JP2012170639A - Endoscope system, and method for displaying emphasized image of capillary of mucous membrane surface layer - Google Patents

Endoscope system, and method for displaying emphasized image of capillary of mucous membrane surface layer Download PDF

Info

Publication number
JP2012170639A
JP2012170639A JP2011036025A JP2011036025A JP2012170639A JP 2012170639 A JP2012170639 A JP 2012170639A JP 2011036025 A JP2011036025 A JP 2011036025A JP 2011036025 A JP2011036025 A JP 2011036025A JP 2012170639 A JP2012170639 A JP 2012170639A
Authority
JP
Japan
Prior art keywords
pixel
light
component
sub
sensitivity region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011036025A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
博司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011036025A priority Critical patent/JP2012170639A/en
Publication of JP2012170639A publication Critical patent/JP2012170639A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-resolution image of a capillary of a mucous membrane surface layer for a diagnosis.SOLUTION: A color filter 37 of a CCD 33 has a sub-sensitivity region sensing the reflected light of narrow band light of central wavelength of 405 nm, in a sensitivity region of a G pixel. When non-enlargement is selected by a zoom operating switch 18, an image processing circuit 49 extracts a sub-sensitivity region component (a capillary component of the mucous membrane surface layer) b' from a G pixel value g by correlative operation to an R pixel value r. A display control circuit 50 allocates a B pixel value b and the sub-sensitivity region component b' to B, G channels of a monitor 19 and a medium-deep blood vessel component g' to an R channel respectively. An emphasized image of the capillary colored in green from blue is displayed on the monitor 19.

Description

本発明は、粘膜表層の毛細血管の強調画像を表示する内視鏡システム、および粘膜表層の毛細血管の強調画像表示方法に関する。   The present invention relates to an endoscope system that displays an enhanced image of capillaries on the mucosal surface layer, and an enhanced image display method for capillaries on the mucosal surface layer.

医療分野において内視鏡を利用した検査が広く普及している。周知の如く、内視鏡は被検体内に挿入する挿入部の先端から被検体の被観察部位に照明光を照射し、被観察部位の像を取り込む。   Examination using an endoscope is widely used in the medical field. As is well known, the endoscope irradiates the observation site of the subject with illumination light from the tip of the insertion portion to be inserted into the subject, and captures an image of the observation site.

従来、照明光の光源にはキセノンランプやメタルハライドランプ等の白色光源が用いられていたが、病変の発見を容易にするために狭い波長帯域の光(狭帯域光)を被観察部位に照射し、その反射光を画像化して観察する手法が脚光を浴びている(特許文献1および2参照)。この手法によれば、粘膜下層部の血管を強調した画像や、胃壁、腸の表層組織等の臓器の構造物を強調した画像を容易に得ることができる。   Conventionally, a white light source such as a xenon lamp or a metal halide lamp has been used as the light source of the illumination light. However, in order to easily find a lesion, light of a narrow wavelength band (narrow band light) is irradiated to the observation site. The technique of imaging and observing the reflected light is in the spotlight (see Patent Documents 1 and 2). According to this method, it is possible to easily obtain an image in which blood vessels in the submucosal layer are emphasized and an image in which organ structures such as the stomach wall and intestinal surface tissue are emphasized.

特許文献1には、帯域制限フィルタを照明光の光路中に配置して狭帯域光を作り出し、カラーフィルタを前面に配したCCDで狭帯域光の反射光を撮像する態様(第2実施形態)が記載されている。特許文献2は、白色光を照射してその反射光を撮像する通常観察用とは別に、狭帯域光観察用の撮像光学系(レンズ、撮像素子等)を内視鏡に搭載している。特許文献1、2ともに、観察対象として粘膜表層の毛細血管が例示されている。   Patent Document 1 discloses a mode in which a band-limiting filter is arranged in an optical path of illumination light to produce narrow-band light, and reflected light of the narrow-band light is imaged by a CCD having a color filter disposed on the front surface (second embodiment). Is described. In Patent Document 2, an imaging optical system (lens, imaging element, etc.) for narrow-band light observation is mounted on an endoscope separately from normal observation for irradiating white light and imaging the reflected light. Both Patent Documents 1 and 2 exemplify capillaries on the surface of the mucous membrane as observation targets.

特開2002−095635号公報JP 2002-095635 A 特開2007−111357号公報JP 2007-111357 A

粘膜表層の毛細血管を観察対象とした場合、毛細血管は10μm程度と非常に細いため、CCD等の撮像素子の性能や、ズーム機能の非拡大を選択、あるいは内視鏡の挿入部先端を被観察部位から離して観察するといった観察状態によっては十分な解像度を得られないという問題があった。解像度が不足した画像が診断に供された場合は、病変を見落としたり逆に正常部位を病変と判断したりするおそれがあるため、解像度不足を補う方策が要望されていた。   When capillaries on the mucosal surface layer are to be observed, the capillaries are very thin, about 10 μm. Therefore, select the performance of the image sensor such as a CCD and the non-enlargement of the zoom function, or cover the tip of the insertion part of the endoscope. There is a problem that sufficient resolution cannot be obtained depending on the observation state where observation is performed away from the observation site. When an image with insufficient resolution is used for diagnosis, there is a risk that the lesion may be overlooked or a normal part may be determined as a lesion.

毛細血管を観察する場合は青色の狭帯域光を被観察部位に照射してその反射光を撮像するため、原色カラーフィルタを用いた場合はB画素に毛細血管の像が結像される。しかし、原色カラーフィルタとして一般的なベイヤー配列では、全画素数に対するB画素の数が相対的に少なく(全画素数をNとした場合、B画素数はN/4)、毛細血管の観察画像の解像度不足の原因となっている。解決策として画素の高精細化が考えられるが、反射光が入射する画素の開口が小さくなって光量が不足し、結果的にS/N比が低下するため採用はできない。   When observing capillaries, the image of the reflected light is emitted by irradiating the observed portion with blue narrow-band light. When a primary color filter is used, an image of the capillaries is formed on the B pixels. However, in a general Bayer arrangement as a primary color filter, the number of B pixels relative to the total number of pixels is relatively small (when the total number of pixels is N, the number of B pixels is N / 4), and an observation image of capillary blood vessels Cause the lack of resolution. As a solution, it is conceivable to increase the definition of the pixel. However, the aperture of the pixel on which the reflected light is incident becomes small and the amount of light is insufficient. As a result, the S / N ratio is lowered, so that it cannot be adopted.

特許文献1、2では、毛細血管を観察対象とした場合の解像度低下の問題には言及しておらず、その方策も当然講じられていない。   In Patent Documents 1 and 2, there is no mention of the problem of a decrease in resolution when a capillary vessel is an observation object, and no countermeasures are taken.

本発明は上述の問題点に鑑みてなされたものであり、その目的は、高解像度な粘膜表層の毛細血管の画像を診断に供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a high-resolution image of capillary blood vessels on the surface of the mucosa.

上記目的を達成するために、本発明の内視鏡システムは、ブロードな波長帯域の白色光を被検体の被観察部位に照射する第一照射手段と、白色光とともに波長帯域が制限された青色の狭帯域光を被観察部位に照射する第二照射手段と、被観察部位からの反射光を撮像する撮像手段であり、RGBの原色カラーフィルタが配され、G画素数>B画素数であってG画素は緑色の主感度領域に加えて狭帯域光の反射光に感応する副感度領域を有する撮像手段と、G画素とR画素の画素値の相関演算を行うことで、G画素の画素値から副感度領域の成分を抽出する抽出手段と、B画素の画素値、および前記抽出手段で抽出した副感度領域の成分を元にした粘膜表層の毛細血管の強調画像をモニタに表示させる表示制御手段とを備えることを特徴とする。   In order to achieve the above object, an endoscope system according to the present invention includes a first irradiating means for irradiating an observation site of a subject with white light having a broad wavelength band, and a blue light whose wavelength band is limited together with white light. A second irradiating means for irradiating the observation site with a narrow band of light and an imaging means for imaging the reflected light from the observation site, provided with RGB primary color filters and the number of G pixels> the number of B pixels. In addition to the green main sensitivity region, the G pixel has a sub-sensitivity region sensitive to the reflected light of the narrow band light, and performs a correlation operation between the pixel values of the G pixel and the R pixel, thereby obtaining a pixel of the G pixel. Extraction means for extracting the sub-sensitivity region components from the values, and display for displaying on the monitor an enhanced image of the capillaries on the mucosal surface layer based on the pixel values of the B pixels and the sub-sensitivity region components extracted by the extraction means And a control means.

ズーム機能を備えていた場合、前記抽出手段は、ズーム操作で非拡大が選択されたときに副感度領域の成分の抽出を行い、前記表示制御手段は、ズーム操作で非拡大が選択されたときにB画素の画素値、および副感度領域の成分を元にした強調画像のモニタへの表示を行う。なお、ズームの拡大・非拡大は二段階でもそれ以上でもよい。多段階ズームの場合は、最もワイド端側が選択されたとき、あるいはワイド端側の数段階が選択されたときに副感度領域の成分の抽出とB画素の画素値、および副感度領域の成分を元にした強調画像の表示を行う。   When the zoom function is provided, the extraction unit extracts a component of the sub-sensitivity region when non-enlargement is selected by the zoom operation, and the display control unit is configured when non-enlargement is selected by the zoom operation. The highlighted image is displayed on the monitor based on the pixel value of the B pixel and the component of the sub sensitivity area. Note that zooming in / out may be performed in two stages or more. In the case of multi-stage zoom, when the widest end is selected, or when several stages on the wide end are selected, the sub-sensitivity region components are extracted, the pixel values of the B pixels, and the sub-sensitivity region components are The original emphasized image is displayed.

