JP2007243357A - Transmitter - Google Patents

Transmitter Download PDF

Info

Publication number
JP2007243357A
JP2007243357A JP2006060267A JP2006060267A JP2007243357A JP 2007243357 A JP2007243357 A JP 2007243357A JP 2006060267 A JP2006060267 A JP 2006060267A JP 2006060267 A JP2006060267 A JP 2006060267A JP 2007243357 A JP2007243357 A JP 2007243357A
Authority
JP
Japan
Prior art keywords
optical
signal
rotating
fixed
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006060267A
Other languages
Japanese (ja)
Inventor
Tadashi Aizawa
忠 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2006060267A priority Critical patent/JP2007243357A/en
Publication of JP2007243357A publication Critical patent/JP2007243357A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Accessories Of Cameras (AREA)
  • Studio Devices (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmitter suitable for a motor-driven monitoring camera for executing optical transmission in two asymmetrical directions without losing optical power of an optical transmission system for transmitting/receiving signal light with a large amount of information. <P>SOLUTION: The transmitter is configured such that when a fixed part side unit contained in a fixed part 3 fixed to a prescribed member, and a rotary part side unit contained in a rotary part 2 rotatably coupled to the fixed part via a coupling part including a throughhole 30 penetrated in a direction of a rotary axis, transmit an optical signal through the throughhole of the coupling part in two directions, a first light emitting element 6 of the fixed part and a second light receiving element 10 of the fixed part 3 are used to transmit the optical signal from the rotary part to the fixed part, and a second light emitting element 18 and a second optical member 8 of the fixed part and a first optical member 7 and a first light emitting element 19 of the rotary part, are used to transmit the optical signal from the fixed part to the rotary part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固定部に収納される固定部側装置と、回転軸方向に貫通する貫通孔を有する結合部を介して、固定部に回転可能に結合される回転部に収納される回転部側装置とが双方向に光信号を伝送する伝送装置に関する。   The present invention relates to a rotating part side housed in a rotating part that is rotatably coupled to a fixing part via a fixing part side device housed in the fixing part and a coupling part having a through hole penetrating in the rotation axis direction. The present invention relates to a transmission device that transmits optical signals in both directions.

従来、比較的大きな角度範囲で回転する回転部を有する装置、例えば電動監視カメラにおいては、カメラを収納した回転部が回転しながら固定部に対して信号を伝送する構造として有線接続が一部で採用されていた。しかし、重要な監視用途でカメラを同一方向にエンドレスで回転可能にする構造には有線接続を採用することができないため、スリップリングと呼ばれるブラシと接触子との摺動接触によって電気信号を伝えていた。   2. Description of the Related Art Conventionally, in a device having a rotating unit that rotates in a relatively large angle range, for example, an electric surveillance camera, a wired connection is partly configured as a structure that transmits a signal to a fixed unit while the rotating unit housing the camera rotates. It was adopted. However, since it is not possible to adopt a wired connection for a structure that enables the camera to rotate endlessly in the same direction for important surveillance applications, an electrical signal is transmitted by sliding contact between a brush called a slip ring and a contact. It was.

図5はスリップリングを用いて電気信号を伝える従来の電動監視カメラの概略構成図である。図5において、電動監視カメラ101は、回転部102、固定部103及び外部コントローラ104を備え、このうち、回転部102は、結合部105を介して、固定部103に回転可能に結合されている。回転部102にはカメラ106と、このカメラ106を垂直方向に傾動させるチルト駆動部107とが収納されている。固定部103は天井や机などに固定されるようになっており、その内部には電源回路108、制御回路109、回転部102を水平方向に回動させるパン駆動部110、画像処理回路111及びネットワーク回路112が収納され、さらに、映像出力コネクタ113が設けられている。結合部105は後述するスリップリングを含み、このスリップリングを介して、固定部103から回転部102に対して、電源回路108がチルト駆動部107に駆動電力を供給し、制御回路109がチルト駆動部107に制御信号を加え、回転部102側から固定部103側に対して、カメラ106が画像処理回路111に映像信号を送信する。   FIG. 5 is a schematic configuration diagram of a conventional electric surveillance camera that transmits an electrical signal using a slip ring. In FIG. 5, the electric surveillance camera 101 includes a rotating unit 102, a fixed unit 103, and an external controller 104, and among these, the rotating unit 102 is rotatably coupled to the fixed unit 103 via a coupling unit 105. . The rotating unit 102 accommodates a camera 106 and a tilt driving unit 107 that tilts the camera 106 in the vertical direction. The fixing unit 103 is fixed to a ceiling, a desk, or the like, and includes a power source circuit 108, a control circuit 109, a pan driving unit 110 that rotates the rotating unit 102 in the horizontal direction, an image processing circuit 111, and the like. A network circuit 112 is accommodated, and a video output connector 113 is further provided. The coupling unit 105 includes a slip ring, which will be described later, through which the power supply circuit 108 supplies driving power to the tilt driving unit 107 from the fixed unit 103 to the rotating unit 102, and the control circuit 109 performs tilt driving. A control signal is added to the unit 107, and the camera 106 transmits a video signal to the image processing circuit 111 from the rotating unit 102 side to the fixed unit 103 side.

