JP2012120702A - Endoscope and endoscope system - Google Patents

Endoscope and endoscope system Download PDF

Info

Publication number
JP2012120702A
JP2012120702A JP2010273778A JP2010273778A JP2012120702A JP 2012120702 A JP2012120702 A JP 2012120702A JP 2010273778 A JP2010273778 A JP 2010273778A JP 2010273778 A JP2010273778 A JP 2010273778A JP 2012120702 A JP2012120702 A JP 2012120702A
Authority
JP
Japan
Prior art keywords
light
optical system
image
illumination
wavelength band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2010273778A
Other languages
Japanese (ja)
Inventor
Makito Komukai
牧人 小向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010273778A priority Critical patent/JP2012120702A/en
Priority to CN2011103281520A priority patent/CN102525376A/en
Publication of JP2012120702A publication Critical patent/JP2012120702A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To maintain excellent image quality when performing illumination by excitation light and fluorescence coaxially with an objective optical system.SOLUTION: An electronic endoscope 10 includes an objective optical system 40 for capturing the image of a region to be observed and a first illumination optical system. An optical axis of excitation light emitted from a light guide 42 and an optical axis of white light generated by the fluorescence of a phosphor of a wavelength conversion member 49 excited and emitted by the excitation light are matched with each other. The wavelength conversion member 49 constitutes a diaphragm 44 together with an excitation light pass filter 48 and is disposed more on an object side than the excitation light pass filter 48 practically in charge of a function of the diaphragm. The light guide 42 is positioned behind a prism 45, and the excitation light is transmitted through an excitation pass filter 47 provided on a slope of the prism 45 and the excitation light pass filter 48 of the diaphragm 44 and applied to the wavelength conversion member 49. Since the excitation light and the fluorescence are not mixed in the image of the region to be observed, the excellent image quality of an observation image is maintained.

Description

本発明は、被検体の被観察部位の像を取り込む対物光学系と、被観察部位に照明光を照射する照明光学系を同軸にした内視鏡およびこれを備える内視鏡システムに関する。   The present invention relates to an objective optical system that captures an image of a region to be observed of a subject, an endoscope that is coaxial with an illumination optical system that irradiates illumination light to the region to be observed, and an endoscope system including the endoscope.

医療、工業分野において内視鏡を利用した検査が広く普及している。周知の如く、内視鏡は被検体内に挿入する挿入部の先端部から被検体の被観察部位に照明光を照射し、被観察部位の像を取り込む。従来、照明光の光源にはキセノンランプやメタルハライドランプが用いられていたが、さらなる小型化、コストダウンを推進するために、発光ダイオードや半導体レーザダイオードを光源に採用する動きが活発化している。こうした光源を用いた場合は、光源から発せられる励起光(青色光や紫外光)で蛍光体を励起させて緑色、黄色、赤色などの蛍光を生じさせ、励起光と蛍光を合波することで白色光を作り出している。   Inspection using an endoscope is widely used in the medical and industrial fields. As is well known, the endoscope irradiates the observation site of the subject with illumination light from the distal end of the insertion portion to be inserted into the subject, and captures an image of the observation site. Conventionally, a xenon lamp or a metal halide lamp has been used as a light source of illumination light, but in order to promote further miniaturization and cost reduction, a movement to adopt a light emitting diode or a semiconductor laser diode as a light source has been activated. When such a light source is used, the phosphor is excited by excitation light (blue light or ultraviolet light) emitted from the light source to generate fluorescence of green, yellow, red, etc., and the excitation light and fluorescence are combined. It produces white light.

現在市販されているスタンダードな内視鏡は、被観察部位の像を取り込む対物光学系と、被観察部位に照明光を照射する照明光学系が各々独立している。例えば対物光学系が先端部の中央に、照明光学系がその両脇に配されている。このように対物光学系と照明光学系の光軸が一致していないと、先端部を被観察部位にある程度近付けたときに照明光が対物光学系の観察視野に僅かしか照射されなくなり、観察画像が暗くなるという問題があった。この問題を解決するために、対物光学系と照明光学系を同軸にした内視鏡が提案されている(特許文献1参照)。   In standard endoscopes currently on the market, an objective optical system that captures an image of a site to be observed and an illumination optical system that irradiates illumination light to the site to be observed are independent of each other. For example, the objective optical system is arranged at the center of the tip, and the illumination optical system is arranged on both sides thereof. In this way, if the optical axes of the objective optical system and the illumination optical system do not match, the observation light of the objective optical system is only slightly irradiated when the tip is brought close to the observation site to some extent, and the observation image There was a problem that became dark. In order to solve this problem, an endoscope in which an objective optical system and an illumination optical system are coaxial has been proposed (see Patent Document 1).

特許文献1に記載の内視鏡は、被観察部位の像を撮像素子に伝送するためのロッドレンズと、ロッドレンズの出射端面から撮像素子への光路中に設けられたハーフミラーと、ハーフミラーに向けて照明光を照射する光源とを備え、ハーフミラーによりロッドレンズの出射端面に照明光を入射させている。つまりロッドレンズ等の対物光学系と光源等の照明光学系を同軸にしている。また、撮像素子への照明光の入射を防ぐため、ハーフミラーの裏側に吸光スクリーンを設けている。   An endoscope described in Patent Document 1 includes a rod lens for transmitting an image of a site to be observed to an image sensor, a half mirror provided in an optical path from the exit end surface of the rod lens to the image sensor, and a half mirror. And a light source for irradiating illumination light toward the lens, and the illumination light is incident on the exit end face of the rod lens by a half mirror. That is, an objective optical system such as a rod lens and an illumination optical system such as a light source are coaxial. In order to prevent illumination light from entering the image sensor, an absorption screen is provided on the back side of the half mirror.

特開平04−229816号公報Japanese Patent Laid-Open No. 04-229816

特許文献1のように対物光学系と照明光学系を同軸にして、いわゆる同軸照明を行う場合は、照明光が被観察部位の像に混入してフレア等(撮像素子にCCDを用いた場合はスミアやブルーミング)の画質劣化を招くことを防止する必要がある。特許文献1ではその対策としてハーフミラーの裏側に吸光スクリーンを設けているが、ロッドレンズを用いているためフレアの発生は避けられない。   When the objective optical system and the illumination optical system are made coaxial as in Patent Document 1 and so-called coaxial illumination is performed, the illumination light is mixed into the image of the observed site and flare or the like (when a CCD is used for the image sensor) It is necessary to prevent image quality degradation such as smear or blooming. In Patent Document 1, a light absorbing screen is provided on the back side of the half mirror as a countermeasure. However, since a rod lens is used, the occurrence of flare is unavoidable.

そのうえ特許文献1では、光源に発光ダイオードや半導体レーザダイオードを用い、励起光と蛍光により白色光を生成する構成を想定していない。この場合は励起光と蛍光の両方に被観察部位の像への混入を防ぐ対策を講じなければならないが、その具体的な方法は当然ながら特許文献1には一切記載されていない。   Moreover, Patent Document 1 does not assume a configuration in which a light emitting diode or a semiconductor laser diode is used as a light source and white light is generated by excitation light and fluorescence. In this case, it is necessary to take measures to prevent both excitation light and fluorescence from being mixed into the image of the site to be observed, but the specific method is not described in Patent Document 1 of course.

本発明は上述の問題点に鑑みてなされたものであり、その目的は、対物光学系と同軸で励起光と蛍光による照明を行う場合に画質を良好に保つことにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to maintain good image quality when illumination with excitation light and fluorescence is performed coaxially with the objective optical system.