前記第一照射手段および前記第二照射手段は、白色光および狭帯域光の強度を各々独立に制御可能である。ズーム機能を備えていた場合、ズーム操作で非拡大が選択されたときに、拡大が選択されたときよりも白色光に比べて狭帯域光の強度が強くなるよう前記第一照射手段および前記第二照射手段を制御する。多段階ズームの場合は、上記同様、最もワイド端側が選択されたとき、あるいはワイド端側の数段階が選択されたときに狭帯域光の強度が強くなるよう白色光と狭帯域光の強度比を変更する。   The first irradiation unit and the second irradiation unit can independently control the intensity of white light and narrowband light. When the zoom function is provided, when the non-enlargement is selected in the zoom operation, the first irradiation unit and the first irradiation unit are configured so that the intensity of the narrow band light is stronger than the white light than when the enlargement is selected. Control two irradiation means. In the case of multi-stage zoom, as described above, the intensity ratio of white light and narrow-band light is increased so that the intensity of narrow-band light is increased when the widest end side is selected or when several steps on the wide-end side are selected. To change.

前記抽出手段は、G画素の画素値から主感度領域の成分を抽出する。前記抽出手段で抽出した主感度領域の成分に対してビニング処理を施すビニング処理手段を備えていてもよい。前記ビニング処理手段は、R画素の画素値に対してビニング処理を施してもよい。   The extraction unit extracts a component of the main sensitivity region from the pixel value of the G pixel. You may provide the binning process means which performs a binning process with respect to the component of the main sensitivity area | region extracted by the said extraction means. The binning processing means may perform a binning process on the pixel value of the R pixel.

前記表示制御手段は、B画素の画素値と副感度領域の成分をモニタのB、Gチャンネルに、主感度領域の成分をモニタのRチャンネルにそれぞれ割り当てる。   The display control means assigns the pixel value of the B pixel and the component of the sub sensitivity region to the B and G channels of the monitor, and assigns the component of the main sensitivity region to the R channel of the monitor.

前記抽出手段は、画素補間後のG画素の画素値から抽出を行う。   The extraction means performs extraction from the pixel value of the G pixel after pixel interpolation.

副感度領域は波長380nm以上450nm以下に中心波長を有し、該中心波長における感度は、該中心波長におけるB画素の感度の1/5以上であることが好ましい。   The sub-sensitivity region has a center wavelength at a wavelength of 380 nm to 450 nm, and the sensitivity at the center wavelength is preferably 1/5 or more of the sensitivity of the B pixel at the center wavelength.

前記第一照射手段は、青色光を発するレーザ光源と、青色光により緑色から黄色に励起発光する波長変換部材とを有し、青色光と励起発光とを混合して白色光を得る。前記第二照射手段は、中心波長405nmの青色の狭帯域光を発するレーザ光源を有する。   The first irradiation means has a laser light source that emits blue light and a wavelength conversion member that excites and emits light from green to yellow by blue light, and mixes blue light and excitation light to obtain white light. The second irradiating means has a laser light source that emits blue narrow-band light having a center wavelength of 405 nm.

原色カラーフィルタはベイヤー配列である。   The primary color filter is a Bayer array.

本発明の粘膜表層の毛細血管の強調画像表示方法は、ブロードな波長帯域の白色光と波長帯域が制限された青色の狭帯域光を被検体の被観察部位に照射し、その反射光を、RGBの原色カラーフィルタが配され、G画素数>B画素数であってG画素は緑色の主感度領域に加えて狭帯域光の反射光に感応する副感度領域を有する撮像手段で撮像し、G画素とR画素の画素値の相関演算を行うことで、G画素の画素値から副感度領域の成分を抽出し、B画素の画素値、および抽出した副感度領域の成分を元にした粘膜表層の毛細血管の強調画像をモニタに表示することを特徴とする。   The emphasis image display method for capillary blood vessels of the mucosal surface layer of the present invention irradiates the observation site of the subject with white light with a broad wavelength band and blue narrow band light with a limited wavelength band, and the reflected light is RGB primary color filters are arranged, the number of G pixels> the number of B pixels, and the G pixels are imaged by an imaging means having a sub-sensitivity area sensitive to the reflected light of the narrow band light in addition to the green main sensitivity area, By performing the correlation calculation of the pixel values of the G pixel and the R pixel, the sub-sensitivity region components are extracted from the pixel values of the G pixel, and the mucosa based on the pixel values of the B pixel and the extracted sub-sensitivity region components An enhanced image of the surface capillary is displayed on a monitor.

本発明によれば、G画素に狭帯域光の反射光に感応する副感度領域をもたせ、G画素の画素値から副感度領域の成分を抽出してこれを元に粘膜表層の毛細血管の強調画像を表示するので、高解像度な粘膜表層の毛細血管の画像を診断に供することができる。   According to the present invention, the G pixel is provided with a sub-sensitivity region that is sensitive to the reflected light of the narrow band light, and the component of the sub-sensitivity region is extracted from the pixel value of the G pixel, and based on this, the capillaries on the mucous membrane surface layer are enhanced. Since the image is displayed, a high-resolution capillary blood vessel image on the mucosal surface layer can be used for diagnosis.

電子内視鏡システムの構成を示す外観図である。It is an external view which shows the structure of an electronic endoscope system. 電子内視鏡システムの構成を示すブロック図である。It is a block diagram which shows the structure of an electronic endoscope system. ベイヤー配列のカラーフィルタを示す図である。It is a figure which shows the color filter of a Bayer arrangement. CCDのRGB各画素の分光感度特性を示すグラフである。It is a graph which shows the spectral sensitivity characteristic of each RGB pixel of CCD. 高解像度化処理を示す図である。It is a figure which shows the high resolution process.

図1において、電子内視鏡システム2は、電子内視鏡10、プロセッサ装置11、および光源装置12からなる。電子内視鏡10は、周知の如く、被検体(患者)内に挿入される可撓性の挿入部13と、挿入部13の基端部分に連設された操作部14と、プロセッサ装置11および光源装置12に接続されるコネクタ15と、操作部14、コネクタ15間を繋ぐユニバーサルコード16とを有する。   In FIG. 1, the electronic endoscope system 2 includes an electronic endoscope 10, a processor device 11, and a light source device 12. As is well known, the electronic endoscope 10 includes a flexible insertion portion 13 to be inserted into a subject (patient), an operation portion 14 connected to a proximal end portion of the insertion portion 13, and a processor device 11. And a connector 15 connected to the light source device 12, an operation unit 14, and a universal cord 16 that connects the connectors 15.

操作部14には、挿入部13の先端17を上下左右方向に湾曲させるためのアングルノブや、送気・送水ノズルからエアー、水を噴出させるための送気・送水ボタンの他、観察画像を静止画記録するためのレリーズボタン、あるいは被観察部位の拡大・非拡大(望遠・広角)撮影を指示するためのズーム操作スイッチ18といった操作部材が設けられている。   The operation unit 14 includes an angle knob for bending the distal end 17 of the insertion unit 13 in the vertical and horizontal directions, an air supply / water supply button for ejecting air and water from the air supply / water supply nozzle, and an observation image. An operation member such as a release button for recording a still image or a zoom operation switch 18 for instructing an enlargement / non-expansion (telephoto / wide-angle) imaging of an observation site is provided.

また、操作部14の先端側には、電気メス等の処置具が挿通される鉗子口が設けられている。鉗子口は、挿入部13内の鉗子チャンネルを通して、先端17に設けられた鉗子出口に連通している。   Further, a forceps port through which a treatment tool such as an electric knife is inserted is provided on the distal end side of the operation unit 14. The forceps port communicates with a forceps outlet provided at the distal end 17 through a forceps channel in the insertion portion 13.

プロセッサ装置11は、光源装置12と電気的に接続され、電子内視鏡システム2の動作を統括的に制御する。プロセッサ装置11は、ユニバーサルコード16や挿入部13内に挿通された伝送ケーブルを介して電子内視鏡10に給電を行い、先端17に搭載されたCCD33(図2参照)の駆動を制御する。また、プロセッサ装置11は、伝送ケーブルを介してCCD33から出力された撮像信号を受信し、受信した撮像信号に各種処理を施して画像データを生成する。プロセッサ装置11で生成された画像データは、プロセッサ装置11にケーブル接続されたモニタ19に観察画像として表示される。   The processor device 11 is electrically connected to the light source device 12 and comprehensively controls the operation of the electronic endoscope system 2. The processor device 11 supplies power to the electronic endoscope 10 via the universal cord 16 and a transmission cable inserted into the insertion portion 13, and controls the drive of the CCD 33 (see FIG. 2) mounted on the distal end 17. In addition, the processor device 11 receives the imaging signal output from the CCD 33 via the transmission cable, and performs various processes on the received imaging signal to generate image data. The image data generated by the processor device 11 is displayed as an observation image on a monitor 19 connected to the processor device 11 by a cable.

電子内視鏡システム2には、被検体の被観察部位に白色光を照射して観察する通常観察モードと、被観察部位に白色光および中心波長405nmの狭い波長帯域の青色光(狭帯域光)を照射して、被観察部位内の血管のうち表層血管(毛細血管)に着目して観察する特殊観察モードとが用意されている。各モードの切替は操作部14のモード切替スイッチ20を操作することにより行われる。電子内視鏡システム2の電源投入直後は通常観察モードが自動的に選択される。   The electronic endoscope system 2 includes a normal observation mode in which white light is irradiated on a region to be observed of a subject for observation, and white light and blue light (narrow band light having a central wavelength of 405 nm) on the region to be observed. ) And a special observation mode in which observation is performed while paying attention to a surface blood vessel (capillary blood vessel) among blood vessels in the observation site. Switching between the modes is performed by operating the mode switch 20 of the operation unit 14. The normal observation mode is automatically selected immediately after the electronic endoscope system 2 is turned on.

