JP2012123154A - Binocular - Google Patents

Binocular Download PDF

Info

Publication number
JP2012123154A
JP2012123154A JP2010273280A JP2010273280A JP2012123154A JP 2012123154 A JP2012123154 A JP 2012123154A JP 2010273280 A JP2010273280 A JP 2010273280A JP 2010273280 A JP2010273280 A JP 2010273280A JP 2012123154 A JP2012123154 A JP 2012123154A
Authority
JP
Japan
Prior art keywords
pair
optical axis
lens holding
holding cylinders
lens barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010273280A
Other languages
Japanese (ja)
Inventor
Kazuaki Takezawa
一彰 嶽澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010273280A priority Critical patent/JP2012123154A/en
Publication of JP2012123154A publication Critical patent/JP2012123154A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Telescopes (AREA)
  • Lens Barrels (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure having fewer number of components and being strong against shock in alignment of an optical axis of a binocular having a left and right pair of objective optical systems, upright optical systems, and eyepiece optical systems, respectively.SOLUTION: In the binocular, there is a left and right pair of lens holding cylinders 1L and 1R. The left and right pair of lens holding cylinders 1L and 1R is positioned and fixed to a predetermined position of a tip of a fixing member 2. An adjustment member is arranged in a counter position across the optical axes of the lens holding cylinders 1L and 1R with respect to a reference member. Flange shapes are provided on the circumferences of the rear ends of the lens holding cylinders 1L and 1R, and a plurality of corresponding flange shapes are provided on the circumference of the tip of the fixing member 2. These two types of flange shapes constitute a bayonet connection. Further, the lens holding cylinders 1L and 1R can move in a plane vertical to the optical axis, and an optical axis alignment can be made by oscillating the lens holding cylinders in the directions different to each other by the adjustment member with the reference member as a center of oscillation.

Description

本発明は、左右一対の光学系の光軸の平行度調整を簡易的な方法で行うことのできる光軸調整機構を有する双眼鏡に関するものである。   The present invention relates to binoculars having an optical axis adjustment mechanism capable of adjusting the parallelism of the optical axes of a pair of left and right optical systems by a simple method.

双眼鏡には左右一対の対物光学系と、複数のプリズムやミラ−から成る左右一対の正立光学系、および、左右一対の接眼光学系とが備えられており、光軸調整については種々の構成が提案されている。   The binoculars are equipped with a pair of left and right objective optical systems, a pair of left and right erecting optical systems composed of a plurality of prisms and mirrors, and a pair of left and right eyepiece optical systems. Has been proposed.

特許文献1では、左右一対の対物レンズ鏡筒と固定部材があり、対物レンズ鏡筒のそれぞれには取付用穴を有している。   In Patent Document 1, there are a pair of left and right objective lens barrels and a fixing member, and each objective lens barrel has a mounting hole.

対物レンズ鏡筒は、2つのビスで固定部材に固定される。ここで、取付用穴は、取付用ビスに対して穴径が多少大きく設定されており、対物レンズ鏡筒を光軸と直交する方向に移動させることで、光軸調整を行う構成が提案されている。   The objective lens barrel is fixed to the fixing member with two screws. Here, the diameter of the mounting hole is set to be slightly larger than that of the mounting screw, and a configuration is proposed in which the optical axis is adjusted by moving the objective lens barrel in a direction perpendicular to the optical axis. ing.

特許文献2では、対物レンズの全部を保持した対物レンズ枠が光学系の光軸と同方向に延出された対物軸に配設されており、対物レンズ枠は対物軸を回動中心として揺動可能となっており、一部ネジ形状で先端部が鏡筒本体部の底面側に当接している光軸調整ビスが配設されている。この光軸調整ビスを回転させ上下方向の光軸調整を行う。また接眼レンズを保持した接眼レンズ枠の長穴が鏡筒から伸びている2本の凸部に係合して動かすことで左右方向の光軸調整を行う。更に対物レンズ枠の繰り込みや繰り出し動作でピント調節や視度調節を行う構成が提案されている。   In Patent Document 2, an objective lens frame that holds all of the objective lens is disposed on an objective axis that extends in the same direction as the optical axis of the optical system, and the objective lens frame swings around the objective axis as a rotation center. An optical axis adjusting screw that is movable and partly threaded and whose tip is in contact with the bottom surface of the lens barrel main body is disposed. The optical axis adjustment screw is rotated to adjust the optical axis in the vertical direction. Also, the left and right optical axis adjustment is performed by engaging and moving the elongated holes of the eyepiece lens frame holding the eyepiece lens with the two convex portions extending from the lens barrel. Furthermore, a configuration has been proposed in which focus adjustment and diopter adjustment are performed by moving the objective lens frame in and out.

特開平8-211303号公報Japanese Patent Laid-Open No. 8-211303 特開平9-281411号公報JP-A-9-281411

しかしながら、特許文献1では、対物レンズ鏡筒と固定部材に取付用穴を介して取付用ビスで固定しているので、大きな質量の対物レンズ鏡筒では衝撃に対して不利である。また、特許文献2では上下方向と左右方向のそれぞれで光軸調整機構を設けており、部品点数が増え構造が複雑になりコストも増える。さらに光軸調整ビスが外装本体部に当接しており、落下等の物理的な衝撃が対物レンズ枠に伝わり易い。   However, in Patent Document 1, since the objective lens barrel and the fixing member are fixed to the fixing member via the mounting holes with the mounting screws, the objective lens barrel having a large mass is disadvantageous for impact. Further, in Patent Document 2, an optical axis adjustment mechanism is provided in each of the vertical direction and the horizontal direction, and the number of parts increases, the structure becomes complicated, and the cost also increases. Further, since the optical axis adjusting screw is in contact with the exterior main body, a physical impact such as dropping is easily transmitted to the objective lens frame.

そこで、本発明の例示的な目的は、上述した問題を解消した新規な構成の光軸調整可能な双眼鏡を提供することにある。   Accordingly, an exemplary object of the present invention is to provide a binocular having a novel configuration and capable of adjusting the optical axis, which solves the above-described problems.

少なくとも左右一対の対物光学系と、左右一対の接眼光学系とを有する双眼鏡において前記左右一対の対物光学系の一部または全部のそれぞれを保持する左右一対のレンズ保持筒と、前記左右一対のレンズ保持筒のそれぞれが先端部の所定位置に位置決め固定される固定部材と、前記左右一対のレンズ保持筒のそれぞれを前記固定部材に光軸と垂直な平面内で位置決めするための基準を成す左右一対の基準部材と、前記左右一対の基準部材のそれぞれに対して前記左右一対のレンズ保持筒のそれぞれの光軸をはさんで略対向位置に配置される左右一対の調整部材とから成り、前記左右一対のレンズ保持筒のそれぞれの後端部周上に設けた複数のフランジ形状と前記固定部材の先端部周上に対応して設けた複数のフランジ形状の組み合わせにより、いわゆるバヨネット結合を構成することで、前記左右一対のレンズ保持筒を前記固定部材の所定位置に位置決めすると共に光軸と垂直な平面内での移動を可能とし、前記左右一対の調整部材で前記左右一対のレンズ保持筒を前記左右一対の基準部材を揺動中心として、それぞれ異なる方向に揺動させることで光軸調整を行うと共に前期左右一対のレンズ保持筒を前記固定部材に対して位置決めする事を特徴とする。   In binoculars having at least a pair of left and right objective optical systems and a pair of left and right eyepiece optical systems, a pair of left and right lens holding cylinders for holding part or all of the pair of left and right objective optical systems, and the pair of left and right lenses A fixing member in which each of the holding cylinders is positioned and fixed at a predetermined position of the tip portion, and a pair of left and right lenses forming a reference for positioning each of the pair of left and right lens holding cylinders in a plane perpendicular to the optical axis. Each of the pair of left and right reference members, and a pair of left and right adjustment members disposed at substantially opposite positions across the optical axes of the pair of left and right lens holding cylinders. A combination of a plurality of flange shapes provided on the periphery of the rear end of each of the pair of lens holding cylinders and a plurality of flange shapes provided corresponding to the periphery of the front end of the fixing member. By configuring so-called bayonet coupling, the pair of left and right lens holding cylinders can be positioned at a predetermined position of the fixing member, and can be moved in a plane perpendicular to the optical axis. Optical axis adjustment is performed by swinging the pair of left and right lens holding cylinders in different directions with the pair of left and right reference members as the swing center, and the pair of left and right lens holding cylinders is positioned with respect to the fixed member. It is characterized by things.

本発明によれば、レンズ保持筒と固定部材の連結構造に上下方向と左右方向の両方向の光軸調整機能を持たせたことで部品点数を減らした簡易的な構造で光軸調整を行うことができ、コストも抑えられる。光軸調整作業後の調整部材は物理的な衝撃に対する強化部材となる。   According to the present invention, the optical axis adjustment is performed with a simple structure in which the number of components is reduced by providing the optical axis adjustment function in both the vertical and horizontal directions in the connecting structure of the lens holding cylinder and the fixing member. And the cost can be reduced. The adjustment member after the optical axis adjustment work becomes a reinforcing member against physical impact.

