the case via a bracket.

このような積層型冷却器の電子部品が、自動車を駆動する回転電機に電力を供給する部品、すなわちインバータである場合、ケースは車両のトランクアクスル付近に搭載される例がある。この場合、トランクアクスルの熱が、ケースとブラケットを介して基板に伝達してしまい、基板に不具合が生じる可能性があった。   When the electronic component of such a stacked cooler is a component that supplies electric power to a rotating electrical machine that drives an automobile, that is, an inverter, there is an example in which the case is mounted in the vicinity of the trunk axle of the vehicle. In this case, the heat of the trunk axle is transmitted to the board via the case and the bracket, and there is a possibility that a problem occurs in the board.

この不具合を防止するために、基板に実装される部品を、耐熱仕様の部品に置き換えるという対応が考えられる。しかし、耐熱仕様の部品の採用により、コストが上昇してしまうという問題がある。   In order to prevent this problem, it is conceivable to replace the component mounted on the substrate with a heat-resistant component. However, there is a problem that the cost increases due to the use of heat-resistant specification parts.

また、積層型冷却器が、車両などの設置スペースが制限される装置に搭載される場合、積層型冷却器のケースの体格においては小型化が当然に要求されるので、その小型化に対応しなければならないという問題がある。   Also, when the stacked cooler is mounted on a device such as a vehicle where the installation space is limited, the size of the case of the stacked cooler is naturally required to be reduced. There is a problem of having to.

本発明の目的は、簡易な構造で、基板の冷却性能を高めるとともに省スペース化を図ることができる積層型冷却器を提供することにある。   An object of the present invention is to provide a stacked type cooler that has a simple structure, can enhance the cooling performance of a substrate, and can save space.

本発明は、電子部品を両面から挟持し、冷媒が流れる冷媒流路と、電子部品及び冷媒流路の積層方向の一方側に延在し、各冷媒流路に冷媒を供給する供給ヘッダ部と、供給ヘッダ部と同じ方向に延在し、各冷媒流路から冷媒を排出する排出ヘッダ部と、を有し、電子部品を両面から冷却する積層型冷却器において、電子部品を制御する基板と、冷媒流路、供給ヘッダ部又は排出ヘッダ部の少なくとも一つに接続して、基板を支持する支持部材と、を有することを特徴とする。   The present invention includes an electronic component sandwiched from both sides, a refrigerant flow path through which a refrigerant flows, a supply header portion that extends to one side in the stacking direction of the electronic component and the refrigerant flow path, and supplies the refrigerant to each refrigerant flow path. A stack header that extends in the same direction as the supply header portion and discharges the refrigerant from each refrigerant flow path, and cools the electronic component from both sides, and a substrate that controls the electronic component; And a support member connected to at least one of the refrigerant flow path, the supply header section, and the discharge header section to support the substrate.

また、支持部材は、接続対象である冷媒流路、供給ヘッダ部又は排出ヘッダ部の外形と嵌り合う接続面を有することが好適である。   Moreover, it is preferable that the support member has a connection surface that fits the outer shape of the coolant channel, the supply header portion, or the discharge header portion to be connected.

また、支持部材と、この支持部材の接続対象とは同じ材質であり、ろう付け又はかしめにより接合されることが好適である。   The support member and the connection target of the support member are made of the same material, and are preferably joined by brazing or caulking.

本発明の積層型冷却器によれば、簡易な構造で、基板の冷却性能を高めるとともに省スペース化を図ることができる。   According to the stacked type cooler of the present invention, it is possible to improve the cooling performance of the substrate and save space with a simple structure.

本実施形態に係る積層型冷却器の分解斜視図である。It is a disassembled perspective view of the lamination type cooler concerning this embodiment. 図1のA方向から見た積層型冷却器の側面図である。FIG. 2 is a side view of the stacked cooler viewed from the direction A in FIG. 1. 図1のB方向から見た積層型冷却器の側面図である。FIG. 2 is a side view of the stacked cooler viewed from the direction B in FIG. 1. 図1のC−C線による積層型冷却器の断面図である。It is sectional drawing of the laminated type cooler by CC line of FIG.

