JP2012119890A - Optical transmission rotary joint - Google Patents

Optical transmission rotary joint Download PDF

Info

Publication number
JP2012119890A
JP2012119890A JP2010267105A JP2010267105A JP2012119890A JP 2012119890 A JP2012119890 A JP 2012119890A JP 2010267105 A JP2010267105 A JP 2010267105A JP 2010267105 A JP2010267105 A JP 2010267105A JP 2012119890 A JP2012119890 A JP 2012119890A
Authority
JP
Japan
Prior art keywords
unit
transmission
light
optical
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010267105A
Other languages
Japanese (ja)
Other versions
JP5402913B2 (en
Inventor
Tadashi Aizawa
忠 相澤
Takeyoshi Sasao
剛良 笹生
Masahisa Sakai
雅久 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2010267105A priority Critical patent/JP5402913B2/en
Publication of JP2012119890A publication Critical patent/JP2012119890A/en
Application granted granted Critical
Publication of JP5402913B2 publication Critical patent/JP5402913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical transmission rotary joint capable of securing communication stability.SOLUTION: An optical transmission rotary joint includes a rotating part held so as to be rotatable relative to a fixed part. The fixed part and the rotating part individually have an optical signal transmission and reception section including a light emitting part, a light receiving part, a reflecting surface for transmission, and a reflecting surface for reception. When optical transmission communication is performed between the optical signal transmission and reception sections disposed opposite to each other, an optical axis of an optical signal is adjusted by changing an angle of the reflecting surface for transmission at two locations where the optical signal transmission and reception sections disposed opposite to each other are positioned at an in-phase position and an out-of-phase position.

Description

本発明は、光伝送ロータリージョイントに関し、特に、一軸を中心に相対的に回転する固定部及び回転部との間で、光信号による双方向信号伝送を行う光伝送ロータリージョイントに関する。   The present invention relates to an optical transmission rotary joint, and more particularly to an optical transmission rotary joint that performs bidirectional signal transmission using an optical signal between a fixed portion and a rotating portion that rotate relatively around one axis.

屋内の天井等に固定設置される監視カメラ装置として、装置内部にカメラのパン角度やチルト角度を制御して撮像方向を変えながら監視を行う装置が多数普及している。また、回転機能を持たない固定式カメラに回転機能を与える電動雲台が利用される事も多い。このような角度制御可能な監視カメラ装置の多くにおいて、天井等に固定設置される固定部とパン方向に回動可能な回転部とが、電動雲台を介して接続されている。   As monitoring camera devices that are fixedly installed on an indoor ceiling or the like, many devices that perform monitoring while changing the imaging direction by controlling the pan angle and tilt angle of the camera are widely used. In many cases, an electric pan head that provides a rotation function to a fixed camera having no rotation function is used. In many of such angle-controllable surveillance camera devices, a fixed part fixedly installed on a ceiling or the like and a rotating part rotatable in the pan direction are connected via an electric pan head.

より詳しくは、回転部にはカメラをチルト方向に駆動するチルト駆動機構が設けられており、この回転部がパン方向に回動可能な電動雲台の回転部分に取り付けられている。一方、電動雲台の固定部分は天井等に固定されている。監視カメラ装置は、このような構成を有するものが多い。なお、チルト制御機能を省略したり、チルト角度の変更は手動機構によって行うなどして、パン方向の回転のみを電動で行う構成の装置もある。このような構成の監視カメラ装置においては、回転部上のカメラから出力された映像信号は、固定部と回転部の間の接続部を介して固定部に伝送され、固定部上で画像処理や出力インターフェース変換がされて外部のモニタや映像信号記録装置に出力される。   More specifically, the rotation unit is provided with a tilt drive mechanism that drives the camera in the tilt direction, and this rotation unit is attached to a rotating part of an electric pan head that can rotate in the pan direction. On the other hand, the fixed part of the electric pan head is fixed to the ceiling or the like. Many surveillance camera devices have such a configuration. There is also an apparatus that is configured to electrically rotate only the pan direction by omitting the tilt control function or changing the tilt angle by a manual mechanism. In the monitoring camera device having such a configuration, the video signal output from the camera on the rotating unit is transmitted to the fixing unit via the connection unit between the fixing unit and the rotating unit, and image processing or image processing is performed on the fixing unit. The output interface is converted and output to an external monitor or video signal recording device.

このような監視カメラ装置で用いられる回転接続方式として、いくつかの方式が知られている。特に、回転部のパン方向への連続回転が可能な回転接続方式として、スリップリングとブラシとによる摺動接点によって回転部と固定部との間に信号接続路を構築する方式が知られている。しかし、この摺動接点方式は、回転するスリップリングと固定されたブラシとの接点部分への油膜や塵埃の付着による電気的接触の不安定化や、機械的接触に伴うノイズ発生や、長期間の連続摺動による電気的接触性能の劣化などの問題があった。特に映像信号に関しては回転に伴うノイズ発生が問題となり、パン・チルト等の制御信号に関しては、誤動作の発生が問題となる。さらに、このような機械接触方式では伝送可能な周波数帯域が限られているので、広帯域伝送路を必要とする高精細映像信号や高速データの伝送を行うことが困難であった。   Several methods are known as a rotational connection method used in such a monitoring camera device. In particular, as a rotational connection method capable of continuously rotating the rotating part in the pan direction, a method of constructing a signal connection path between the rotating part and the fixed part by a sliding contact by a slip ring and a brush is known. . However, this sliding contact method is unstable in electrical contact due to oil film and dust adhering to the contact part between the rotating slip ring and the fixed brush, noise generated due to mechanical contact, There were problems such as deterioration of electrical contact performance due to continuous sliding. In particular, the generation of noise associated with rotation is a problem for video signals, and the occurrence of malfunctions is a problem for control signals such as pan / tilt. Furthermore, since the frequency band that can be transmitted is limited in such a mechanical contact system, it is difficult to transmit high-definition video signals and high-speed data that require a broadband transmission path.

そこで、摺動接触方式の悪影響を避けるために、非接触光伝送によるロータリージョイントも提案されている。この方式は、当初は回転部上のカメラの映像信号を固定部に伝送する片方向伝送であった。しかし、カメラやチルトモータの制御信号も固定部から回転部に送る方式、即ち、双方向で非接触光伝送を行う方式も提案されている。   In order to avoid the adverse effects of the sliding contact method, a rotary joint using non-contact light transmission has also been proposed. This method was originally unidirectional transmission in which the video signal of the camera on the rotating unit is transmitted to the fixed unit. However, a method of sending a control signal of a camera or tilt motor from the fixed unit to the rotating unit, that is, a method of performing non-contact light transmission in both directions has been proposed.

下記特許文献1には、二組の発光素子及び受光素子を用いた光伝送ロータリージョイントが開示されている。このロータリージョイントでは、固定部上の受光素子と回転部上の受光素子とが、回転部の回転軸上に対向配置されている。また、発光素子は、受光素子と重ならないように受光素子の外側に配置されている。各発光素子から照射される光信号は、その相手側受光素子の中心部に向けて斜め方向に投射されるように光軸が配置されている。しかし、この方式は近距離しか対応できない。また、光の利用効率が悪いので大出力発光が必要であり、発熱が大きくなるというデメリットがある。   Patent Literature 1 below discloses an optical transmission rotary joint using two sets of light emitting elements and light receiving elements. In this rotary joint, the light receiving element on the fixed part and the light receiving element on the rotating part are arranged opposite to each other on the rotation axis of the rotating part. The light emitting element is disposed outside the light receiving element so as not to overlap the light receiving element. The optical axis is arranged so that the optical signal emitted from each light emitting element is projected obliquely toward the center of the counterpart light receiving element. However, this method can only handle short distances. In addition, since the light use efficiency is poor, there is a demerit that high power emission is necessary and heat generation is increased.

また、下記特許文献2には、一組の発光素子及び受光素子を用いた光伝送ロータリージョイントが開示されている。このロータリージョイントでは、発光素子と受光素子との間に、回転部の回転軸にほぼ一致させて導光部材が挿入されている。この導光部材が光伝送路として機能するが、光軸ずれの影響を抑えるため、導光部材の端面より広い面積の受光素子が用いられる。あるいは、導光部材の端面から出射した光を受光素子に集光するレンズが用いられる。しかし、この方式は安定した光伝送が可能であるが、構造的に片方向しか光伝送出来ない。   Patent Document 2 below discloses an optical transmission rotary joint using a pair of light emitting elements and light receiving elements. In this rotary joint, a light guide member is inserted between the light emitting element and the light receiving element so as to substantially coincide with the rotation axis of the rotating part. Although this light guide member functions as an optical transmission path, a light receiving element having a larger area than the end face of the light guide member is used in order to suppress the influence of the optical axis shift. Or the lens which condenses the light radiate | emitted from the end surface of a light guide member to a light receiving element is used. However, although this system can stably transmit light, it can structurally transmit light only in one direction.