実施例1の要部断面図Sectional view of the main part of Example 1 実施例1の斜視図Perspective view of Example 1 実施例1の正面図Front view of Example 1 実施例1の分解斜視図Exploded perspective view of Example 1 実施例1の鏡筒1Rと固定筒2の拡大した分解斜視図Exploded exploded perspective view of the lens barrel 1R and the fixed barrel 2 of the first embodiment 実施例1の図3の鏡筒1Rと固定筒2のAA部の断面図Sectional view of the AA portion of the lens barrel 1R and the fixed barrel 2 of FIG. 実施例1の偏芯部材の正面図Front view of the eccentric member of Example 1 実施例1の偏芯部材の側面図Side view of the eccentric member of Example 1 実施例1の偏芯部材の矩形部分Rectangular portion of eccentric member of embodiment 1 実施例1の偏芯部材の図8aのBB部の断面図Sectional view of the BB portion of FIG. 8a of the eccentric member of Example 1 実施例1の振れ補正ユニットの分解斜視図1 is an exploded perspective view of a shake correction unit of Embodiment 1. FIG. 実施例1の鏡筒1Rの揺動概略図Swing schematic diagram of lens barrel 1R of Example 1 実施例1の光軸調整手順図1Optical axis adjustment procedure of Embodiment 1 FIG. 実施例1の光軸調整手順図2FIG. 2 is an optical axis adjustment procedure according to the first embodiment. 実施例1の光軸調整手順図2FIG. 2 is an optical axis adjustment procedure according to the first embodiment. 実施例1の光軸調整手順図2FIG. 2 is an optical axis adjustment procedure according to the first embodiment. 実施例1の光軸調整手順図2FIG. 2 is an optical axis adjustment procedure according to the first embodiment. 実施例1の光軸調整手順図2FIG. 2 is an optical axis adjustment procedure according to the first embodiment. 実施例1の光軸調整手順図2FIG. 2 is an optical axis adjustment procedure according to the first embodiment. 実施例2の斜視図The perspective view of Example 2 実施例2の側面図Side view of Example 2 実施例2の図14のAA断面における要部断面図Sectional drawing of the principal part in the AA cross section of FIG. 14 of Example 2. 実施例2の固定筒と鏡筒の分解斜視図The disassembled perspective view of the fixed cylinder and lens barrel of Example 2

以下に、本発明の実施の形態を添付の図面に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

[実施例1]
図1、図2、図3及び図4は本発明を振れ補正機能を有する双眼鏡に適用した第一の実施例を説明する。図1は左右一対の対物光学系および左右一対の接眼光学系のそれぞれ左右の光軸を含む面での要部断面図である。ただし、左右一対の正立光学系は投影形状で表している。図2は斜視図、図3は正面図、図4は分解斜視図である。
[Example 1]
1, 2, 3 and 4 illustrate a first embodiment in which the present invention is applied to binoculars having a shake correction function. FIG. 1 is a cross-sectional view of an essential part on a plane including left and right optical axes of a pair of left and right objective optical systems and a pair of left and right eyepiece optical systems. However, the pair of left and right erecting optical systems is represented by a projected shape. 2 is a perspective view, FIG. 3 is a front view, and FIG. 4 is an exploded perspective view.

図1および図2において、OLは対物光学系の左の光軸、ORは対物光学系の右の光軸であり、ELは接眼光学系の左の光軸、ERは接眼光学系の右の光軸である。   1 and 2, OL is the left optical axis of the objective optical system, OR is the right optical axis of the objective optical system, EL is the left optical axis of the eyepiece optical system, and ER is the right optical axis of the eyepiece optical system. The optical axis.

L1L、L1Rは左右一対の対物光学系の一部を成すレンズ群。L2L、L2Rは左右一対の対物光学系の一部を成すレンズ群であり、左右それぞれの光学系の偏芯調整基準レンズである。L3L、L3Rは左右一対の対物光学系の一部を成す振れ補正レンズ群であり、レンズ群L1L、L1R、L2L、L2Rに対して上下左右に動くことで対物光学系の作る被写体の像を移動させる。   L1L and L1R are lens groups that form part of a pair of left and right objective optical systems. L2L and L2R are lens groups forming part of a pair of left and right objective optical systems, and are decentering adjustment reference lenses for the left and right optical systems. L3L and L3R are shake correction lens groups that form part of the pair of left and right objective optical systems, and move the subject image created by the objective optical system by moving up and down and left and right relative to the lens groups L1L, L1R, L2L, and L2R. Let

L4L、L4Rは左右一対の正立光学系であるポロII型正立プリズム、L5L、L5Rは左右一対の接眼光学系であるところの接眼レンズ群である。ポロII型正立プリズムL4L、L4Rは、それぞれ対物光学系により結像される被写体の像を正立させると共に、対物光学系の光軸OL、ORを接眼光学系の光軸EL、ERへ偏芯させる働きをしている。同様の働きは周知のダハプリズム、平行四辺形のプリズム、ミラー等を組み合わせて実現してもよい。   L4L and L4R are Polo II type erecting prisms that are a pair of left and right erecting optical systems, and L5L and L5R are eyepiece lens groups that are a pair of left and right eyepiece optical systems. The Polo II type upright prisms L4L and L4R erect the subject image formed by the objective optical system, respectively, and also deviate the optical axes OL and OR of the objective optical system to the optical axes EL and ER of the eyepiece optical system. It works to lead. The same function may be realized by combining a known roof prism, parallelogram prism, mirror, or the like.

1L、1Rはレンズ保持筒であるところのそれぞれレンズ群L1L、L1Rを保持する鏡筒、2は固定部であるところの固定筒で偏芯調整基準レンズL2L、L2Rを含んでいる。50は固定筒と左右一対の振れ補正レンズ群L3L、L3Rとを含む振れ補正ユニットである。   1L and 1R are lens barrels that hold the lens groups L1L and L1R, respectively, which are lens holding cylinders, and 2 is a fixed cylinder that is a fixing portion, which includes eccentricity adjustment reference lenses L2L and L2R. Reference numeral 50 denotes a shake correction unit including a fixed cylinder and a pair of left and right shake correction lens groups L3L and L3R.

レンズ群L1L、L1Rと偏芯調整基準レンズL2L、L2Rと振れ補正レンズ群L3L、L3Rとで左右一体化された対物光学系を構成している。   The lens groups L1L and L1R, the eccentricity adjustment reference lenses L2L and L2R, and the shake correction lens groups L3L and L3R constitute an objective optical system that is integrated on the left and right.

振れ補正ユニット50の詳細構成については後述する。   The detailed configuration of the shake correction unit 50 will be described later.

5L、5Rは接眼レンズ群L5L、L5Rをそれぞれ保持する接眼鏡筒、4L、4RはポロII型正立プリズムL4L、L4Rおよび接眼鏡筒5L、5Rをそれぞれ保持する支持枠、6L、6Rは接眼鏡筒5L、5Rにそれぞれに一体的に固定された観察用の目当てゴムである。   5L and 5R are eyepiece tubes that hold the eyepiece lens groups L5L and L5R, 4L and 4R are support frames that hold the Polo II type upright prisms L4L and L4R and the eyepiece tubes 5L and 5R, and 6L and 6R are eyepieces. It is an eyepiece rubber for observation that is integrally fixed to the eyeglass tubes 5L and 5R.

接眼鏡筒5L、5Rの外周にはそれぞれオスヘリコイド、支持枠4L、4Rの内周壁にはメスヘリコイドが形成されており、周知のヘリコイド構成を成している。従って、接眼鏡筒5L、5Rを回転させることで、接眼レンズ群L5L、L5Rを光軸方向に進退せしめ、左右の視度調節が可能となっている。以上により、左右一対の接眼ユニット7L、7Rをそれぞれ構成している。   Male helicoids are formed on the outer peripheries of the eyepiece tubes 5L and 5R, respectively, and female helicoids are formed on the inner peripheral walls of the support frames 4L and 4R, thereby forming a known helicoid configuration. Therefore, by rotating the eyepiece tubes 5L and 5R, the eyepiece lens groups L5L and L5R can be advanced and retracted in the optical axis direction, and the left and right diopter adjustments are possible. As described above, the pair of left and right eyepiece units 7L and 7R are configured.

8は接眼ユニット7L、7Rを対物光学系の光軸OL、ORを軸として回転可能に支持すると共に、左右一対の対物光学系の全部を光軸方向に進退させて観察する被写体距離に応じてピント合わせを行う構成の支持部となるベ−ス部材である。   8 supports the eyepiece units 7L and 7R so as to be rotatable about the optical axes OL and OR of the objective optical system, and according to the subject distance to be observed by moving all the pair of left and right objective optical systems back and forth in the optical axis direction. This is a base member serving as a support portion configured to focus.

ベ−ス部材8には対物光学系の光軸OL、ORに垂直な8a部に、それぞれ同軸に設けられた開口部8L、8Rが設けられ、支持枠4L、4Rにそれぞれ設けられた円筒部4La、4Raが嵌合せしめられる。   The base member 8 is provided with openings 8L and 8R provided coaxially at 8a portions perpendicular to the optical axes OL and OR of the objective optical system, respectively, and cylindrical portions provided respectively on the support frames 4L and 4R. 4La and 4Ra can be fitted.

9L、9Rは接眼ユニット7L、7Rの対物光学系のそれぞれの光軸OL、ORを軸としての回転の動きを連動させる連動板である。   Reference numerals 9L and 9R denote interlocking plates that interlock the rotational movements about the optical axes OL and OR of the objective optical systems of the eyepiece units 7L and 7R.