上記目的を達成するために、本発明の内視鏡は、被検体の被観察部位の像の入射光量を制限する絞りを有する対物光学系と、第一の波長帯域の光で波長変換部材の蛍光体を励起させて第二の波長帯域の光を生じさせ、第一、第二の波長帯域の光を合波した照明光を被観察部位に照射する第一照明光学系とを備え、前記対物光学系と前記第一照明光学系の光軸を同一とし、絞りよりも対物側に波長変換部材を配置することを特徴とする。   In order to achieve the above object, an endoscope according to the present invention includes an objective optical system having a diaphragm for limiting the amount of incident light of an image of an observation site of a subject, and a wavelength conversion member using light in a first wavelength band. A first illumination optical system that excites a phosphor to generate light in a second wavelength band and irradiates an observation site with illumination light that is combined with light in the first and second wavelength bands, and The optical axes of the objective optical system and the first illumination optical system are the same, and a wavelength conversion member is disposed on the objective side with respect to the stop.

前記対物光学系は、被観察部位の像を屈折させるプリズムを絞りの後段に有し、プリズムの斜面に第一の波長帯域の光のみを選択的に透過させるナローパスフィルタを設けることが好ましい。第一の波長帯域の光は斜面の背後から発せられ、ナローパスフィルタを透過して波長変換部材に一部照射される。被観察部位の像のうち、第一の波長帯域の光と異なる波長帯成分の光はプリズムで屈折され、第一の波長帯域の光と同じ波長帯成分の光は、ナローパスフィルタを透過して斜面の背後に導かれる。   It is preferable that the objective optical system has a prism that refracts an image of a region to be observed at the rear stage of the stop, and a narrow-pass filter that selectively transmits only light in the first wavelength band on the slope of the prism. The light in the first wavelength band is emitted from behind the slope, passes through the narrow pass filter, and is partially irradiated to the wavelength conversion member. Of the image of the site to be observed, light of a wavelength band component different from the light of the first wavelength band is refracted by the prism, and light of the same wavelength band component as the light of the first wavelength band is transmitted through the narrow pass filter. And led behind the slope.

第一の波長帯域の光のみを選択的に透過させるナローパスフィルタで絞りを構成することが好ましい。絞りと波長変換部材を一体化してもよい。   It is preferable that the diaphragm is constituted by a narrow-pass filter that selectively transmits only light in the first wavelength band. The diaphragm and the wavelength conversion member may be integrated.

プリズムの被観察部位の像の出射面側に、被観察部位の像を撮像する撮像素子を備えることが好ましい。この場合、プリズムの被観察部位の像の出射面と前記撮像素子の撮像面の間に、第一の波長帯域の光を遮光するカットフィルタを設けてもよい。   It is preferable that an imaging device for capturing an image of the observed region is provided on the exit surface side of the image of the observed region of the prism. In this case, a cut filter that shields light in the first wavelength band may be provided between the exit surface of the image of the observation site of the prism and the imaging surface of the imaging element.

前記対物光学系および前記第一照明光学系とは光軸が異なる第二照明光学系を備えることが好ましい。この場合、近景観察時は前記第一照明光学系単独、または前記第二照明光学系と併用し、通常観察時は第二照明光学系を用いる。前記第一照明光学系または前記第二照明光学系のいずれを用いるかを選択させる操作手段を備えることが好ましい。   It is preferable that the objective optical system and the first illumination optical system include a second illumination optical system having a different optical axis. In this case, the first illumination optical system alone or in combination with the second illumination optical system is used during near-field observation, and the second illumination optical system is used during normal observation. It is preferable that an operation means for selecting which of the first illumination optical system and the second illumination optical system is used is provided.

第一の波長帯域の光は青色または紫外光、第二の波長帯域の光は緑色、黄色、または赤色光であり、第一、第二の波長帯域の光の合波光は白色光である。   The light in the first wavelength band is blue or ultraviolet light, the light in the second wavelength band is green, yellow, or red light, and the combined light of the light in the first and second wavelength bands is white light.

本発明の内視鏡システムは、被検体の被観察部位の像の入射光量を制限する絞りを有する対物光学系、および第一の波長帯域の光で波長変換部材の蛍光体を励起させて第二の波長帯域の光を生じさせ、第一、第二の波長帯域の光を合波した照明光を被観察部位に照射する照明光学系を有し、対物光学系と照明光学系の光軸を同一とし、絞りよりも対物側に波長変換部材を配置した内視鏡と、第一の波長帯域の光を発する光源の駆動を制御する光源装置とを備えることを特徴とする。   An endoscope system according to the present invention excites a phosphor of a wavelength conversion member with an objective optical system having a diaphragm that restricts an incident light amount of an image of an observation site of a subject and light of a first wavelength band. It has an illumination optical system that generates light in two wavelength bands and irradiates an observation site with illumination light that is combined with light in the first and second wavelength bands, and has optical axes of the objective optical system and the illumination optical system. And an endoscope in which a wavelength conversion member is arranged on the object side of the stop, and a light source device that controls driving of a light source that emits light in the first wavelength band.

本発明によれば、被検体の被観察部位の像を取り込む対物光学系と、第一の波長帯域の光、およびこの光によって波長変換部材の蛍光体から励起発光する第二の波長帯域の光を合波した照明光を被観察部位に照射する照明光学系の光軸を同一とし、対物光学系の絞りよりも対物側に波長変換部材を配置するので、画質を良好に保つことができる。   According to the present invention, an objective optical system that captures an image of an observation site of a subject, light in the first wavelength band, and light in the second wavelength band that is excited and emitted from the phosphor of the wavelength conversion member by this light. Since the optical axis of the illumination optical system for irradiating the observation site with the combined illumination light is made the same, and the wavelength conversion member is arranged on the objective side relative to the stop of the objective optical system, the image quality can be kept good.

電子内視鏡システムの構成を示す外観図である。It is an external view which shows the structure of an electronic endoscope system. 電子内視鏡の先端部の端面を示す平面図である。It is a top view which shows the end surface of the front-end | tip part of an electronic endoscope. 先端部の内部を側面から視た断面図である。It is sectional drawing which looked at the inside of a front-end | tip part from the side surface. 電子内視鏡システムの構成を示すブロック図である。It is a block diagram which shows the structure of an electronic endoscope system. 白色光、励起光、および蛍光の分光強度分布と、励起光パスフィルタ、および励起光カットフィルタの分光透過率を概略的に示すグラフである。3 is a graph schematically showing spectral intensity distributions of white light, excitation light, and fluorescence, and spectral transmittances of an excitation light pass filter and an excitation light cut filter. CCDの撮像面上に励起光カットフィルタを配した例を示す断面図である。It is sectional drawing which shows the example which has arranged the excitation light cut filter on the imaging surface of CCD.

図1において、電子内視鏡システム2は、電子内視鏡10、プロセッサ装置11、および光源装置12からなる。電子内視鏡10は、周知の如く、被検体(患者)内に挿入される可撓性の挿入部13と、挿入部13の基端部分に連設された操作部14と、プロセッサ装置11および光源装置12に接続されるコネクタ15と、操作部14、コネクタ15間を繋ぐユニバーサルコード16とを有する。   In FIG. 1, the electronic endoscope system 2 includes an electronic endoscope 10, a processor device 11, and a light source device 12. As is well known, the electronic endoscope 10 includes a flexible insertion portion 13 to be inserted into a subject (patient), an operation portion 14 connected to a proximal end portion of the insertion portion 13, and a processor device 11. And a connector 15 connected to the light source device 12, an operation unit 14, and a universal cord 16 that connects the connectors 15.