光伝送を行うには、発光部からの信号光が、その指向角の範囲内の角度で受光部に到達する必要がある。このような光軸調整技術も提案されている。光伝送での光軸調整に関する技術としては、送信光軸上に設けられた照準機を用いる方法や、受信部に設けたコーナーキューブの反射光を利用して光軸調整する方法や、パラボラリフレクタを用いる方法や、光軸調整専用のパイロット光源を用いる方法などが提案されている。下記特許文献3には、光軸調整専用のパイロット光源を用いる方法が開示されている。この方法では、光信号は四分割受光素子(PD)で受光され、各分割受光素子の受光レベル差に基づいて光軸調整が行われる。   In order to perform optical transmission, the signal light from the light emitting unit needs to reach the light receiving unit at an angle within the range of the directivity angle. Such an optical axis adjustment technique has also been proposed. Techniques for optical axis adjustment in optical transmission include a method using a sighting device provided on the transmission optical axis, a method for adjusting the optical axis using the reflected light of the corner cube provided in the receiver, and a parabolic reflector. There have been proposed a method using a light source, a method using a pilot light source dedicated to optical axis adjustment, and the like. Patent Literature 3 below discloses a method using a pilot light source dedicated to optical axis adjustment. In this method, an optical signal is received by a four-divided light receiving element (PD), and the optical axis is adjusted based on the difference in the received light level of each divided light receiving element.

特開2001−44940号公報JP 2001-44940 A 特開2007−120742号公報JP 2007-120742 A 特開2000−31908号公報JP 2000-31908 A

光信号通信は、光信号の指向角の範囲内で受光素子に一定レベル以上の光量が届かなければ成立しない。しかし、屋外設置のような多湿環境では、空気中に含まれる水蒸気量や温度によっては、装置内部で結露が生じる。結露によって生じる微小な水滴が光路上に存在すると、信号光が散乱して伝送効率が著しく悪化し、場合によっては通信不能となる。結露対策としては、ヒーター(電熱線)を用いる方法や、結露面に風を吹きつけて結露を解消する方法が提案されてきた。上記特許文献3では、窓の結露解消のために機器外に専用ヒーターが取り付けられるが、結露検出専用の結露検出手段が必要である。このため、費用負担が大きく、装置の大型化を招いていた。   Optical signal communication is not possible unless the light quantity reaches a certain level within the range of the directivity angle of the optical signal. However, in a humid environment such as outdoor installation, condensation occurs inside the apparatus depending on the amount of water vapor and the temperature contained in the air. If minute water droplets caused by condensation are present on the optical path, the signal light is scattered and the transmission efficiency is remarkably deteriorated. In some cases, communication becomes impossible. As a countermeasure against condensation, a method using a heater (electric heating wire) or a method for eliminating condensation by blowing wind on the condensation surface has been proposed. In Patent Document 3 described above, a dedicated heater is attached to the outside of the device in order to eliminate the condensation on the window, but a dew condensation detection means dedicated to dew condensation detection is required. For this reason, the cost burden is large, leading to an increase in size of the apparatus.

本発明の目的は、通信の安定性を確保できる光伝送ロータリージョイントを提供することにある。   The objective of this invention is providing the optical transmission rotary joint which can ensure the stability of communication.

本発明の光伝送ロータリージョイントは、固定部(2)に対して回転自在に保持された回転部(3)を備え、前記固定部(3)と前記回転部(2)との間で双方向の光信号の伝送を行うものであり、前記固定部(2)上に設けられた固定側光信号送受信部(10)と、前記回転部(3)上に設けられた回転側光信号送受信部(10)と、二つの前記光信号送受信部(10)の間に形成された中空空間(11)を備えている。二つの前記光信号送受信部(10)は、それぞれ、送信部(12)と、受信部(14)と、自身の前記送信部(12)からの信号光を相手側の前記光信号送受信部(10)に向けて反射させる送信用反射面(13)と、相手側の前記光信号送受信部(10)からの信号光を自身の前記受信部(14)に反射させる受信用反射面(15)とを備えている。前記光伝送ロータリージョイント(5)は、前記回転部(3)の回転と前記送信用反射面(13)の角度変更とを制御する制御部をさらに備えている。前記送信用第一の反射手段(13)の角度を変更する回転軸(CL2)は、前記回転部(3)の回転軸(CL1)と直交しており、前記制御部が、前記固定部(2)に対して前記回転部(3)を回転させて二つの前記光信号送受信手段(10)を前記回転部(3)の前記回転軸(CL1)に関して同位相位置と逆位相位置との二箇所で前記送信用反射面(13)の角度を変更して前記信号光の光軸調整を行う。   The optical transmission rotary joint of the present invention includes a rotating part (3) rotatably held with respect to the fixed part (2), and is bidirectional between the fixed part (3) and the rotating part (2). The fixed-side optical signal transmitting / receiving unit (10) provided on the fixed unit (2) and the rotating-side optical signal transmitting / receiving unit provided on the rotating unit (3) (10) and a hollow space (11) formed between the two optical signal transmission / reception units (10). The two optical signal transmission / reception units (10) respectively transmit the signal light from the transmission unit (12), the reception unit (14), and the own transmission unit (12) to the optical signal transmission / reception unit ( 10) a reflective surface for transmission (13) that reflects the light toward the other side, and a reflective surface for reception (15) that reflects the signal light from the optical signal transmitting / receiving unit (10) on the other side to the receiving unit (14) of itself. And. The light transmission rotary joint (5) further includes a control unit that controls the rotation of the rotating unit (3) and the angle change of the transmission reflecting surface (13). The rotation axis (CL2) for changing the angle of the first reflecting means (13) for transmission is orthogonal to the rotation axis (CL1) of the rotation unit (3), and the control unit is connected to the fixed unit ( Rotating the rotating part (3) with respect to 2), the two optical signal transmitting / receiving means (10) are moved in the same phase position and opposite phase position with respect to the rotation axis (CL1) of the rotating part (3). The optical axis of the signal light is adjusted by changing the angle of the transmission reflecting surface (13) at a point.

ここで、前記制御部が、前記同位相位置及び前記逆位相位置のそれぞれの位置にて前記受光部(14)により受光した受光光量に基づいて結露状態を含む異常状態を検知し、異常状態検知時に、前記送信用反射面(13)及び前記受信用反射面(14)に設けられた加熱手段を加熱させる、ことが好ましい。   Here, the control unit detects an abnormal state including a dew condensation state based on the amount of light received by the light receiving unit (14) at each of the same phase position and the opposite phase position, and detects an abnormal state. Sometimes, it is preferable to heat the heating means provided on the reflective surface for transmission (13) and the reflective surface for reception (14).

本発明の光伝送ロータリージョイントによれば、反射面角度を制御する光軸調整機構を光路上に設けることによって装置を小型化しつつ、固定部と回転部とにそれぞれ設けられた光信号送受信部の回転軸に対する同位相位置及び逆位相位置の受光光量を取得するだけで光軸を効率よく調整できる。   According to the optical transmission rotary joint of the present invention, the optical axis adjusting mechanism for controlling the angle of the reflecting surface is provided on the optical path to reduce the size of the apparatus, and the optical signal transmitting / receiving unit provided in the fixed unit and the rotating unit, respectively. The optical axis can be adjusted efficiently simply by acquiring the received light quantity at the same phase position and opposite phase position with respect to the rotation axis.

また、上述した加熱手段を設ければ、光軸調整手段を活用することで反射面の結露状態を含む異常状態を検知でき、さらには、加熱手段を制御して結露を解消することができる。   If the heating means described above is provided, an abnormal state including a dew condensation state on the reflecting surface can be detected by utilizing the optical axis adjustment means, and further, the dew condensation can be eliminated by controlling the heating means.