連動板9L、9Rにはそれぞれギア部9La、9Raが設けられ、互いに噛合している。更に、連動板9L、9Rには正規位置に組み込まれることで光軸方向に付勢力を発生させる複数の腕部9Lb、9Rbがそれぞれ設けられ、ベ−ス部材8a部を挟んで支持枠4L、4Rと連動板9L、9Rとは、それぞれビスにて締結される。これにより、接眼ユニット7L、7Rがベ−ス部材8に対して、対物光学系のそれぞれの光軸OL、ORを軸として回転の動きを連動させた状態で回転可能に結合される。   The interlocking plates 9L and 9R are provided with gear portions 9La and 9Ra, respectively, and mesh with each other. Furthermore, the interlocking plates 9L and 9R are provided with a plurality of arm portions 9Lb and 9Rb that generate an urging force in the optical axis direction by being assembled at the regular positions, respectively, and the support frame 4L with the base member 8a interposed therebetween. 4R and interlocking plates 9L and 9R are fastened with screws. As a result, the eyepiece units 7L and 7R are coupled to the base member 8 so as to be rotatable in a state in which the rotational movements are linked with the optical axes OL and OR of the objective optical system as axes.

接眼光学系の光軸EL、ERは対物光学系の光軸OL、ORに対して偏芯しているので、接眼ユニット7L、7Rを対物光学系のそれぞれの光軸OL、ORで連動させて内向きもしくは外向きに回転させることで接眼光学系の光軸EL、ERの幅が変化する。これにより、双眼鏡の観察者の左右の瞳の間隔と接眼光学系の光軸EL、ERの間隔を一致させる、いわゆる眼幅調整が可能となる。また、接眼ユニット7L、7Rのそれぞれで、左右の接眼レンズ群L5L、L5Rで観察される被写体の像が眼幅調整時にずれないようにポロII型正立プリズムL4L、L4Rの位置がそれぞれ調整される。この調整は、接眼ユニット7L、7Rのそれぞれの回転軸と接眼レンズ群L5L、L5Rの光軸を、それぞれ一致するようにするものである。   Since the optical axes EL and ER of the eyepiece optical system are decentered with respect to the optical axes OL and OR of the objective optical system, the eyepiece units 7L and 7R are interlocked with the respective optical axes OL and OR of the objective optical system. By rotating inward or outward, the widths of the optical axes EL and ER of the eyepiece optical system change. This enables so-called eye width adjustment in which the distance between the left and right pupils of the binoculars observer matches the distance between the optical axes EL and ER of the eyepiece optical system. In addition, the positions of the polo II type erecting prisms L4L and L4R are adjusted by the eyepiece units 7L and 7R, respectively, so that the subject image observed by the left and right eyepiece lens groups L5L and L5R does not shift during eye width adjustment. The In this adjustment, the respective rotation axes of the eyepiece units 7L and 7R and the optical axes of the eyepiece lens groups L5L and L5R are made to coincide with each other.

8bはベ−ス部材8の対物光学系の光軸OL、ORに平行な部分であり、左右一対の対物光学系の全部を光軸方向に進退させて、観察する被写体距離に応じてピント合わせを行う構成の支持部である。8b部には4箇所のエンボス加工された凸部8cが設けられている。   8b is a portion parallel to the optical axes OL and OR of the objective optical system of the base member 8, and all the pair of left and right objective optical systems are moved forward and backward in the optical axis direction to focus according to the object distance to be observed. It is the support part of the structure which performs. The 8b portion is provided with four embossed convex portions 8c.

10は対物光学系が固定されるフォ−カス支持部材である。フォ−カス支持部材10には、光軸方向に設けられた同幅のガイド溝10a、10bと10a、10bよりも幅が広い10c、10dが設けられる。   Reference numeral 10 denotes a focus support member to which the objective optical system is fixed. The focus support member 10 is provided with guide grooves 10a and 10b having the same width provided in the optical axis direction and 10c and 10d having a width wider than that of 10a and 10b.

11は4個のガイド部材であり、ガイド溝10a、10bの幅に嵌合するガイド部11aと両側に腕部11bを有する。4個のガイド部材11はフォ−カス支持部材10のガイド溝10a、10bと10c、10dをガイド部11aが貫通してベ−ス部材8の8b部にそれぞれビスにて固定される。   Reference numeral 11 denotes four guide members, each having a guide portion 11a fitted to the width of the guide grooves 10a and 10b and arm portions 11b on both sides. The four guide members 11 are fixed to the 8b portion of the base member 8 with screws through the guide grooves 10a, 10b and 10c, 10d of the focus support member 10 through the guide portions 11a.

フォ−カス支持部材10はガイド溝10a、10bそれぞれに嵌合するガイド部材11のガイド部11aで光軸方向に進退自在に案内される。   The focus support member 10 is guided by the guide portion 11a of the guide member 11 fitted in each of the guide grooves 10a and 10b so as to be able to advance and retract in the optical axis direction.

ガイド溝10a、10bと10c、10dの溝の両側部分をガイド部材11の両側の腕部11bで押えられることでベ−ス部材8の凸部8cに圧接される。   The guide grooves 10a, 10b and 10c, 10d are pressed against the convex portions 8c of the base member 8 by pressing both side portions of the grooves with the arm portions 11b on both sides of the guide member 11.

更に、12は定位置で回転する送りねじ。13は送りねじ12と後端にて結合される操作ダイアル。14は送りねじ12と結合される操作ダイアル13を定位置で回転するように支持する軸受けであり、ベ−ス部材8の8b部の後端に直角に曲げ起された8d部にビスにて固定される。15は送りねじ12に螺合する雌ねじ部材であり、フォ−カス支持部材10の後端に直角に曲げ起された10e部にビスにて固定される。以上の構成により操作ダイアル13を回転させることでフォ−カス支持部材10を光軸方向に進退させることが出来る。   Furthermore, 12 is a feed screw that rotates at a fixed position. 13 is an operation dial connected to the feed screw 12 at the rear end. Reference numeral 14 denotes a bearing for supporting the operation dial 13 coupled to the feed screw 12 so as to rotate at a fixed position. The base member 8 is bent at a right angle at the rear end of the 8b portion of the base member 8 with a screw. Fixed. Reference numeral 15 denotes a female screw member that is screwed to the feed screw 12, and is fixed to a portion 10e bent at a right angle at the rear end of the focus support member 10 with screws. By rotating the operation dial 13 with the above configuration, the focus support member 10 can be moved back and forth in the optical axis direction.

16は送りねじ12に雌ねじ部材15を螺合させた後に送りねじ12の先端部に固定されるストッパであり、フォ−カス支持部材10の光軸方向の進退はストッパ16と8d部の間で規制される。   Reference numeral 16 denotes a stopper fixed to the tip of the feed screw 12 after the female screw member 15 is screwed to the feed screw 12, and the forward and backward movement of the focus support member 10 between the stopper 16 and the 8d portion. Be regulated.

固定筒2にはフォ−カス支持部材10にビス締結するための取り付けボス部2a、2b、2g、2f、左右方向の位置を決める位置決めピン2c、光軸方向の位置を決める位置決めピン2d、2eが設けられている。取り付けボス部2a、2bと位置決めピン2cはベ−ス部材8の8b部に空けられた開口部8eを貫通して2本のビス17によりフォ−カス支持部材10に固定される。位置決めピン2d、2eはフォ−カス支持部材10に設けられた長溝10e、10fに嵌合している。   The fixed cylinder 2 has mounting bosses 2a, 2b, 2g, 2f for fastening screws to the focus support member 10, positioning pins 2c for determining the position in the left-right direction, positioning pins 2d, 2e for determining the position in the optical axis direction Is provided. The mounting bosses 2a and 2b and the positioning pin 2c pass through the opening 8e opened in the 8b portion of the base member 8, and are fixed to the focus support member 10 by two screws 17. The positioning pins 2d and 2e are fitted in long grooves 10e and 10f provided in the focus support member 10, respectively.

以上の構成で左右一体化された対物光学系がフォ−カス支持部材10に光軸方向に固定されるので、フォ−カス支持部材10の光軸方向への移動により観察する被写体距離に応じてピント合わせを行うことが可能となる。   Since the objective optical system integrated with the left and right in the above configuration is fixed to the focus support member 10 in the optical axis direction, depending on the subject distance to be observed by the movement of the focus support member 10 in the optical axis direction. Focusing can be performed.

22は左右の対物光学系および光軸調整機構、ピント合わせ機構等を囲う外装部材である。図2、図3、および図4では図示を省略している。   An exterior member 22 surrounds the left and right objective optical systems, the optical axis adjusting mechanism, the focusing mechanism, and the like. In FIG. 2, FIG. 3, and FIG. 4, illustration is omitted.

図5はレンズ群L1Rを保持する鏡筒1Rと固定筒2の結合構成を示す斜視図である。図6は図3の鏡筒1Rと固定筒2のフランジが見えるA−A断面である。   FIG. 5 is a perspective view showing a coupling configuration of the lens barrel 1R holding the lens unit L1R and the fixed barrel 2. As shown in FIG. FIG. 6 is an AA cross section in which the flanges of the lens barrel 1R and the fixed barrel 2 in FIG. 3 can be seen.