上記のように構成された電動監視カメラ101において、外部コントローラ104からの指令により、制御回路109がパン駆動部110及びチルト駆動部107に制御信号を加え、これによってカメラ106は所望のパン角度、チルト角度に調整される。カメラ106の映像信号は、フレキシブル基板やワイヤケーブルを介して、回転部側基板(図示せず)に導かれ、この回転部側基板から結合部105のスリップリングを経由して、固定部側基板(図示せず)に導かれて、画像処理回路111に供給される。画像処理回路111によって画像処理された映像信号はネットワーク回路112によって、映像出力コネクタ113に接続される図示省略のネットワークに送信される。   In the electric surveillance camera 101 configured as described above, the control circuit 109 applies a control signal to the pan driving unit 110 and the tilt driving unit 107 in response to a command from the external controller 104, whereby the camera 106 has a desired pan angle, The tilt angle is adjusted. The video signal of the camera 106 is guided to a rotating unit side substrate (not shown) via a flexible substrate or a wire cable, and from the rotating unit side substrate via a slip ring of the coupling unit 105, the fixed unit side substrate. (Not shown) and supplied to the image processing circuit 111. The video signal image-processed by the image processing circuit 111 is transmitted by the network circuit 112 to a network (not shown) connected to the video output connector 113.

図6はスリップリングを含む結合部105の詳細な構成を示す断面図である。この結合部105は、固定シリンダ部121の内側に、一対の軸受123を介して、回転シリンダ122が回動可能に装着され、この回転シリンダ122の外周部に設けられた環状の接触子124と、固定シリンダ部121の内周部に設けられたブラシ125とが摺動接触するように構成されている。   FIG. 6 is a cross-sectional view showing a detailed configuration of the coupling portion 105 including a slip ring. The coupling portion 105 is mounted on the inner side of the fixed cylinder portion 121 via a pair of bearings 123 so that the rotating cylinder 122 can be rotated, and an annular contact 124 provided on the outer peripheral portion of the rotating cylinder 122. The brush 125 provided on the inner periphery of the fixed cylinder 121 is configured to be in sliding contact.

図6において、接触子124及びブラシ125によってスリップリングが形成されており、このスリップリングはチルト駆動部107に対する駆動電力の供給及び制御信号の伝送、並びにカメラ106の映像信号の伝送に用いられ、さらに、回転部102から制御回路109に対するゼロ点検出情報の伝送にも用いられる。   In FIG. 6, a slip ring is formed by the contact 124 and the brush 125, and this slip ring is used for supplying driving power to the tilt driving unit 107 and transmitting a control signal and transmitting a video signal of the camera 106. Further, it is also used for transmission of zero point detection information from the rotating unit 102 to the control circuit 109.

しかしながら、スリップリングは機械的な接触を伴うため、その接触部分での信号の伝送品質が問題となる。すなわち、制御信号を伝送する場合に故障が発生しやすく、また、カメラ106として高精細カメラを用いる場合には、映像信号の周波数範囲が広いために接触部分での信号劣化が許容できないレベルになる。そこで、スリップリングに替わる伝送品質がよく信頼性の高い接続手段が求められていた。   However, since the slip ring involves mechanical contact, signal transmission quality at the contact portion becomes a problem. That is, when a control signal is transmitted, a failure is likely to occur. When a high-definition camera is used as the camera 106, the signal signal at the contact portion is unacceptable due to the wide frequency range of the video signal. . Therefore, there has been a demand for a connection means with good transmission quality and high reliability in place of the slip ring.

このような問題を解決する従来技術として、スリップリングに替えて、回転軸部にカメラの映像信号を伝送する伝送路を確保して、光信号を伝送する装置が開示されている(例えば、下記の特許文献1参照)。この装置は、スリップリングを形成する回転体の回転軸に光軸が一致するように、その一端部に発光素子を装着し、この発光素子と光軸が一致するように固定部に受光素子を配置して光伝送系を構成している。この構成により、電力や制御信号はスリップリングを介して伝送され、高精細カメラの周波数範囲の広い映像信号は光伝送系を用いて伝送することができる。   As a conventional technique for solving such a problem, an apparatus for transmitting an optical signal by securing a transmission path for transmitting a video signal of a camera to a rotating shaft instead of a slip ring is disclosed (for example, the following) Patent Document 1). This device is equipped with a light emitting element at one end so that the optical axis coincides with the rotational axis of the rotating body forming the slip ring, and the light receiving element is attached to the fixed part so that the optical axis coincides with the light emitting element. The optical transmission system is configured by arranging. With this configuration, power and control signals can be transmitted via a slip ring, and a video signal with a wide frequency range of a high-definition camera can be transmitted using an optical transmission system.