操作部14には、挿入部13の先端部17を上下左右方向に湾曲させるためのアングルノブや、送気・送水ノズル34(図2および図3参照)からエアー、水を噴出させるための送気・送水ボタンの他、観察画像を静止画記録するためのレリーズボタンといった操作部材が設けられている。   The operation unit 14 includes an angle knob for bending the distal end portion 17 of the insertion unit 13 in the vertical and horizontal directions and an air supply / water supply nozzle 34 (see FIGS. 2 and 3) for supplying air and water. In addition to the air / water supply button, operation members such as a release button for recording an observation image as a still image are provided.

また、操作部14の先端側には、電気メス等の処置具が挿通される鉗子口が設けられている。鉗子口は、挿入部13内の鉗子チャンネル58(図3参照)を通して、先端部17に設けられた鉗子出口33(図2および図3参照)に連通している。   Further, a forceps port through which a treatment tool such as an electric knife is inserted is provided on the distal end side of the operation unit 14. The forceps port communicates with a forceps outlet 33 (see FIGS. 2 and 3) provided at the distal end portion 17 through a forceps channel 58 (see FIG. 3) in the insertion portion 13.

プロセッサ装置11は、光源装置12と電気的に接続され、電子内視鏡システム2の動作を統括的に制御する。プロセッサ装置11は、ユニバーサルコード16や挿入部13内に挿通された伝送ケーブル57(図3参照)を介して電子内視鏡10に給電を行い、先端部17に搭載されたCCD41(図3参照)の駆動を制御する。また、プロセッサ装置11は、伝送ケーブル57を介してCCD41から出力された撮像信号を受信し、受信した撮像信号に各種処理を施して画像データを生成する。プロセッサ装置11で生成された画像データは、プロセッサ装置11にケーブル接続されたモニタ18に観察画像として表示される。   The processor device 11 is electrically connected to the light source device 12 and comprehensively controls the operation of the electronic endoscope system 2. The processor device 11 supplies power to the electronic endoscope 10 via the universal cord 16 and the transmission cable 57 (see FIG. 3) inserted into the insertion portion 13, and the CCD 41 (see FIG. 3) mounted on the distal end portion 17. ) Is controlled. Further, the processor device 11 receives the imaging signal output from the CCD 41 via the transmission cable 57, and performs various processes on the received imaging signal to generate image data. Image data generated by the processor device 11 is displayed as an observation image on a monitor 18 connected to the processor device 11 by a cable.

電子内視鏡システム2には、被検体の被観察部位に挿入部13の先端部17を近付けて被観察部位の近景を観察する近景観察モードと、被観察部位と先端部17の距離を適度に保って観察する通常観察モードとが用意されている。各モードの切替は操作部14のモード切替スイッチ19を操作することにより行われる。光源装置12には各モード用の光源が搭載されている。近景観察モードでは青色の励起光(紫外光でも可)およびこれに励起発光する緑色〜黄色〜赤色の蛍光による白色光を対物光学系40(図3参照)と同じ光軸で被観察部位に照射(同軸照明)する。通常観察モードでは対物光学系40の光軸の両側からキセノンランプ等による白色光を照射する。電子内視鏡システム2の電源投入直後は通常観察モードが自動的に選択される。   In the electronic endoscope system 2, the near-field observation mode in which the distal end portion 17 of the insertion portion 13 is brought close to the observation site of the subject and the close-up view of the observation site is observed, and the distance between the observation site and the distal end portion 17 is appropriately set. A normal observation mode for observing while maintaining the screen is prepared. Each mode is switched by operating the mode switch 19 of the operation unit 14. The light source device 12 is equipped with a light source for each mode. In the near-field observation mode, the observation site is irradiated with blue excitation light (or ultraviolet light is acceptable) and white light by green to yellow to red fluorescence excited and emitted by the same optical axis as that of the objective optical system 40 (see FIG. 3). (Coaxial lighting). In the normal observation mode, white light from a xenon lamp or the like is irradiated from both sides of the optical axis of the objective optical system 40. The normal observation mode is automatically selected immediately after the electronic endoscope system 2 is turned on.

図2および図3において、先端部17の端面17aには、観察窓(兼近景観察用照明窓)30、通常観察用照明窓31、32、鉗子出口33、および送気・送水ノズル34が設けられている。観察窓30は端面17aの片側中央に配置されている。観察窓30の奥には、被観察部位の像を取り込むための対物光学系40、被観察部位の像を撮像するCCD41、および近景観察用の照明光の元となる励起光を光源装置12から導光するライトガイド42の出射端が配設されている。一点鎖線の光軸Lで示すように、ライトガイド42の光軸(照明光学系の光軸)は対物光学系40の光軸と一致している。   2 and 3, an observation window (also a near-field observation illumination window) 30, normal observation illumination windows 31 and 32, a forceps outlet 33, and an air / water supply nozzle 34 are provided on the end surface 17 a of the distal end portion 17. It has been. The observation window 30 is disposed at the center on one side of the end face 17a. In the back of the observation window 30, an objective optical system 40 for capturing an image of the site to be observed, a CCD 41 for capturing an image of the site to be observed, and excitation light that is the source of illumination light for near-field observation from the light source device 12. An exit end of the light guide 42 for guiding light is disposed. As indicated by the one-dot chain line optical axis L, the optical axis of the light guide 42 (the optical axis of the illumination optical system) coincides with the optical axis of the objective optical system 40.

対物光学系40は、レンズ群43、絞り44、およびプリズム45からなる。レンズ群43と絞り44は鏡筒46に収容されている。プリズム45は鏡筒46の後端に固着され、被観察部位の像を90°屈折させてCCD41の撮像面41aに導く。プリズム45は、ライトガイド42の出射端から放たれる励起光のみを選択的に透過させる(励起光以外の光を遮光する)励起光パスフィルタ47(図5にPFで示す)を二つの直角プリズムの斜面で挟んだ構成である。   The objective optical system 40 includes a lens group 43, a stop 44, and a prism 45. The lens group 43 and the stop 44 are accommodated in a lens barrel 46. The prism 45 is fixed to the rear end of the lens barrel 46, and refracts the image of the site to be observed by 90 ° and guides it to the imaging surface 41 a of the CCD 41. The prism 45 selectively transmits the excitation light path filter 47 (indicated by PF in FIG. 5) having two right angles, which selectively transmits only the excitation light emitted from the emission end of the light guide 42 (shields light other than the excitation light). The structure is sandwiched between the slopes of the prism.

絞り44は、プリズム45側の励起光パスフィルタ48と観察窓30側(対物側)の波長変換部材49とからなり、被観察部位の像の入射を制限する。励起光パスフィルタ48はプリズム45の励起光パスフィルタ47と同じものである。励起光パスフィルタ48は、励起光以外の光にはカットフィルタとなるため、励起光パスフィルタ48が実質的に絞りの機能を担う。   The stop 44 includes an excitation light path filter 48 on the prism 45 side and a wavelength conversion member 49 on the observation window 30 side (object side), and restricts the incidence of an image of the observed region. The excitation light path filter 48 is the same as the excitation light path filter 47 of the prism 45. Since the excitation light path filter 48 serves as a cut filter for light other than the excitation light, the excitation light path filter 48 substantially functions as a diaphragm.

ライトガイド42の出射端から放たれた励起光は、励起光パスフィルタ48を透過して波長変換部材49に一部が入射し、その他は絞り44の開口を素通りする。波長変換部材49は、青色の励起光の一部を吸収して緑色〜黄色〜赤色に励起発光する複数種の蛍光体が分散配置、または表面に塗布されたガラスである。この波長変換部材49で励起発光する緑色〜黄色〜赤色の蛍光(図5にFで示す)と、絞り44の開口および励起光パスフィルタ48を透過して蛍光体の励起発光に寄与しない青色の励起光とが合波されて近景観察用の照明光(白色光)が生成され、観察窓30を通して被観察部位に照射される。   The excitation light emitted from the emission end of the light guide 42 passes through the excitation light pass filter 48 and partially enters the wavelength conversion member 49, and others pass through the aperture of the diaphragm 44. The wavelength conversion member 49 is glass in which a plurality of types of phosphors that absorb part of blue excitation light and emit light in green to yellow to red are dispersedly arranged or coated on the surface. The green to yellow to red fluorescence (indicated by F in FIG. 5) excited and emitted by the wavelength conversion member 49 and the blue light that does not contribute to the excitation light emission of the phosphor through the aperture of the diaphragm 44 and the excitation light pass filter 48. The excitation light is combined with each other to generate illumination light (white light) for near view observation, which is irradiated to the observation site through the observation window 30.