1Raはフランジ形状であるところの2つの凸形状部であり、鏡筒1Rを固定筒2に取付けるために、鏡筒側面の後ろ端に設けられている。2iRはフランジ形状であるところの2つの凸形状部であり、固定筒2の開口部の内側に設けられている。   1Ra is two convex portions that are flange-shaped, and is provided at the rear end of the side surface of the lens barrel in order to attach the lens barrel 1R to the fixed cylinder 2. 2iR is two convex-shaped parts which are flange-shaped, and is provided inside the opening of the fixed cylinder 2.

鏡筒1Rを固定筒2の開口部の内側で凸形状部2iRのない部分に鏡筒1Rの凸形状部1Raを挿し込み、一定の角度をまわして光軸方向を位置だしするバヨネット構成で鏡筒1Rを固定筒2へ装着する。このとき、鏡筒1Rの凸形状部1Raと固定筒2の凸形状部2iRとは光軸方向に軽圧入状態になっている。   The lens barrel 1R is mirrored with a bayonet configuration in which the convex shape portion 1Ra of the lens barrel 1R is inserted inside the opening of the fixed barrel 2 into the portion without the convex shape portion 2iR, and the optical axis direction is positioned by turning a certain angle. Attach the cylinder 1R to the fixed cylinder 2. At this time, the convex part 1Ra of the lens barrel 1R and the convex part 2iR of the fixed cylinder 2 are in a light press-fit state in the optical axis direction.

1Rdは鏡筒1Rの側面部の突出部であり、貫通穴1Reが空けられている。1Rbは鏡筒1Rの側面部の突出部1Rdに対し光軸を挟んで対向位置にある突出部で、長溝1Rcが空けられている。20は調整部材であるところの偏芯部材である。   1Rd is a protruding portion of the side surface portion of the lens barrel 1R, and a through hole 1Re is opened. 1Rb is a protrusion at a position opposite to the protrusion 1Rd on the side surface of the lens barrel 1R across the optical axis, and has a long groove 1Rc. Reference numeral 20 denotes an eccentric member which is an adjustment member.

図7aは偏芯部材20の正面図で、図7bは右側面図である。偏芯部材20は偏芯軸20aと基準軸20bとドライバ−先端部が挿入可能な溝20cを有している。偏芯軸20aは基準軸20bに対し定量値ε偏芯している。   7a is a front view of the eccentric member 20, and FIG. 7b is a right side view. The eccentric member 20 has an eccentric shaft 20a, a reference shaft 20b, and a groove 20c into which a driver tip can be inserted. The eccentric shaft 20a is eccentric to the reference value 20b by a quantitative value ε.

2kRは固定筒2の突出部で貫通穴2mRが空けられている。2hRは固定筒2の突出部で貫通穴2jRが空けられている。21は基準部材であるところの固定基準ピンで直径の大きさは貫通穴2mRと貫通穴1Reに圧入可能である。   2kR has a through-hole 2mR in the protruding portion of the fixed cylinder 2. In 2hR, a through hole 2jR is opened at the protruding portion of the fixed cylinder 2. Reference numeral 21 denotes a fixed reference pin which is a reference member, and the size of the diameter can be press-fitted into the through hole 2mR and the through hole 1Re.

鏡筒1Rを固定筒2へ装着する過程を説明する。   A process of attaching the lens barrel 1R to the fixed cylinder 2 will be described.

図8aは図3の矩形枠で囲った箇所の拡大図である。図8bは図8aのBB面の断面図である。鏡筒1Rの突出部1Rbの長溝1Rcと固定筒2の突出部2hRの貫通穴2jRに偏芯部材20を組み込む。偏芯部材20の偏芯軸20aは長溝1Rcと長手方向に摺動可能な隙間を有して嵌合し、基準軸20bは貫通穴2jRに軽圧入している。以降説明する光軸調整作業後の偏芯部材20を固定筒2に接着固定することで、物理的な衝撃で鏡筒1Rの調整位置がずれることが抑止される。以上右眼側の説明であるが図4に示す様に左眼側も同様の構成が対称に配置されており、右眼側で添字”R”で示す構成が左眼側では添字”L”で表現されている。鏡筒1L、1Rはそれぞれの揺動中心である固定基準ピン21を中心に異なる方向へ揺動することで以降説明する光軸調整を行う。   FIG. 8a is an enlarged view of a portion surrounded by a rectangular frame in FIG. FIG. 8b is a cross-sectional view of the BB plane of FIG. 8a. The eccentric member 20 is assembled into the long groove 1Rc of the protrusion 1Rb of the lens barrel 1R and the through hole 2jR of the protrusion 2hR of the fixed cylinder 2. The eccentric shaft 20a of the eccentric member 20 is fitted with the long groove 1Rc with a gap slidable in the longitudinal direction, and the reference shaft 20b is lightly press-fitted into the through hole 2jR. By adhering and fixing the eccentric member 20 after the optical axis adjustment operation described below to the fixed cylinder 2, it is possible to prevent the adjustment position of the lens barrel 1R from being shifted due to a physical impact. As described above with reference to the right eye side, as shown in FIG. 4, the same structure is symmetrically arranged on the left eye side, and the structure indicated by the suffix “R” on the right eye side is the suffix “L” on the left eye side. It is expressed by. The lens barrels 1L and 1R perform optical axis adjustment, which will be described later, by swinging in different directions around the fixed reference pin 21 that is the center of swing of each of the lens barrels 1L and 1R.

図10a、図10b、図10cは本実施例の光軸調整機構を分かり易く説明するために動き量を実際より大きくして動きが分かるようにした模式図であり図1の符号と対応している。水平線と垂直線の交点は揺動前の鏡筒中心を表している。   FIGS. 10a, 10b, and 10c are schematic diagrams in which the amount of movement is made larger than the actual amount so that the movement can be understood for easy understanding of the optical axis adjustment mechanism of the present embodiment. Yes. The intersection of the horizontal line and the vertical line represents the center of the lens barrel before swinging.

図10aは偏芯部材20が初期位置の図である。偏芯部材20の偏芯軸20aは基準軸20bを中心に偏芯回転運動する。矢印Pは偏芯部材20の反時計回りの回転方向である。矢印Qは偏芯部材20の時計回りの回転方向である。偏芯部材20を回転方向P、Qに回す。鏡筒1Rは固定基準ピン21を中心にして揺動する。矢印Mは偏芯部材20を回転方向Pへ回したときの鏡筒1Rの中心の変位方向である。矢印Nは偏芯部材20を回転方向Qへ回したときの鏡筒1Rの中心の変位方向である。また、揺動量は微小量なので変位方向M、Nを直線と見なしている。   FIG. 10a is a diagram of the eccentric member 20 in the initial position. The eccentric shaft 20a of the eccentric member 20 moves eccentrically around the reference shaft 20b. Arrow P is the counterclockwise direction of rotation of the eccentric member 20. The arrow Q is the clockwise rotation direction of the eccentric member 20. The eccentric member 20 is rotated in the rotation directions P and Q. The lens barrel 1R swings around the fixed reference pin 21. An arrow M indicates the displacement direction of the center of the lens barrel 1R when the eccentric member 20 is rotated in the rotation direction P. An arrow N indicates the displacement direction of the center of the lens barrel 1R when the eccentric member 20 is rotated in the rotation direction Q. Further, since the swing amount is very small, the displacement directions M and N are regarded as straight lines.

図10bは偏芯部材20を回転方向Pへ回したときの鏡筒1Rの様子である。偏芯部材20を回転方向Pへ回転させると鏡筒1Rは固定基準ピン21を中心に変位方向Mへ揺動する。   FIG. 10b shows the state of the lens barrel 1R when the eccentric member 20 is rotated in the rotation direction P. FIG. When the eccentric member 20 is rotated in the rotation direction P, the lens barrel 1R swings in the displacement direction M around the fixed reference pin 21.

図10cは偏芯部材20を回転方向Qへ回したときの鏡筒1Rの様子である。偏芯部材20を回転方向Qへ回転させると鏡筒1Rは固定基準ピン21を中心に変位方向Nへ揺動する。   FIG. 10c shows the state of the lens barrel 1R when the eccentric member 20 is rotated in the rotation direction Q. FIG. When the eccentric member 20 is rotated in the rotation direction Q, the lens barrel 1R swings in the displacement direction N around the fixed reference pin 21.

図11a、図11b、図11cは鏡筒1L、1Rの変位方向を表す概念図である。左の円は鏡筒1Rの略図で、右の円は鏡筒1Lの略図である。鏡筒1L、1Rの水平線と垂直線の交点ははそれぞれの鏡筒中心を表す。左の円の変位方向M、Nは図10の変位方向と対応している。   11a, 11b, and 11c are conceptual diagrams showing the displacement directions of the lens barrels 1L and 1R. The left circle is a schematic diagram of the lens barrel 1R, and the right circle is a schematic diagram of the lens barrel 1L. The intersection of the horizontal and vertical lines of the lens barrels 1L and 1R represents the center of each lens barrel. The displacement directions M and N of the left circle correspond to the displacement directions in FIG.

Kは鏡筒1Lの変位方向で、鏡筒1Rの変位方向Mと双眼鏡の対称面に対し対称な方向を向いている。Jは鏡筒1Lの変位方向で、鏡筒1Rの変位方向Nと双眼鏡の対称面に対して対称な方向を向いている。   K is the displacement direction of the lens barrel 1L, and is directed in a direction symmetric with respect to the displacement direction M of the lens barrel 1R and the plane of symmetry of the binoculars. J is the displacement direction of the lens barrel 1L, and is directed in a direction symmetric with respect to the displacement direction N of the lens barrel 1R and the symmetry plane of the binoculars.