この装置は光伝送系を用いて周波数範囲の広い映像信号が伝送されるので良好な伝送品質を確保することができる。しかし、電力や制御信号はスリップリングを介して伝送されるため、ブラシ接触による故障という問題は依然として存在した。   Since this apparatus transmits a video signal having a wide frequency range using an optical transmission system, it can ensure good transmission quality. However, since power and control signals are transmitted through the slip ring, the problem of failure due to brush contact still existed.

その問題を解決するものとして、回転部と固定部との信号伝送を、双方向で光伝送する装置が開示されている(例えば、下記の特許文献2参照)。この装置は回転軸の軸線上に固定部側発光素子と回転部側受光素子とを配置するとともに、軸線から外れた位置に固定部側受光素子と回転部側発光素子とを配置し、かつ固定部側発光素子と回転部側受光素子との間の光軸上に固定部側ハーフミラーと回転部側ハーフミラーとを配置することにより、固定部側受光素子から射出された信号光を回転部側受光素子で受光する光伝送系と、回転部側発光素子から射出された信号光を回転部側ハーフミラー及び固定部側ハーフミラーでそれぞれ反射させて固定部側受光素子で受光する光伝送系とで双方向の光伝送を行っている。
特開2001−183738号公報(段落0043、図2) 特開2002−271270号公報(段落0032、図12)
As a solution to this problem, an apparatus that bi-directionally transmits signals between a rotating unit and a fixed unit is disclosed (for example, see Patent Document 2 below). In this device, the fixed portion side light emitting element and the rotating portion side light receiving element are arranged on the axis of the rotating shaft, and the fixed portion side light receiving element and the rotating portion side light emitting element are arranged and fixed at a position off the axis. By arranging the fixed part side half mirror and the rotating part side half mirror on the optical axis between the part side light emitting element and the rotating part side light receiving element, the signal light emitted from the fixed part side light receiving element is rotated. An optical transmission system that receives light by the side light receiving element and an optical transmission system that reflects the signal light emitted from the rotating part side light emitting element by the rotating part side half mirror and the fixed part side half mirror and receives the light by the fixed part side light receiving element. And bi-directional optical transmission.
JP 2001-183738 A (paragraph 0043, FIG. 2) JP 2002-271270 A (paragraph 0032, FIG. 12)

高精細カメラを用いた電動監視カメラでは、固定部から回転部に伝送される情報量と比較すると、回転部から固定部に伝送されるカメラの映像信号の情報量の方が圧倒的に多い。したがって、上述した双方向の光伝送を行う装置では、回転軸の軸芯上に配置した発光素子及び受光素子で構成される光伝送系を用いてカメラの映像信号を伝送し、回転軸の軸線上に一対のハーフミラーを配置した光伝送系を用いて制御信号などを伝送すれば、情報量に見合った非対称の光伝送装置とすることができる。しかしながら、軸線上に配置した一対のハーフミラーがカメラの映像信号を伝送する信号光をも所定の割合で反射させることから、その分だけ光パワーを損なうことになり、高精細カメラの映像信号の伝送効率を低下させてしまうという問題があった。   In the electric surveillance camera using the high-definition camera, the information amount of the video signal of the camera transmitted from the rotating unit to the fixed unit is overwhelmingly larger than the information amount transmitted from the fixed unit to the rotating unit. Therefore, in the above-described apparatus for performing bidirectional optical transmission, the video signal of the camera is transmitted using an optical transmission system composed of a light emitting element and a light receiving element arranged on the axis of the rotation axis, and the axis of the rotation axis If a control signal or the like is transmitted using an optical transmission system in which a pair of half mirrors are arranged on a line, an asymmetric optical transmission device commensurate with the amount of information can be obtained. However, since the pair of half mirrors arranged on the axis reflects the signal light that transmits the video signal of the camera at a predetermined ratio, the optical power is lost by that amount, and the video signal of the high-definition camera is lost. There was a problem that transmission efficiency was lowered.

本発明は、上述した従来装置の問題点を解決するためになされたもので、情報量の多い信号光を送受信する光伝送系の光パワーを損なうことなく、非対称双方向の光伝送を行う電動監視カメラに好適な伝送装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems of the conventional apparatus, and is an electric motor that performs asymmetric bidirectional optical transmission without impairing the optical power of an optical transmission system that transmits and receives signal light with a large amount of information. An object of the present invention is to provide a transmission apparatus suitable for a surveillance camera.