図2において、先端17には、観察窓30、照明窓31等が設けられている。観察窓30の奥には、対物光学系32を介して被検体内撮影用のCCD33が配されている。対物光学系32はレンズ群およびプリズムからなり、レンズ群は、ズーム操作スイッチ18の操作に連動して光軸に沿って移動(例えばテレ端、ワイド端の二つの位置間を移動)するズームレンズ34を含む。このズームレンズ34の移動により、被観察部位の拡大・非拡大撮影が可能となる。照明窓31は、ユニバーサルコード16や挿入部13に配設されたライトガイド35、および照明レンズ36で導光される光源装置12からの照明光を被観察部位に照射する。   In FIG. 2, the distal end 17 is provided with an observation window 30, an illumination window 31, and the like. In the back of the observation window 30, a CCD 33 for in-subject imaging is disposed via an objective optical system 32. The objective optical system 32 includes a lens group and a prism. The lens group moves along the optical axis in conjunction with the operation of the zoom operation switch 18 (for example, moves between two positions of the tele end and the wide end). 34. By moving the zoom lens 34, it is possible to magnify and non-magnify the region to be observed. The illumination window 31 irradiates the observation site with illumination light from the light source 35 guided by the illumination guide 36 and the light guide 35 disposed in the universal cord 16 and the insertion portion 13.

CCD33は、観察窓30、対物光学系32を経由した被検体内の被観察部位の像が撮像面に入射するように配置されている。撮像面には複数の色セグメントからなるカラーフィルタ、例えば、図3に示すベイヤー配列(R−赤、G−緑、B−青)の原色カラーフィルタ37が形成されている。   The CCD 33 is arranged so that an image of the observation site in the subject via the observation window 30 and the objective optical system 32 is incident on the imaging surface. On the imaging surface, a color filter composed of a plurality of color segments, for example, a primary color filter 37 having a Bayer arrangement (R-red, G-green, B-blue) shown in FIG. 3 is formed.

原色カラーフィルタ37の分光透過率、および画素自体の分光感度によって、CCD33のRGB各画素の分光感度特性は図4に示すようになる。R画素は600nm近傍、G画素は550nm近傍、B画素は450nm近傍の波長の光にそれぞれ感度を有する。G画素はB画素の感度領域である405nm付近の波長の光にも感度を有する。以下の説明では、このG画素の405nm付近の波長の光への感度を、550nm近傍の主感度領域に対して副感度領域と表現する。   Depending on the spectral transmittance of the primary color filter 37 and the spectral sensitivity of the pixel itself, the spectral sensitivity characteristics of the RGB pixels of the CCD 33 are as shown in FIG. The R pixel is sensitive to light having a wavelength near 600 nm, the G pixel is sensitive to light having a wavelength near 550 nm, and the B pixel is sensitive to light having a wavelength near 450 nm. The G pixel is sensitive to light having a wavelength near 405 nm, which is the sensitivity region of the B pixel. In the following description, the sensitivity of the G pixel to light having a wavelength near 405 nm is expressed as a sub-sensitivity region with respect to the main sensitivity region near 550 nm.

副感度領域の中心波長Xは380nm以上450nm以下の範囲に存在することが好ましく、特に上記で例示した405nm付近にあることがより好ましい。またその中心波長Xにおける感度S’は、中心波長XにおけるB画素の感度Sの1/5以上(S’≧1/5S)であることが好ましい。副感度領域の中心波長X、および中心波長Xにおける感度S’が上記範囲内にあれば、中心波長405nmの狭帯域光の被観察部位からの反射光に感応して、表層血管をより際立たせるための高解像度化処理に必要な情報を十分に得ることができる。   The center wavelength X of the sub-sensitivity region is preferably in the range of 380 nm to 450 nm, and more preferably in the vicinity of 405 nm exemplified above. The sensitivity S ′ at the center wavelength X is preferably 1/5 or more (S ′ ≧ 1 / 5S) of the sensitivity S of the B pixel at the center wavelength X. If the center wavelength X of the sub-sensitivity region and the sensitivity S ′ at the center wavelength X are within the above ranges, the surface blood vessels are more prominent in response to the reflected light from the observation site of the narrowband light having the center wavelength of 405 nm. Therefore, it is possible to sufficiently obtain information necessary for the high resolution processing.

図2において、操作部14には、アナログ信号処理回路(以下、AFEと略す)38、CCD駆動回路39、およびCPU40が設けられている。AFE38は、相関二重サンプリング回路(以下、CDSと略す)、自動ゲイン制御回路(以下、AGCと略す)、およびアナログ/デジタル変換器(以下、A/Dと略す)から構成されている。CDSは、CCD33から出力される撮像信号に対して相関二重サンプリング処理を施し、CCD33で生じるリセット雑音およびアンプ雑音の除去を行う。AGCは、CDSによりノイズ除去が行われた撮像信号を、プロセッサ装置11から指定されるゲイン(増幅率)で増幅する。A/Dは、AGCにより増幅された撮像信号を所定のビット数のデジタル信号に変換する。A/Dでデジタル化された撮像信号は、伝送ケーブルを介してプロセッサ装置11の画像処理回路49に入力される。   In FIG. 2, the operation unit 14 is provided with an analog signal processing circuit (hereinafter abbreviated as AFE) 38, a CCD drive circuit 39, and a CPU 40. The AFE 38 includes a correlated double sampling circuit (hereinafter abbreviated as CDS), an automatic gain control circuit (hereinafter abbreviated as AGC), and an analog / digital converter (hereinafter abbreviated as A / D). The CDS performs correlated double sampling processing on the imaging signal output from the CCD 33, and removes reset noise and amplifier noise generated in the CCD 33. The AGC amplifies the image signal from which noise has been removed by CDS with a gain (amplification factor) specified by the processor device 11. The A / D converts the imaging signal amplified by the AGC into a digital signal having a predetermined number of bits. The imaging signal digitized by A / D is input to the image processing circuit 49 of the processor device 11 through a transmission cable.

CCD駆動回路39は、CCD33の駆動パルス(垂直/水平走査パルス、電子シャッタパルス、読み出しパルス、リセットパルス等)とAFE38用の同期パルスとを発生する。CCD33は、CCD駆動回路39からの駆動パルスに応じて撮像動作を行い、撮像信号を出力する。AFE38の各部は、CCD駆動回路39からの同期パルスに基づいて動作する。   The CCD driving circuit 39 generates a driving pulse (vertical / horizontal scanning pulse, electronic shutter pulse, readout pulse, reset pulse, etc.) for the CCD 33 and a synchronization pulse for the AFE 38. The CCD 33 performs an imaging operation in accordance with the drive pulse from the CCD drive circuit 39 and outputs an imaging signal. Each part of the AFE 38 operates based on a synchronization pulse from the CCD drive circuit 39.

CPU40は、電子内視鏡10とプロセッサ装置11とが接続された後、プロセッサ装置11のCPU45からの動作開始指示に基づいて、CCD駆動回路39を駆動させるとともに、CCD駆動回路39を介してAFE38のAGCのゲインを調整する。   After the electronic endoscope 10 and the processor device 11 are connected, the CPU 40 drives the CCD drive circuit 39 based on an operation start instruction from the CPU 45 of the processor device 11, and the AFE 38 via the CCD drive circuit 39. Adjust the gain of AGC.

CPU45は、プロセッサ装置11全体の動作を統括的に制御する。CPU45は、図示しないデータバスやアドレスバス、制御線を介して各部と接続している。ROM46には、プロセッサ装置11の動作を制御するための各種プログラム(OS、アプリケーションプログラム等)やデータ(グラフィックデータ等)が記憶されている。CPU45は、ROM46から必要なプログラムやデータを読み出して、作業用メモリであるRAM47に展開し、読み出したプログラムを逐次処理する。また、CPU45は、検査日時、患者や術者の情報等の文字情報といった検査毎に変わる情報を、プロセッサ装置11の操作パネルやLAN(Local Area Network)等のネットワークより得て、RAM47に記憶する。   The CPU 45 controls the overall operation of the processor device 11. The CPU 45 is connected to each unit via a data bus, an address bus, and a control line (not shown). The ROM 46 stores various programs (OS, application programs, etc.) and data (graphic data, etc.) for controlling the operation of the processor device 11. The CPU 45 reads necessary programs and data from the ROM 46, develops them in the RAM 47, which is a working memory, and sequentially processes the read programs. Further, the CPU 45 obtains information that changes for each examination, such as examination date and time, character information such as patient and surgeon information, from the operation panel of the processor device 11 or a network such as a LAN (Local Area Network) and stores the information in the RAM 47. .

操作部48は、プロセッサ装置11の筐体に設けられる操作パネル、あるいは、マウスやキーボード等の周知の入力デバイスである。CPU45は、操作部48、および電子内視鏡10の操作部14にあるレリーズボタンやズーム操作スイッチ18、モード切替スイッチ20等からの操作信号に応じて、各部を動作させる。   The operation unit 48 is an operation panel provided on the housing of the processor device 11 or a known input device such as a mouse or a keyboard. The CPU 45 operates each unit in response to operation signals from the operation unit 48 and the release button, the zoom operation switch 18, the mode change switch 20, and the like in the operation unit 14 of the electronic endoscope 10.

画像処理回路49は、電子内視鏡10から入力された撮像信号に対して、色補間、ホワイトバランス調整、ガンマ補正、画像強調、画像用ノイズリダクション、色変換等の各種画像処理を施す。色補間では、例えば当該画素の画素値(当該画素がR画素の場合はB、G画素値)を、当該画素を囲む八個の画素のうちの同色画素(B画素値を補間する場合は周囲のB画素)の画素値の平均値で補間する線形補間が行われ、これにより各画素についてRGBの画素値の組が生成される。   The image processing circuit 49 performs various types of image processing such as color interpolation, white balance adjustment, gamma correction, image enhancement, image noise reduction, and color conversion on the imaging signal input from the electronic endoscope 10. In color interpolation, for example, the pixel value of the pixel (B and G pixel values if the pixel is an R pixel), and the same color pixel of the eight pixels surrounding the pixel (the surroundings when the B pixel value is interpolated) Linear interpolation is performed to interpolate with the average value of the pixel values of B pixels), and a set of RGB pixel values is generated for each pixel.

また、画像処理回路49は、特殊観察モードでズーム操作スイッチ18により非拡大が選択されたときに、表層血管をより際立たせるための高解像度化処理を行う。   Further, the image processing circuit 49 performs high resolution processing for making the surface blood vessels more prominent when non-enlargement is selected by the zoom operation switch 18 in the special observation mode.