以下、本発明に係る積層型冷却器の実施形態について、図を用いて説明する。一例として、自動車を駆動するモータに電力を供給するパワーモジュールを挙げ、これを冷却する積層型冷却器について説明する。なお、本発明は、上記パワーモジュールに限らず、発熱体である電子部品を冷却する積層型冷却器にも適用することができる。   Hereinafter, an embodiment of a stacked cooler according to the present invention will be described with reference to the drawings. As an example, a power module that supplies power to a motor that drives an automobile will be described, and a stacked cooler that cools the power module will be described. The present invention can be applied not only to the power module described above but also to a stacked cooler that cools an electronic component that is a heating element.

図1は、本実施形態に係る積層型冷却器の分解斜視図であり、図2は、図1のA方向から見た積層型冷却器の側面図であり、図3は、図1のB方向から見た積層型冷却器の側面図であり、図4は、図1のC−C線による積層型冷却器の断面図である。なお、図に示されるX軸は、後述する電子部品及び冷媒流路が積層する積層方向である。   FIG. 1 is an exploded perspective view of the stacked cooler according to the present embodiment, FIG. 2 is a side view of the stacked cooler viewed from the direction A in FIG. 1, and FIG. FIG. 4 is a side view of the stacked cooler viewed from the direction, and FIG. 4 is a cross-sectional view of the stacked cooler taken along line CC in FIG. Note that the X axis shown in the figure is a stacking direction in which electronic components and a refrigerant flow path, which will be described later, are stacked.

積層型冷却器10は、電子部品12を両面から挟持する冷媒流路14と、各冷媒流路14に冷媒を供給する供給ヘッダ部16と、各冷媒流路14から冷媒を排出する排出ヘッダ部18とを有する。本実施形態の冷媒は、LLC(Long Life Coolant)であるが、本発明はこの構成に限定されず、周知の冷媒を用いることができる。   The stacked cooler 10 includes a refrigerant flow path 14 that holds the electronic component 12 from both sides, a supply header section 16 that supplies the refrigerant to each refrigerant flow path 14, and a discharge header section that discharges the refrigerant from each refrigerant flow path 14. 18. Although the refrigerant of this embodiment is LLC (Long Life Coolant), the present invention is not limited to this configuration, and a known refrigerant can be used.

電子部品12は、スイッチングモジュールである。電子部品12は、IGBT(Insulated Gate Bipolar Transistor)と電極とを含み、これらを絶縁性の樹脂でモールドして形成される。電子部品12は、積層方向に対して潰れた矩形板状である。本実施形態の自動車は、駆動用のモータを1個有し、このモータに対応するインバータを1個有する。1個のインバータは6個のスイッチングモジュールにより構成されるので、本実施形態の電子部品12は計6個となる。電子部品12は2個を1組にして積層方向に計3組配置される。   The electronic component 12 is a switching module. The electronic component 12 includes an IGBT (Insulated Gate Bipolar Transistor) and electrodes, and is formed by molding these with an insulating resin. The electronic component 12 has a rectangular plate shape that is crushed in the stacking direction. The automobile of this embodiment has one drive motor and one inverter corresponding to this motor. Since one inverter is composed of six switching modules, the total number of electronic components 12 in this embodiment is six. Three sets of electronic components 12 are arranged in the stacking direction, with two sets as one set.

なお、電子部品12の数及び積層数は一例であって、本発明は電子部品12の数6個及び積層数3組に限定されない。例えば、自動車が駆動用のモータを2個有し、これらのモータにそれぞれ対応するインバータを2個有する場合、各インバータは、6個のスイッチングモジュールによりそれぞれ構成されるので、電子部品12は計12個となる。この場合、電子部品12は2個を1組にして積層方向に計6組配置することができる。   The number of electronic components 12 and the number of stacked layers are examples, and the present invention is not limited to the number of electronic components 12 and the number of stacked layers 3 sets. For example, when an automobile has two drive motors and two inverters corresponding to these motors, each inverter is composed of six switching modules, so that the electronic component 12 has a total of 12 It becomes a piece. In this case, two electronic components 12 can be arranged in a stacking direction in a total of six sets of two.