上記の目的を達成するために、本発明は、所定の部材に固定される固定部に収納される固定部側装置と、回転軸方向に貫通する貫通孔を有する結合部を介して、前記固定部に回転可能に結合される回転部に収納される回転部側装置とが、前記貫通孔の軸芯部に延在する第1の光伝送路及び前記軸芯部の周囲に延在する第2の光伝送路を通して双方向に光信号を伝送する伝送装置であって、
前記回転部側装置は、
前記第1の光伝送路に信号光を射出する第1の発光素子と、
前記貫通孔から径方向外側に外れた位置に装着される第1の受光素子と、
前記第2の光伝送路を進行してきた信号光の進路を変えて前記第1の受光素子に受光させる第1の光学部材とを備え、
前記固定部側装置は、
前記第1の光伝送路を進行してきた信号光を受光する第2の受光素子と、
前記貫通孔から径方向外側に外れた位置に装着され、信号光を径方向内側に射出する第2の発光素子と、
前記第2の発光素子から射出された信号光の進路を変えて前記第2の光伝送路に進行させる第2の光学部材とを備えた伝送装置である。
In order to achieve the above-described object, the present invention is configured such that the fixing is performed via a fixing portion side device housed in a fixing portion fixed to a predetermined member and a coupling portion having a through hole penetrating in the rotation axis direction. A rotating part-side device housed in a rotating part that is rotatably coupled to the part, and a first optical transmission line that extends around the shaft core part of the through hole and a first part that extends around the shaft core part. A transmission device that transmits an optical signal bidirectionally through two optical transmission lines,
The rotating unit side device is:
A first light emitting element that emits signal light to the first optical transmission line;
A first light receiving element mounted at a position deviated radially outward from the through hole;
A first optical member that causes the first light receiving element to receive a light by changing a path of the signal light traveling through the second optical transmission path;
The fixed part side device is:
A second light receiving element for receiving signal light traveling through the first optical transmission line;
A second light emitting element that is mounted at a position that is radially outward from the through hole and emits signal light radially inward;
And a second optical member that changes the path of the signal light emitted from the second light emitting element to travel to the second optical transmission path.

本発明によれば、貫通孔の軸芯部に延在する第1の光伝送路を通して第1の発光素子から第2の受光素子に光信号を伝送する一方、軸芯部の周囲に延在する第2の光伝送路に設けられた第2の光学部材及び第1の光学部材を介して、第2の発光素子から第1の受光素子へ光信号を伝送するように構成されているため、第1の光伝送路の光パワーが第2の光学部材及び第1の光学部材によって損なわれることがなくなり、これによって非対称双方向の光伝送を行う電動監視カメラに好適な伝送装置が提供される。   According to the present invention, an optical signal is transmitted from the first light emitting element to the second light receiving element through the first optical transmission path extending to the shaft core portion of the through hole, while extending around the shaft core portion. Because the optical signal is transmitted from the second light emitting element to the first light receiving element via the second optical member and the first optical member provided in the second optical transmission line. The optical power of the first optical transmission path is not impaired by the second optical member and the first optical member, thereby providing a transmission device suitable for an electric surveillance camera that performs asymmetric bidirectional optical transmission. The

以下、本発明を図面に示す好適な実施の形態に基づいて詳細に説明する。
<第1の実施の形態>
図1は本発明に係る伝送装置を収納した電動監視カメラの第1の実施の形態の概略構成図である。図1において、電動監視カメラ1は回転部2及び固定部3を備えている。回転部2は固定部3に対して、回転軸方向に貫通する貫通孔30を有する図示省略の結合部によって、回転軸Rを中心にして矢印X方向又はY方向に回転可能に結合されている。この結合部の軸芯部、すなわち、貫通孔30の中心部には大口径の光ファイバを用いた導波路9が、回転部2と一体的に回転するように、図示省略の保持部材によって保持されている。そして、回転部2には、カメラ4と、その映像信号を並列−直列変換するパラレル−シリアル変換部(図面ではP→S変換部と略記する)5と、導波路9に信号光を射出するレーザダイオード部6と、貫通孔30の中心部を外れた領域、すなわち導波路9の周囲を光伝送路として、この光伝送路を進行してきた信号光の進路を変える回転部側ミラー7と、この回転部側ミラー7からの信号光を受光する回転部側受光素子19と、カメラ4を垂直方向に駆動するチルトモータ22と、その駆動部23と、チルト原点検出SW24とが収納されている。このうち、レーザダイオード部6はそのドライバと共に基板に装着され、回転部側ミラー7は導波路9を貫通させる孔を備えている。
Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings.
<First Embodiment>
FIG. 1 is a schematic configuration diagram of a first embodiment of an electric surveillance camera housing a transmission apparatus according to the present invention. In FIG. 1, the electric surveillance camera 1 includes a rotating unit 2 and a fixed unit 3. The rotating portion 2 is coupled to the fixed portion 3 by a coupling portion (not shown) having a through hole 30 penetrating in the rotating shaft direction so as to be rotatable about the rotating shaft R in the arrow X direction or the Y direction. . A waveguide 9 using a large-diameter optical fiber is held by a holding member (not shown) so as to rotate integrally with the rotating portion 2 in the axial core portion of the coupling portion, that is, in the center portion of the through hole 30. Has been. The rotating unit 2 emits signal light to the camera 4, a parallel-serial conversion unit (abbreviated as P → S conversion unit in the drawing) 5 for parallel-serial conversion of the video signal, and the waveguide 9. A laser diode section 6 and a region off the center of the through hole 30, that is, the periphery of the waveguide 9 as an optical transmission path, and a rotating section side mirror 7 for changing the path of signal light traveling through the optical transmission path; The rotating unit side light receiving element 19 that receives the signal light from the rotating unit side mirror 7, the tilt motor 22 that drives the camera 4 in the vertical direction, the driving unit 23, and the tilt origin detection SW 24 are housed. . Among these, the laser diode portion 6 is mounted on the substrate together with the driver, and the rotating portion side mirror 7 has a hole through which the waveguide 9 passes.