表示制御回路50は、CPU45からROM46およびRAM47のグラフィックデータを受け取る。グラフィックデータには、観察画像の無効画素領域を隠して有効画素領域のみを表示させる表示用マスク、検査日時、あるいは患者や術者、現在選択されている観察モード等の文字情報、グラフィカルユーザインターフェース(GUI;Graphical User Interface)等がある。表示制御回路50は、画像処理回路49からの画像に対して、表示用マスク、文字情報、GUIの重畳処理、モニタ19の表示画面への描画処理等の各種表示制御処理を施す。   The display control circuit 50 receives graphic data in the ROM 46 and RAM 47 from the CPU 45. The graphic data includes a display mask that hides the invalid pixel area of the observation image and displays only the effective pixel area, examination date and time, character information such as the patient, the operator, and the currently selected observation mode, a graphical user interface ( GUI; Graphical User Interface). The display control circuit 50 performs various display control processes such as a display mask, character information, GUI superimposition processing, and drawing processing on the display screen of the monitor 19 on the image from the image processing circuit 49.

表示制御回路50は、画像処理回路49からの画像を一時的に格納するフレームメモリを有する。表示制御回路50は、フレームメモリから画像を読み出し、読み出した画像をモニタ19の表示形式に応じたビデオ信号(コンポーネント信号、コンポジット信号等)に変換する。これにより、モニタ19に観察画像が表示される。   The display control circuit 50 has a frame memory that temporarily stores the image from the image processing circuit 49. The display control circuit 50 reads an image from the frame memory and converts the read image into a video signal (component signal, composite signal, etc.) corresponding to the display format of the monitor 19. Thereby, an observation image is displayed on the monitor 19.

プロセッサ装置11には、上記の他にも、画像に所定の圧縮形式(例えばJPEG形式)で画像圧縮を施す圧縮処理回路や、圧縮された画像をCFカード、光磁気ディスク(MO)、CD−R等のリムーバブルメディアに記録するメディアI/F、LAN等のネットワークとの間で各種データの伝送制御を行うネットワークI/F等が設けられている。これらはデータバス等を介してCPU45と接続されている。   In addition to the above, the processor device 11 includes a compression processing circuit for compressing an image in a predetermined compression format (for example, JPEG format), and the compressed image is stored in a CF card, a magneto-optical disk (MO), a CD- A media I / F for recording on removable media such as R, and a network I / F for controlling transmission of various data with a network such as a LAN are provided. These are connected to the CPU 45 via a data bus or the like.

光源装置12は、中心波長445nmの青色光を発する第一レーザ光源55と、中心波長405nmの青色光を発する第二レーザ光源56とを有する。各光源55、56の光出射側には、集光レンズ57、58、可動絞り59、60、およびライトガイド61、62が配され、ライトガイド61、62はカプラー63を介して一本のライトガイド35に連結されている。ライトガイド35は、各光源55、56から発せられた光を照明窓31に導光する。なお、カプラー63を設けるのではなく、各光源55、56用に二本のライトガイドを設けてもよい。   The light source device 12 includes a first laser light source 55 that emits blue light having a central wavelength of 445 nm, and a second laser light source 56 that emits blue light having a central wavelength of 405 nm. Condensing lenses 57 and 58, movable diaphragms 59 and 60, and light guides 61 and 62 are arranged on the light emission side of each light source 55 and 56, and the light guides 61 and 62 are connected to a single light via a coupler 63. The guide 35 is connected. The light guide 35 guides light emitted from the light sources 55 and 56 to the illumination window 31. Instead of providing the coupler 63, two light guides may be provided for the light sources 55 and 56, respectively.

光源装置12のCPU64は、プロセッサ装置11のCPU45と通信し、光源ドライバ65、66を介して各光源55、56の各レーザ光の点消灯制御および可動絞り59、60による光量制御を各光源55、56および各可動絞り59、60別に行う。   The CPU 64 of the light source device 12 communicates with the CPU 45 of the processor device 11, and controls the turning on / off of each laser beam of each light source 55, 56 and the light amount control by the movable diaphragms 59, 60 via the light source drivers 65, 66. , 56 and each movable diaphragm 59, 60 are performed separately.

ライトガイド35の光出射側には、集光レンズ36が配置されるとともに、波長変換部材41が配置されている。波長変換部材41は、第一レーザ光源55からの中心波長445nmのレーザ光の一部を吸収して、緑色〜黄色に励起発光する複数種の蛍光体を有する。これにより、第一レーザ光源55からの青色のレーザ光と、このレーザ光により励起された緑色〜黄色の励起光とが合波されて、白色光つまり通常照明光が生成される。その一方で波長変換部材41は、第二レーザ光源56からの中心波長405nmのレーザ光には反応せず、該レーザ光は波長変換部材41を透過して照明窓31から被観察部位に照射される。   On the light exit side of the light guide 35, a condenser lens 36 and a wavelength conversion member 41 are disposed. The wavelength conversion member 41 has a plurality of types of phosphors that absorb a part of the laser light having a central wavelength of 445 nm from the first laser light source 55 and emit light with excitation from green to yellow. Thus, the blue laser light from the first laser light source 55 and the green to yellow excitation light excited by the laser light are combined to generate white light, that is, normal illumination light. On the other hand, the wavelength conversion member 41 does not react to the laser beam having the center wavelength of 405 nm from the second laser light source 56, and the laser beam passes through the wavelength conversion member 41 and is irradiated from the illumination window 31 to the observation site. The

通常観察モードが選択された場合、CPU45は、CPU64を介して光源ドライバ65、66の駆動を制御して、第一レーザ光源55のみを点灯させる。被観察部位に照射される照明光は白色光のみとなる。特殊観察モードが選択された場合は、各光源55、56を同時に点灯させ、被観察部位に白色光と狭帯域光を同時に照射させる。   When the normal observation mode is selected, the CPU 45 controls the driving of the light source drivers 65 and 66 via the CPU 64 and turns on only the first laser light source 55. The illumination light applied to the site to be observed is only white light. When the special observation mode is selected, the light sources 55 and 56 are turned on at the same time, and white light and narrow-band light are simultaneously irradiated onto the observation site.

生体組織の粘膜表層付近には主に毛細血管が多く存在する。因みに表層より深い中層には毛細血管の他に毛細血管より太い血管が存在し、深層にはさらに太い血管が存在している。一方、生体組織に対する光の深達度は光の波長に依存しており、中心波長405nmのような波長が短い光の場合、生体組織での吸収特性および散乱特性により表層付近までしか光は深達せず、この表層付近からの反射光のみが観察される。従って、中心波長405nmの狭帯域光を照射してその反射光を撮像すれば、表層の毛細血管の情報を得ることができる。血管中のヘモグロビンは405nmの光に対して高い吸収率をもつので、中心波長405nmの狭帯域光は血管で吸収され、血管以外の生体組織からの光が主として反射光として戻ってくる。   Many capillary blood vessels exist mainly in the vicinity of the mucous membrane surface layer of living tissue. Incidentally, in the middle layer deeper than the surface layer, there are blood vessels that are thicker than capillaries in addition to capillaries, and there are thicker blood vessels in the deep layer. On the other hand, the depth of light penetration into a living tissue depends on the wavelength of the light. In the case of light having a short wavelength such as the central wavelength of 405 nm, the light is only deepened to the vicinity of the surface layer due to absorption and scattering characteristics in the living tissue. Only the reflected light from near the surface layer is observed. Therefore, information on the capillaries on the surface layer can be obtained by irradiating narrow band light having a central wavelength of 405 nm and imaging the reflected light. Since hemoglobin in the blood vessel has a high absorption rate with respect to light of 405 nm, narrow-band light having a central wavelength of 405 nm is absorbed by the blood vessel, and light from living tissue other than the blood vessel returns mainly as reflected light.

毛細血管の情報は、中心波長405nmの狭帯域光の反射光に感応するB画素の画素値bに含まれる。一方、中深層の太い血管の情報は、G画素、R画素の画素値g、rに含まれている。G画素は副感度領域を有するため、その画素値は毛細血管の情報も含んでいる。つまり中深層の太い血管の情報(主感度領域の成分、以下、中深層血管の成分ともいう)をg’、毛細血管の情報(副感度領域の成分、以下、毛細血管の成分ともいう)をb’とすると、G画素の画素値gは、
g=g’+b’・・・(1)
と表すことができる。
Capillary blood vessel information is included in the pixel value b of the B pixel that is sensitive to the reflected light of narrowband light having a center wavelength of 405 nm. On the other hand, information on thick blood vessels in the middle deep layer is included in the pixel values g and r of the G pixel and the R pixel. Since the G pixel has a sub-sensitivity region, the pixel value includes information on capillaries. That is, information on a thick blood vessel in the middle deep layer (component of main sensitivity region, hereinafter also referred to as component of middle deep blood vessel) is g ′, and information on capillary vessel (component of sub sensitivity region, hereinafter also referred to as component of capillary blood vessel). If b ′, the pixel value g of the G pixel is
g = g ′ + b ′ (1)
It can be expressed as.

特殊観察モードで観察対象となる毛細血管は、サイズが10μm程度と極めて細い。このため、G画素の1/2とB画素の数が相対的に少なく、G画素が副感度領域をもたない従来のベイヤー配列のカラーフィルタを用いた場合、中心波長405nmの狭帯域光の反射光、つまり毛細血管の像が投影されるB画素の数が少なくなり、画像化に必要な毛細血管の成分が不足する。例えば図3に点線で示すように、毛細血管の像がR、G画素の列に投影された場合は一切毛細血管の情報を得ることができない。この問題は非拡大で被観察部位と先端17の距離を離したときに顕著となる。   The capillaries to be observed in the special observation mode are extremely thin with a size of about 10 μm. For this reason, when a conventional Bayer array color filter in which 1/2 of the G pixel and the number of B pixels are relatively small and the G pixel does not have a sub-sensitivity region is used, The number of B pixels onto which the reflected light, that is, the capillary image is projected is reduced, and the capillary components necessary for imaging are insufficient. For example, as shown by a dotted line in FIG. 3, when a capillary image is projected onto a row of R and G pixels, information on the capillary cannot be obtained at all. This problem becomes prominent when the distance between the site to be observed and the tip 17 is increased without being magnified.