通常観察用照明窓31、32は、観察窓30の左右対称な位置に配されている。通常観察用照明窓31、32の背後には、照明レンズ50、51(図4参照)とライトガイド52、53(図4参照)の出射端が配されており、通常観察用照明窓31、32からライトガイド52、53で導光される照明光が被観察部位に照射される。ライトガイド52、53の光軸は対物光学系40の光軸と平行である。   The normal observation illumination windows 31 and 32 are arranged at symmetrical positions of the observation window 30. Behind the normal observation illumination windows 31 and 32 are the illumination lenses 50 and 51 (see FIG. 4) and the light guides 52 and 53 (see FIG. 4). Illumination light guided by the light guides 52 and 53 from 32 is irradiated to the site to be observed. The optical axes of the light guides 52 and 53 are parallel to the optical axis of the objective optical system 40.

CCD41は、観察窓30、対物光学系40を経由した被検体内の被観察部位の像が撮像面41aに入射するように配置されている。撮像面41aには複数の色セグメントからなるカラーフィルタ、例えばベイヤー配列の原色(RGB)カラーフィルタが形成されている。   The CCD 41 is arranged so that an image of the observation site in the subject via the observation window 30 and the objective optical system 40 is incident on the imaging surface 41a. A color filter composed of a plurality of color segments, for example, a primary color (RGB) color filter in a Bayer array is formed on the imaging surface 41a.

撮像面41a上には、四角枠状のスペーサ54を介して矩形板状のカバーガラス55が取り付けられている。CCD41、スペーサ54、およびカバーガラス55は、接着剤で互いに接着されて組み付けられる。これにより、スペーサ54およびカバーガラス55で囲まれた密閉空間内に撮像面41aが収容され、塵埃や水等の侵入から撮像面41aが保護される。   On the imaging surface 41a, a rectangular plate-like cover glass 55 is attached via a square frame-like spacer 54. The CCD 41, the spacer 54, and the cover glass 55 are assembled by being bonded to each other with an adhesive. Thereby, the imaging surface 41a is accommodated in the sealed space surrounded by the spacer 54 and the cover glass 55, and the imaging surface 41a is protected from intrusion of dust or water.

CCD41の後端には回路基板56が固着されている。CCD41の後端部と回路基板56の前端部には複数の端子が設けられ、これらはワイヤボンディング等により電気的な接続がなされている。また、回路基板56には後端部にも端子が設けられており、該端子と伝送ケーブル57がハンダ付け等で電気的に接続されている。   A circuit board 56 is fixed to the rear end of the CCD 41. A plurality of terminals are provided at the rear end portion of the CCD 41 and the front end portion of the circuit board 56, and these are electrically connected by wire bonding or the like. The circuit board 56 is also provided with a terminal at the rear end, and the terminal and the transmission cable 57 are electrically connected by soldering or the like.

図4において、電子内視鏡10の操作部14には、アナログ信号処理回路(以下、AFEと略す)65、CCD駆動回路66、およびCPU67が設けられている。AFE65は、相関二重サンプリング回路(以下、CDSと略す)、自動ゲイン制御回路(以下、AGCと略す)、およびアナログ/デジタル変換器(以下、A/Dと略す)から構成されている。CDSは、CCD41から出力される撮像信号に対して相関二重サンプリング処理を施し、CCD41で生じるリセット雑音およびアンプ雑音の除去を行う。AGCは、CDSによりノイズ除去が行われた撮像信号を、プロセッサ装置11から指定されるゲイン(増幅率)で増幅する。A/Dは、AGCにより増幅された撮像信号を所定のビット数のデジタル信号に変換する。A/Dでデジタル化された撮像信号は、伝送ケーブル57を介してプロセッサ装置11の画像処理回路74に入力される。   In FIG. 4, the operation unit 14 of the electronic endoscope 10 is provided with an analog signal processing circuit (hereinafter abbreviated as AFE) 65, a CCD drive circuit 66, and a CPU 67. The AFE 65 includes a correlated double sampling circuit (hereinafter abbreviated as CDS), an automatic gain control circuit (hereinafter abbreviated as AGC), and an analog / digital converter (hereinafter abbreviated as A / D). The CDS performs correlated double sampling processing on the imaging signal output from the CCD 41, and removes reset noise and amplifier noise generated in the CCD 41. The AGC amplifies the image signal from which noise has been removed by CDS with a gain (amplification factor) specified by the processor device 11. The A / D converts the imaging signal amplified by the AGC into a digital signal having a predetermined number of bits. The imaging signal digitized by A / D is input to the image processing circuit 74 of the processor device 11 through the transmission cable 57.

CCD駆動回路66は、CCD41の駆動パルス(垂直/水平走査パルス、電子シャッタパルス、読み出しパルス、リセットパルス等)とAFE65用の同期パルスとを発生する。CCD41は、CCD駆動回路66からの駆動パルスに応じて撮像動作を行い、撮像信号を出力する。AFE65の各部は、CCD駆動回路66からの同期パルスに基づいて動作する。   The CCD driving circuit 66 generates a driving pulse (vertical / horizontal scanning pulse, electronic shutter pulse, readout pulse, reset pulse, etc.) for the CCD 41 and a synchronization pulse for the AFE 65. The CCD 41 performs an imaging operation in accordance with the driving pulse from the CCD driving circuit 66 and outputs an imaging signal. Each part of the AFE 65 operates based on a synchronization pulse from the CCD drive circuit 66.

CPU67は、電子内視鏡10とプロセッサ装置11とが接続された後、プロセッサ装置11のCPU70からの動作開始指示に基づいて、CCD駆動回路66を駆動させるとともに、CCD駆動回路66を介してAFE65のAGCのゲインを調整する。   After the electronic endoscope 10 and the processor device 11 are connected, the CPU 67 drives the CCD drive circuit 66 based on an operation start instruction from the CPU 70 of the processor device 11, and also uses the AFE 65 via the CCD drive circuit 66. Adjust the gain of AGC.

CPU70は、プロセッサ装置11全体の動作を統括的に制御する。CPU70は、図示しないデータバスやアドレスバス、制御線を介して各部と接続している。ROM71には、プロセッサ装置11の動作を制御するための各種プログラム(OS、アプリケーションプログラム等)やデータ(グラフィックデータ等)が記憶されている。CPU70は、ROM71から必要なプログラムやデータを読み出して、作業用メモリであるRAM72に展開し、読み出したプログラムを逐次処理する。また、CPU70は、検査日時、患者や術者の情報等の文字情報といった検査毎に変わる情報を、プロセッサ装置11の操作パネルやLAN(Local Area Network)等のネットワークより得て、RAM72に記憶する。   The CPU 70 controls the overall operation of the processor device 11. The CPU 70 is connected to each unit via a data bus, an address bus, and a control line (not shown). The ROM 71 stores various programs (OS, application programs, etc.) and data (graphic data, etc.) for controlling the operation of the processor device 11. The CPU 70 reads out necessary programs and data from the ROM 71, develops them in the RAM 72, which is a working memory, and sequentially processes the read programs. Further, the CPU 70 obtains information that changes for each examination, such as examination date and time, character information such as patient and surgeon information, from the operation panel of the processor device 11 or a network such as a LAN (Local Area Network) and stores the information in the RAM 72. .