冷媒流路14はアルミニウム製である。冷媒流路14は積層方向に対して潰れた角筒状である。冷媒流路14は、積層方向に計4個配置される。冷媒流路14の長手方向一端には、冷媒が流れ込む流入口20が形成され、他端には、冷媒が流れ出す流出口22が形成される。流入口20と流出口22とは、冷媒流路14の内部において区画された空間により連通している。   The refrigerant channel 14 is made of aluminum. The refrigerant channel 14 has a rectangular tube shape that is crushed in the stacking direction. A total of four refrigerant flow paths 14 are arranged in the stacking direction. An inlet 20 through which the refrigerant flows is formed at one end in the longitudinal direction of the refrigerant flow path 14, and an outlet 22 through which the refrigerant flows out is formed at the other end. The inflow port 20 and the outflow port 22 communicate with each other through a space defined inside the refrigerant flow path 14.

供給ヘッダ部16はアルミニウム製である。供給ヘッダ部16は、供給ヘッダ本体部24と供給ヘッダ連通管26とを有する。供給ヘッダ連通管26は、短軸の円筒状である。供給ヘッダ連通管26は、積層方向において互いに隣接する冷媒流路14に接続される。具体的には、互いの冷媒流路14の流入口20をそれぞれ覆うように接続される。供給ヘッダ連通管26は、積層方向に直線上に並んで計3個配置される。   The supply header portion 16 is made of aluminum. The supply header portion 16 includes a supply header main body portion 24 and a supply header communication pipe 26. The supply header communication pipe 26 has a short-axis cylindrical shape. The supply header communication pipe 26 is connected to the refrigerant flow paths 14 adjacent to each other in the stacking direction. Specifically, it connects so that the inflow port 20 of the mutual refrigerant flow path 14 may be covered, respectively. A total of three supply header communication pipes 26 are arranged in a straight line in the stacking direction.

供給ヘッダ本体部24は、供給ヘッダ連通管26よりも長軸の円筒状である。供給ヘッダ本体部24は、供給ヘッダ連通管26と同じ直線上に、電子部品12と冷媒流路14からなる積層体より積層方向の一方側に延在するように設けられる。供給ヘッダ本体部24の一端は、積層方向の一方側の端部に位置する冷媒流路14に、これの流入口20を覆うように接続される。供給ヘッダ本体部24の他端は、放熱装置(図示せず)に接続される。また、供給ヘッダ本体部24は、積層型冷却器10を収容するケース27(図3に示す)に固定される。   The supply header main body 24 has a longer cylindrical shape than the supply header communication pipe 26. The supply header main body 24 is provided on the same straight line as the supply header communication pipe 26 so as to extend to one side in the stacking direction from the stacked body including the electronic component 12 and the refrigerant flow path 14. One end of the supply header main body 24 is connected to the refrigerant flow path 14 located at one end in the stacking direction so as to cover the inlet 20 thereof. The other end of the supply header main body 24 is connected to a heat radiating device (not shown). Further, the supply header main body 24 is fixed to a case 27 (shown in FIG. 3) that houses the stacked cooler 10.

排出ヘッダ部18はアルミニウム製である。排出ヘッダ部18は、排出ヘッダ本体部28と排出ヘッダ連通管30とを有する。排出ヘッダ連通管30は、短軸の円筒状である。排出ヘッダ連通管30は、積層方向において互いに隣接する冷媒流路14に接続される。具体的には、互いの冷媒流路14の流出口22をそれぞれ覆うように接続される。排出ヘッダ連通管30は、積層方向に直線上に並んで計3個配置される。   The discharge header portion 18 is made of aluminum. The discharge header portion 18 includes a discharge header main body portion 28 and a discharge header communication pipe 30. The discharge header communication pipe 30 has a short-axis cylindrical shape. The discharge header communication pipe 30 is connected to the refrigerant flow paths 14 adjacent to each other in the stacking direction. Specifically, they are connected so as to cover the outlets 22 of the refrigerant flow paths 14. A total of three discharge header communication pipes 30 are arranged in a straight line in the stacking direction.