光伝送ロータリージョイントの実施形態の構成図である。It is a block diagram of embodiment of an optical transmission rotary joint. (a)及び(b)は、上記実施形態における光信号伝送の説明図である。(A) And (b) is explanatory drawing of the optical signal transmission in the said embodiment. (a)〜(d)は、上記実施形態における光信号伝送の光軸調整の説明図である。(A)-(d) is explanatory drawing of the optical axis adjustment of the optical signal transmission in the said embodiment. (a)は上記実施形態における光軸調整の際の調節点の求め方を説明する反射面角度Xと受光光量Yとの関係を示すグラフであり、(b)は反射面の結露状態での反射面角度Xと受光光量Yとの関係を示すグラフである。(A) is a graph which shows the relationship between the reflective surface angle X and the received light quantity Y explaining the method of obtaining the adjustment point at the time of optical axis adjustment in the above embodiment, and (b) is the dew condensation state of the reflective surface. 5 is a graph showing a relationship between a reflection surface angle X and a received light amount Y. 上記実施形態における反射面角度変更機構の拡大側面図である。It is an expanded side view of the reflective surface angle change mechanism in the said embodiment. 反射面角度変更機構(反射面加熱方法)の第1変形例の拡大側面図である。It is an enlarged side view of the 1st modification of a reflective surface angle change mechanism (reflective surface heating method). 反射面角度変更機構の第2変形例の拡大側面図である。It is an enlarged side view of the 2nd modification of a reflective surface angle change mechanism. 反射面角度変更機構の第3変形例の拡大側面図である。It is an enlarged side view of the 3rd modification of a reflective surface angle change mechanism. 上記実施形態の光伝送ロータリージョイントに電力伝送機構と回転機構とを組み込んだユニットの断面斜視図である。It is a cross-sectional perspective view of the unit which incorporated the electric power transmission mechanism and the rotation mechanism in the optical transmission rotary joint of the said embodiment. 上記実施形態の光伝送ロータリージョイントが組み込まれた回転ドーム型監視カメラの構成図である。It is a block diagram of the rotation dome type surveillance camera with which the optical transmission rotary joint of the said embodiment was integrated. 上記実施形態の光伝送ロータリージョイントでの異常検出制御のフローチャートである。It is a flowchart of the abnormality detection control in the optical transmission rotary joint of the said embodiment.

本実施形態の光伝送ロータリージョイントでは、図1に示されるように、一対の光信号送受信部10が、中空管11を挟んで対向配置してある。中空管11の内部には中空空間が形成されている。中空管11は、中央で固定部2と回転部3とに分割される。なお、固定部2と回転部3とは、図1のように中空管11で分割されても良いし、中空管11と何れかの光信号送受信部10との間で分割されても良い。各光信号送受信部10は、光信号発光部12、光信号受信部14、自身の光信号発光部12からの信号光を相手側の光信号送受信部10に向けて反射する反射面13、及び、相手側の光信号送信部12からの信号光を自身の光信号受信部14に向けて反射する反射面15を備えている。   In the optical transmission rotary joint of the present embodiment, as shown in FIG. 1, a pair of optical signal transmission / reception units 10 are disposed to face each other with a hollow tube 11 interposed therebetween. A hollow space is formed inside the hollow tube 11. The hollow tube 11 is divided into a fixed part 2 and a rotating part 3 at the center. The fixed portion 2 and the rotating portion 3 may be divided by the hollow tube 11 as shown in FIG. 1 or may be divided between the hollow tube 11 and any one of the optical signal transmitting / receiving units 10. good. Each optical signal transmitting / receiving unit 10 includes an optical signal light emitting unit 12, an optical signal receiving unit 14, a reflection surface 13 that reflects signal light from its own optical signal light emitting unit 12 toward the counterpart optical signal transmitting / receiving unit 10, and A reflection surface 15 is provided for reflecting the signal light from the counterpart optical signal transmission unit 12 toward its own optical signal reception unit 14.

本実施形態の各光信号送信部12には、L1ght Emitting Diode(LED)が用いられているが、半導体レーザ(LD)や面発光レーザ(VCSEL)が用いられても良い。光信号受信部14には、Photodiode(PD)が用いられている。   Each optical signal transmission unit 12 of the present embodiment uses an L1ght Emitting Diode (LED), but a semiconductor laser (LD) or a surface emitting laser (VCSEL) may be used. Photodiode (PD) is used for the optical signal receiver 14.

反射面13,15には、光輝処理を施したステンレス鋼板が用いられているが、鏡や、表面を平滑に仕上げた樹脂や、反射膜を付加した部材が用いられても良い。光輝処理が施されたステンレス鋼板は、耐食性に優れ、強度が高く、取り付け形状の形成も容易で、硝子を用いた反射面に比べて安価であるなどの特長を持つ。   The reflective surfaces 13 and 15 are made of a stainless steel plate that has been subjected to a brilliant treatment, but a mirror, a resin with a smooth surface, or a member with a reflective film may be used. The stainless steel sheet that has been subjected to the glittering treatment has features such as excellent corrosion resistance, high strength, easy formation of a mounting shape, and low cost compared to a reflecting surface using glass.

中空管11は、金属製である。具体的には、真鍮を機械加工したものであり、中空内面は凹凸の少ない機械加工面として仕上げられており、中空内面での反射も利用される。しかし、基本的には、中空管11の内部に光信号が通る空間が確保されていれば良く、中空管11は、樹脂製や硝子製でも良い。   The hollow tube 11 is made of metal. Specifically, it is a machined brass, and the hollow inner surface is finished as a machined surface with less unevenness, and reflection on the hollow inner surface is also used. However, basically, it is sufficient that a space through which an optical signal passes is secured inside the hollow tube 11, and the hollow tube 11 may be made of resin or glass.

次に、光信号の伝達について説明する。図2(a)及び図2(b)に示されるように、LED12から一定の放射角で出射された信号光は、拡がりながら相手側のPD14に到達する。ここで、拡がる信号光の中心軸(図中一点鎖線)は、反射面13で反射された後に、相手側反射面15と回転軸CL1との交点18に達するよう、θ1(図2(a))やθ2(図2(b))が設定されている。従って、信号光が交点18に達すると、拡がった信号光の半分が反射面15で再度反射されてPD14に達する。このように光軸を設定する事で、固定部2と回転部3とがどのような回転位置関係にあっても、信号光が交点18に達した際に拡がった信号光の半分が反射面15で反射されてPD14に常に送られる。従って、固定部2に対する回転部3の回転による光量変動が抑制されて安定した通信が実現される。   Next, transmission of an optical signal will be described. As shown in FIG. 2A and FIG. 2B, the signal light emitted from the LED 12 at a constant radiation angle reaches the counterpart PD 14 while spreading. Here, the center axis (the one-dot chain line in the figure) of the spreading signal light is reflected by the reflecting surface 13 and then reaches θ1 (FIG. 2A) so as to reach the intersection 18 between the counterpart reflecting surface 15 and the rotation axis CL1. ) And θ2 (FIG. 2B) are set. Therefore, when the signal light reaches the intersection 18, half of the spread signal light is reflected again by the reflecting surface 15 and reaches the PD 14. By setting the optical axis in this way, regardless of the rotational positional relationship between the fixed portion 2 and the rotating portion 3, half of the signal light spread when the signal light reaches the intersection 18 is reflected on the reflecting surface. It is reflected at 15 and always sent to the PD 14. Therefore, the light quantity fluctuation | variation by rotation of the rotation part 3 with respect to the fixing | fixed part 2 is suppressed, and stable communication is implement | achieved.

また、対向する一対の光信号送受信基板(光信号送受信部10)間の距離が異なる場合でも(図2(a)と図2(b))、反射面13の角度を変更する事で容易に対応できる(θ1,θ2参照)。さらに、反射面13の回転軸CL2と固定部2に対する回転部3の回転軸CL1とは直交するように配置されているので、回転軸CL1方向からみた反射面13(15)の位置は変わらない(換言すれば、回転軸CL2は、回転軸CL1との交点を中心に回転するだけである)。このため、回転部3の回転による光量変動は生じない。以上のようにLED12から出射された信号光が2回反射されてPD14に到達する構成によって、反射面13を光軸調整に利用するだけでなく、LED12やPD14などの発光受光部品を回転軸CL2に対して水平に配置できるので構造を薄型化(小型化)できる。   Further, even when the distance between the pair of opposing optical signal transmission / reception substrates (optical signal transmission / reception unit 10) is different (FIGS. 2A and 2B), it is easy to change the angle of the reflecting surface 13. Yes (see θ1, θ2). Further, since the rotation axis CL2 of the reflection surface 13 and the rotation axis CL1 of the rotation unit 3 with respect to the fixed unit 2 are arranged to be orthogonal to each other, the position of the reflection surface 13 (15) viewed from the direction of the rotation axis CL1 does not change. (In other words, the rotation axis CL2 only rotates around the intersection with the rotation axis CL1). For this reason, the light quantity fluctuation due to the rotation of the rotating unit 3 does not occur. As described above, the signal light emitted from the LED 12 is reflected twice and reaches the PD 14, so that not only the reflection surface 13 is used for optical axis adjustment but also the light-emitting / receiving components such as the LED 12 and the PD 14 are used as the rotation axis CL2. Therefore, the structure can be thinned (downsized).