図11aは左右方向の光軸調整を行う図である。光軸の左右間隔を短くする場合には変位方向N、Jへ鏡筒1L、1Rを変位させる。また、光軸の左右間隔を長くする場合には変位方向M、Kへ鏡筒1L、1Rを変位させる。   FIG. 11a is a diagram for adjusting the optical axis in the left-right direction. In order to shorten the distance between the optical axes, the lens barrels 1L and 1R are displaced in the displacement directions N and J. Further, when the distance between the left and right optical axes is increased, the lens barrels 1L and 1R are displaced in the displacement directions M and K.

図11bは光軸の左右間隔を保ちながら鏡筒1Rの光軸を上げて、鏡筒1Lの光軸を下げるという上下光軸調整を行う図である。変位方向N、変位方向Kの水平方向成分が同一量、同一方向で、垂直方向成分が同一量、異方向のため鏡筒1R、1Lの左右間隔を維持したまま、鏡筒1Rを鏡筒1Lに対し相対的に上方へ変位させることができる。   FIG. 11b is a diagram illustrating the vertical optical axis adjustment in which the optical axis of the lens barrel 1R is increased while the optical axis of the lens barrel 1L is lowered while maintaining the left-right spacing of the optical axes. The horizontal direction component of the displacement direction N and the displacement direction K is the same amount, the same direction, the vertical direction component is the same amount, and different directions, so the lens barrel 1R is maintained in the lens barrel 1L while maintaining the left and right intervals of the lens barrels 1R, 1L. Can be displaced relatively upward.

図11cは光軸の左右間隔を保ちながら鏡筒1Rの光軸を下げて、鏡筒1Lの光軸を上げるという上下光軸調整を行う図である。変位方向M、変位方向Jの水平方向成分が同一量、同一方向で、垂直方向成分が同一量、異方向のため鏡筒1R、1Lの左右間隔を維持したまま、相対的に鏡筒1Rを鏡筒1Lに対し下方へ変位させることができる。   FIG. 11c is a diagram for performing vertical optical axis adjustment in which the optical axis of the lens barrel 1R is lowered and the optical axis of the lens barrel 1L is raised while maintaining the left-right spacing of the optical axes. Since the horizontal direction component of the displacement direction M and the displacement direction J is the same amount, the same direction, the vertical direction component is the same amount, and different directions, the lens barrel 1R is relatively maintained while maintaining the left and right intervals of the lens barrels 1R, 1L. The lens barrel 1L can be displaced downward.

図12a、図12b、図12cは基準被写体を目印に左右光軸調整を行う手順を説明するために、本双眼鏡を通して光軸調整のための基準被写体を覗いた左右の視野範囲内の様子である。   FIGS. 12a, 12b, and 12c are views within the left and right visual field ranges when looking at the reference subject for optical axis adjustment through the binoculars in order to explain the procedure for adjusting the left and right optical axes with the reference subject as a mark. .

図12a は光軸調整前の視野範囲内の目印の初期位置を示す。40は左目の視野範囲内で、41は右目の視野範囲内である。また、基準被写体の目印は無限遠にある”+”である。42Lおよび42Rはそれぞれ左右光学系を通して接眼光学系L5LおよびL5Rで観察される目印”+”の像である。目印42L、42Rの視野範囲内40、41における位置はそれぞれ異なっている。実際の光軸調整作業では、左右の視野範囲内を一つに合成する作用のある光軸調整機を用いる。   FIG. 12a shows the initial position of the mark within the field of view before the optical axis adjustment. 40 is within the viewing range of the left eye and 41 is within the viewing range of the right eye. In addition, the mark of the reference subject is “+” at infinity. 42L and 42R are images of the mark “+” observed in the eyepiece optical systems L5L and L5R through the left and right optical systems, respectively. The positions of the marks 42L and 42R in the visual field range 40 and 41 are different from each other. In the actual optical axis adjustment work, an optical axis adjuster that functions to combine the left and right visual field ranges into one is used.

図12bは図12aの視野範囲内40、41を重ねて表している。   FIG. 12b shows the overlapping fields 40 and 41 in FIG. 12a.

二点鎖線Uは鏡筒1Lを揺動させたときの目印42Lの軌跡を表している。二点鎖線Vは鏡筒1Rを揺動させたときの目印42Rの軌跡を表している。   A two-dot chain line U represents a locus of the mark 42L when the lens barrel 1L is swung. A two-dot chain line V represents a locus of the mark 42R when the lens barrel 1R is swung.

但し正立光学系L4L、L4Rにより上下左右が反転されるので、目印の動く方向は鏡筒のそれと逆方向となる。   However, since the up / down / left / right directions are reversed by the upright optical systems L4L, L4R, the direction of movement of the mark is opposite to that of the lens barrel.

調整手順は左右光軸調整後、上下光軸調整を行う場合とその逆の手順で上下光軸調整後、左右光軸調整を行う場合の2通り考えられる。   There are two possible adjustment procedures: adjusting the vertical optical axis after adjusting the left and right optical axes, and adjusting the horizontal optical axis after adjusting the vertical optical axes in the reverse procedure.

図12cでは図12bから左右の光軸調整作業後の目印の位置を示す。変位方向N、M、Kは図11aにおける鏡筒1Rの変位方向と対応している。図10は対物鏡筒の動きを表し、図11は接眼鏡筒から観察される視野範囲内を表す。プリズム光学系を透過した接眼光学系の像は対物光学系より入射した像に対して上下左右反転している。   FIG. 12c shows the positions of the marks after the left and right optical axis adjustment operations from FIG. 12b. The displacement directions N, M, and K correspond to the displacement directions of the lens barrel 1R in FIG. 11a. FIG. 10 shows the movement of the objective tube, and FIG. 11 shows the view field range observed from the eyepiece tube. The image of the eyepiece optical system transmitted through the prism optical system is inverted vertically and horizontally with respect to the image incident from the objective optical system.

重ねて表した視野範囲内40、41の便宜上破線で示した目印42Rを図12cの変位方向Mへ補助線Vに沿って移動させた。目印42L、42Rは上下で揃って並んでおり、左右光軸調整が終了している。次に、同時に目印42Rを変位方向Nへ、目印42Lを変位方向Kへ移動させ両矢印が重なるまで両目印を近づける。そうして、両目印が重なると調整終了であり、図12cにおける補助線U、Vの交点位置に重なることになる。図12eは左右及び上下光軸調整後の目印42L、42Rの様子である。目印42L、42Rは補助線U、Vの交点に一致し、上下左右方向の光軸調整が終了している。   The mark 42R indicated by a broken line for the convenience of the field-of-view ranges 40 and 41 shown in a superimposed manner was moved along the auxiliary line V in the displacement direction M of FIG. 12c. The marks 42L and 42R are aligned in the vertical direction, and the left / right optical axis adjustment is completed. Next, at the same time, the mark 42R is moved in the displacement direction N and the mark 42L is moved in the displacement direction K, and the marks are moved closer to each other until the arrows overlap. Thus, when both the marks overlap, the adjustment is completed, and the mark overlaps the intersection of the auxiliary lines U and V in FIG. 12c. FIG. 12e shows the appearance of the marks 42L and 42R after adjusting the left and right and vertical optical axes. The marks 42L and 42R coincide with the intersections of the auxiliary lines U and V, and the optical axis adjustment in the vertical and horizontal directions is completed.

図12dでは図12bから上下左右の光軸調整作業後の目印の位置を示す。重ねて表した視野範囲内40、41の便宜上破線で示した目印42Lを変位方向Kへ補助線Uに沿って移動させた。目印42L、42Rは左右で揃って並んでおり、上下光軸は一致している。次に、同時に目印42Rを変位方向Mへ、目印42Lを変位方向Kへ移動させ重なるまで両目印を近づける。そうして、両目印が重なると調整終了である。図12dにおける補助線U、Vの交点位置に重なることになる。図12eは左右及び上下光軸調整後の目印42L、42Rの様子である。目印42L、42Rは補助線U、Vの交点に一致し、上下左右方向の光軸調整が終了している。   FIG. 12d shows the positions of the marks after the optical axis adjustment work in the vertical and horizontal directions from FIG. 12b. The mark 42L indicated by a broken line for the convenience of the visual field ranges 40 and 41 shown in an overlapping manner was moved along the auxiliary line U in the displacement direction K. The marks 42L and 42R are arranged side by side on the left and right, and the upper and lower optical axes coincide with each other. Next, at the same time, the mark 42R is moved in the displacement direction M and the mark 42L is moved in the displacement direction K, and both marks are brought close to each other until they overlap. Then, the adjustment is finished when both marks overlap. It overlaps the intersection position of the auxiliary lines U and V in FIG. FIG. 12e shows the appearance of the marks 42L and 42R after adjusting the left and right and vertical optical axes. The marks 42L and 42R coincide with the intersections of the auxiliary lines U and V, and the optical axis adjustment in the vertical and horizontal directions is completed.

以上に説明した様に手順は異なっても調整結果は同じになる。   As described above, the adjustment result is the same even if the procedure is different.