そこで、B、R画素の2倍と数が相対的に多いG画素に副感度領域をもたせ、G画素の画素値にも毛細血管の情報を含ませるようにし、G画素をあたかもB画素と見做すことでB画素の数が少ないことを補う。そして、特殊観察モードでズーム操作スイッチ18により非拡大が選択されたときに、画像処理回路49で以下に説明する高解像度化処理を行う。なお、以下に表記する画素値g、b、r等はいずれも色補間後の画素値である。   Therefore, a sub-sensitivity region is provided in the G pixel, which is twice as large as the B and R pixels, so that the pixel value of the G pixel includes capillary information, and the G pixel is regarded as a B pixel. By making a mistake, it compensates for the small number of B pixels. When non-enlargement is selected by the zoom operation switch 18 in the special observation mode, the image processing circuit 49 performs a resolution enhancement process described below. Note that pixel values g, b, r, and the like described below are pixel values after color interpolation.

高解像度化処理では、B画素に加えてG画素の画素値に含まれる副感度領域の成分を得る。前述のようにG画素の画素値は中深層の太い血管の情報だけでなく毛細血管の情報も含んでいるため、G画素の画素値から中深層の太い血管の情報に相当する分を除けば、毛細血管の情報を取り出すことができる。具体的には図5に示すように、中深層の太い血管の情報のみをもつR画素の画素値rとの相関演算を行う。すなわち、β(g−αr)を演算することでG画素の画素値gから副感度領域の成分b’を抽出する。つまり画像処理回路49は抽出手段として機能する。なお、αはG画素とR画素の感度比、βはB画素とG画素の副感度領域の感度比に応じてそれぞれ予め決められる相関係数である。
b’=β(g−αr)・・・(2)
In the high resolution processing, in addition to the B pixel, a component of the sub sensitivity region included in the pixel value of the G pixel is obtained. As described above, since the pixel value of the G pixel includes not only the information on the thick blood vessel in the middle deep layer but also the information on the capillary blood vessel, the amount corresponding to the information on the thick blood vessel in the middle deep layer is excluded from the pixel value of the G pixel. Capillary blood vessel information can be extracted. Specifically, as shown in FIG. 5, a correlation calculation is performed with the pixel value r of the R pixel having only the information on the thick blood vessel in the middle deep layer. That is, the sub-sensitivity region component b ′ is extracted from the pixel value g of the G pixel by calculating β (g−αr). That is, the image processing circuit 49 functions as an extraction unit. Α is a sensitivity coefficient between the G pixel and the R pixel, and β is a correlation coefficient determined in advance according to the sensitivity ratio between the sub sensitivity areas of the B pixel and the G pixel.
b ′ = β (g−αr) (2)

画像処理回路49はさらに、(1)、(2)式からG画素の画素値gに含まれる主感度領域の成分g’を抽出する。
g’=g−b’=g(1−β)+αβr・・・(3)
これによりG画素の画素値gは、副感度領域による毛細血管の成分b’=β(g−αr)と、副感度領域以外の主感度領域による中深層血管の成分g’=g(1−β)+αβrとに分離され、G画素はこれら二つの情報をもつことになる。ズーム操作スイッチ18により拡大が選択されたときには、中深層血管の成分g’=g(1−β)+αβrの抽出のみが行われる。
The image processing circuit 49 further extracts the main sensitivity region component g ′ included in the pixel value g of the G pixel from the expressions (1) and (2).
g ′ = g−b ′ = g (1−β) + αβr (3)
As a result, the pixel value g of the G pixel has a capillary vessel component b ′ = β (g−αr) due to the sub-sensitivity region and a medium-deep blood vessel component g ′ = g (1− (1−)) other than the sub-sensitivity region. β) + αβr, and the G pixel has these two pieces of information. When enlargement is selected by the zoom operation switch 18, only the extraction of the component g ′ = g (1−β) + αβr of the mid-deep blood vessel is performed.

中層血管は50μm程度、深層血管は100μm程度と、中深層の血管は毛細血管と比べて5〜10倍程度太いため、非拡大時でも比較的多数のG、R画素の双方に像が投影される。従ってG、R画素の画素値には強い相関があるといえ、上記の相関演算の結果抽出される毛細血管の成分b’および中深層血管の成分g’も確度が高いといえる。   The middle-layer blood vessel is about 50 μm, the deep-layer blood vessel is about 100 μm, and the middle-layer blood vessel is about 5 to 10 times thicker than the capillary blood vessel. Therefore, even when not enlarged, an image is projected on both a relatively large number of G and R pixels. The Therefore, it can be said that there is a strong correlation between the pixel values of the G and R pixels, and it can be said that the capillary vessel component b 'and the mid-deep blood vessel component g' extracted as a result of the correlation calculation have high accuracy.

通常観察モード時、表示制御回路50は、色補間により各画素で生成されたRGB各画素値をモニタ19のRGBチャンネルにそれぞれ割り当て、肉眼で観察したときと略同等の画像をモニタ19に表示させる。特殊観察モードで拡大が選択されたときは、色補間後のB画素の画素値bをモニタ19のBチャンネルおよびGチャンネルに、中深層血管の成分g’をRチャンネルにそれぞれ割り当てる。一方非拡大が選択されたときは、画素値bと、画素値gから抽出した毛細血管の成分b’をBチャンネルおよびGチャンネルに、中深層血管の成分g’をRチャンネルにそれぞれ割り当てる。特殊観察モードではR画素値rはどのチャンネルにも割り当てない。こうして生成された画像は、表層の毛細血管の箇所は赤褐色、その他の箇所はシアンから緑色に着色され、毛細血管が強調されてモニタ19に表示される。   In the normal observation mode, the display control circuit 50 assigns each RGB pixel value generated at each pixel by color interpolation to the RGB channel of the monitor 19 and causes the monitor 19 to display an image substantially equivalent to that observed with the naked eye. . When enlargement is selected in the special observation mode, the pixel value b of the B pixel after color interpolation is assigned to the B channel and the G channel of the monitor 19, and the middle-deep blood vessel component g 'is assigned to the R channel. On the other hand, when non-enlargement is selected, the pixel value b and the capillary vessel component b 'extracted from the pixel value g are assigned to the B channel and the G channel, and the middle-deep blood vessel component g' is assigned to the R channel. In the special observation mode, the R pixel value r is not assigned to any channel. The image generated in this way is displayed on the monitor 19 with the capillaries on the surface layer colored in reddish brown and the other portions in cyan to green, and the capillaries are highlighted.

表示制御回路50は、特殊観察モードで非拡大が選択されたときに画素値bと毛細血管の成分b’をBチャンネルおよびGチャンネルに割り当てる際、これらに適当な重み係数を掛けて加算し、半分にしたものを割り当てる。重み係数としては、G画素の画素数がB画素の2倍であることから、単純に毛細血管の成分b’を2倍してもよいし、画素値bと毛細血管の成分b’の大小関係に応じて変更(画素値b>>毛細血管の成分b’の場合は画素値bに掛ける重み係数を大きくする等)してもよい。   When assigning the pixel value b and the capillary component b ′ to the B channel and the G channel when non-enlargement is selected in the special observation mode, the display control circuit 50 multiplies them by an appropriate weighting coefficient, and adds them. Allocate half. As the weighting factor, since the number of G pixels is twice that of B pixels, the capillary component b ′ may be simply doubled, or the pixel value b and the capillary component b ′ may be larger or smaller. It may be changed according to the relationship (in the case of pixel value b >> capillary component b ′, the weighting coefficient applied to the pixel value b is increased).

次に、上記のように構成された電子内視鏡システム2の作用について説明する。電子内視鏡10で被検体内を観察する際、術者は、電子内視鏡10と各装置11、12とを繋げ、各装置11、12の電源をオンする。そして、操作部48を操作して、被検体に関する情報等を入力し、検査開始を指示する。   Next, the operation of the electronic endoscope system 2 configured as described above will be described. When observing the inside of the subject with the electronic endoscope 10, the operator connects the electronic endoscope 10 and the devices 11 and 12, and turns on the power of the devices 11 and 12. Then, the operation unit 48 is operated to input information about the subject and instruct to start the examination.

検査開始を指示した後、術者は、挿入部13を被検体内に挿入し、光源装置12からの照明光で被検体内を照明しながら、CCD33による被検体内の観察画像をモニタ19で観察する。   After instructing the start of the examination, the operator inserts the insertion portion 13 into the subject, and illuminates the subject with the illumination light from the light source device 12, while the observation image in the subject by the CCD 33 is displayed on the monitor 19. Observe.

CCD33から出力された撮像信号は、AFE38の各部で各種処理を施された後、プロセッサ装置11の画像処理回路49に入力される。画像処理回路49では、入力された撮像信号に対して各種画像処理が施され、画像が生成される。画像処理回路49で処理された画像は、表示制御回路50に入力される。表示制御回路50では、CPU45からのグラフィックデータに応じて、各種表示制御処理が実行される。これにより、観察画像がモニタ19に表示される。   The imaging signal output from the CCD 33 is subjected to various processing in each part of the AFE 38 and then input to the image processing circuit 49 of the processor device 11. The image processing circuit 49 performs various types of image processing on the input image pickup signal to generate an image. The image processed by the image processing circuit 49 is input to the display control circuit 50. In the display control circuit 50, various display control processes are executed in accordance with the graphic data from the CPU 45. As a result, the observation image is displayed on the monitor 19.

電子内視鏡システム2で検査を行うときには、観察対象に応じて観察モードが切り替えられる。挿入部13を被検体内に挿入する際には通常観察モードを選択して、白色光を照射して得られた画像を観察して広い視野を確保しつつ挿入作業を行う。詳細な観察が必要な病変が発見された際には特殊観察モードを選択し、病変に狭帯域光を照明して得られた画像を観察する。そして、必要に応じてズーム操作スイッチ18を操作して画角を変更したり、レリーズボタンを操作して静止画像を取得する。病変に処置が必要な場合は鉗子チャンネルに各種処置具を挿通させて、病変の切除や投薬等の処置を施す。   When an inspection is performed by the electronic endoscope system 2, the observation mode is switched according to the observation target. When inserting the insertion unit 13 into the subject, the normal observation mode is selected, and the insertion operation is performed while observing an image obtained by irradiating the white light to ensure a wide field of view. When a lesion that requires detailed observation is found, the special observation mode is selected, and an image obtained by illuminating the lesion with narrow-band light is observed. Then, if necessary, the zoom operation switch 18 is operated to change the angle of view, or the release button is operated to acquire a still image. When treatment is required for the lesion, various treatment tools are inserted through the forceps channel to perform treatment such as excision of the lesion or medication.