次に光軸調整について説明する。上述したように、LED12から出射された信号光の光軸は、反射面13で反射された後に交点18を通るように設計されている。光軸が交点18を通るように調整されていれば、回転部3の回転位置(位相)によらず、放射角によって拡がった信号光の半分はPD14に向けて常に反射される。しかし、光軸が交点18よりPD14側にずれていると、この回転位置(位相)では多くの光がPD14に向けて反射されるが、回転部3の回転によって逆位相になるとPD14に向けて反射される信号光が著しく減少する。逆に、光軸がLED12側にずれている場合も同様である。   Next, optical axis adjustment will be described. As described above, the optical axis of the signal light emitted from the LED 12 is designed to pass through the intersection 18 after being reflected by the reflecting surface 13. If the optical axis is adjusted so as to pass through the intersection point 18, half of the signal light spread by the radiation angle is always reflected toward the PD 14 regardless of the rotational position (phase) of the rotating unit 3. However, if the optical axis is deviated from the intersection point 18 toward the PD 14 side, a lot of light is reflected toward the PD 14 at this rotational position (phase). The reflected signal light is significantly reduced. Conversely, the same applies when the optical axis is shifted toward the LED 12 side.

従って、反射面13の角度を変えて信号光の光軸が交点18を通るように光軸調整が行われる。光軸調整の手順を、図3(a)〜図3(d)を参照して説明する。光軸調整は、固定部2と回転部3との間の通信路が確立されていない状態で行われる。光軸調整の各ステップは、予め定められた時間で次のステップに移行する。まず、図3(a)に示されるように、ステップ1では、電源投入、又は、リセットスイッチ(図示せず)の押下によって、固定部2に対する回転部3の回転角度を検出する角度検出機能を用いて、回転部2及び回転部3において発光部(LED12)と受光部(PD14)とが同位相(回転軸CL1に対して同じ位置)にされる。なお、角度検出機能としては、エンコーダを設けたり、回転部3を回転させるステッピングモータの制御信号などを利用すればよい。図3(a)に示される状態で、回転部3上のLED12を発光させて回転部3上の反射面13の角度を変化させ、逐次、反射面角度情報を変調して信号光にのせる。この信号光を固定部2上のPD14で受光し、回転部3上の反射面13の角度と、固定部2側のPD14の受光レベルとの同位相状態での相関データを取得する。   Therefore, the optical axis is adjusted so that the optical axis of the signal light passes through the intersection 18 by changing the angle of the reflecting surface 13. The procedure for adjusting the optical axis will be described with reference to FIGS. 3 (a) to 3 (d). The optical axis adjustment is performed in a state where the communication path between the fixed unit 2 and the rotating unit 3 is not established. Each step of the optical axis adjustment proceeds to the next step at a predetermined time. First, as shown in FIG. 3A, in step 1, an angle detection function for detecting the rotation angle of the rotating unit 3 with respect to the fixed unit 2 by turning on the power or pressing a reset switch (not shown). The light emitting unit (LED 12) and the light receiving unit (PD 14) are in the same phase (the same position with respect to the rotation axis CL1) in the rotating unit 2 and the rotating unit 3. As the angle detection function, an encoder may be provided, or a control signal for a stepping motor that rotates the rotating unit 3 may be used. In the state shown in FIG. 3A, the LED 12 on the rotating unit 3 is caused to emit light, the angle of the reflecting surface 13 on the rotating unit 3 is changed, and the reflecting surface angle information is sequentially modulated and placed on the signal light. . The signal light is received by the PD 14 on the fixed unit 2, and correlation data in the same phase state between the angle of the reflection surface 13 on the rotating unit 3 and the light reception level of the PD 14 on the fixed unit 2 side is acquired.

次に、図3(b)に示されるように、ステップ2では、角度検出機能を用いて回転部3を180°回転させて、回転部2及び回転部3において発光部(LED12)と受光部(PD14)とが逆位相にされる。図3(b)に示される状態で、回転部3上のLED12を発光させて回転部3上の反射面13の角度を変化させ、逐次、反射面角度情報を変調して信号光にのせる。この信号光を固定部2上のPD14で受光し、逆位相状態での角度と光量との間の相関データを取得する。ステップ1で取得した同位相状態の相関データとステップ2で取得した逆位相状態の相関データとを合わせると、図4(a)に示されるようなグラフとして得られる。図4(a)のグラフから、光軸が交点18を通る反射面13の角度に対応する調整点Qが求められる。理想的には、調整点Qは設計中心の角度と一致する。   Next, as shown in FIG. 3B, in step 2, the rotation unit 3 is rotated by 180 ° using the angle detection function, and the light emitting unit (LED 12) and the light receiving unit in the rotation unit 2 and the rotation unit 3. (PD14) is set to the opposite phase. In the state shown in FIG. 3B, the LED 12 on the rotating unit 3 is caused to emit light, the angle of the reflecting surface 13 on the rotating unit 3 is changed, and the reflecting surface angle information is sequentially modulated and placed on the signal light. . This signal light is received by the PD 14 on the fixed unit 2, and correlation data between the angle and the light quantity in the opposite phase state are acquired. When the correlation data in the in-phase state acquired in step 1 and the correlation data in the anti-phase state acquired in step 2 are combined, a graph as shown in FIG. 4A is obtained. From the graph of FIG. 4A, an adjustment point Q corresponding to the angle of the reflecting surface 13 whose optical axis passes through the intersection 18 is obtained. Ideally, the adjustment point Q coincides with the angle of the design center.

続いて、ステップ3では、得られた調整点Qの角度情報を信号光に変調し、今度は固定部2上のLED12を発光させつつ、回転部3を所定速度で少なくとも一回転させる。固定部2上のLED13を発光させつつ回転部3を一回転させる事で、固定部2から回転部3への光軸が未調整の状態であっても、一回転の内のいずれかの角度で信号光が所定光量以上に達する。このため、調整点Qの反射面角度情報を固定部2から回転部3に伝達できる。回転部3は、固定部2から伝達された情報に基づいて、回転部3上の発光用の反射面13の角度を調整点Qに対応した角度に設定する。   Subsequently, in step 3, the obtained angle information of the adjustment point Q is modulated into signal light, and this time, the rotating unit 3 is rotated at a predetermined speed at least once while causing the LED 12 on the fixed unit 2 to emit light. Even if the optical axis from the fixed part 2 to the rotating part 3 is not adjusted by rotating the rotating part 3 once while causing the LED 13 on the fixed part 2 to emit light, any angle within one rotation Thus, the signal light reaches a predetermined light amount or more. For this reason, the reflecting surface angle information of the adjustment point Q can be transmitted from the fixed unit 2 to the rotating unit 3. The rotating unit 3 sets the angle of the light-emitting reflecting surface 13 on the rotating unit 3 to an angle corresponding to the adjustment point Q based on the information transmitted from the fixed unit 2.

次に、図3(c)に示されるように、ステップ4では、再び同位相に戻して、固定部2上のLED12を発光させて固定部2上の反射面13の角度を変化させ、逐次、反射面角度情報を変調して信号光にのせる。この信号光を回転部3上のPD14で受光し、同位相状態での角度と光量との間の相関データを取得する。   Next, as shown in FIG. 3C, in step 4, the phase is returned to the same phase again, the LED 12 on the fixed part 2 is caused to emit light, and the angle of the reflecting surface 13 on the fixed part 2 is changed. The reflection surface angle information is modulated and placed on the signal light. This signal light is received by the PD 14 on the rotating unit 3, and correlation data between the angle and the light amount in the same phase state is acquired.

図3(d)に示されるように、ステップ5では、回転部3を180°回転させて逆位相とし、同様に、固定部2上のLED12を発光させて固定部2上の反射面13の角度を変化させ、逐次、反射面角度情報を変調して信号光にのせる。この信号光を回転部3上のPD14で受光し、逆位相状態での角度と光量との間の相関データを取得する。ステップ4で取得した同位相状態の相関データとステップ5で取得した逆位相状態の相関データとから、同様に、調整点Qに対応する反射面13の角度が取得できる。   As shown in FIG. 3D, in step 5, the rotating unit 3 is rotated 180 ° to have an opposite phase, and similarly, the LED 12 on the fixing unit 2 is caused to emit light and the reflecting surface 13 on the fixing unit 2 is illuminated. The angle is changed, and reflection surface angle information is sequentially modulated and placed on the signal light. This signal light is received by the PD 14 on the rotating unit 3, and correlation data between the angle and the light quantity in the opposite phase state are acquired. Similarly, the angle of the reflecting surface 13 corresponding to the adjustment point Q can be acquired from the correlation data in the in-phase state acquired in step 4 and the correlation data in the anti-phase state acquired in step 5.