図12fは鏡筒1L、1Rの揺動方向に平行な複数の補助線が引かれたチャートを光軸調整機に内蔵させた際の調整機表示系43の様子である。目印42L、42Rを通る夫々の補助線の交点が調整目標地点である。別の双眼鏡から見た目標42の調整機表示系43における様子が目印42L’、42R’である。この場合でも同様にチャートの補助線の交点が調整目標地点となる。   FIG. 12f shows a state of the adjusting machine display system 43 when a chart in which a plurality of auxiliary lines parallel to the swing directions of the lens barrels 1L and 1R are drawn is incorporated in the optical axis adjusting machine. The intersection of the respective auxiliary lines passing through the marks 42L and 42R is the adjustment target point. The signs 42L 'and 42R' are the states in the adjusting machine display system 43 of the target 42 as viewed from another binocular. In this case as well, the intersection of the auxiliary lines on the chart is the adjustment target point.

両者とも予め調整目標地点が分かっているので上記の左右、上下の光軸調整手順を踏むことのない効率の良い調整作業を行うことができる。   In both cases, since the adjustment target point is known in advance, it is possible to perform an efficient adjustment operation without going through the above left, right, and upper and lower optical axis adjustment procedures.

また、双眼鏡の光軸調整規格の左右光軸の平行度は日本工業規格の[JIS B 7121]に規格が定められている。   The parallelism of the left and right optical axes in the binoculars optical axis adjustment standard is defined in Japanese Industrial Standard [JIS B 7121].

例えば10倍の倍率を有するAA級双眼鏡では、許容値は実視界での角度で、上下方向が2.5分、左右の外方向が3.5分、内方向が7.5分となっている。内方向とはいわゆる寄り目になる方向である。人は近距離の物を見る時には自然に寄り目になるので、寄り目方向の調節は比較的に無理なく行うことが出来る。しかし、外方向および上下方向の目の動きは自然に出来るものではないので、ずれ量が大きい場合には、非常に疲れる、もしくは左右の被写体の像を重ねることが困難となる。尚、上述の許容値は倍率が高くなると、より小さな値となる。   For example, in AA class binoculars having a magnification of 10 times, the allowable value is an angle in the real field of view, the vertical direction is 2.5 minutes, the left and right outer directions are 3.5 minutes, and the inner direction is 7.5 minutes. The inward direction is a so-called cross direction. When people look at objects at short distances, they naturally become cross-eyed, so the cross-direction can be adjusted relatively easily. However, since the eye movements in the outward direction and the upward / downward direction are not naturally possible, if the shift amount is large, it is very tired or it is difficult to overlap the left and right subject images. Note that the above-described allowable value becomes smaller as the magnification increases.

また図10aにおけるθは水平線と変位方向M、Nとの揺動角度である。光軸調整規格が、左右方向より上下方向が厳しいことから、鏡筒1Lまたは1Rの上下方向調整敏感度を左右方向調整敏感度よりも小さくした方が、より精密に上下光軸調整がやり易く、また衝撃等に対する信頼性も高くなる。そのために揺動角θを45°以下とすることが望ましい。   Further, θ in FIG. 10a is a swing angle between the horizontal line and the displacement directions M and N. Since the optical axis adjustment standard is stricter in the vertical direction than the horizontal direction, it is easier to adjust the vertical optical axis more precisely if the vertical adjustment sensitivity of the lens barrel 1L or 1R is smaller than the horizontal adjustment sensitivity. In addition, reliability against impacts and the like is also increased. Therefore, it is desirable that the swing angle θ be 45 ° or less.

図9は振れ補正ユニット50の分解斜視図である。24は振れ補正レンズ群L3L、L3Rを一体的に保持する可動部材である。可動部材24が固定筒2に対して回転せずに上下左右に動くことでレンズ群L1L、L1Rと振れ補正レンズ群L3L、L3Rが偏芯して対物光学系が作る被写体の像が移動する。   FIG. 9 is an exploded perspective view of the shake correction unit 50. FIG. Reference numeral 24 denotes a movable member that integrally holds the shake correction lens groups L3L and L3R. When the movable member 24 moves up and down and left and right without rotating with respect to the fixed cylinder 2, the lens groups L1L and L1R and the shake correction lens groups L3L and L3R are decentered to move an image of a subject formed by the objective optical system.

25は固定筒2に対して横方向のみに移動可能に支持されたガイド部材である。26、27はガイド部材25の横方向の動きを案内するガイドバ−であり、その端部がそれぞれ、固定筒2の溝部2a、2bおよび2c、2dに挿入され圧入もしくは接着等でベ−ス部材2に固着される。28は駆動コイルでありガイド部材25に接着等で固着されている。29は駆動マグネットであり、図示するように左右方向にN極およびS極の2極に着磁されている。31はヨ−クであり、ガイド部材25を貫通している固定筒2に設けられた取り付けボス部2eにビスにて固定されている。   Reference numeral 25 denotes a guide member supported so as to be movable only in the lateral direction with respect to the fixed cylinder 2. 26 and 27 are guide bars for guiding the lateral movement of the guide member 25, and the end portions thereof are respectively inserted into the groove portions 2a, 2b and 2c, 2d of the fixed cylinder 2, and are base members by press-fitting or bonding. Fastened to 2. A drive coil 28 is fixed to the guide member 25 by adhesion or the like. Reference numeral 29 denotes a drive magnet, which is magnetized into two poles, N pole and S pole, in the left-right direction as shown. 31 is a yoke, which is fixed to a mounting boss 2e provided on the fixed cylinder 2 penetrating the guide member 25 with a screw.

ヨ−ク31は駆動マグネット29の手前側に空間を空けて磁気回路を閉じている。駆動マグネット29とヨ−ク31の間に駆動コイル28が配置されている。駆動コイル28に通電されると、ロ−レンツ力が発生してガイド部材25を横方向に移動せしめる。また、駆動コイル28の中心には磁気センサであるホ−ル素子32がガイド部材25に一体となるように配置されている。ホ−ル素子32は駆動マグネット29の2極着磁の境界部(マグネットの中央部)の光軸方向の磁束密度を電気信号に変換することでガイド部材25の横方向の位置を検出する。   The yoke 31 opens a space on the front side of the drive magnet 29 and closes the magnetic circuit. A drive coil 28 is disposed between the drive magnet 29 and the yoke 31. When the drive coil 28 is energized, a Lorentz force is generated to move the guide member 25 in the lateral direction. In addition, a hall element 32 that is a magnetic sensor is disposed at the center of the drive coil 28 so as to be integrated with the guide member 25. The hall element 32 detects the position of the guide member 25 in the lateral direction by converting the magnetic flux density in the optical axis direction at the boundary portion (center portion of the magnet) of the two-pole magnetization of the drive magnet 29 into an electric signal.

33、34はガイドバ−であり、可動部材24をガイド部材25に対して縦方向のみに移動可能に支持している。ガイドバ−33、34のそれぞれの端部はガイド部材25の溝部25a、25bおよび25c、25dに挿入され圧入もしくは接着等でガイド部材25に固着される。35は駆動コイルであり、可動部材24に接着等で固着されている。36は駆動マグネットであり、駆動マグネット29と同じものが角度を90度変えて上下方向にN極およびS極が配置されている。37は駆動マグネット36の背面ヨ−クである。駆動マグネット36の駆動コイル35側のヨ−クはヨ−ク31で兼用することで、駆動マグネット36の磁気回路を閉じている。38は駆動マグネット36の支持部材であり、固定筒2に位置決めのうえでビス固定されている。駆動コイル35に通電されると、ロ−レンツ力が発生して可動部材24を縦方向に移動せしめる。   Reference numerals 33 and 34 denote guide bars, which support the movable member 24 so as to be movable with respect to the guide member 25 only in the vertical direction. The end portions of the guide bars 33, 34 are inserted into the groove portions 25a, 25b and 25c, 25d of the guide member 25 and fixed to the guide member 25 by press-fitting or bonding. Reference numeral 35 denotes a drive coil, which is fixed to the movable member 24 by adhesion or the like. Reference numeral 36 denotes a drive magnet, and the same magnet as the drive magnet 29 changes the angle by 90 degrees, and the N pole and the S pole are arranged in the vertical direction. Reference numeral 37 denotes a rear yoke of the drive magnet 36. The yoke on the drive coil 35 side of the drive magnet 36 is also used as the yoke 31 to close the magnetic circuit of the drive magnet 36. Reference numeral 38 denotes a support member for the drive magnet 36, which is fixed to the fixed cylinder 2 by screws. When the drive coil 35 is energized, Lorentz force is generated to move the movable member 24 in the vertical direction.

本実施例の図には図示していないが、振れ補正ユニット50には電気基板が一体的に固定される。基板には双眼鏡のピッチングおよびヨ−イング方向の角速度を検出するセンサ、例えば振動ジャイロおよび上述のホ−ル素子32、39および駆動コイル28、35の為の処理回路や振れ補正動作を制御するためのマイクロコンピュ−タ等が実装される。また、電気基板に電力を供給するための電源ユニットや振れ補正の動作の作動と不作動を切り替える操作スイッチや動作状態を示すLED等の表示装置等が外装22と一体的に配置される。   Although not shown in the drawing of the present embodiment, an electric board is integrally fixed to the shake correction unit 50. The substrate is provided with a sensor for detecting angular velocity in the pitching and yawing directions of binoculars, for example, a vibration gyro and the above-described processing elements for the wheel elements 32 and 39 and the drive coils 28 and 35 and a shake correction operation. A microcomputer or the like is mounted. In addition, a power supply unit for supplying power to the electric board, an operation switch for switching between operation and non-operation of shake correction, a display device such as an LED indicating an operation state, and the like are integrally disposed with the exterior 22.