一方、固定部3には、貫通孔30の中心部を外れた領域、すなわち導波路9の周囲を光伝送路として、この光伝送路に信号光を進行させるように進路を変える固定部側ミラー8と、導波路9を進行してきた信号光を受光する固定部側受光素子10と、この固定部側受光素子10の光度に応じた信号を電気信号に変換するO/E変換部11と、変換された電気信号を直列−並列変換するシリアル−パラレル変換部(図面ではS→P変換部と略記する)12と、制御回路13と、電源回路14と、映像出力コネクタ15と、制御回路13からの制御信号を並列−直列変換するパラレル−シリアル変換部16と、その制御信号を光度に応じた信号に変換するE/O変換部17と、変換された光度に応じた光信号を射出して固定部側ミラー8に照射するレーザダイオード部18と、回転部2を水平方向に駆動するパンモータ25と、その駆動部26と、画像処理回路27と、ネットワーク回路28とが収納されている。このうち、レーザダイオード部18はそのドライバと共に基板に装着され、固定部側ミラー8は導波路9を貫通させる孔を備えている。   On the other hand, the fixed portion 3 is a fixed portion side mirror that uses a region off the center of the through-hole 30, that is, the periphery of the waveguide 9 as an optical transmission path, and changes the path so that the signal light travels in this optical transmission path 8, a fixed portion side light receiving element 10 that receives the signal light traveling through the waveguide 9, and an O / E conversion portion 11 that converts a signal corresponding to the light intensity of the fixed portion side light receiving element 10 into an electrical signal, A serial-parallel conversion unit (abbreviated as S → P conversion unit in the drawing) 12, a control circuit 13, a power supply circuit 14, a video output connector 15, and a control circuit 13 that perform serial-parallel conversion on the converted electrical signal. A parallel-serial conversion unit 16 for parallel-serial conversion of the control signal from the output signal, an E / O conversion unit 17 for converting the control signal into a signal corresponding to the luminous intensity, and an optical signal corresponding to the converted luminous intensity. To illuminate the fixed part side mirror 8 A laser diode unit 18, a pan motor 25 for driving the rotating unit 2 in the horizontal direction, and a driving unit 26, an image processing circuit 27, and a network circuit 28 is housed. Among these, the laser diode portion 18 is mounted on the substrate together with the driver, and the fixed portion side mirror 8 has a hole through which the waveguide 9 passes.

また、電磁力を利用して固定部3から回転部2に動作電力を供給するべく、固定部3に電力送信モジュール20を、回転部2には電力受信モジュール21をそれぞれ設けて両者を対向させている。   Further, in order to supply operating power from the fixed unit 3 to the rotating unit 2 using electromagnetic force, a power transmitting module 20 is provided in the fixed unit 3 and a power receiving module 21 is provided in the rotating unit 2 so as to face each other. ing.

上記のように構成された電動監視カメラ1の動作について以下に説明する。まず、導波路9は回転部2の軸芯にあり、回転部2と一体的に回転するように保持されている。この導波路9を第1の光伝送路として、一端部に配置されたレーザダイオード部6とその他端部に配置された固定部側受光素子10とによって第1の光伝送系が形成されている。この第1の光伝送系は周波数範囲の広い映像信号の伝送に用いられる。また、導波路9の周囲の空間を第2の伝送路として、レーザダイオード部18と、固定部側ミラー8と、回転部側ミラー7と、回転部側受光素子19とによって第2の光伝送系が形成されている。この第2の光伝送系は制御信号の伝送に用いられる。   The operation of the electric surveillance camera 1 configured as described above will be described below. First, the waveguide 9 is at the axis of the rotating unit 2 and is held so as to rotate integrally with the rotating unit 2. Using this waveguide 9 as a first optical transmission line, a laser diode portion 6 disposed at one end and a fixed portion side light receiving element 10 disposed at the other end form a first optical transmission system. . This first optical transmission system is used for transmission of a video signal having a wide frequency range. Further, the space around the waveguide 9 is used as a second transmission path, and the second light transmission is performed by the laser diode section 18, the fixed section side mirror 8, the rotating section side mirror 7, and the rotating section side light receiving element 19. A system is formed. This second optical transmission system is used for transmission of control signals.