続いて、ステップ6では、得られた調整点Qの角度情報を信号光に変調し、今度は回転部3上のLED12を発光させつつ、回転部3を所定速度で少なくとも一回転させる。得られた角度情報を固定部2上の発光用の反射面13に反映させる(調整点Qに対応した角度に設定する)。以上により光軸調整が完了する。なお、上述した光軸調整時に、固定部2に対する回転部3の回転や、反射面13の角度調整は、制御部によって制御される。   Subsequently, in step 6, the angle information of the obtained adjustment point Q is modulated into signal light, and this time the LED 12 on the rotating unit 3 is caused to emit light, and the rotating unit 3 is rotated at least once at a predetermined speed. The obtained angle information is reflected on the reflecting surface 13 for light emission on the fixed portion 2 (set to an angle corresponding to the adjustment point Q). The optical axis adjustment is thus completed. Note that during the optical axis adjustment described above, the rotation of the rotating unit 3 relative to the fixed unit 2 and the angle adjustment of the reflecting surface 13 are controlled by the control unit.

ステップ1〜3が回転部3上の発光用の反射面13の角度調整ステップ、ステップ4〜6が固定部2上の発光用の反射面13の角度調整ステップである。最初にステップ4〜6を行い、その後、ステップ1〜3を行っても良い。また、同位相と逆位相の測定順番を入れ替えても良い。また、固定部2からの信号光が回転部3で反射されて固定部2上のPD14に入射する戻り光が、本来の回転部3からの信号光より十分に小さくなるようにデバイス駆動や光学系を設定すれば、ステップ1〜3とステップ4〜6とを同時に行う事も可能である(回転部3への戻り光についても同様である)。また、本実施形態では、固定部2及び回転部3に同じ光信号送受信部を用いるので、固定部2から回転部3への信号光の波長と回転部3から固定部2への信号光の波長とは同じである。しかし、回転部3から固定部2への光信号と固定部2から回転部3への光信号との波長を変えて、異なる波長にそれぞれ対応したデバイスを用いて光のアイソレーションを確保すれば、ステップ1〜3とステップ4〜6とを同時に行える。   Steps 1 to 3 are steps for adjusting the angle of the reflecting surface 13 for light emission on the rotating unit 3, and steps 4 to 6 are steps for adjusting the angle of the reflecting surface 13 for light emitting on the fixed unit 2. Steps 4 to 6 may be performed first, and then steps 1 to 3 may be performed. In addition, the measurement order of the same phase and the opposite phase may be switched. In addition, device driving or optical so that the return light reflected by the rotating unit 3 and incident on the PD 14 on the fixing unit 2 is sufficiently smaller than the signal light from the original rotating unit 3 is reflected by the rotating unit 3. If the system is set, steps 1 to 3 and steps 4 to 6 can be performed simultaneously (the same applies to the return light to the rotating unit 3). In this embodiment, since the same optical signal transmitting / receiving unit is used for the fixed unit 2 and the rotating unit 3, the wavelength of the signal light from the fixed unit 2 to the rotating unit 3 and the signal light from the rotating unit 3 to the fixed unit 2 are The wavelength is the same. However, if the wavelength of the optical signal from the rotating unit 3 to the fixed unit 2 and the wavelength of the optical signal from the fixed unit 2 to the rotating unit 3 are changed, light isolation is ensured by using devices corresponding to different wavelengths. Steps 1 to 3 and Steps 4 to 6 can be performed simultaneously.

次に、結露検出について説明する。反射面13,15に結露が生じている場合、光軸調整で得られる光量と反射面角度の相関に関しては、図4(b)に示されるように、光量が落ち込んで光量変化がなだらかな状態になる。予め光量に関して閾値を定めておき、閾値に達しない光量である場合には結露状態であると判断する。結露状態であると判断された場合は、反射面13,15を加熱して結露を解消する。反射面13,15を加熱しても改善しない場合、デバイスの寿命や機械的損傷などの結露以外の要因による異常状態として警告を発する。   Next, dew condensation detection will be described. When condensation occurs on the reflecting surfaces 13 and 15, the correlation between the amount of light obtained by adjusting the optical axis and the angle of the reflecting surface is a state in which the amount of light falls and the amount of light changes gently as shown in FIG. become. A threshold is set in advance for the amount of light, and if the amount of light does not reach the threshold, it is determined that the condensation state is present. When it is determined that the condensation state is present, the reflecting surfaces 13 and 15 are heated to eliminate the condensation. If the reflective surfaces 13 and 15 are not improved by heating, a warning is issued as an abnormal state due to factors other than condensation such as the lifetime of the device or mechanical damage.

本実施形態では、受光光量の設計値の1/4の値が閾値として設定されている。閾値は、受発光デバイスの種類・性能バラツキ・配置・設置環境などを考慮して、最終的には環境試験を経て設定される。本実施形態で用いるLED12の放射強度は、最小値が標準値に対して半分の値で規定されている。このため、性能バラツキによって放射強度が最も弱いLEDの半分の放射強度でも信号伝送が成り立つように閾値が定められている。また、上述した構成によれば、結露状態を含む光伝送系の異常状態を検出可能であり、さらには、双方向の光伝送路のうち一方のみが閾値を下回った場合は一方のみが異常状態であると判断するなど、上述した構成は異常状態の究明に役立つ。また、光量の減少の仕方などから、異常が結露に起因するのか、故障に起因するのかなど、上述した構成は異常状態の原因究明にも役立つ。   In the present embodiment, a value that is 1/4 of the design value of the amount of received light is set as the threshold value. The threshold value is finally set through an environmental test in consideration of the type of light emitting / receiving device, performance variation, arrangement, installation environment, and the like. Regarding the radiation intensity of the LED 12 used in the present embodiment, the minimum value is defined as a half value of the standard value. For this reason, the threshold is determined so that signal transmission can be achieved even with half the radiation intensity of the LED having the weakest radiation intensity due to performance variations. Further, according to the above-described configuration, it is possible to detect an abnormal state of the optical transmission system including a dew condensation state. Furthermore, when only one of the bidirectional optical transmission lines is below the threshold value, only one is abnormal. The above-described configuration, such as determining that it is, is useful for investigating an abnormal state. Moreover, the above-described configuration is useful for investigating the cause of the abnormal state, such as whether the abnormality is caused by condensation or a failure due to the method of reducing the amount of light.

次に、角度調整機構について説明する。図5に示されるように、本実施形態における反射面13の角度変更機構では、反射面13を持つ反射板13aの可動端が、バネ13bによって予め一方に付勢されている。モータ13cの出力回転軸13dはリードスクリューとして構成されており、出力回転軸13dに螺合された移動部材13eを介して、反射板13a(反射面13)の角度を変更する。反射板13aの裏面にはヒーター13fが設けられており、加熱制御部13gと接続されている。受光用の反射面15を持つ反射板15aの裏面にも、ヒーター15fが設けられている。反射板13,15に結露が生じた際には、加熱制御部13gはヒーター13f,15fに通電して発熱させて結露を蒸発させて解消する。   Next, the angle adjustment mechanism will be described. As shown in FIG. 5, in the angle changing mechanism of the reflecting surface 13 in the present embodiment, the movable end of the reflecting plate 13a having the reflecting surface 13 is biased in advance to one side by a spring 13b. The output rotating shaft 13d of the motor 13c is configured as a lead screw, and changes the angle of the reflecting plate 13a (reflecting surface 13) via a moving member 13e screwed to the output rotating shaft 13d. A heater 13f is provided on the back surface of the reflecting plate 13a and is connected to the heating control unit 13g. A heater 15f is also provided on the back surface of the reflecting plate 15a having the reflecting surface 15 for receiving light. When condensation occurs on the reflection plates 13 and 15, the heating control unit 13g energizes the heaters 13f and 15f to generate heat and evaporates the condensation to eliminate the condensation.

図6は、図5の角度変更機構とは異なる加熱手段を有する変形例を示している。反射板13aは可動であるので、反射板13aの裏面近傍にヒーター130fを配置して熱放射によって反射面13に熱が伝導される。反射板13aの動きに追従できるように結線する必要が無く、ヒーター130fを固定設置できるのでより高い信頼性を確保できる。   FIG. 6 shows a modification having heating means different from the angle changing mechanism of FIG. Since the reflecting plate 13a is movable, a heater 130f is disposed near the back surface of the reflecting plate 13a, and heat is conducted to the reflecting surface 13 by heat radiation. There is no need to connect wires so as to follow the movement of the reflector 13a, and the heater 130f can be fixedly installed, so that higher reliability can be ensured.