ピント合わせに伴って可動する部分や光軸調整機構は外装部材によって保護されており直接に外部からの力を受けない構成としているので、双眼鏡の振動、落下衝撃等に対して有利である。   Since the movable part and the optical axis adjusting mechanism with focusing are protected by the exterior member and are not directly subjected to external force, it is advantageous for binocular vibration, drop impact, and the like.

[実施例2]
図13は本発明の実施例1の鏡筒1L、1Rを高倍率対物鏡筒に変更し、調整部材を光軸に対して垂直方向に配置した双眼鏡の第2の実施例の斜視図である。図14は側面図、図15は図14においてAA断面の鏡筒101Rと固定筒102の結合構成を示す要部断面図、図16a、図16bは固定筒と鏡筒の分解斜視図である。図13において、実施例1と同様にOLは対物光学系の左の光軸、ORは対物光学系の右の光軸であり、ELは接眼光学系の左の光軸、ERは接眼光学系の右の光軸である。
[Example 2]
FIG. 13 is a perspective view of a second embodiment of binoculars in which the lens barrels 1L and 1R according to the first embodiment of the present invention are changed to high-magnification objective lens barrels and the adjusting member is arranged in a direction perpendicular to the optical axis. . FIG. 14 is a side view, FIG. 15 is a cross-sectional view of the principal part showing a coupling configuration of the lens barrel 101R and the fixed tube 102 in AA cross section in FIG. 14, and FIGS. 16a and 16b are exploded perspective views of the fixed tube and the lens barrel. In FIG. 13, as in Example 1, OL is the left optical axis of the objective optical system, OR is the right optical axis of the objective optical system, EL is the left optical axis of the eyepiece optical system, and ER is the eyepiece optical system. Is the right optical axis.

L11L、L11Rは左右一対の対物光学系の一部を成すレンズ群。101L、101Rはそれぞれレンズ群L11L、L11Rを保持する鏡筒である。実施例2の双眼鏡は実施例1と比較して高倍率で明るい仕様となっている。そのため、実施例2の鏡筒101Rは大きくなったレンズ群L11L、L11Rに合わせた直径となっている。   L11L and L11R are lens groups that form part of a pair of left and right objective optical systems. Reference numerals 101L and 101R denote lens barrels that hold the lens groups L11L and L11R, respectively. The binoculars of Example 2 are brighter and brighter than those of Example 1. Therefore, the lens barrel 101R of the second embodiment has a diameter that matches the enlarged lens groups L11L and L11R.

106L、106Rは左右一対の接眼ユニットである。107は左右一対の接眼ユニットおよび左右一対の対物光学系を支持する固定部であるところの固定筒である。接眼ユニット106L、106Rはベ−ス部材107の対物光学系の光軸OL、ORに垂直な107a部に取り付けられている。取り付け構成および眼幅調整機構は実施例1と同等なので説明は省略する。150は振れ補正ユニットである。   106L and 106R are a pair of left and right eyepiece units. Reference numeral 107 denotes a fixed cylinder that is a fixed portion that supports the pair of left and right eyepiece units and the pair of left and right objective optical systems. The eyepiece units 106L and 106R are attached to a portion 107a perpendicular to the optical axes OL and OR of the objective optical system of the base member 107. Since the mounting configuration and the eye width adjustment mechanism are the same as those in the first embodiment, description thereof is omitted. Reference numeral 150 denotes a shake correction unit.

図16a、図16bにおいて、101Raは鏡筒101Rの後端に取り付いた凸形状部である。101Rbは鏡筒101Rの後端の長溝である。101Rdは鏡筒101Rの突出部であり、貫通穴101Rcが空けられている。101Raはフランジ形状であるところの2つの凸形状部であり、鏡筒101Rを固定筒102に取付けるために、鏡筒側面の後ろ端に設けられている。   In FIGS. 16a and 16b, 101Ra is a convex portion attached to the rear end of the lens barrel 101R. 101Rb is a long groove at the rear end of the lens barrel 101R. 101Rd is a protruding portion of the lens barrel 101R, and a through hole 101Rc is opened. 101Ra is two convex portions that are flange-shaped, and is provided at the rear end of the side surface of the lens barrel in order to attach the lens barrel 101R to the fixed cylinder 102.

102iRはフランジ形状であるところの2つの凸形状部であり、固定筒102の開口部の内側に設けられている。102kRは固定筒102の突出部であり、貫通穴102mRがあいている。102aRは102mRに対し光軸を挟んで対向位置にある貫通穴である。   102iR is two convex portions that are flange-shaped, and is provided inside the opening of the fixed cylinder 102. 102kR is a protruding portion of the fixed cylinder 102 and has a through hole 102mR. 102aR is a through hole that is opposite to 102mR across the optical axis.

120は調整部材であるところの偏芯部材である。基準軸120aと偏芯軸120bとドライバ−先端部が挿入可能な溝120cを有している。121は基準部材であるところの固定基準ピンであり、その直径は貫通穴102mRと貫通穴101Rcの両方に圧入出来る大きさとなっている。   Reference numeral 120 denotes an eccentric member which is an adjustment member. A reference shaft 120a, an eccentric shaft 120b, and a groove 120c into which a driver-tip portion can be inserted are provided. Reference numeral 121 denotes a fixed reference pin which is a reference member, and has a diameter that can be press-fitted into both the through hole 102mR and the through hole 101Rc.

次に固定筒102と鏡筒101Rの組立て方法を説明する。鏡筒101Rを固定筒102の開口部の内側で凸形状部102iRのない部分に鏡筒101Rの凸形状部101Raを挿し込み、一定の角度をまわして光軸方向を位置出しするバヨネット構成で鏡筒101Rを固定筒102へ装着する。このとき、鏡筒101Rの凸形状部101Raと固定筒102の凸形状部102iRとは光軸方向に軽圧入状態となっている。   Next, a method for assembling the fixed cylinder 102 and the lens barrel 101R will be described. The lens barrel 101R is a mirror with a bayonet configuration in which the convex shape portion 101Ra of the lens barrel 101R is inserted into the portion without the convex shape portion 102iR inside the opening of the fixed barrel 102, and the optical axis direction is positioned by turning a certain angle. The cylinder 101R is attached to the fixed cylinder 102. At this time, the convex part 101Ra of the lens barrel 101R and the convex part 102iR of the fixed cylinder 102 are lightly press-fitted in the optical axis direction.

101Rdは鏡筒1Rの側面部の突出部であり、貫通穴101Rcが空けられている。101Rbは鏡筒101Rの側面部の突出部101Rdに対し光軸を挟んで対向位置にある長溝である。   101Rd is a protruding portion of the side surface portion of the lens barrel 1R, and a through hole 101Rc is opened. 101Rb is a long groove that is opposed to the protrusion 101Rd on the side surface of the lens barrel 101R across the optical axis.

鏡筒101Rを固定筒102へ装着する過程を説明する。鏡筒101Rを固定筒102へバヨネット構成で結合させ、光軸方向を位置出しする。これにより、鏡筒101Rは光軸と垂直な平面内で移動可能となる。次に、鏡筒101Rの突出部101Rdの貫通穴101Rcと固定筒102の突出部102kRの貫通穴102mRに鏡筒101Rの後方から固定基準ピン121を圧入させる。   A process of attaching the lens barrel 101R to the fixed cylinder 102 will be described. The lens barrel 101R is coupled to the fixed cylinder 102 in a bayonet configuration, and the optical axis direction is positioned. Thereby, the lens barrel 101R can be moved in a plane perpendicular to the optical axis. Next, the fixed reference pin 121 is press-fitted from the rear of the lens barrel 101R into the through hole 101Rc of the protrusion 101Rd of the lens barrel 101R and the through hole 102mR of the protrusion 102kR of the fixed tube 102.

特に固定基準ピン121の挿入方法において、実施例1の鏡筒101Rは鏡筒1Rと同じように鏡筒前方から挿入することは難しい。そこで実施例2の固定基準ピン121は貫通穴101Rc、102mRに固定筒102の後方から圧入する。   In particular, in the method of inserting the fixed reference pin 121, it is difficult to insert the lens barrel 101R of the first embodiment from the front of the lens barrel in the same manner as the lens barrel 1R. Therefore, the fixed reference pin 121 of the second embodiment is press-fitted into the through holes 101Rc and 102mR from the rear of the fixed cylinder 102.

次に鏡筒101Rの長溝101Rbと固定筒102の貫通穴102aRに偏芯部材120を組み込む。偏芯部材120の基準軸120aは貫通穴102aRに軽圧入しており、偏芯軸120bは長溝101Rbに長手方向に摺動可能な隙間を有して嵌合する。実施例1と同じように偏芯部材120を回転させることで固定筒102に対して鏡筒101Rを揺動させることができる。   Next, the eccentric member 120 is assembled into the long groove 101Rb of the lens barrel 101R and the through hole 102aR of the fixed cylinder 102. The reference shaft 120a of the eccentric member 120 is lightly press-fitted into the through hole 102aR, and the eccentric shaft 120b is fitted into the long groove 101Rb with a gap slidable in the longitudinal direction. As in the first embodiment, the lens barrel 101R can be swung with respect to the fixed cylinder 102 by rotating the eccentric member 120.