次に、電源回路14は、固定部3に収納された電気的要素にそれぞれ動作電力を供給するとともに、互いに対向する電力送信モジュール20及び電力受信モジュール21を介して、回転部2に収納された電気的要素にそれぞれ駆動電力を供給する。そして、制御回路13がネットワーク回路28を介して回転部2を水平方向に駆動する制御信号を受信すると、制御回路13はその制御信号を駆動部26に加える。駆動部26はパンモータ25を駆動して回転部2を回転させる。また、制御回路13はネットワーク回路28を介してカメラ4を垂直方向に駆動するパラレルの制御信号を受信したり、カメラ4のパラレルの制御信号を受信したりすると、それらの制御信号をパラレル−シリアル変換部16に加える。パラレル−シリアル変換部16はパラレルの制御信号をシリアル信号に変換してE/O変換部17に加える。これによってシリアルの制御信号は光信号に変換されてレーザダイオード部18から射出される。射出された光信号は、それぞれ中心部に導波路9を貫通させた固定部側ミラー8及び回転部側ミラー7で順次反射されて回転部側受光素子19で受光される。回転部側受光素子19は電気的なカメラ制御信号をカメラ4に加える。また、カメラ4を垂直方向に駆動するための電気的な制御信号を駆動部23に加える。駆動部23はチルトモータ22を駆動してカメラ4を回動させる。なお、中央部に導波路9を貫通させた固定部側ミラー8及び回転部側ミラー7における2回の反射により、光の伝送効率が大幅に低下するが、固定部3から回転部2へ送信する信号量は、回転部2から固定部3へ送信する信号量と比較して格段に少ないため、必要な信号量に対しては十分な伝送路を確保することができる。このとき、レーザダイオード部18の前面及び回転部側受光素子19の前面にレンズを設けて、信号光を効率的に送るようにしてもよい。   Next, the power supply circuit 14 supplies operating power to the electrical elements housed in the fixed unit 3 and is housed in the rotating unit 2 via the power transmission module 20 and the power reception module 21 facing each other. Driving electric power is supplied to each electric element. When the control circuit 13 receives a control signal for driving the rotating unit 2 in the horizontal direction via the network circuit 28, the control circuit 13 applies the control signal to the driving unit 26. The driving unit 26 drives the pan motor 25 to rotate the rotating unit 2. When the control circuit 13 receives a parallel control signal for driving the camera 4 in the vertical direction via the network circuit 28 or receives a parallel control signal for the camera 4, the control circuit 13 converts the control signal into parallel-serial. It adds to the conversion part 16. The parallel-serial converter 16 converts the parallel control signal into a serial signal and applies it to the E / O converter 17. As a result, the serial control signal is converted into an optical signal and emitted from the laser diode unit 18. The emitted optical signals are sequentially reflected by the fixed portion side mirror 8 and the rotating portion side mirror 7 that penetrate the waveguide 9 at the center, and are received by the rotating portion side light receiving element 19. The rotating portion side light receiving element 19 applies an electrical camera control signal to the camera 4. In addition, an electrical control signal for driving the camera 4 in the vertical direction is applied to the drive unit 23. The drive unit 23 drives the tilt motor 22 to rotate the camera 4. Although the light transmission efficiency is significantly reduced by two reflections at the fixed portion side mirror 8 and the rotating portion side mirror 7 having the waveguide 9 penetrated through the central portion, the light is transmitted from the fixed portion 3 to the rotating portion 2. Since the amount of signal to be transmitted is much smaller than the amount of signal transmitted from the rotating unit 2 to the fixed unit 3, it is possible to secure a sufficient transmission path for the necessary signal amount. At this time, a lens may be provided on the front surface of the laser diode portion 18 and the front surface of the rotating portion side light receiving element 19 so that the signal light is efficiently transmitted.