図7や図8は、図5の角度変更機構とは異なる構造で反射面13の角度を変更する変形例を示している。図7の変形例では、モータ(図示せず)によって回転駆動されるピニオンギア130cと、ピニオンギア130cによって直線的に移動されるラック130eとによって反射板13a(反射面13)の角度が変更される。図8の変形例では、モータ13hによって、減速ギア13iを介してカム13jが回転され、このカムによって反射板13a(反射面13)の角度が変更される。角度変更機構は、これらの変形例に限られず、反射面13の角度を確実に変更できる機構であれば良い。上述したヒーター13f(130f),15fの加熱は、上述した制御部によって制御される。   7 and 8 show a modification in which the angle of the reflecting surface 13 is changed with a structure different from the angle changing mechanism of FIG. In the modification of FIG. 7, the angle of the reflecting plate 13a (reflecting surface 13) is changed by a pinion gear 130c that is rotationally driven by a motor (not shown) and a rack 130e that is linearly moved by the pinion gear 130c. The In the modification of FIG. 8, the cam 13j is rotated by the motor 13h via the reduction gear 13i, and the angle of the reflecting plate 13a (reflecting surface 13) is changed by this cam. The angle changing mechanism is not limited to these modified examples, and any mechanism that can reliably change the angle of the reflecting surface 13 may be used. The heating of the heaters 13f (130f) and 15f described above is controlled by the controller described above.

図9は、上述した双方向光信号伝送が可能なロータリージョイントに、電磁誘導による電力伝送部20と、回転駆動手段として中空回転軸を有するダイレクトドライブモータ(DDモータ)30とを組み合わせたユニットを示している。対向配置された光信号送受信部10の間に設けられた中空管11の外周に、巻き線を組み込んだ同心円形状のフェライトコア22,23が僅かなギャップ(ここでは0.5ミリメートル)を隔てて配置されている。フェライトコア22,23間で固定部2から回転部3へ非接触電力伝送が行われる。LED12、PD14、及び、反射面13、15は、基板17に実装されている。上述した反射板13の反射面   FIG. 9 shows a unit in which the above-described rotary joint capable of bidirectional optical signal transmission is combined with a power transmission unit 20 by electromagnetic induction and a direct drive motor (DD motor) 30 having a hollow rotating shaft as a rotation driving means. Show. Concentric ferrite cores 22 and 23 incorporating windings are separated by a slight gap (in this case, 0.5 mm) around the outer periphery of the hollow tube 11 provided between the optical signal transmitting / receiving units 10 arranged opposite to each other. Are arranged. Non-contact power transmission is performed from the fixed portion 2 to the rotating portion 3 between the ferrite cores 22 and 23. The LED 12, the PD 14, and the reflecting surfaces 13 and 15 are mounted on the substrate 17. Reflection surface of the reflector 13 described above

DDモータ30の回転軸は中空管11を兼ねている。電磁誘導による電力伝送と光信号伝送とを組み合わせる事で,ベアリングなどの回転兼保持に関わる纏わる部分を除けば、非接触で信号及び電力を固定部2から回転部3に伝送可能なロータリージョイントが実現できる。さらに、DDモータを採用することで動力伝達機構が不要となるので、小型化ができ、動作音も極めて静かにできる。   The rotating shaft of the DD motor 30 also serves as the hollow tube 11. By combining power transmission by electromagnetic induction and optical signal transmission, a rotary joint that can transmit signals and power from the fixed part 2 to the rotating part 3 in a non-contact manner, except for parts related to rotation and holding such as bearings. realizable. Furthermore, since a power transmission mechanism is not required by employing a DD motor, the size can be reduced and the operation sound can be extremely quiet.

図10は、図9に示されるDDモータ一体型ロータリージョイント5を組み込んだドーム型回転カメラユニット1を示している。固定部2に対して回転部3が回転自在に保持されている。チルト機構部(図示せず)を介してカメラ4が回転部3に設けられている。カメラ4は、アクリル製の透明なドーム6で保護されている。固定部2は、天井7に固定されている。固定部2と回転部3との間にDDモータ一体型ロータリージョイント5が実装されており、固部2に対して回転部3(カメラ4)は無限に回転可能である。カメラ4で撮影された映像データは、光信号伝送に適するように信号変換部8によってパラレル信号からシリアル信号に変換された後、信号光として上述した一対の光信号送受信部10を介して回転部3から固定部2に伝送される。   FIG. 10 shows a dome-type rotary camera unit 1 incorporating the DD motor integrated rotary joint 5 shown in FIG. The rotating part 3 is rotatably held with respect to the fixed part 2. A camera 4 is provided on the rotating unit 3 via a tilt mechanism unit (not shown). The camera 4 is protected by an acrylic transparent dome 6. The fixed part 2 is fixed to the ceiling 7. A DD motor integrated rotary joint 5 is mounted between the fixed portion 2 and the rotating portion 3, and the rotating portion 3 (camera 4) can rotate indefinitely relative to the fixed portion 2. Video data photographed by the camera 4 is converted from a parallel signal to a serial signal by the signal conversion unit 8 so as to be suitable for optical signal transmission, and then rotated as a signal light through the pair of optical signal transmission / reception units 10 described above. 3 to the fixed part 2.

チルト回転に関しては無限に回転する必要が無いので、チルト機構部(チルト用モータなどを含む)は回転部3の光信号送受信部10と同軸ケーブルで結線されている。固定部2に伝送されたシリアル信号は、信号変換部9によって再度パラレル信号に変換された後、外部のネットワークに接続されたパーソナルコンピュータ(PC)等のコントロール機器に送出される。また、パン・チルト回転制御部は回転部3上に実装されているので、カメラ制御信号と併せてモータ制御信号は、固定部2から回転部3に送られる。即ち、信号光によって信号が双方向伝送される。カメラ4、パン回転用DDモータ30、及び、チルト回転用モータの駆動に必要な電力は、ロータリージョイント5に組み込まれた非接触の電力伝送部20によって固定部2から回転部3に供給される。   Since there is no need to rotate infinitely regarding tilt rotation, the tilt mechanism (including the tilt motor) is connected to the optical signal transmitting / receiving unit 10 of the rotating unit 3 by a coaxial cable. The serial signal transmitted to the fixed unit 2 is converted into a parallel signal again by the signal converting unit 9 and then sent to a control device such as a personal computer (PC) connected to an external network. In addition, since the pan / tilt rotation control unit is mounted on the rotation unit 3, the motor control signal is sent from the fixed unit 2 to the rotation unit 3 together with the camera control signal. That is, the signal is bidirectionally transmitted by the signal light. Electric power necessary for driving the camera 4, the pan rotation DD motor 30, and the tilt rotation motor is supplied from the fixed unit 2 to the rotation unit 3 by a non-contact power transmission unit 20 incorporated in the rotary joint 5. .

次に、上述した異常検出制御について、図11に示されるフローチャートを参照して説明する。まず、上述した光軸調整の結果得られた角度と光量との間の相関データ(図4(a),図4(b)参照)に基づいて、受光光量が閾値以下であるかが判定される(ステップS1)。光軸調整が正しく行われていれば、受光光量は閾値以下とはならないはずである。ステップS1が否定される場合、即ち、受光光量が閾値を超えている場合は、異常が発生していないとみなして、ステップ1の処理が継続して行われる(異常発生を常時監視)。一方、ステップS1が肯定される場合、即ち、受光光量が閾値以下である場合、異常が発生している可能性があるので、まず、反射面13の角度をメモリに格納する(ステップS3)。   Next, the above-described abnormality detection control will be described with reference to the flowchart shown in FIG. First, based on the correlation data (see FIGS. 4A and 4B) between the angle and the amount of light obtained as a result of the optical axis adjustment described above, it is determined whether the amount of received light is equal to or less than a threshold value. (Step S1). If the optical axis is adjusted correctly, the amount of received light should not be less than the threshold value. If step S1 is negative, that is, if the amount of received light exceeds the threshold value, it is assumed that no abnormality has occurred, and the process of step 1 is continued (always monitoring the occurrence of abnormality). On the other hand, if step S1 is affirmed, that is, if the amount of received light is equal to or smaller than the threshold value, an abnormality may have occurred, and first, the angle of the reflecting surface 13 is stored in the memory (step S3).

そして、ステップS3の後、反射面13の角度を順次変更して、角度と光量との間の相関データ(受光量分布)を取得する(ステップS5)。次に、ステップS5で取得した相関データに基づいて上述した調整点Qを求め、調整点Qの受光光量が閾値以下であるかどうかが判定される(ステップS7)即ち、ステップS1が肯定される場合は、再度ステップS3〜S7で光軸調整を再度行って調整点Qの受光公領に基づいて、図4(b)のような異常状態でないかの判定が行われる。   Then, after step S3, the angle of the reflecting surface 13 is sequentially changed to obtain correlation data (light reception amount distribution) between the angle and the amount of light (step S5). Next, the adjustment point Q described above is obtained based on the correlation data acquired in step S5, and it is determined whether or not the amount of light received at the adjustment point Q is equal to or less than a threshold value (step S7). That is, step S1 is affirmed. In such a case, the optical axis adjustment is performed again in steps S3 to S7, and it is determined whether or not the abnormal state as shown in FIG.