排出ヘッダ本体部28は、排出ヘッダ連通管30よりも長軸の円筒状である。排出ヘッダ本体部28は、排出ヘッダ連通管30と同じ直線上に、電子部品12と冷媒流路14からなる積層体より積層方向の一方側に延在するように設けられる。排出ヘッダ本体部28の一端は、積層方向の一方側の端部に位置する冷媒流路14に、これの流出口22を覆うように接続される。排出ヘッダ本体部28の他端は、放熱装置(図示せず)に接続される。また、排出ヘッダ本体部28は、積層型冷却器10を収容するケース27に固定される。   The discharge header main body 28 has a cylindrical shape with a longer axis than the discharge header communication pipe 30. The discharge header main body 28 is provided on the same straight line as the discharge header communication pipe 30 so as to extend to one side in the stacking direction from the stacked body including the electronic component 12 and the refrigerant flow path 14. One end of the discharge header main body 28 is connected to the refrigerant flow path 14 located at one end in the stacking direction so as to cover the outlet 22 thereof. The other end of the discharge header main body 28 is connected to a heat radiating device (not shown). The discharge header main body 28 is fixed to a case 27 that houses the stacked cooler 10.

本実施形態の積層型冷却器10は、電子部品12を制御する基板32と、供給ヘッダ連通管26及び排出ヘッダ連通管30にそれぞれ接続して、基板32を支持する支持部材34とを有する。   The multilayer cooler 10 of this embodiment includes a substrate 32 that controls the electronic component 12 and a support member 34 that supports the substrate 32 by connecting to the supply header communication pipe 26 and the discharge header communication pipe 30.

この構成により、基板32と、冷媒が流れる供給ヘッダ連通管26と排出ヘッダ連通管30が熱的に接続されるので、基板32の冷却性能を高めることができる。また、仮に、積層型冷却器10が車両のトランクアクスル付近に搭載されたとしても、従来技術のように基板がケースから直接支持されていないので、トランクアクスルの熱が基板32に伝達することを防ぐことができる。また、本実施形態においては、従来技術のように基板がケースから直接支持されていないので、ケースから内部側に突出して形成され、基板を支持するベース部のスペースを省略することができ、図3に示されるように、ケース27の体格、特に冷媒流路14の長手方向を小型化することができる。   With this configuration, the substrate 32, the supply header communication pipe 26 through which the refrigerant flows, and the discharge header communication pipe 30 are thermally connected, so that the cooling performance of the substrate 32 can be improved. Further, even if the stacked cooler 10 is mounted near the trunk axle of the vehicle, the board is not directly supported from the case as in the prior art, so that the heat of the trunk axle is transferred to the board 32. Can be prevented. In this embodiment, since the substrate is not directly supported from the case as in the prior art, it is formed to protrude from the case to the inner side, and the space of the base portion supporting the substrate can be omitted. As shown in FIG. 3, the size of the case 27, particularly the longitudinal direction of the refrigerant flow path 14, can be reduced.

支持部材34はアルミニウム製である。支持部材34は、断面L字状である。支持部材34は、L字状一方の辺の平面を貫通するように形成された孔34aと、L字状他方の辺の端部に、接続対象である供給ヘッダ連通管26及び排出ヘッダ連通管30の外形に対して嵌り合うように形成された接続面34bとを有する。支持部材34は、接続対象である供給ヘッダ連通管26と排出ヘッダ連通管30に、それぞれ、積層方向に所定の間隔をあけて2個配置される。なお、本発明は支持部材34の数、計4個に限定されない。   The support member 34 is made of aluminum. The support member 34 has an L-shaped cross section. The support member 34 includes a hole 34a formed so as to penetrate the plane of one side of the L-shape, and a supply header communication pipe 26 and a discharge header communication pipe that are connection targets at the end of the other side of the L-shape. And a connection surface 34b formed to fit to the outer shape of 30. Two support members 34 are arranged on the supply header communication pipe 26 and the discharge header communication pipe 30 to be connected with a predetermined interval in the stacking direction. In addition, this invention is not limited to the number of the supporting members 34, a total of four.