次に、カメラ4は、例えばSXGA(走査線数1280×水平サンプル数960)、30fpsの高精細カメラであり、RGBがそれぞれ8ビットのパラレルの映像信号を出力する。この映像信号はパラレル−シリアル変換部5に加えられ、ここでシリアルの映像信号に変換され、さらに、8B−10B変換されてレーザダイオード部6に加えられる。8B−10B変換された映像信号の伝送レートは約1.1Gbpsになる。レーザダイオード部6はシリアル信号によって強度変調された信号光に変換する。レーザダイオード部6の周波数応答は数ギガヘルツ程度の性能が容易に得られるため、1.1Gbps程度のデータ伝送は余裕を持って行うことができる。レーザダイオード部6から射出された信号光は、回転の軸芯部に設けられた導波路9の一端に入射される。このとき、レーザダイオード部6の発光パワーの大きい中心部の光が導波路9に入射されるため、光信号を効率よく伝送することができる。なお、レーザダイオード部6の前面にレンズを設けてより多くの光を導波路9に送り込むようにしてもよい。導波路9の内壁は反射性処理が施されており、一端から入射した信号光は他端に向かって進行する。導波路9は回転部側ミラー7及び固定部側ミラー8を貫通しているので、回転部側ミラー7及び固定部側ミラー8で反射される信号光の影響を受けることはない。導波路9を進んだ信号光は他端より固定部3側に放出される。   Next, the camera 4 is a high-definition camera of, for example, SXGA (the number of scanning lines 1280 × the number of horizontal samples 960) and 30 fps, and outputs RGB parallel video signals each having 8 bits. This video signal is added to the parallel-serial conversion unit 5, where it is converted into a serial video signal, further 8B-10B converted, and added to the laser diode unit 6. The transmission rate of the 8B-10B converted video signal is about 1.1 Gbps. The laser diode unit 6 converts it into signal light whose intensity is modulated by a serial signal. Since the frequency response of the laser diode unit 6 can easily obtain a performance of about several gigahertz, data transmission of about 1.1 Gbps can be performed with a margin. The signal light emitted from the laser diode section 6 is incident on one end of a waveguide 9 provided in the rotating shaft core section. At this time, since the light at the center of the laser diode unit 6 having a large light emission power is incident on the waveguide 9, an optical signal can be transmitted efficiently. A lens may be provided on the front surface of the laser diode unit 6 so that more light is sent into the waveguide 9. The inner wall of the waveguide 9 is subjected to a reflective process, and the signal light incident from one end travels toward the other end. Since the waveguide 9 penetrates the rotating part side mirror 7 and the fixed part side mirror 8, it is not affected by the signal light reflected by the rotating part side mirror 7 and the fixed part side mirror 8. The signal light traveling through the waveguide 9 is emitted from the other end to the fixed portion 3 side.

導波路9から放出された信号光は、固定部側受光素子10によって受光される。このとき、固定部側受光素子10の前面にレンズなどの集光手段を用いて、固定部側受光素子10に効率よく信号光を集めるような構成にしてもよい。固定部側受光素子10で受光された信号光はO/E変換部11で電気信号に変換されてシリアル−パラレル変換部12に加えられる。シリアル−パラレル変換部12はこれに加えられたシリアルの電気信号を10B−8B変換し、カメラ4のRGBパラレル信号に変換し、復調した映像信号を画像処理回路27に加える。画像処理回路27は周知の画像圧縮などを行ってネットワーク回路28に加える。ネットワーク回路28は信号処理が行われた映像信号を、映像出力コネクタ15に接続されたケーブルを介して、PCやモニタに送信する。これらの処理によって、カメラ4の映像信号の記録又は再生が行われる。   The signal light emitted from the waveguide 9 is received by the fixed portion side light receiving element 10. At this time, a configuration may be adopted in which signal light is efficiently collected on the stationary part side light receiving element 10 by using a condensing means such as a lens on the front surface of the stationary part side light receiving element 10. The signal light received by the fixed portion side light receiving element 10 is converted into an electric signal by the O / E converter 11 and added to the serial-parallel converter 12. The serial-parallel converter 12 performs 10B-8B conversion on the serial electrical signal added thereto, converts it into an RGB parallel signal of the camera 4, and adds the demodulated video signal to the image processing circuit 27. The image processing circuit 27 performs well-known image compression and the like and applies it to the network circuit 28. The network circuit 28 transmits the video signal subjected to signal processing to a PC or a monitor via a cable connected to the video output connector 15. By these processes, the video signal of the camera 4 is recorded or reproduced.

図2は回転部2を回転させた場合に生じやすい光学系の相対的な位置ずれに伴う光パワーの減少を未然に防止する取付機構を示した図である。図2において、回転部2側においてはレーザダイオード部6、回転部側ミラー7、回転部側受光素子19及び導波路9を回転部側保持部材31によって一体的に保持し、固定部3側においては固定部側ミラー8、固定部側受光素子10及びレーザダイオード部18を固定部側保持部材32によって一体的に保持するように構成されている。このとき、固定部側保持部材32は導波路9を回動可能に支持している。   FIG. 2 is a view showing an attachment mechanism that prevents a decrease in optical power accompanying a relative positional shift of the optical system that is likely to occur when the rotating unit 2 is rotated. In FIG. 2, the laser diode unit 6, the rotating unit side mirror 7, the rotating unit side light receiving element 19 and the waveguide 9 are integrally held by the rotating unit side holding member 31 on the rotating unit 2 side, and on the fixed unit 3 side. Is configured so that the fixed portion side mirror 8, the fixed portion side light receiving element 10, and the laser diode portion 18 are integrally held by a fixed portion side holding member 32. At this time, the fixed portion side holding member 32 supports the waveguide 9 so as to be rotatable.