光軸調整作業後の偏芯部材120を固定筒102に接着固定することで、物理的な衝撃で鏡筒101Rの調整位置がずれることが抑止される。   By adhering and fixing the eccentric member 120 after the optical axis adjustment operation to the fixed cylinder 102, it is possible to prevent the adjustment position of the lens barrel 101R from being shifted due to a physical impact.

以上右眼側の説明であるが図16a、図16bに示す様に左眼側も同様の構成が対称に配置されており、右眼側で添字”R”で示す構成が左眼側では添字”L”で表現されている。鏡筒101L、101Rはそれぞれの揺動中心である固定基準ピン121を中心に異なる方向へ揺動することで光軸調整を行う。なお、光軸調整手順は実施例1と同様のため省略する。振れ補正ユニット150の構成も図9で説明した実施例1の構成と同様のため説明は省略する。   As described above for the right eye side, as shown in FIGS. 16a and 16b, the same structure is symmetrically arranged on the left eye side, and the structure indicated by the subscript “R” on the right eye side is the subscript on the left eye side. It is expressed by “L”. The lens barrels 101L and 101R perform optical axis adjustment by swinging in different directions around a fixed reference pin 121, which is the center of swing of each of the lens barrels 101L and 101R. Since the optical axis adjustment procedure is the same as that in the first embodiment, the description thereof is omitted. The configuration of the shake correction unit 150 is the same as that of the first embodiment described with reference to FIG.

実施例1、実施例2では鏡筒1L、1Rが対称に揺動する構成であるが、実際には異方向に揺動変位すれば調整することが可能である。例えば、左右の対物光学系の光軸を含む平面に対して鏡筒1Rを垂直方向に揺動させ、鏡筒1Lを平行方向に揺動させる構成でもよい。また、振れ補正機能を有する双眼鏡について説明したが、振れ補正機能のない双眼鏡でも本発明が適用できることは言うまでもない。   In the first and second embodiments, the lens barrels 1L and 1R are configured to swing symmetrically. However, in actuality, it is possible to make adjustments by swinging and displacing in different directions. For example, the lens barrel 1R may be swung in the vertical direction with respect to the plane including the optical axes of the left and right objective optical systems, and the lens barrel 1L may be swung in the parallel direction. Although the binoculars having the shake correction function have been described, it is needless to say that the present invention can be applied to binoculars having no shake correction function.

以上本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist thereof.

OL、OR 対物光学系の光軸
EL、ER 接眼光学系の光軸
L1L、L1R 対物光学系の一部を成すレンズ群
L2L、L2R 対物光学系の一部を成す偏芯調整レンズ
L3L、L3R 振れ補正レンズ群
L4L、L4R ポロII型成立プリズム
1L、1R レンズ保持筒
50 振れ補正ユニット
4L、4R 支持枠
5L、5R 接眼鏡筒
6L、6R 目当てゴム
7L、7R 接眼ユニット
8 ベ−ス部材
9L、9R 連動板
10 フォ−カス支持部材
OL, OR Optical axis of objective optical system
EL, ER Optical axis of eyepiece optical system
L1L, L1R Group of lenses that form part of the objective optical system
L2L and L2R Eccentricity adjustment lenses that form part of the objective optical system
L3L, L3R image stabilization lens group
L4L, L4R Polo II type formation prism
1L, 1R lens holder
50 Stabilization unit
4L, 4R support frame
5L, 5R eyepiece tube
6L, 6R rubber
7L, 7R eyepiece unit
8 Base material
9L, 9R interlocking plate
10 Focus support member

Claims (4)

少なくとも左右一対の対物光学系と、左右一対の接眼光学系とを有する双眼鏡において、
前記左右一対の対物光学系の一部または全部のそれぞれを保持する左右一対のレンズ保持筒と、
前記左右一対のレンズ保持筒のそれぞれが先端部の所定位置に位置決め固定される固定部材と、
前記左右一対のレンズ保持筒のそれぞれを前記固定部材に光軸と垂直な平面内で位置決めするための基準を成す左右一対の基準部材と、
前記左右一対の基準部材のそれぞれに対して前記左右一対のレンズ保持筒のそれぞれの光軸をはさんで対向位置に配置される左右一対の調整部材とから成り、
前記左右一対のレンズ保持筒のそれぞれの後端部周上に設けた複数のフランジ形状と前記固定部材の先端部周上に対応して設けた複数のフランジ形状の組み合わせにより、いわゆるバヨネット結合を構成することで、
前記左右一対のレンズ保持筒を前記固定部材の所定位置に位置決めすると共に光軸と垂直な平面内での移動を可能とし、
前記左右一対の調整部材で前記左右一対のレンズ保持筒を前記左右一対の基準部材を揺動中心として、それぞれ異なる方向に揺動させることで光軸調整を行うと共に前期左右一対のレンズ保持筒を前記固定部材に対して位置決めする事を特徴とする双眼鏡。
In binoculars having at least a pair of left and right objective optical systems and a pair of left and right eyepiece optical systems,
A pair of left and right lens holding cylinders for holding part or all of the pair of left and right objective optical systems;
A fixing member for positioning and fixing each of the pair of left and right lens holding cylinders at a predetermined position of the tip;
A pair of left and right reference members forming a reference for positioning each of the pair of left and right lens holding cylinders in a plane perpendicular to the optical axis to the fixed member;
A pair of left and right adjustment members disposed at opposite positions across the optical axes of the pair of left and right lens holding cylinders with respect to each of the pair of left and right reference members;
A combination of a plurality of flange shapes provided on the periphery of the rear end of each of the pair of left and right lens holding cylinders and a plurality of flange shapes provided corresponding to the periphery of the tip of the fixing member constitute a so-called bayonet coupling. by doing,
Positioning the pair of left and right lens holding cylinders at a predetermined position of the fixing member and enabling movement within a plane perpendicular to the optical axis;
The pair of left and right adjustment members is used to adjust the optical axis by swinging the pair of left and right lens holding cylinders in different directions around the pair of left and right reference members as the center of swinging. Binoculars characterized by being positioned with respect to the fixing member.
前記左右一対のレンズ保持筒の前記左右一対の基準部材を中心とする揺動可能な方向が左右で対称であることを特徴とする請求項1に記載の双眼鏡。 2. The binoculars according to claim 1, wherein swingable directions around the pair of left and right reference members of the pair of left and right lens holding cylinders are symmetrical on the left and right. 前記左右一対のレンズ保持筒の前記左右一対の基準部材を中心とする揺動可能な方向が前記左右一対の対物光学系の光軸を共に含む平面に対して45度以下の角度であることを特徴とする請求項1又は請求項2に記載の双眼鏡。 The swingable direction around the pair of left and right reference members of the pair of left and right lens holding cylinders is an angle of 45 degrees or less with respect to a plane including both the optical axes of the pair of left and right objective optical systems. The binoculars according to claim 1 or 2, characterized in that. 前記左右一対の対物光学系の一部を成す左右一対の振れ補正レンズ群を一体的に縦および横に動かすことで振れ補正を行うことを特徴とする請求項1乃至請求項3の何れか1項に記載の双眼鏡。 4. The shake correction is performed by moving a pair of left and right shake correction lens groups forming a part of the pair of left and right objective optical systems integrally in the vertical and horizontal directions. Binoculars according to item.
JP2010273280A 2010-12-08 2010-12-08 Binocular Pending JP2012123154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010273280A JP2012123154A (en) 2010-12-08 2010-12-08 Binocular

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273280A JP2012123154A (en) 2010-12-08 2010-12-08 Binocular

Publications (1)

Publication Number Publication Date
JP2012123154A true JP2012123154A (en) 2012-06-28

Family

ID=46504672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273280A Pending JP2012123154A (en) 2010-12-08 2010-12-08 Binocular

Country Status (1)

Country Link
JP (1) JP2012123154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10139584B2 (en) 2014-02-21 2018-11-27 Canon Kabushiki Kaisha Lens apparatus and optical apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10139584B2 (en) 2014-02-21 2018-11-27 Canon Kabushiki Kaisha Lens apparatus and optical apparatus

Similar Documents

Publication Publication Date Title
EP2902834B1 (en) Image stabilizing device and system for telescopic optical instruments
JP6187933B2 (en) Image stabilization device
JP5693268B2 (en) binoculars
US10928644B2 (en) Anti-vibration device and binocle
US10890780B2 (en) Anti-vibration device and binocle
JP2009288612A (en) Binocular device
JP4579409B2 (en) Binocular image stabilizer and binocular optical instrument
US10261336B2 (en) Anti-vibration optical system, telephoto optical system, binocle, and anti-vibration unit
JP2010097001A (en) Binoculars
JP2012123154A (en) Binocular
US11002981B2 (en) Anti-vibration device and binocle
JP5864832B2 (en) binoculars
JP2003057563A (en) Binocular
JP2011069929A5 (en)
JP6746374B2 (en) Optical equipment
JPH10186437A (en) Driving force generating device applied to image blur preventing device
JP2016029403A (en) Optical device
JPH11204332A (en) Coil for driving plane and vibration damping device using it
JP2018005128A (en) Observation device
JP2013080083A (en) Optical apparatus with stabilizing function and binocular telescope
JP2006145647A (en) Vibration-proof binoculars
JP2002268110A (en) Binoculars with image deflection preventive mechanism
JP2018173598A (en) Optical apparatus
JP2015114472A (en) Optical device
JP2018005127A (en) Optical instrument having image tremor correction