操作部73は、プロセッサ装置11の筐体に設けられる操作パネル、あるいは、マウスやキーボード等の周知の入力デバイスである。CPU70は、操作部73、および電子内視鏡10の操作部14にあるレリーズボタンやモード切替スイッチ19等からの操作信号に応じて、各部を動作させる。   The operation unit 73 is an operation panel provided on the housing of the processor device 11 or a known input device such as a mouse or a keyboard. The CPU 70 operates each unit according to operation signals from the operation unit 73 and the release button, the mode change switch 19, and the like in the operation unit 14 of the electronic endoscope 10.

画像処理回路74は、電子内視鏡10から入力された撮像信号に対して、色補間、ホワイトバランス調整、ガンマ補正、画像強調、画像用ノイズリダクション、色変換等の各種画像処理を施す。   The image processing circuit 74 performs various types of image processing such as color interpolation, white balance adjustment, gamma correction, image enhancement, image noise reduction, and color conversion on the imaging signal input from the electronic endoscope 10.

表示制御回路75は、CPU70からROM71およびRAM72のグラフィックデータを受け取る。グラフィックデータには、観察画像の無効画素領域を隠して有効画素領域のみを表示させる表示用マスク、検査日時、あるいは患者や術者、現在選択されている観察モード等の文字情報、グラフィカルユーザインターフェース(GUI;Graphical User Interface)等がある。表示制御回路75は、画像処理回路74からの画像に対して、表示用マスク、文字情報、GUIの重畳処理、モニタ18の表示画面への描画処理等の各種表示制御処理を施す。   The display control circuit 75 receives graphic data in the ROM 71 and the RAM 72 from the CPU 70. The graphic data includes a display mask that hides the invalid pixel area of the observation image and displays only the effective pixel area, examination date and time, character information such as the patient, the operator, and the currently selected observation mode, a graphical user interface ( GUI; Graphical User Interface). The display control circuit 75 performs various display control processes such as a display mask, character information, GUI superimposition processing, and drawing processing on the display screen of the monitor 18 on the image from the image processing circuit 74.

表示制御回路75は、画像処理回路74からの画像を一時的に格納するフレームメモリを有する。表示制御回路75は、フレームメモリから画像を読み出し、読み出した画像をモニタ18の表示形式に応じたビデオ信号(コンポーネント信号、コンポジット信号等)に変換する。これにより、モニタ18に観察画像が表示される。   The display control circuit 75 has a frame memory that temporarily stores the image from the image processing circuit 74. The display control circuit 75 reads an image from the frame memory, and converts the read image into a video signal (component signal, composite signal, etc.) corresponding to the display format of the monitor 18. Thereby, an observation image is displayed on the monitor 18.

プロセッサ装置11には、上記の他にも、画像に所定の圧縮形式(例えばJPEG形式)で画像圧縮を施す圧縮処理回路や、圧縮された画像をCFカード、光磁気ディスク(MO)、CD−R等のリムーバブルメディアに記録するメディアI/F、LAN等のネットワークとの間で各種データの伝送制御を行うネットワークI/F等が設けられている。これらはデータバス等を介してCPU70と接続されている。   In addition to the above, the processor device 11 includes a compression processing circuit for compressing an image in a predetermined compression format (for example, JPEG format), and the compressed image is stored in a CF card, a magneto-optical disk (MO), a CD- A media I / F for recording on removable media such as R, and a network I / F for controlling transmission of various data with a network such as a LAN are provided. These are connected to the CPU 70 via a data bus or the like.

光源装置12は、通常観察用光源80および近景観察用光源81を有する。通常観察用光源80は、青色〜赤色までのブロードな波長の光、例えば図5のWで示すような480nm以上750nm以下の波長帯の白色光を発生するキセノンランプや白色LED(発光ダイオード)等である。近景観察用光源81は、蛍光体の励起光として、例えば図5のEで示すような500nm付近にのみ光強度を有する青色の光を発生する半導体レーザやLED等である。   The light source device 12 includes a normal observation light source 80 and a foreground observation light source 81. The normal observation light source 80 is a light having a broad wavelength from blue to red, for example, a xenon lamp or a white LED (light emitting diode) that generates white light having a wavelength band of 480 nm to 750 nm as shown by W in FIG. It is. The near-field observation light source 81 is a semiconductor laser, LED, or the like that generates blue light having a light intensity only in the vicinity of 500 nm, for example, as indicated by E in FIG.

各光源80、81は、光源ドライバ82、83によってそれぞれ駆動される。集光レンズ84、85は、各光源80、81から発せられた各光を集光して、ライトガイド42、52、53の入射端にそれぞれ導光する。集光レンズ84、85とライトガイド42、52、53の間には、ライトガイド42、52、53の入射端に入射させる光の光量を調節するための可動絞り86、87が設けられている。光源装置12のCPU88は、プロセッサ装置11のCPU70と通信し、光源ドライバ82、83と可動絞り86、87の動作制御を行う。   The light sources 80 and 81 are driven by light source drivers 82 and 83, respectively. The condenser lenses 84 and 85 collect the light emitted from the light sources 80 and 81 and guide the light to the incident ends of the light guides 42, 52, and 53, respectively. Between the condensing lenses 84 and 85 and the light guides 42, 52, and 53, movable diaphragms 86 and 87 are provided for adjusting the amount of light incident on the incident ends of the light guides 42, 52, and 53. . The CPU 88 of the light source device 12 communicates with the CPU 70 of the processor device 11 and controls the operation of the light source drivers 82 and 83 and the movable diaphragms 86 and 87.

通常観察モードが選択された場合、CPU70は、CPU88を介して光源ドライバ82の駆動を制御して、通常観察用光源80を点灯させる。被観察部位に照射される照明光は通常観察用照明窓31、32からの白色光となる。一方、近景観察モードが選択された場合は、通常観察用光源80を消灯させて近景観察用光源81を点灯させる。被観察部位に照射される照明光は、対物光学系40の光軸と同軸の観察窓30からの白色光となる。なお、近景観察モード時に通常観察用光源80を点灯させたまま近景観察用光源81を点灯させ、通常観察用照明窓31、32と観察窓30の双方から白色光を照射してもよい。   When the normal observation mode is selected, the CPU 70 controls the driving of the light source driver 82 via the CPU 88 to turn on the normal observation light source 80. The illumination light applied to the site to be observed is normally white light from the observation illumination windows 31 and 32. On the other hand, when the foreground observation mode is selected, the normal observation light source 80 is turned off and the foreground observation light source 81 is turned on. The illumination light applied to the site to be observed becomes white light from the observation window 30 coaxial with the optical axis of the objective optical system 40. In the near view observation mode, the near view light source 81 may be turned on while the normal observation light source 80 is turned on, and white light may be emitted from both the normal observation illumination windows 31 and 32 and the observation window 30.

次に、上記のように構成された電子内視鏡システム2の作用について説明する。電子内視鏡10で被検体内を観察する際、術者は、電子内視鏡10と各装置11、12とを繋げ、各装置11、12の電源をオンする。そして、操作部73を操作して、被検体に関する情報等を入力し、検査開始を指示する。   Next, the operation of the electronic endoscope system 2 configured as described above will be described. When observing the inside of the subject with the electronic endoscope 10, the operator connects the electronic endoscope 10 and the devices 11 and 12, and turns on the power of the devices 11 and 12. Then, the operation unit 73 is operated to input information about the subject and instruct to start the examination.