ステップS7が否定される場合は、即ち、受光光量が閾値を超えている場合は、異常が発生していないとみなして、ステップ1に戻る(異常発生を常時監視)。一方、ステップS7が肯定される場合、ステップS1が肯定される場合、即ち、受光光量が閾値以下である場合、光軸再調整後も異常が発生している可能性があるので、メモリから角度情報が呼び出され、反射面13の角度が当初角度(初期角度)に戻される(ステップS9)。   If step S7 is negative, that is, if the amount of received light exceeds the threshold value, it is assumed that no abnormality has occurred, and the process returns to step 1 (the occurrence of abnormality is constantly monitored). On the other hand, if step S7 is affirmed, if step S1 is affirmed, that is, if the amount of received light is less than or equal to the threshold value, an abnormality may occur even after readjustment of the optical axis. Information is called, and the angle of the reflecting surface 13 is returned to the initial angle (initial angle) (step S9).

ステップS9の後、加熱装置に制御信号(ON)が送出され、ヒーター13f(130f),15fが発熱される(ステップS11)。ヒーター13f(130f),15fの発熱が一定時間継続され(ステップS13)、反射面13,15に付着していると思われる結露が蒸発される。一定時間が経過した後、受光光量が閾値以上であるかどうかが判定される(ステップS15)。ステップS15が肯定される場合、即ち、受光光量が閾値以上である場合、結露が蒸発して異常が解消されたと判断できるので、加熱装置に制御信号(OFF)が送出され、ヒーター13f(130f),15fの発熱が停止される(ステップS17)。その後、受光光量の監視が継続される(ステップS19)。   After step S9, a control signal (ON) is sent to the heating device, and the heaters 13f (130f) and 15f generate heat (step S11). Heat generation of the heaters 13f (130f) and 15f is continued for a certain time (step S13), and condensation that seems to be attached to the reflecting surfaces 13 and 15 is evaporated. After a certain time has elapsed, it is determined whether or not the amount of received light is greater than or equal to a threshold value (step S15). When step S15 is affirmed, that is, when the amount of received light is greater than or equal to the threshold value, it can be determined that the condensation has evaporated and the abnormality has been resolved, so a control signal (OFF) is sent to the heating device and the heater 13f (130f). , 15f is stopped (step S17). Thereafter, the monitoring of the amount of received light is continued (step S19).

一方、ステップS15が否定される場合、即ち、受光光量が閾値未満である場合、異常状態は結露によるものではなく、その他の要因による異常であると判断できる。この場合、まず、加熱装置に制御信号(OFF)が送出され、不要なヒーター13f(130f),15fの発熱が停止される(ステップS21)。その後、異常が発生しているとの警告信号が送出される(ステップS23)。   On the other hand, if step S15 is negative, that is, if the amount of received light is less than the threshold value, it can be determined that the abnormal state is not due to condensation but abnormal due to other factors. In this case, first, a control signal (OFF) is sent to the heating device, and heating of the unnecessary heaters 13f (130f) and 15f is stopped (step S21). Thereafter, a warning signal indicating that an abnormality has occurred is sent out (step S23).

本実施形態では、反射面13の回転軸CL2が回転部3の回転軸CL1と直交されており、受光光量をモニタしつつ光路中に設けた反射面13の角度が制御されて光軸調整が行われる。光軸調整の際には、回転部3の送受信部10と固定部2の送受信部10とが回転軸CL1に関して同位相の時と逆位相の時と(即ち、回転軸CL1に対して同じ側に位置する時と反対側に位置する時と)の二箇所で受光光量をモニタしつつ最適角度(調整点Q)が決定される。   In this embodiment, the rotation axis CL2 of the reflection surface 13 is orthogonal to the rotation axis CL1 of the rotation unit 3, and the angle of the reflection surface 13 provided in the optical path is controlled while monitoring the amount of received light to adjust the optical axis. Done. When adjusting the optical axis, the transmission / reception unit 10 of the rotation unit 3 and the transmission / reception unit 10 of the fixed unit 2 are in the same phase and in the opposite phase with respect to the rotation axis CL1 (that is, on the same side with respect to the rotation axis CL1). The optimum angle (adjustment point Q) is determined while monitoring the amount of received light at two locations (when located at the opposite side and when located at the opposite side).

従って、本実施形態によれば、必要最小限(二箇所)の光量測定で得られる情報で光軸調整を行うことができる。また、信号光の伝送距離が異なる場合でも容易に対応できる。なお、従来の光伝送ロータリージョイントでは、空間を隔てた複数機器間の光伝送に比べればロータリージョイント内での光伝送距離は短い事もあり、効率低下を見込んで信号光の放射角を大きくしても通信が成立するように光量を増やしていた。しかし、本実施形態ではそのような必要がない。さらに、従来の複数機器間の光軸調整では、反射面の角度を二つの回転軸を中心にして変化させながら光量測定する必要があったため、少なくとも3点以上で光量測定を行う必要があった。しかし、本実施形態によれば、回転軸CL2と回転軸CL1とが直交されているので、反射面13の角度を一つの回転軸CL2のみを中心にして変化させるだけで光軸調整を行える。さらに、本実施形態によれば、回転部3の回転に伴う送信用反射面13及び受信用反射面15による光学特性変動を最小限に抑えられ、好適な通信安定性を実現できる。   Therefore, according to the present embodiment, the optical axis can be adjusted with information obtained by measuring the light quantity of the minimum necessary (two places). In addition, even when the transmission distance of the signal light is different, it can be easily handled. In addition, the conventional optical transmission rotary joint has a shorter optical transmission distance in the rotary joint than the optical transmission between multiple devices separated by a space. However, the amount of light was increased so that communication could be established. However, this is not necessary in this embodiment. Furthermore, in the conventional optical axis adjustment between a plurality of devices, it is necessary to measure the amount of light while changing the angle of the reflecting surface around the two rotation axes, so it is necessary to measure the amount of light at least at three or more points. . However, according to the present embodiment, since the rotation axis CL2 and the rotation axis CL1 are orthogonal to each other, the optical axis can be adjusted only by changing the angle of the reflection surface 13 about only one rotation axis CL2. Furthermore, according to the present embodiment, optical characteristic fluctuations due to the transmission reflecting surface 13 and the reception reflecting surface 15 accompanying the rotation of the rotating unit 3 can be minimized, and suitable communication stability can be realized.

また、本実施形態によれば、上述した光軸調整機能を利用して、結露状態を含む異常状態を検知できる。また、ヒーター13f(130f),15fによって反射面13,15を加熱して結露を除去することができる。従って、多湿環境下でも反射面13,15の結露を防止でき、光通信の安定性を確保できる。上述したように、従来は、発熱によって結露を除去する方法や、送風によって結露を除く方法が提案されていたが、何れも専用の結露検出手段が必要であった。また、送風によって反射面に塵埃が付着して光学性能が低下する問題もあった。しかし、本実施形態では、光軸調整機能を利用するので、専用の結露検出手段を設ける必要はない。また、本実施形態によれば、反射面13,15の光学性能を損なうことなく結露を解消できる。   Moreover, according to this embodiment, the abnormal state including a dew condensation state is detectable using the optical axis adjustment function mentioned above. Further, the reflection surfaces 13 and 15 can be heated by the heaters 13f (130f) and 15f to remove condensation. Therefore, the dew condensation on the reflecting surfaces 13 and 15 can be prevented even in a humid environment, and the stability of optical communication can be ensured. As described above, conventionally, a method for removing condensation by heat generation and a method for removing condensation by blowing air have been proposed, but all require dedicated condensation detection means. In addition, there is a problem that the optical performance is deteriorated due to dust adhering to the reflection surface by the air blowing. However, in this embodiment, since the optical axis adjustment function is used, it is not necessary to provide a dedicated dew condensation detection means. Moreover, according to this embodiment, dew condensation can be eliminated without impairing the optical performance of the reflecting surfaces 13 and 15.