通常観察モードの場合は、CPU40の指令の下に第一レーザ光源55のみが点灯されて、照明窓31から被観察部位に白色光が照射される。一方、特殊観察モードが選択された場合は第一レーザ光源55に加えて第二レーザ光源56が点灯される。第二レーザ光源56から出射された狭帯域光は、ライトガイド35で先端17に導光され、照明窓31から被観察部位に照射される。   In the normal observation mode, only the first laser light source 55 is turned on under the instruction of the CPU 40, and white light is emitted from the illumination window 31 to the observation site. On the other hand, when the special observation mode is selected, the second laser light source 56 is turned on in addition to the first laser light source 55. The narrow-band light emitted from the second laser light source 56 is guided to the tip 17 by the light guide 35 and irradiated from the illumination window 31 to the site to be observed.

特殊観察モードでズーム操作スイッチ18により非拡大が選択された場合、画像処理回路49では、色補間が行われた後、式(2)、(3)に示すR画素値rとの相関演算により、G画素値gが毛細血管の成分b’と中深層血管の成分g’に分離される。拡大が選択された場合は中深層血管の成分g’のみが抽出される。   When non-enlargement is selected by the zoom operation switch 18 in the special observation mode, the image processing circuit 49 performs color interpolation and then performs a correlation operation with the R pixel value r shown in equations (2) and (3). , G pixel value g is separated into a capillary vessel component b ′ and a mid-deep blood vessel component g ′. When enlargement is selected, only the component g 'of the mid-deep blood vessel is extracted.

通常観察モードでは、表示制御回路50によりRGB各画素値がモニタ19のRGBチャンネルにそれぞれ割り当てられ、モニタ19には肉眼で観察したときと略同等の観察画像が表示される。特殊観察モードで拡大が選択されたときは、B画素の画素値bがBチャンネルおよびGチャンネルに、中深層血管の成分g’がRチャンネルにそれぞれ割り当てられる。特殊観察モードで非拡大が選択されたときは、画素値bと毛細血管の成分b’に重み係数を掛けて加算し2で割ったものがBチャンネルおよびGチャンネルに、中深層血管の成分g’がRチャンネルにそれぞれ割り当てられる。モニタ19には毛細血管が赤褐色に着色された強調画像が表示される。   In the normal observation mode, RGB pixel values are assigned to the RGB channels of the monitor 19 by the display control circuit 50, and an observation image substantially equivalent to that observed with the naked eye is displayed on the monitor 19. When enlargement is selected in the special observation mode, the pixel value b of the B pixel is assigned to the B channel and the G channel, and the middle-deep blood vessel component g ′ is assigned to the R channel. When non-enlargement is selected in the special observation mode, the pixel value b and the capillary vessel component b ′ are multiplied by a weighting factor and added to divide by 2 into the B channel and the G channel, and the mid-deep blood vessel component g 'Is assigned to each R channel. The monitor 19 displays an enhanced image in which capillaries are colored reddish brown.

非拡大を選択したときに毛細血管の成分をB画素のみから取得してこれを画像化しようとすると、毛細血管は非常に細くB画素の数も少ないため、毛細血管の像の解像度が低下し、場合によっては医療ミスに繋がる重大な影響を観察結果に与えるが、本発明では、数が多いG画素にB画素相当の副感度領域をもたせてG画素でも毛細血管の成分を取得することができるようにしている。そうしたうえでG画素値gから毛細血管の成分b’を抽出し、これとB画素値bを用いて毛細血管を強調した画像を表示している。従って毛細血管の像を高解像度で表示することができ、観察結果も適正なものとなり医療ミスを確実に防止することができる。   When non-enlargement is selected, if a capillary component is acquired from only B pixels and an attempt is made to image it, the capillaries are very thin and the number of B pixels is small, so the resolution of the capillary image is reduced. In some cases, a serious influence that leads to a medical error is given to the observation result. In the present invention, a sub-sensitivity region equivalent to a B pixel is provided in a large number of G pixels to acquire a capillary component even in the G pixel. I can do it. After that, the capillary component b 'is extracted from the G pixel value g, and an image in which the capillary is emphasized using this and the B pixel value b is displayed. Therefore, the capillary blood vessel image can be displayed with high resolution, the observation result is also appropriate, and medical errors can be reliably prevented.

カラーフィルタ37のG画素の分光特性を変更するだけでよく、毛細血管の成分b’の抽出もR画素値rとの簡単な相関演算のみで済むため、装置の大型化、コストアップの懸念がない。   It is only necessary to change the spectral characteristic of the G pixel of the color filter 37, and the extraction of the capillary component b 'is only a simple correlation operation with the R pixel value r, which may increase the size and cost of the apparatus. Absent.

なお、上記実施形態の高解像度化処理に加えて、各光源55、56から発せられる光の強度を制御することで、毛細血管の成分の取得をより容易なものとしてもよい。具体的には、第一レーザ光源55から発せられる中心波長445nmの光の強度L1に対して、第二レーザ光源56から発せられる中心波長405nmの狭帯域光の強度L2を、拡大時と比べて非拡大時に強くする。例えば拡大時はL1:L2=1:1、非拡大時はL1:L2=1:4となるよう各光源55、56または可動絞り59、60の動作をCPU64で制御する。非拡大時に第二レーザ光源56から発せられる中心波長405nmの狭帯域光の強度を強めれば、結果的にB画素値bおよび毛細血管の成分b’の値が増幅され、逆に中深層血管の成分g’の値は抑制されるので、毛細血管の成分をより多く取り込むことができる。   In addition to the high resolution processing of the above embodiment, it is also possible to make it easier to acquire the capillary component by controlling the intensity of the light emitted from each of the light sources 55 and 56. Specifically, the intensity L2 of the narrow-band light having the center wavelength of 405 nm emitted from the second laser light source 56 is compared with the intensity L1 of the light having the center wavelength of 445 nm emitted from the first laser light source 55 as compared with the magnification. Strengthen when not enlarged. For example, the CPU 64 controls the operations of the light sources 55 and 56 or the movable diaphragms 59 and 60 so that L1: L2 = 1: 1 during enlargement and L1: L2 = 1: 4 during non-enlargement. Increasing the intensity of the narrow band light having a central wavelength of 405 nm emitted from the second laser light source 56 at the time of non-expansion results in the amplification of the B pixel value b and the capillary component b ′, and conversely, the mid-deep blood vessel Since the value of the component g ′ is suppressed, more capillaries can be taken up.

さらに加えて、特殊観察モードで非拡大が選択されたときに、画像処理回路49で中深層血管の成分g’にビニング処理を適用してもよい。ビニング処理は、隣り合う複数の画素(例えば2×2=4個)の画素値を加算して一つの画素を表す信号とするものである。ビニング処理を実行することで、その後の処理で取り扱う画像データのデータ容量を大幅に削減することができ、また、複数の画素を一つの画素と見做すので、見かけ上のCCD33の感度(S/N比)も向上する。その反面解像度は低下するが、g’の中味はサイズが比較的太い中深層血管の像であるため、解像度が低下しても毛細血管の場合と比べて診断への影響は少ないと考えられる。   In addition, when non-enlargement is selected in the special observation mode, the image processing circuit 49 may apply a binning process to the component g ′ of the middle-deep blood vessel. In the binning process, pixel values of a plurality of adjacent pixels (for example, 2 × 2 = 4) are added to obtain a signal representing one pixel. By executing the binning process, it is possible to greatly reduce the data capacity of image data handled in the subsequent processes, and since a plurality of pixels are regarded as one pixel, the apparent sensitivity of the CCD 33 (S / N ratio) is also improved. On the other hand, although the resolution is lowered, the content of g ′ is an image of a middle-deep layer blood vessel having a relatively large size, so that even if the resolution is lowered, it is considered that the influence on the diagnosis is less than in the case of a capillary vessel.

上記実施形態では、特殊観察モード時はR画素値rを画像表示に用いていないが、モニタ19のRチャンネルに割り当てる等してもよい。この場合はR画素値rに対しても上記ビニング処理を施し、中深層血管の成分g’同様S/N比を向上させてもよい。   In the above embodiment, the R pixel value r is not used for image display in the special observation mode, but may be assigned to the R channel of the monitor 19 or the like. In this case, the binning process may also be performed on the R pixel value r to improve the S / N ratio as with the component g ′ of the middle deep blood vessel.

上記実施形態ではズームを二段階としたが、二段階以上としてもよい。その場合は最もワイド端側を選択した際、あるいはワイド端側の数段階を選択した際に、上記実施形態の非拡大時と同様に高解像度化処理や中心波長405nmの狭帯域光の強度L2の変更、ビニング処理を行う。ズームのどの段階まで高解像度化処理や中心波長405nmの狭帯域光の強度L2の変更、ビニング処理を行うかを術者が選択可能に構成してもよい。ズーム操作に関わらず、特殊観察モードが選択された際には一律に高解像度化処理等を行ってもよい。また、先端17と被観察部位との距離を測距センサで測定し、一定距離離れたときに高解像度化処理等を行ってもよい。   In the above embodiment, zooming is performed in two stages, but it may be performed in two or more stages. In that case, when the widest end side is selected, or when several steps on the wide end side are selected, the resolution enhancement process and the intensity L2 of the narrowband light having the center wavelength of 405 nm are performed in the same manner as in the non-enlargement of the above embodiment. Change and binning process. It may be configured such that the operator can select up to which stage of zoom the resolution enhancement process, the change of the intensity L2 of the narrowband light having the center wavelength of 405 nm, and the binning process. Regardless of the zoom operation, when the special observation mode is selected, high resolution processing or the like may be performed uniformly. Alternatively, the distance between the tip 17 and the site to be observed may be measured by a distance measuring sensor, and the resolution enhancement processing may be performed when the distance is a fixed distance.