支持部材34の上部、すなわち一方の辺の平面上に基板32を載せて、ボルト(図示せず)を、基板32に形成される孔32aと支持部材34の孔34aとに挿入し締め付けることで、基板32と支持部材34が固定される。本実施形態の基板32と支持部材34の固定手段は、ボルトであるが、本発明はこの構成に限定されず、周知の固定手段を用いることができる。   By placing the substrate 32 on the upper portion of the support member 34, that is, on the plane of one side, a bolt (not shown) is inserted into the hole 32 a formed in the substrate 32 and the hole 34 a of the support member 34 and tightened. The substrate 32 and the support member 34 are fixed. The fixing means for the substrate 32 and the support member 34 of this embodiment is a bolt, but the present invention is not limited to this configuration, and a well-known fixing means can be used.

冷媒流路14と供給ヘッダ部16と排出ヘッダ部18と支持部材34とは、それらの各接合部がろう付け、またはかしめにより接合される。そして、積層方向において隣接する冷媒流路14の間に、電子部品12をそれぞれ配置し、これらからなる積層体を積層方向外側から所定圧力で挟みこむことにより、電子部品12が冷媒流路14により挟持される。具体的には、上記所定圧力の挟みこみにより、供給及び排出ヘッダ連通管26,30が積層方向に縮むように塑性変形し、隣接する冷媒流路14の距離が小さくなることで、電子部品12と冷媒流路14とが、積層方向に直交する接触面において密着することができる。   The refrigerant flow path 14, the supply header part 16, the discharge header part 18, and the support member 34 are joined by brazing or caulking. Then, the electronic components 12 are respectively disposed between the refrigerant flow paths 14 adjacent in the stacking direction, and the stacked body composed of these components is sandwiched at a predetermined pressure from the outside in the stacking direction. It is pinched. Specifically, the supply and discharge header communication pipes 26 and 30 are plastically deformed so as to be contracted in the stacking direction by sandwiching the predetermined pressure, and the distance between the adjacent refrigerant flow paths 14 is reduced. The refrigerant flow path 14 can be in close contact with the contact surface orthogonal to the stacking direction.

さらに、積層体をケース27に組み付ける際に、図4に示されるように、弾性変形させた弾性部材36が、積層方向の一方側の端部に位置する冷媒流路14に対して押し当てられる。弾性部材36は、例えば板ばねである。この弾性部材36の復元力により、電子部品12と冷媒流路14との密着が保持される。   Further, when the laminated body is assembled to the case 27, as shown in FIG. 4, the elastically deformed elastic member 36 is pressed against the refrigerant flow path 14 located at one end portion in the laminating direction. . The elastic member 36 is, for example, a leaf spring. Due to the restoring force of the elastic member 36, the close contact between the electronic component 12 and the refrigerant flow path 14 is maintained.

このように、支持部材34の接触面34bと、接続対象である供給ヘッダ連通管26と排出ヘッダ連通管30の外形とが、冷媒流路14と供給ヘッダ部16と排出ヘッダ部18の接合工程において接続されることにより、組み立て工程における手間を省くことができる。   As described above, the contact surface 34b of the support member 34 and the outer shapes of the supply header communication pipe 26 and the discharge header communication pipe 30 to be connected are joined to the refrigerant flow path 14, the supply header section 16, and the discharge header section 18. By connecting at, it is possible to save labor in the assembly process.

上述のように構成される積層型冷却器10における冷媒の流れについて、図4を用いて説明する。なお、パワーモジュールが動作中であり、電子部品12が発熱している場合について説明する。   The flow of the refrigerant in the stacked cooler 10 configured as described above will be described with reference to FIG. A case where the power module is in operation and the electronic component 12 is generating heat will be described.