CL1 (ロータリージョイントの)回転軸
CL2 (反射面の)回転軸
1 回転ドームカメラユニット
2 (ロータリージョイントの)固定部
3 (ロータリージョイントの)回転部
4 カメラ
5 ロータリージョイント
6 ドーム
7 天井
8 回転側信号変換部
9 固定側信号変換部
10 光信号送受信部
11 中空管
12 発光部(LED)
13 送信用反射面
14 受光部(PD)
15 受信用反射面
17 基板
18 光軸と反射面回転軸との交点
20 電力伝送部
22 固定側フェライトコア
23 回転側フェライトコア
30 ダイレクトドライブモータ
CL1 (rotary joint) rotation axis CL2 (reflection surface) rotation axis 1 rotation dome camera unit 2 (rotary joint) fixed part 3 (rotary joint) rotation part 4 camera 5 rotary joint 6 dome 7 ceiling 8 rotation side signal Conversion unit 9 Fixed side signal conversion unit 10 Optical signal transmission / reception unit 11 Hollow tube 12 Light emitting unit (LED)
13 Reflecting surface for transmission 14 Light receiving part (PD)
15 Receiving reflecting surface 17 Substrate 18 Intersection point of optical axis and reflecting surface rotation axis 20 Power transmission unit 22 Fixed ferrite core 23 Rotating ferrite core 30 Direct drive motor

Claims (2)

固定部に対して回転自在に保持された回転部を備え、前記固定部と前記回転部との間で双方向の光信号の伝送を行う光伝送ロータリージョイントにおいて、
前記固定部上に設けられた固定側光信号送受信部と、
前記回転部上に設けられた回転側光信号送受信部と、
二つの前記光信号送受信部の間に形成された中空空間を備え、
二つの前記光信号送受信部は、それぞれ、送信部と、受信部と、自身の前記送信部からの信号光を相手側の前記光信号送受信部に向けて反射させる送信用反射面と、相手側の前記光信号送受信部からの信号光を自身の前記受信部に反射させる受信用反射面とを備え、
前記光伝送ロータリージョイントが、前記回転部の回転と前記送信用反射面の角度変更とを制御する制御部をさらに備え、
前記送信用第一の反射手段の角度を変更する回転軸が、前記回転部の回転軸と直交し、
前記制御部が、前記固定部に対して前記回転部を回転させて二つの前記光信号送受信部を前記回転部の前記回転軸に関して同位相位置と逆位相位置との二箇所で前記送信用反射面の角度を変更して前記信号光の光軸調整を行う、ことを特徴とする光伝送ロータリージョイント。
In an optical transmission rotary joint that includes a rotating unit that is rotatably held with respect to a fixed unit, and that transmits a bidirectional optical signal between the fixed unit and the rotating unit,
A fixed-side optical signal transmitting / receiving unit provided on the fixed unit;
A rotation-side optical signal transmission / reception unit provided on the rotation unit;
A hollow space formed between the two optical signal transmitting and receiving units,
The two optical signal transmission / reception units are a transmission unit, a reception unit, a transmission reflection surface that reflects signal light from the transmission unit of the transmission unit toward the optical signal transmission / reception unit on the other side, and a counterpart side, respectively. A receiving reflecting surface for reflecting the signal light from the optical signal transmitting / receiving unit to the receiving unit of itself,
The optical transmission rotary joint further includes a control unit that controls rotation of the rotating unit and angle change of the reflecting surface for transmission,
The rotation axis for changing the angle of the first reflecting means for transmission is orthogonal to the rotation axis of the rotation unit,
The control unit rotates the rotating unit with respect to the fixed unit to cause the two optical signal transmitting / receiving units to reflect the transmission reflection at two positions of an in-phase position and an anti-phase position with respect to the rotation axis of the rotating unit. An optical transmission rotary joint, wherein the optical axis of the signal light is adjusted by changing the angle of the surface.
前記制御部が、前記同位相位置及び前記逆位相位置のそれぞれの位置にて前記受光部により受光した受光光量に基づいて結露状態を含む異常状態を検知し、異常状態検知時に、前記送信用反射面及び前記受信用反射面に設けられた加熱手段を加熱させる、請求項1に記載の光伝送ロータリージョイント。   The control unit detects an abnormal state including a dew condensation state based on the amount of received light received by the light receiving unit at each of the in-phase position and the reverse phase position, and when the abnormal state is detected, the transmission reflection is detected. The optical transmission rotary joint according to claim 1, wherein heating means provided on a surface and the receiving reflecting surface is heated.
JP2010267105A 2010-11-30 2010-11-30 Optical transmission rotary joint Active JP5402913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010267105A JP5402913B2 (en) 2010-11-30 2010-11-30 Optical transmission rotary joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010267105A JP5402913B2 (en) 2010-11-30 2010-11-30 Optical transmission rotary joint

Publications (2)

Publication Number Publication Date
JP2012119890A true JP2012119890A (en) 2012-06-21
JP5402913B2 JP5402913B2 (en) 2014-01-29

Family

ID=46502259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010267105A Active JP5402913B2 (en) 2010-11-30 2010-11-30 Optical transmission rotary joint

Country Status (1)

Country Link
JP (1) JP5402913B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132761A1 (en) * 2015-02-16 2016-08-25 太陽誘電株式会社 Optical signal transmission device and electronic apparatus using same
JP2016154323A (en) * 2015-02-16 2016-08-25 太陽誘電株式会社 Optical signal transmission device and electronic device utilizing the same
JP2020014227A (en) * 2014-01-10 2020-01-23 パルマー ラボ,エルエルシー Diverged-beam communications system
US10659160B2 (en) 2016-09-20 2020-05-19 Thales Slip ring
JP2021048434A (en) * 2019-09-17 2021-03-25 多摩川精機株式会社 PTZ mechanism with signal transmitter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349719A (en) * 1999-06-04 2000-12-15 Sanyo Electric Co Ltd Optical communication device
JP2004040323A (en) * 2002-07-01 2004-02-05 Hamamatsu Photonics Kk Optical wireless communication apparatus and optical wireless communication system
JP2007243357A (en) * 2006-03-06 2007-09-20 Victor Co Of Japan Ltd Transmitter
JP2009130803A (en) * 2007-11-27 2009-06-11 Victor Co Of Japan Ltd Rotary joint
JP2010204577A (en) * 2009-03-05 2010-09-16 Victor Co Of Japan Ltd Rotary joint and light guide member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349719A (en) * 1999-06-04 2000-12-15 Sanyo Electric Co Ltd Optical communication device
JP2004040323A (en) * 2002-07-01 2004-02-05 Hamamatsu Photonics Kk Optical wireless communication apparatus and optical wireless communication system
JP2007243357A (en) * 2006-03-06 2007-09-20 Victor Co Of Japan Ltd Transmitter
JP2009130803A (en) * 2007-11-27 2009-06-11 Victor Co Of Japan Ltd Rotary joint
JP2010204577A (en) * 2009-03-05 2010-09-16 Victor Co Of Japan Ltd Rotary joint and light guide member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020014227A (en) * 2014-01-10 2020-01-23 パルマー ラボ,エルエルシー Diverged-beam communications system
WO2016132761A1 (en) * 2015-02-16 2016-08-25 太陽誘電株式会社 Optical signal transmission device and electronic apparatus using same
JP2016154323A (en) * 2015-02-16 2016-08-25 太陽誘電株式会社 Optical signal transmission device and electronic device utilizing the same
US10164717B2 (en) 2015-02-16 2018-12-25 Taiyo Yuden Co., Ltd. Optical signal transmission device and electronic apparatus using same
US10659160B2 (en) 2016-09-20 2020-05-19 Thales Slip ring
EP3516795B1 (en) * 2016-09-20 2021-01-13 Thales Slip ring
JP2021048434A (en) * 2019-09-17 2021-03-25 多摩川精機株式会社 PTZ mechanism with signal transmitter

Also Published As

Publication number Publication date
JP5402913B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5402913B2 (en) Optical transmission rotary joint
JP4080503B2 (en) Non-contact connector
US10545223B2 (en) Optical scanning object detection device detecting object that invades detection area
US20120121244A1 (en) Variable focus illuminator
JP2008199084A (en) Free-space optical communication apparatus
JP2006170972A (en) Robot system
JP6467331B2 (en) Optical signal transmission device and electronic device using the same
EP2664943B1 (en) Optical signal transmission structure of laser distance measuring device
JP2019523410A (en) Optical system for detecting the scanning range
US9891440B2 (en) Infrared interactive remote control device and projection system using same
US20100166433A1 (en) Optical signal transfer device
JP4119910B2 (en) Non-contact connector
JP2017138298A (en) Optical scanner type object detection device
JP4957526B2 (en) Rotary joint
US6836329B1 (en) Real time IR optical sensor
JP2009130773A (en) Non-contact connector
CN109407333B (en) Automatic calibration system and calibration method for capturing and tracking visual axis and laser emission axis
JP2007243357A (en) Transmitter
US11215445B2 (en) Optical apparatus and distance measuring system
JP2007060308A (en) Optical space transmission system
JP2007184706A (en) Optical wireless transmission apparatus
JP2010074253A (en) Bidirectional optical communication device
CN214201211U (en) Photovoltaic cell panel hidden crack detection device
JP5338388B2 (en) Rotary joint and light guide member
JP2008124236A (en) Noncontact connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114