検査開始を指示した後、術者は、挿入部13を被検体内に挿入し、光源装置12からの照明光で被検体内を照明しながら、CCD41による被検体内の観察画像をモニタ18で観察する。   After instructing the start of the examination, the surgeon inserts the insertion portion 13 into the subject and illuminates the subject with illumination light from the light source device 12, and the monitor 18 displays an observation image in the subject with the CCD 41. Observe.

CCD24から出力された撮像信号は、AFE65の各部で各種処理を施された後、プロセッサ装置11の画像処理回路74に入力される。画像処理回路74では、入力された撮像信号に対して各種画像処理が施され、画像が生成される。画像処理回路74で処理された画像は、表示制御回路75に入力される。表示制御回路75では、CPU70からのグラフィックデータに応じて、各種表示制御処理が実行される。これにより、観察画像がモニタ18に表示される。   The imaging signal output from the CCD 24 is subjected to various processes in each part of the AFE 65 and then input to the image processing circuit 74 of the processor device 11. The image processing circuit 74 performs various types of image processing on the input image pickup signal to generate an image. The image processed by the image processing circuit 74 is input to the display control circuit 75. In the display control circuit 75, various display control processes are executed in accordance with the graphic data from the CPU. As a result, the observation image is displayed on the monitor 18.

電子内視鏡システム2で検査を行うときには、観察対象に応じて近景観察モードと通常観察モードが切り替えられる。例えば、挿入部13を被検体内に挿入する際には通常観察モードを選択して、比較的遠景を照射して得られた画像を観察して広い視野を確保しつつ挿入作業を行う。詳細な観察が必要な病変が発見された際には近景観察モードを選択し、先端部17を病変に近付けて同軸照明して得られた画像を観察する。そして、必要に応じてレリーズボタンを操作して静止画像を取得したり、病変に処置が必要な場合は鉗子チャンネル58に各種処置具を挿通させて、病変の切除や投薬等の処置を施す。   When the inspection is performed by the electronic endoscope system 2, the foreground observation mode and the normal observation mode are switched according to the observation target. For example, when inserting the insertion unit 13 into the subject, the normal observation mode is selected, and an insertion operation is performed while observing an image obtained by irradiating a relatively distant view to ensure a wide field of view. When a lesion that requires detailed observation is found, the foreground observation mode is selected, and an image obtained by coaxial illumination with the distal end portion 17 approaching the lesion is observed. Then, if necessary, the release button is operated to acquire a still image, or when treatment is required for the lesion, various treatment tools are inserted into the forceps channel 58 to perform treatment such as excision of the lesion or medication.

通常観察モードの場合は、CPU70の指令の下に、通常観察用光源80が点灯されて、観察窓30の左右に配置された通常観察用照明窓31、32から被観察部位に照明光が照射される。   In the normal observation mode, the normal observation light source 80 is turned on under the instruction of the CPU 70, and illumination light is emitted from the normal observation illumination windows 31 and 32 arranged on the left and right of the observation window 30. Is done.

一方、近景観察モードが選択された場合は、通常観察用光源80が消灯されて近景観察用光源81が点灯される。近景観察用光源81から発せられた励起光はライトガイド42で先端部17に導光され、プリズム45と絞り44の励起光パスフィルタ47、48を通って波長変換部材49に一部入射する。波長変換部材49に入射した励起光により波長変換部材49の蛍光体から緑色〜黄色〜赤色の蛍光が発せられ、この蛍光と絞り44を素通りした励起光とを合波した白色光が観察窓30から被観察部位に照射される。   On the other hand, when the foreground observation mode is selected, the normal observation light source 80 is turned off and the foreground observation light source 81 is turned on. Excitation light emitted from the near-field observation light source 81 is guided to the tip 17 by the light guide 42 and partially enters the wavelength conversion member 49 through the excitation light path filters 47 and 48 of the prism 45 and the stop 44. The excitation light incident on the wavelength conversion member 49 emits green to yellow to red fluorescence from the phosphor of the wavelength conversion member 49, and white light that combines the fluorescence and the excitation light that passes through the diaphragm 44 is the observation window 30. To the site to be observed.

先端部17を被観察部位にある程度(例えば数mm)近付けると、対物光学系40と通常観察用の照明光学系の光軸がずれているため、通常観察用の照明光では観察視野が照明しきれず、観察に必要な画像の明るさを確保することが難しくなる。こうした場合には近景観察モードを選択して対物光学系40と同じ光軸で照明を行うことで、先端部17に近い被観察部位に十分な明るさの照明光を照射することができ、診断に好適な観察画像を得ることができる。   When the distal end portion 17 is brought close to the site to be observed to some extent (for example, several mm), the optical axis of the objective optical system 40 and the illumination optical system for normal observation are misaligned. This makes it difficult to ensure the brightness of the image necessary for observation. In such a case, by selecting the foreground observation mode and illuminating with the same optical axis as that of the objective optical system 40, it is possible to irradiate the observation site close to the distal end portion 17 with sufficiently bright illumination light, so that diagnosis is possible. A suitable observation image can be obtained.

同軸照明では、被観察部位の像以外の光(本例では励起光と蛍光)がCCD41の撮像面41aに入射してノイズ成分となることを防止する必要がある。   In the coaxial illumination, it is necessary to prevent light (excitation light and fluorescence in this example) other than the image of the site to be observed from entering the imaging surface 41a of the CCD 41 and becoming a noise component.

本例では絞り44の観察窓30側を蛍光体含有の波長変換部材49、プリズム45側を励起光パスフィルタ48で構成するので、蛍光は励起光パスフィルタ48で遮光されてプリズム45側には入射しない。仮に被観察部位の像に含まれる励起光と同じ波長帯成分の光で波長変換部材49の蛍光体が励起発光したとしても同様である。このため蛍光がCCD41の撮像面41aに入射することはない。また、プリズム45と絞り44の励起光パスフィルタ47、48により、蛍光体の励起に寄与する以外の励起光は全て観察窓30を通して被観察部位に照射され、その反射光も各励起光パスフィルタ47、48を通ってライトガイド42の出射端側に透過するため、励起光もCCD41の撮像面41aに入射することはない。すなわちCCD41の撮像面41aにはノイズ成分は到達せず被観察部位の像のみが到達する。従って観察画像の画質を良好に保つことができる。   In this example, the observation window 30 side of the stop 44 is configured by the phosphor-containing wavelength conversion member 49 and the prism 45 side is configured by the excitation light pass filter 48. Therefore, the fluorescence is shielded by the excitation light path filter 48 and is not incident on the prism 45 side. Not incident. Even if the fluorescent substance of the wavelength conversion member 49 is excited and emitted by light having the same wavelength band component as the excitation light included in the image of the site to be observed. For this reason, fluorescence does not enter the imaging surface 41 a of the CCD 41. In addition, the excitation light path filters 47 and 48 of the prism 45 and the stop 44 emit all of the excitation light other than that contributing to the excitation of the phosphor to the site to be observed through the observation window 30, and the reflected light is also reflected in each excitation light path filter. Since the light passes through the light guide 42 through the light emitting end side of the light guide 42, the excitation light does not enter the imaging surface 41 a of the CCD 41. That is, the noise component does not reach the image pickup surface 41a of the CCD 41, and only the image of the observed site reaches. Therefore, the image quality of the observation image can be kept good.

励起光パスフィルタ48と波長変換部材49とで絞り44を一体的に構成するので、対物光学系の小型化に寄与することができる。また、蛍光がプリズム45側に漏れることを励起光パスフィルタ48で効果的に防止することができる。   Since the diaphragm 44 is integrally configured by the excitation light pass filter 48 and the wavelength conversion member 49, it is possible to contribute to downsizing of the objective optical system. Further, the excitation light pass filter 48 can effectively prevent the fluorescence from leaking to the prism 45 side.