図4に示すG画素の感度特性は、第一レーザ光源55が発する光の中心波長445nm付近の感度が低く抑えられているが、副感度領域と同等の感度を有していてもよい。但し波長445nmの反射光は毛細血管の強調画像を生成する際にはあまり必要とされないので、図4のように感度が低くても大きな問題はない。   In the sensitivity characteristic of the G pixel shown in FIG. 4, the sensitivity around the central wavelength of 445 nm of the light emitted from the first laser light source 55 is kept low, but it may have the same sensitivity as the sub-sensitivity region. However, since the reflected light having a wavelength of 445 nm is not so necessary when generating an enhanced image of capillaries, there is no major problem even if the sensitivity is low as shown in FIG.

中心波長405nmの狭帯域光の光源としてレーザ光源を例示したが、白色光源とその光路中に配置した405nmの光のみを透過させる帯域制限フィルタとを組み合わせた構成としてもよく、帯域制限フィルタの代わりにエタロンや液晶チューナブルフィルタといった波長可変素子を用いてもよい。   The laser light source is exemplified as the light source of the narrow-band light having the center wavelength of 405 nm. However, the white light source and the band-limiting filter that transmits only the light of 405 nm disposed in the optical path may be combined. In addition, a wavelength variable element such as an etalon or a liquid crystal tunable filter may be used.

なお、本発明に係る内視鏡システムは、上記実施形態に限らず、本発明の要旨を逸脱しない限り種々の構成を採り得ることはもちろんである。例えば、撮像素子は上記実施形態のCCDに限らずCMOSイメージセンサを用いてもよい。   It should be noted that the endoscope system according to the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention. For example, the image sensor is not limited to the CCD of the above embodiment, and a CMOS image sensor may be used.

上記実施形態では撮像素子を先端に配した電子内視鏡を例示したが、本発明はこれに限らず、イメージガイドの出射面に撮像素子を配したファイバスコープや、撮像素子と超音波トランスデューサが先端部に内蔵された超音波内視鏡等、他の形態の内視鏡にも適用することができる。   In the above embodiment, an electronic endoscope having an image pickup device disposed at the tip is illustrated. However, the present invention is not limited to this, and a fiberscope having an image pickup device disposed on the exit surface of the image guide, an image pickup device and an ultrasonic transducer are provided. The present invention can also be applied to other types of endoscopes such as an ultrasonic endoscope built in the distal end portion.

2 電子内視鏡システム
10 電子内視鏡
11 プロセッサ装置
12 光源装置
18 ズーム操作スイッチ
19 モニタ
20 モード切替スイッチ
33 CCD
34 ズームレンズ
35 ライトガイド
37 カラーフィルタ
40、45、64 CPU
41 波長変換部材
49 画像処理回路
50 表示制御回路
55 第一レーザ光源
56 第二レーザ光源
59、60 可動絞り
65、66 光源ドライバ
2 Electronic Endoscope System 10 Electronic Endoscope 11 Processor Unit 12 Light Source Unit 18 Zoom Operation Switch 19 Monitor 20 Mode Change Switch 33 CCD
34 Zoom lens 35 Light guide 37 Color filter 40, 45, 64 CPU
41 wavelength conversion member 49 image processing circuit 50 display control circuit 55 first laser light source 56 second laser light source 59, 60 movable diaphragm 65, 66 light source driver

Claims (12)

ブロードな波長帯域の白色光を被検体の被観察部位に照射する第一照射手段と、
白色光とともに波長帯域が制限された青色の狭帯域光を被観察部位に照射する第二照射手段と、
被観察部位からの反射光を撮像する撮像手段であり、RGBの原色カラーフィルタが配され、G画素数>B画素数であってG画素は緑色の主感度領域に加えて狭帯域光の反射光に感応する副感度領域を有する撮像手段と、
G画素とR画素の画素値の相関演算を行うことで、G画素の画素値から副感度領域の成分を抽出する抽出手段と、
B画素の画素値、および前記抽出手段で抽出した副感度領域の成分を元にした粘膜表層の毛細血管の強調画像をモニタに表示させる表示制御手段とを備えることを特徴とする内視鏡システム。
A first irradiating means for irradiating the observation site of the subject with white light in a broad wavelength band;
A second irradiating means for irradiating the site to be observed with a blue narrow band light whose wavelength band is limited together with white light;
An imaging unit that captures reflected light from an observation site, is provided with RGB primary color filters, the number of G pixels> the number of B pixels, and the G pixels reflect the narrow band light in addition to the green main sensitivity region. An imaging means having a sub-sensitivity region sensitive to light;
Extracting means for extracting a component of the sub-sensitivity region from the pixel value of the G pixel by performing a correlation calculation of the pixel value of the G pixel and the R pixel;
An endoscope system comprising: a display control means for displaying on a monitor an enhanced image of capillaries on the mucosal surface layer based on a pixel value of a B pixel and a component of a sub-sensitivity region extracted by the extraction means. .
ズーム機能を備え、
前記抽出手段は、ズーム操作で非拡大が選択されたときに副感度領域の成分の抽出を行い、
前記表示制御手段は、ズーム操作で非拡大が選択されたときにB画素の画素値、および副感度領域の成分を元にした強調画像のモニタへの表示を行うことを特徴とする請求項1に記載の内視鏡システム。
Has a zoom function,
The extraction means performs extraction of a component of the sub-sensitivity region when non-enlargement is selected by a zoom operation,
2. The display control means, when non-enlargement is selected by a zoom operation, displays an enhanced image on a monitor based on a pixel value of a B pixel and a component of a sub sensitivity region. The endoscope system described in 1.
ズーム機能を備え、
前記第一照射手段および前記第二照射手段は、白色光および狭帯域光の強度を各々独立に制御可能であり、ズーム操作で非拡大が選択されたときに、拡大が選択されたときよりも白色光に比べて狭帯域光の強度が強くなるよう前記第一照射手段および前記第二照射手段を制御することを特徴とする請求項1または2に記載の内視鏡システム。
Has a zoom function,
The first irradiating means and the second irradiating means are capable of independently controlling the intensity of white light and narrow band light, respectively, and when non-enlarging is selected in the zoom operation, than when enlarging is selected. The endoscope system according to claim 1 or 2, wherein the first irradiation unit and the second irradiation unit are controlled so that the intensity of the narrow band light becomes stronger than the white light.
前記抽出手段は、G画素の画素値から主感度領域の成分を抽出することを特徴とする請求項1ないし3のいずれかに記載の内視鏡システム。   The endoscope system according to any one of claims 1 to 3, wherein the extraction unit extracts a component of a main sensitivity region from a pixel value of a G pixel. 前記抽出手段で抽出した主感度領域の成分に対してビニング処理を施すビニング処理手段を備えることを特徴とする請求項4に記載の内視鏡システム。   The endoscope system according to claim 4, further comprising a binning processing unit that performs a binning process on a component of the main sensitivity region extracted by the extraction unit. 前記表示制御手段は、B画素の画素値と副感度領域の成分をモニタのB、Gチャンネルに、主感度領域の成分をモニタのRチャンネルにそれぞれ割り当てることを特徴とする請求項4または5に記載の内視鏡システム。   6. The display control means according to claim 4, wherein the pixel value of the B pixel and the component of the sub-sensitivity area are assigned to the B and G channels of the monitor, and the component of the main sensitivity area is assigned to the R channel of the monitor. The endoscope system described. 前記抽出手段は、画素補間後のG画素の画素値から抽出を行うことを特徴とする請求項1ないし6のいずれかに記載の内視鏡システム。   The endoscope system according to claim 1, wherein the extraction unit performs extraction from a pixel value of a G pixel after pixel interpolation. 副感度領域は波長380nm以上450nm以下に中心波長を有し、該中心波長における感度は、該中心波長におけるB画素の感度の1/5以上であることを特徴とする請求項1ないし7のいずれかに記載の内視鏡システム。   The sub-sensitivity region has a center wavelength at a wavelength of 380 nm to 450 nm, and the sensitivity at the center wavelength is 1/5 or more of the sensitivity of the B pixel at the center wavelength. The endoscope system according to Crab. 前記第一照射手段は、青色光を発するレーザ光源と、
青色光により緑色から黄色に励起発光する波長変換部材とを有し、
青色光と励起発光とを混合して白色光を得ることを特徴とする請求項1ないし8のいずれかに記載の内視鏡システム。
The first irradiation means includes a laser light source that emits blue light;
A wavelength conversion member that emits light from green to yellow by blue light;
The endoscope system according to any one of claims 1 to 8, wherein white light is obtained by mixing blue light and excitation light emission.
前記第二照射手段は、中心波長405nmの青色の狭帯域光を発するレーザ光源を有することを特徴とする請求項1ないし9のいずれかに記載の内視鏡システム。   The endoscope system according to any one of claims 1 to 9, wherein the second irradiation unit includes a laser light source that emits a blue narrow-band light having a center wavelength of 405 nm. 原色カラーフィルタはベイヤー配列であることを特徴とする請求項1ないし10のいずれかに記載の内視鏡システム。   The endoscope system according to any one of claims 1 to 10, wherein the primary color filters have a Bayer arrangement. ブロードな波長帯域の白色光と波長帯域が制限された青色の狭帯域光を被検体の被観察部位に照射し、
その反射光を、RGBの原色カラーフィルタが配され、G画素数>B画素数であってG画素は緑色の主感度領域に加えて狭帯域光の反射光に感応する副感度領域を有する撮像手段で撮像し、
G画素とR画素の画素値の相関演算を行うことで、G画素の画素値から副感度領域の成分を抽出し、
B画素の画素値、および抽出した副感度領域の成分を元にした粘膜表層の毛細血管の強調画像をモニタに表示することを特徴とする粘膜表層の毛細血管の強調画像表示方法。
Irradiate the observation site of the subject with white light in a broad wavelength band and blue narrow-band light with a limited wavelength band,
The reflected light is provided with RGB primary color filters, the number of G pixels> the number of B pixels, and the G pixels have a sub sensitivity region that is sensitive to the reflected light of the narrow band light in addition to the green main sensitivity region. Image by means,
By performing the correlation calculation of the pixel values of the G pixel and the R pixel, the component of the sub sensitivity region is extracted from the pixel value of the G pixel,
A method for displaying an enhanced image of a capillary on a mucosal surface layer, wherein an enhanced image of the capillary on the surface of the mucosa based on the pixel value of the B pixel and the extracted component of the sub-sensitivity region is displayed on a monitor.
JP2011036025A 2011-02-22 2011-02-22 Endoscope system, and method for displaying emphasized image of capillary of mucous membrane surface layer Withdrawn JP2012170639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011036025A JP2012170639A (en) 2011-02-22 2011-02-22 Endoscope system, and method for displaying emphasized image of capillary of mucous membrane surface layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036025A JP2012170639A (en) 2011-02-22 2011-02-22 Endoscope system, and method for displaying emphasized image of capillary of mucous membrane surface layer