図示しない放熱装置から供給ヘッダ本体部24に導入される冷媒は、直接または供給ヘッダ連通管26を介して、4個の冷媒流路14にそれぞれ供給される。電子部品12の熱は、冷媒流路14を流れる冷媒に伝達される。電子部品12の熱を受けて温度が上昇した冷媒は、冷媒流路14から、直接または排出ヘッダ連通管30を介して、排出ヘッダ本体部28に流れ込む。このとき、基板32の熱も、支持部材32を介して、供給ヘッダ連通管26と排出ヘッダ連通管30を流れる冷媒に伝達される。排出ヘッダ本体部28において合流した冷媒は、放熱装置へ供給され冷却される。そして、放熱装置において冷却された冷媒は、再び供給ヘッダ本体部24に導入される。   The refrigerant introduced into the supply header main body 24 from a heat radiating device (not shown) is supplied to each of the four refrigerant flow paths 14 directly or via the supply header communication pipe 26. The heat of the electronic component 12 is transmitted to the refrigerant flowing through the refrigerant flow path 14. The refrigerant whose temperature has risen due to the heat of the electronic component 12 flows into the discharge header main body 28 from the refrigerant flow path 14 directly or via the discharge header communication pipe 30. At this time, the heat of the substrate 32 is also transmitted to the refrigerant flowing through the supply header communication pipe 26 and the discharge header communication pipe 30 via the support member 32. The refrigerant merged in the discharge header main body 28 is supplied to the heat radiating device and cooled. And the refrigerant | coolant cooled in the thermal radiation apparatus is again introduce | transduced into the supply header main-body part 24. FIG.

本実施形態の積層型冷却器10によれば、基板32がケース27から直接支持されなくなるので、基板32がケース27からの熱の影響を受けにくくなる。また、基板32が支持部材34を介して供給ヘッダ連通管26と排出ヘッダ連通管30に接続されるので、基板32の冷却性能を高めることができる。また、支持部材34と、供給ヘッダ連通管26及び排出ヘッダ連通管30との接続が、冷媒流路14と供給ヘッダ部16と排出ヘッダ部18の接合工程において実現されるので、組み立て工程における手間を省くことができる。さらに、従来技術で採用されたケース27から内側へ突出したベース部のスペースが空くので、その空間を、冷媒流路14の長手方向において小さくするようにケース27の体格を構成することができる。   According to the multilayer cooler 10 of the present embodiment, the substrate 32 is not directly supported from the case 27, so that the substrate 32 is not easily affected by the heat from the case 27. Further, since the substrate 32 is connected to the supply header communication tube 26 and the discharge header communication tube 30 via the support member 34, the cooling performance of the substrate 32 can be enhanced. Further, since the connection between the support member 34 and the supply header communication pipe 26 and the discharge header communication pipe 30 is realized in the joining process of the refrigerant flow path 14, the supply header part 16, and the discharge header part 18, trouble in the assembly process. Can be omitted. Further, since the space of the base portion protruding inward from the case 27 employed in the prior art is vacant, the physique of the case 27 can be configured so that the space is reduced in the longitudinal direction of the refrigerant flow path 14.

本実施形態においては、支持部材34の接続対象が、供給ヘッダ連通管26と排出ヘッダ連通管30である場合について説明したが、本発明はこの構成に限定されない。冷媒が流れる部材であれば、接続対象が、冷媒流路14、供給ヘッダ部16又は排出ヘッダ部18の少なくとも一つとすることができる。   In the present embodiment, the case where the connection target of the support member 34 is the supply header communication pipe 26 and the discharge header communication pipe 30 has been described, but the present invention is not limited to this configuration. If it is a member through which the refrigerant flows, the connection target can be at least one of the refrigerant flow path 14, the supply header part 16, or the discharge header part 18.

また、本実施形態においては、冷媒流路14と供給ヘッダ部16と排出ヘッダ部18と支持部材34とは、アルミニウム製である場合について説明したが、本発明はこの構成に限定されない。熱伝導性に優れた材質であれば、例えば銅製であってもよい。   In the present embodiment, the refrigerant flow path 14, the supply header portion 16, the discharge header portion 18, and the support member 34 have been described as being made of aluminum, but the present invention is not limited to this configuration. If it is a material excellent in thermal conductivity, it may be made of copper, for example.

10 積層型冷却器、12 電子部品、14 冷媒流路、16 供給ヘッダ部、18 排出ヘッダ部、20 流入口、22 流出口、24 供給ヘッダ本体部、26 供給ヘッダ連通管、27 ケース、28 排出ヘッダ本体部、30 排出ヘッダ連通管、32 基板、34 支持部材、36 弾性部材。   DESCRIPTION OF SYMBOLS 10 Stack type cooler, 12 Electronic components, 14 Refrigerant flow path, 16 Supply header part, 18 Discharge header part, 20 Inlet, 22 Outlet, 24 Supply header main part, 26 Supply header communication pipe, 27 Case, 28 Discharge Header body part, 30 discharge header communication pipe, 32 substrate, 34 support member, 36 elastic member.