通常観察モードと近景観察モードを用意し、モード切替スイッチ19の操作で各モードを切替可能としたので、観察対象や術者の嗜好に合った内視鏡検査を行うことができる。   Since the normal observation mode and the foreground observation mode are prepared and each mode can be switched by operating the mode switch 19, an endoscopic examination suitable for the observation target and the operator's preference can be performed.

なお、プリズム45の励起光パスフィルタ47により、被観察部位の像に含まれる励起光と同じ波長帯成分の光も、ライトガイド42の出射端側に透過して撮像面41aには到達しないが、元々生体内組織の色は赤色が主で青色成分は極僅かであるため、被観察部位の像に含まれる励起光と同じ波長帯成分の光が撮像面41aに入射しなくとも観察画像の画質には影響しない。また、キセノンランプ等と比べて励起光と蛍光による合波光は光量が若干落ちるが、近景観察用であるためさほど高い光量は必要ない。   Note that although the excitation light path filter 47 of the prism 45 transmits light having the same wavelength band component as that of the excitation light included in the image of the observation site, it passes through the light guide 42 on the emission end side and does not reach the imaging surface 41a. Originally, the color of the tissue in the living body is mainly red, and the blue component is very small. Therefore, even if light having the same wavelength band component as the excitation light included in the image of the observed site does not enter the imaging surface 41a, Does not affect image quality. In addition, although the amount of light of the combined light by excitation light and fluorescence is slightly lower than that of a xenon lamp or the like, the amount of light is not so high because it is for near-field observation.

励起光の撮像面41aへの入射防止をより完璧なものとするため、図6に示すように撮像面41a上に励起光カットフィルタ95を設けてもよい。励起光カットフィルタ95は図5にCFで示すように、励起光よりも短い波長帯成分の光を遮光する(励起光の波長以上の光を透過させる)。カバーガラス55を励起光カットフィルタ95としても可である。   In order to prevent the excitation light from entering the imaging surface 41a more completely, an excitation light cut filter 95 may be provided on the imaging surface 41a as shown in FIG. As indicated by CF in FIG. 5, the excitation light cut filter 95 blocks light having a wavelength band component shorter than that of the excitation light (transmits light having a wavelength longer than that of the excitation light). The cover glass 55 may be used as the excitation light cut filter 95.

波長変換部材49は絞り(上記実施形態では励起光パスフィルタ48)よりも対物側にあればよく、例えば観察窓30の縁に波長変換部材49の機能をもたせてもよい。但しこの場合は被観察部位の像に多少蛍光が混ざる。このため、撮像面41aに蛍光が入射することがない分、上記実施形態のように絞り(励起光パスフィルタ48)と一体的に波長変換部材49を設けるか、または絞りの近くに波長変換部材を配置するほうが好適である。   The wavelength conversion member 49 only needs to be closer to the objective side than the diaphragm (excitation light path filter 48 in the above embodiment). For example, the function of the wavelength conversion member 49 may be provided at the edge of the observation window 30. However, in this case, some fluorescence is mixed in the image of the observed site. For this reason, the wavelength conversion member 49 is provided integrally with the diaphragm (excitation light path filter 48) as in the above-described embodiment, or the wavelength conversion member is close to the diaphragm because the fluorescence does not enter the imaging surface 41a. Is more preferable.

上記実施形態では、光源装置12に近景観察用光源81を搭載し、ライトガイド42で励起光を導光しているが、ライトガイド42を廃して近景観察用光源81を先端部17に搭載してもよい。さらに通常観察用光源80やライトガイド52、53等の通常観察用照明系自体を無くして、近景観察用照明系だけで電子内視鏡10を構成してもよい。挿入部13の細径化を達成することができる。   In the above embodiment, the light source device 12 is mounted with the near view observation light source 81 and the excitation light is guided by the light guide 42. However, the light guide 42 is eliminated and the foreground observation light source 81 is mounted on the distal end portion 17. May be. Further, the normal observation illumination system itself such as the normal observation light source 80 and the light guides 52 and 53 may be omitted, and the electronic endoscope 10 may be configured with only the near view observation illumination system. A reduction in the diameter of the insertion portion 13 can be achieved.

なお、本発明に係る電子内視鏡システムは、上記実施形態に限らず、本発明の要旨を逸脱しない限り種々の構成を採り得ることはもちろんである。例えば、撮像素子は上記実施形態のCCDに限らずCMOSイメージセンサを用いてもよい。また、被観察部位に照射する照明光として各モードとも白色光を用いる例を説明したが、特定の波長帯の照明光を照射する構成としてもよい。この場合は通常観察用光源に特定波長帯の光を発するものを、波長変換部材の蛍光体に励起光とは異なる特定波長帯の光を励起発光するものをそれぞれ採用すればよい。   Note that the electronic endoscope system according to the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention. For example, the image sensor is not limited to the CCD of the above embodiment, and a CMOS image sensor may be used. Moreover, although the example which uses white light for each mode as an illumination light irradiated to a to-be-observed site was demonstrated, it is good also as a structure which irradiates the illumination light of a specific wavelength band. In this case, what normally emits light of a specific wavelength band to the observation light source and what emits and emits light of a specific wavelength band different from the excitation light may be employed for the phosphor of the wavelength conversion member.

上記実施形態では電子内視鏡を例示したが、本発明はこれに限らず、イメージガイドを用いたファイバスコープや、撮像素子と超音波トランスデューサが先端部に内蔵された超音波内視鏡等、他の形態の内視鏡にも適用することができる。また、医療用だけでなく、工業分野で利用される内視鏡に適用してもよい。   In the above embodiment, an electronic endoscope is exemplified, but the present invention is not limited to this, a fiberscope using an image guide, an ultrasonic endoscope in which an imaging element and an ultrasonic transducer are built in the tip, and the like. The present invention can also be applied to other types of endoscopes. Moreover, you may apply to the endoscope utilized not only for medical use but in an industrial field.

2 電子内視鏡システム
10 電子内視鏡
11 プロセッサ装置
12 光源装置
17 先端部
19 モード切替スイッチ
30 観察窓
31、32 通常観察用照明窓
40 対物光学系
41 CCD
42、52、53 ライトガイド
44 絞り
45 プリズム
47、48 励起光パスフィルタ
49 波長変換部材
67、70、88 CPU
80 通常観察用光源
81 近景観察用光源
95 励起光カットフィルタ
2 Electronic Endoscope System 10 Electronic Endoscope 11 Processor Unit 12 Light Source Unit 17 Tip 19 Mode Change Switch 30 Observation Window 31, 32 Normal Observation Illumination Window 40 Objective Optical System 41 CCD
42, 52, 53 Light guide 44 Aperture 45 Prism 47, 48 Excitation light path filter 49 Wavelength conversion member 67, 70, 88 CPU
80 Light source for normal observation 81 Light source for near view observation 95 Excitation light cut filter

Claims (10)