Publications (1)

Publication Number Publication Date
JP2012170639A true JP2012170639A (en) 2012-09-10

Family

ID=46974108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036025A Withdrawn JP2012170639A (en) 2011-02-22 2011-02-22 Endoscope system, and method for displaying emphasized image of capillary of mucous membrane surface layer

Country Status (1)

Country Link
JP (1) JP2012170639A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160089012A1 (en) * 2014-09-30 2016-03-31 Fujifilm Corporation Endoscope system and method for operating the same
JP2016042913A (en) * 2014-08-20 2016-04-04 オリンパス株式会社 Sensitivity adjusting method and imaging apparatus
JP2016067777A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Endoscope system, processor device, method for operating endoscope system, and method for operating processor device
WO2016080130A1 (en) * 2014-11-20 2016-05-26 オリンパス株式会社 Observation apparatus
WO2016084257A1 (en) * 2014-11-28 2016-06-02 オリンパス株式会社 Endoscope apparatus
CN106255441A (en) * 2014-07-09 2016-12-21 奥林巴斯株式会社 Endoscope apparatus
WO2017046876A1 (en) * 2015-09-15 2017-03-23 オリンパス株式会社 Endoscope system, image processing apparatus, and image processing method
WO2017051451A1 (en) * 2015-09-24 2017-03-30 オリンパス株式会社 Solid-state image pickup element and endoscope system
WO2017056784A1 (en) * 2015-09-30 2017-04-06 オリンパス株式会社 Imaging device, endoscope, and endoscope system
WO2017090366A1 (en) * 2015-11-25 2017-06-01 オリンパス株式会社 Endoscope system and photographing method
JP6153689B1 (en) * 2015-09-30 2017-06-28 オリンパス株式会社 Imaging device and imaging apparatus
WO2018211970A1 (en) * 2017-05-15 2018-11-22 ソニー株式会社 Endoscope
WO2020008527A1 (en) * 2018-07-03 2020-01-09 オリンパス株式会社 Endoscope device, endoscope device operation method, and program
WO2020008528A1 (en) * 2018-07-03 2020-01-09 オリンパス株式会社 Endoscope apparatus, endoscope apparatus operating method, and program

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3123921A4 (en) * 2014-07-09 2018-01-03 Olympus Corporation Endoscopic device
CN106255441A (en) * 2014-07-09 2016-12-21 奥林巴斯株式会社 Endoscope apparatus
US10165934B2 (en) 2014-07-09 2019-01-01 Olympus Corporation Endoscope apparatus with addition of image signals
JP2016042913A (en) * 2014-08-20 2016-04-04 オリンパス株式会社 Sensitivity adjusting method and imaging apparatus
US20160089012A1 (en) * 2014-09-30 2016-03-31 Fujifilm Corporation Endoscope system and method for operating the same
JP2016067777A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Endoscope system, processor device, method for operating endoscope system, and method for operating processor device
US10039439B2 (en) 2014-09-30 2018-08-07 Fujifilm Corporation Endoscope system and method for operating the same
WO2016080130A1 (en) * 2014-11-20 2016-05-26 オリンパス株式会社 Observation apparatus
JP6072374B2 (en) * 2014-11-20 2017-02-01 オリンパス株式会社 Observation device
US9820654B2 (en) 2014-11-20 2017-11-21 Olympus Corporation Observation device
CN107072476A (en) * 2014-11-20 2017-08-18 奥林巴斯株式会社 Observe device
CN107072476B (en) * 2014-11-20 2018-11-06 奥林巴斯株式会社 Observe device
CN107005683A (en) * 2014-11-28 2017-08-01 奥林巴斯株式会社 Endoscope apparatus
WO2016084257A1 (en) * 2014-11-28 2016-06-02 オリンパス株式会社 Endoscope apparatus
WO2017046876A1 (en) * 2015-09-15 2017-03-23 オリンパス株式会社 Endoscope system, image processing apparatus, and image processing method
US10299664B2 (en) 2015-09-24 2019-05-28 Olympus Corporation Solid-state imaging device and endoscope system
WO2017051451A1 (en) * 2015-09-24 2017-03-30 オリンパス株式会社 Solid-state image pickup element and endoscope system
JPWO2017051451A1 (en) * 2015-09-24 2018-07-26 オリンパス株式会社 Solid-state imaging device and endoscope system
CN108135454A (en) * 2015-09-30 2018-06-08 奥林巴斯株式会社 Photographic device, endoscope and endoscopic system
JPWO2017056784A1 (en) * 2015-09-30 2018-02-01 オリンパス株式会社 Imaging device, endoscope and endoscope system
JP6153689B1 (en) * 2015-09-30 2017-06-28 オリンパス株式会社 Imaging device and imaging apparatus
WO2017056784A1 (en) * 2015-09-30 2017-04-06 オリンパス株式会社 Imaging device, endoscope, and endoscope system
US10441149B2 (en) 2015-09-30 2019-10-15 Olympus Corporation Imaging device, endoscope, and endoscope system
CN108289599B (en) * 2015-11-25 2020-08-11 奥林巴斯株式会社 Endoscope system and imaging method
JPWO2017090366A1 (en) * 2015-11-25 2017-11-30 オリンパス株式会社 Endoscope system
CN108289599A (en) * 2015-11-25 2018-07-17 奥林巴斯株式会社 Endoscopic system and image pickup method
WO2017090366A1 (en) * 2015-11-25 2017-06-01 オリンパス株式会社 Endoscope system and photographing method
US10952598B2 (en) 2015-11-25 2021-03-23 Olympus Corporation Endoscope system and image acquisition method with red signal generator
WO2018211970A1 (en) * 2017-05-15 2018-11-22 ソニー株式会社 Endoscope
JPWO2018211970A1 (en) * 2017-05-15 2020-05-14 ソニー株式会社 Endoscope
US11399699B2 (en) 2017-05-15 2022-08-02 Sony Corporation Endoscope including green light sensor with larger pixel number than pixel number of red and blue light sensors
JP7140113B2 (en) 2017-05-15 2022-09-21 ソニーグループ株式会社 Endoscope
WO2020008528A1 (en) * 2018-07-03 2020-01-09 オリンパス株式会社 Endoscope apparatus, endoscope apparatus operating method, and program
WO2020008527A1 (en) * 2018-07-03 2020-01-09 オリンパス株式会社 Endoscope device, endoscope device operation method, and program
JPWO2020008528A1 (en) * 2018-07-03 2021-07-01 オリンパス株式会社 Endoscope device, operation method and program of the endoscope device
JPWO2020008527A1 (en) * 2018-07-03 2021-07-08 オリンパス株式会社 Endoscope device, operation method and program of the endoscope device
JP7090705B2 (en) 2018-07-03 2022-06-24 オリンパス株式会社 Endoscope device, operation method and program of the endoscope device
JP7090706B2 (en) 2018-07-03 2022-06-24 オリンパス株式会社 Endoscope device, operation method and program of the endoscope device

Similar Documents

Publication Publication Date Title
JP2012170639A (en) Endoscope system, and method for displaying emphasized image of capillary of mucous membrane surface layer
JP5331904B2 (en) Endoscope system and method for operating endoscope system
JP5426620B2 (en) Endoscope system and method for operating endoscope system
JP5789280B2 (en) Processor device, endoscope system, and operation method of endoscope system
JP5351924B2 (en) Biological information acquisition system and method of operating biological information acquisition system
JP5191090B2 (en) Endoscope device
JP5329593B2 (en) Biological information acquisition system and method of operating biological information acquisition system
JP2010172673A (en) Endoscope system, processor for endoscope, and endoscopy aiding method
JP2012170640A (en) Endoscope system, and method for displaying emphasized image of capillary of mucous membrane surface layer
WO2015064435A1 (en) Image processing device and operation method therefor
JP7176041B2 (en) Medical image processing device and method, endoscope system, processor device, diagnosis support device and program
JP5631764B2 (en) Endoscope system and operating method thereof
JP5283545B2 (en) Endoscope system and processor device for endoscope
US20100240953A1 (en) Endoscope system, endoscope video processor and method of driving endoscope system
JP5667917B2 (en) Endoscope system, processor device for endoscope system, and method for operating endoscope system
JP5757891B2 (en) Electronic endoscope system, image processing apparatus, operation method of image processing apparatus, and image processing program
JP2013017769A (en) Bioinformation acquisition system and bioinformation acquisition method
JP2010063589A (en) Endoscope system and drive control method thereof
EP2767210A1 (en) Endoscope system and image generation method
JP2012071007A (en) Endoscope device
JP5766773B2 (en) Endoscope system and method for operating endoscope system
JP6054806B2 (en) Image processing apparatus and method for operating endoscope system
US10003774B2 (en) Image processing device and method for operating endoscope system
JP5554288B2 (en) ENDOSCOPE SYSTEM, PROCESSOR DEVICE, AND IMAGE CORRECTION METHOD
JP5649947B2 (en) Optical measurement system and method of operating optical measurement system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513