Claims (3)

電子部品を両面から挟持し、冷媒が流れる冷媒流路と、
電子部品及び冷媒流路の積層方向の一方側に延在し、各冷媒流路に冷媒を供給する供給ヘッダ部と、
供給ヘッダ部と同じ方向に延在し、各冷媒流路から冷媒を排出する排出ヘッダ部と、
を有し、
電子部品を両面から冷却する積層型冷却器において、
電子部品を制御する基板と、
冷媒流路、供給ヘッダ部又は排出ヘッダ部の少なくとも一つに接続して、基板を支持する支持部材と、
を有することを特徴とする積層型冷却器。
A refrigerant flow path that sandwiches electronic components from both sides and through which refrigerant flows;
A supply header portion that extends to one side of the stacking direction of the electronic component and the refrigerant flow path and supplies the refrigerant to each refrigerant flow path;
A discharge header portion extending in the same direction as the supply header portion and discharging the refrigerant from each refrigerant flow path;
Have
In a stacked cooler that cools electronic components from both sides,
A substrate for controlling electronic components;
A support member connected to at least one of the refrigerant flow path, the supply header part or the discharge header part to support the substrate;
A laminated cooler characterized by comprising:
請求項1に記載の積層型冷却器において、
支持部材は、接続対象である冷媒流路、供給ヘッダ部又は排出ヘッダ部の外形と嵌り合う接続面を有する、
ことを特徴とする積層型冷却器。
The stacked cooler according to claim 1, wherein
The support member has a connection surface that fits the outer shape of the refrigerant flow path, the supply header part or the discharge header part to be connected,
A laminated cooler characterized by that.
請求項2に記載の積層型冷却器において、
支持部材と、この支持部材の接続対象とは同じ材質であり、ろう付け又はかしめにより接合される、
ことを特徴とする積層型冷却器。
The stacked cooler according to claim 2, wherein
The support member and the connection target of the support member are the same material, and are joined by brazing or caulking.
A laminated cooler characterized by that.
JP2010272614A 2010-12-07 2010-12-07 Stacked cooler Expired - Fee Related JP5707910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010272614A JP5707910B2 (en) 2010-12-07 2010-12-07 Stacked cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010272614A JP5707910B2 (en) 2010-12-07 2010-12-07 Stacked cooler

Publications (2)

Publication Number Publication Date
JP2012124261A true JP2012124261A (en) 2012-06-28
JP5707910B2 JP5707910B2 (en) 2015-04-30

Family

ID=46505426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010272614A Expired - Fee Related JP5707910B2 (en) 2010-12-07 2010-12-07 Stacked cooler

Country Status (1)

Country Link
JP (1) JP5707910B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013831A (en) * 2012-07-04 2014-01-23 Toyota Motor Corp Power conversion system and manufacturing method therefor
CN106712460A (en) * 2015-11-17 2017-05-24 株式会社电装 Electric power converter