被検体の被観察部位の像の入射光量を制限する絞りを有する対物光学系と、
第一の波長帯域の光で波長変換部材の蛍光体を励起させて第二の波長帯域の光を生じさせ、第一、第二の波長帯域の光を合波した照明光を被観察部位に照射する第一照明光学系とを備え、
前記対物光学系と前記第一照明光学系の光軸を同一とし、絞りよりも対物側に波長変換部材を配置することを特徴とする内視鏡。
An objective optical system having a stop for limiting the amount of incident light of the image of the observed region of the subject;
The phosphor of the wavelength conversion member is excited with light in the first wavelength band to generate light in the second wavelength band, and the illumination light combined with the light in the first and second wavelength bands is applied to the site to be observed. A first illumination optical system for irradiating,
An endoscope, wherein the objective optical system and the first illumination optical system have the same optical axis, and a wavelength conversion member is disposed closer to the objective side than the stop.
前記対物光学系は、被観察部位の像を屈折させるプリズムを絞りの後段に有し、
プリズムの斜面に第一の波長帯域の光のみを選択的に透過させるナローパスフィルタを設けることを特徴とする請求項1に記載の内視鏡。
The objective optical system has a prism that refracts an image of a site to be observed at the rear stage of the stop,
The endoscope according to claim 1, wherein a narrow-pass filter that selectively transmits only light in the first wavelength band is provided on the slope of the prism.
第一の波長帯域の光のみを選択的に透過させるナローパスフィルタで絞りを構成することを特徴とする請求項1または2に記載の内視鏡。   The endoscope according to claim 1 or 2, wherein the diaphragm is configured by a narrow-pass filter that selectively transmits only light in the first wavelength band. 絞りと波長変換部材を一体化することを特徴とする請求項1ないし3のいずれかに記載の内視鏡。   4. The endoscope according to claim 1, wherein the diaphragm and the wavelength conversion member are integrated. プリズムの被観察部位の像の出射面側に、被観察部位の像を撮像する撮像素子を備えることを特徴とする請求項1ないし4のいずれかに記載の内視鏡。   The endoscope according to any one of claims 1 to 4, further comprising an image pickup device that picks up an image of the observed region on an exit surface side of the image of the observed region of the prism. プリズムの被観察部位の像の出射面と前記撮像素子の撮像面の間に、第一の波長帯域の光を遮光するカットフィルタを設けることを特徴とする請求項5に記載の内視鏡。   The endoscope according to claim 5, wherein a cut filter that shields light in the first wavelength band is provided between an exit surface of an image of an observation site of the prism and an imaging surface of the imaging element. 前記対物光学系および前記第一照明光学系とは光軸が異なる第二照明光学系を備えることを特徴とする請求項1ないし6のいずれかに記載の内視鏡。   The endoscope according to any one of claims 1 to 6, further comprising a second illumination optical system having an optical axis different from that of the objective optical system and the first illumination optical system. 前記第一照明光学系または前記第二照明光学系のいずれを用いるかを選択させる操作手段を備えることを特徴とする請求項7に記載の内視鏡。   The endoscope according to claim 7, further comprising operation means for selecting which of the first illumination optical system and the second illumination optical system is used. 第一の波長帯域の光は青色または紫外光、第二の波長帯域の光は緑色、黄色、または赤色光であり、第一、第二の波長帯域の光の合波光は白色光であることを特徴とする請求項1ないし8のいずれかに記載の内視鏡。   The light in the first wavelength band is blue or ultraviolet light, the light in the second wavelength band is green, yellow, or red light, and the combined light of the light in the first and second wavelength bands is white light The endoscope according to any one of claims 1 to 8. 被検体の被観察部位の像の入射光量を制限する絞りを有する対物光学系、および第一の波長帯域の光で波長変換部材の蛍光体を励起させて第二の波長帯域の光を生じさせ、第一、第二の波長帯域の光を合波した照明光を被観察部位に照射する照明光学系を有し、対物光学系と照明光学系の光軸を同一とし、絞りよりも対物側に波長変換部材を配置した内視鏡と、
第一の波長帯域の光を発する光源の駆動を制御する光源装置とを備えることを特徴とする内視鏡システム。
An objective optical system having a stop that limits the amount of incident light on the image of the observed region of the subject, and the light of the first wavelength band excites the phosphor of the wavelength conversion member to generate light of the second wavelength band. , Having an illumination optical system that irradiates an observation site with illumination light combined with light in the first and second wavelength bands, the objective optical system and the illumination optical system have the same optical axis, and the objective side from the stop An endoscope in which a wavelength conversion member is disposed,
An endoscope system comprising: a light source device that controls driving of a light source that emits light in a first wavelength band.
JP2010273778A 2010-12-08 2010-12-08 Endoscope and endoscope system Abandoned JP2012120702A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010273778A JP2012120702A (en) 2010-12-08 2010-12-08 Endoscope and endoscope system
CN2011103281520A CN102525376A (en) 2010-12-08 2011-10-25 Endoscope and endoscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273778A JP2012120702A (en) 2010-12-08 2010-12-08 Endoscope and endoscope system

Publications (1)

Publication Number Publication Date
JP2012120702A true JP2012120702A (en) 2012-06-28

Family

ID=46334373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273778A Abandoned JP2012120702A (en) 2010-12-08 2010-12-08 Endoscope and endoscope system

Country Status (2)

Country Link
JP (1) JP2012120702A (en)
CN (1) CN102525376A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107854109A (en) * 2017-12-16 2018-03-30 上海交通大学 Medical ultraviolet photoelectron endoscope light source unit
CN209236109U (en) * 2018-11-01 2019-08-13 山东冠龙医疗用品有限公司 A kind of minimally invasive device of multichannel of doubleway output cold light source

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099268A (en) * 1996-09-30 1998-04-21 Fuji Photo Optical Co Ltd Optical device of electronic endoscope
JP4540390B2 (en) * 2004-05-13 2010-09-08 オリンパス株式会社 Endoscope device
US20080262316A1 (en) * 2004-07-28 2008-10-23 Kyocera Corporation Light Source Apparatus and Endoscope Provided with Light Source Apparatus
JP2006192148A (en) * 2005-01-14 2006-07-27 Olympus Corp Endoscope apparatus
US20130317295A1 (en) * 2006-12-29 2013-11-28 GE Inspection Technologies Light assembly for remote visual inspection apparatus
US8409081B2 (en) * 2007-04-27 2013-04-02 Olympus Medical Systems Corp. Illumination light application structure and endoscope provided with the same
JP2009056248A (en) * 2007-09-03 2009-03-19 Fujifilm Corp Light source unit, drive control method of light source unit and endoscope

Also Published As

Publication number Publication date
CN102525376A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5331904B2 (en) Endoscope system and method for operating endoscope system
JP5460506B2 (en) Endoscope apparatus operating method and endoscope apparatus
JP5496852B2 (en) Electronic endoscope system, processor device for electronic endoscope system, and method for operating electronic endoscope system
JP6364050B2 (en) Endoscope system
JP5371946B2 (en) Endoscopic diagnosis device
JP2012170639A (en) Endoscope system, and method for displaying emphasized image of capillary of mucous membrane surface layer
JP2010172673A (en) Endoscope system, processor for endoscope, and endoscopy aiding method
JP6615959B2 (en) Endoscope system
US9414739B2 (en) Imaging apparatus for controlling fluorescence imaging in divided imaging surface
JP7219002B2 (en) Endoscope
US20180000330A1 (en) Endoscope system
JP2012170640A (en) Endoscope system, and method for displaying emphasized image of capillary of mucous membrane surface layer
JP5584601B2 (en) Endoscope device
JP5554288B2 (en) ENDOSCOPE SYSTEM, PROCESSOR DEVICE, AND IMAGE CORRECTION METHOD
JP5544261B2 (en) Electronic endoscope system
JP2012081048A (en) Electronic endoscope system, electronic endoscope, and excitation light irradiation method
JP2012217673A (en) Endoscopic diagnosis system
JP2012139435A (en) Electronic endoscope
JP5570352B2 (en) Imaging device
JP2012120702A (en) Endoscope and endoscope system
JP5734060B2 (en) Endoscope system and driving method thereof
JP5611746B2 (en) Electronic endoscope system
JP2012085917A (en) Electronic endoscope system, processor device of the same, and method of supersensitizing fluoroscopic image
JP6227077B2 (en) Endoscope system and operating method thereof
JP5965028B2 (en) Endoscope system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140129

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20140326