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111279A (en) * 1999-10-08 2001-04-20 Hitachi Electronics Eng Co Ltd Device for cooling electronic component
JP2005045186A (en) * 2003-07-25 2005-02-17 Denso Corp Power converting device
JP2005224008A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Inverter device, inverter integrated type rotating electric machine and vehicle equipped with rotating machine
JP2005252198A (en) * 2004-03-08 2005-09-15 Denso Corp Solder joining method of insertion mounting electronic component, and manufacturing method of power converting apparatus
JP2005332863A (en) * 2004-05-18 2005-12-02 Denso Corp Power stack
JP2006173229A (en) * 2004-12-14 2006-06-29 Funai Electric Co Ltd Supporting structure for printed circuit board
JP2007242724A (en) * 2006-03-06 2007-09-20 Seiko Epson Corp Micro-channel structure, its manufacturing method of micro-channel structure and electronic apparatus
JP2009212137A (en) * 2008-02-29 2009-09-17 Nissan Motor Co Ltd Cooling device for heat generating element
JP2010124523A (en) * 2008-11-17 2010-06-03 Denso Corp Power conversion apparatus
JP2011009462A (en) * 2009-06-25 2011-01-13 Denso Corp Stack type cooling device
JP2011035351A (en) * 2009-08-06 2011-02-17 Denso Corp Semiconductor cooler
JP2011182629A (en) * 2010-02-05 2011-09-15 Denso Corp Power conversion apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111279A (en) * 1999-10-08 2001-04-20 Hitachi Electronics Eng Co Ltd Device for cooling electronic component
JP2005045186A (en) * 2003-07-25 2005-02-17 Denso Corp Power converting device
JP2005224008A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Inverter device, inverter integrated type rotating electric machine and vehicle equipped with rotating machine
JP2005252198A (en) * 2004-03-08 2005-09-15 Denso Corp Solder joining method of insertion mounting electronic component, and manufacturing method of power converting apparatus
JP2005332863A (en) * 2004-05-18 2005-12-02 Denso Corp Power stack
JP2006173229A (en) * 2004-12-14 2006-06-29 Funai Electric Co Ltd Supporting structure for printed circuit board
JP2007242724A (en) * 2006-03-06 2007-09-20 Seiko Epson Corp Micro-channel structure, its manufacturing method of micro-channel structure and electronic apparatus
JP2009212137A (en) * 2008-02-29 2009-09-17 Nissan Motor Co Ltd Cooling device for heat generating element
JP2010124523A (en) * 2008-11-17 2010-06-03 Denso Corp Power conversion apparatus
JP2011009462A (en) * 2009-06-25 2011-01-13 Denso Corp Stack type cooling device
JP2011035351A (en) * 2009-08-06 2011-02-17 Denso Corp Semiconductor cooler
JP2011182629A (en) * 2010-02-05 2011-09-15 Denso Corp Power conversion apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013831A (en) * 2012-07-04 2014-01-23 Toyota Motor Corp Power conversion system and manufacturing method therefor
CN106712460A (en) * 2015-11-17 2017-05-24 株式会社电装 Electric power converter
JP2017093272A (en) * 2015-11-17 2017-05-25 株式会社デンソー Power conversion device
CN106712460B (en) * 2015-11-17 2020-04-17 株式会社电装 Power converter

Also Published As

Publication number Publication date
JP5707910B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
US8948582B2 (en) Heat medium heating device and vehicle air conditioner including the same
CN107710563B (en) Electromechanical integrated rotating electric device
JP5699995B2 (en) Power converter
WO2014185338A1 (en) Heat medium heating device, method of manufacturing same, and vehicle air conditioning device using same
US9186956B2 (en) Heat medium heating unit and vehicle air conditioning apparatus provided with the same
JP6181212B2 (en) Power module and manufacturing method thereof
WO2013140502A1 (en) Power conversion apparatus
JP5652370B2 (en) Power converter
WO2011129201A1 (en) Heat medium heating device and vehicle air conditioning apparatus using the same
JP2013159135A (en) Heat medium heating device, and vehicular air conditioner including the same
JP2011225074A (en) Heat medium heating device and vehicle air conditioning device using the same
US10648709B2 (en) Heat exchanger for the temperature control of a battery
JP2012196985A (en) Heater for heat medium and air conditioner for vehicle with the same
JP2010087002A (en) Heating component cooling structure
JP2012249503A (en) Electric power conversion apparatus
JP2013220707A (en) Heat medium heating device, and vehicle air conditioner equipped with the same
JP2012017031A (en) Heat medium-heating device and air conditioner for vehicle using the same
JP5707910B2 (en) Stacked cooler
JP2011079344A (en) Heat medium heating device and air conditioner for vehicle
JP6583513B2 (en) Power converter
JP2012099748A (en) Stacked cooler
JP2013220706A (en) Heat medium heating device, and vehicle air conditioner equipped with the same
JP2012218556A (en) Heat medium heating device, and vehicle air conditioner equipped with the same
JP2013071617A (en) Heat medium heating device and vehicle air conditioner equipped with the same
JP2019205351A (en) Power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

LAPS Cancellation because of no payment of annual fees