このように、第1の実施の形態によれば、貫通孔30の軸芯部を第1の光伝送路としてレーザダイオード部6から固定部側受光素子10に光信号を伝送する一方、貫通孔30の軸芯部を外れた周囲の領域を第2の光伝送路として、この第2の光伝送路に設けられた固定部側ミラー8及び回転部側ミラー7を介して、レーザダイオード部18から回転部側受光素子19へ光信号を伝送するように構成されているため、第1の光伝送路の光パワーが第2の光学部材及び第1の光学部材によって損なわれることがなくなり、これによって非対称双方向の光伝送を行う電動監視カメラに好適な伝送装置が提供される。   As described above, according to the first embodiment, an optical signal is transmitted from the laser diode portion 6 to the fixed portion side light receiving element 10 using the axial core portion of the through hole 30 as the first optical transmission path, while the through hole is provided. A laser diode unit 18 is provided through a fixed portion side mirror 8 and a rotating portion side mirror 7 provided in the second optical transmission path, with a peripheral region off the 30 axis portion serving as a second optical transmission path. The optical power of the first optical transmission path is not damaged by the second optical member and the first optical member, because the optical signal is transmitted from the optical device to the rotating portion side light receiving element 19. Thus, a transmission device suitable for an electric surveillance camera that performs asymmetric bidirectional optical transmission is provided.

なお、第1の実施の形態においては、回転部2側の回転部側保持部材31が導波路9を保持し、固定部側保持部材32が導波路9を回転可能に支持したが、これとは反対に、固定部3側の固定部側保持部材32が導波路9を保持し、回転部側保持部材31が導波路9を回転可能に支持するように構成することもできる。また、第1の実施の形態においては、回転部側保持部材31がレーザダイオード部6、回転部側ミラー7及び回転部側受光素子19を一体的に保持し、固定部側保持部材32が固定部側受光素子10、固定部側ミラー8及びレーザダイオード部18を一体的に保持したが、少なくとも位置ずれが大きい回転部側ミラー7及び回転部側受光素子19を回転部側保持部材31で一体的に保持し、固定部側ミラー8及びレーザダイオード部18を固定部側保持部材32で一体的に保持するようにしても、回転部2の回転に伴う光パワーの減少をわずかに抑えることができる。   In the first embodiment, the rotating portion side holding member 31 on the rotating portion 2 side holds the waveguide 9 and the fixed portion side holding member 32 rotatably supports the waveguide 9. On the contrary, the fixed portion side holding member 32 on the fixed portion 3 side may hold the waveguide 9, and the rotating portion side holding member 31 may be configured to rotatably support the waveguide 9. In the first embodiment, the rotating part side holding member 31 integrally holds the laser diode part 6, the rotating part side mirror 7, and the rotating part side light receiving element 19, and the fixed part side holding member 32 is fixed. The part-side light receiving element 10, the fixed part-side mirror 8 and the laser diode part 18 are integrally held, but at least the rotating part-side mirror 7 and the rotating part-side light receiving element 19 having a large positional deviation are integrated by the rotating part-side holding member 31. Even if the fixed part side mirror 8 and the laser diode part 18 are integrally held by the fixed part side holding member 32, the reduction of the optical power accompanying the rotation of the rotating part 2 can be suppressed slightly. it can.

また、第1の実施の形態においては、導波路9として大口径の光ファイバを使用しているが、回転しながら信号光を一端より受けて他端まで導く機能を有するものであれば、直径が数100ミクロン〜数ミリのものを使用してもよく、要は光結合に高い位置精度を必要としないものであれば、光ファイバ以外のものを使用することもできる。なお、通信用に使用されていた従来の光ファイバは、ファイバ内を複数の経路で通過することによって生じる遅延広がりにより伝送周波数帯域に制限を受けることを防止するために、数10ミクロン〜数100ミクロンに設定するが、本実施の形態ではファイバ長が数センチ程度であるため、遅延広がりは問題とならず、例えば10Gbpsの高速データ伝送であっても帯域制限による問題は発生しない。   In the first embodiment, a large-diameter optical fiber is used as the waveguide 9. However, if the optical fiber has a function of receiving signal light from one end and guiding it to the other end while rotating, the diameter may be May be a few hundred microns to a few millimeters. In short, as long as high positional accuracy is not required for optical coupling, a material other than an optical fiber may be used. The conventional optical fiber used for communication is several tens of microns to several hundreds in order to prevent the transmission frequency band from being limited by the delay spread caused by passing through the fiber through a plurality of paths. Although it is set to micron, since the fiber length is about several centimeters in this embodiment, the delay spread does not cause a problem. For example, even in the case of 10 Gbps high-speed data transmission, the problem due to the band limitation does not occur.

<第2の実施の形態>
図3は本発明に係る伝送装置の第2の実施の形態として、図2と同様に、回転部2の回転によっても光パワーの減少を防止する取付機構を示した図である。図中、図2と同一の要素には同一の符号を付してその説明を省略する。この実施の形態は図1又は図2中の導波路9を除去し、その代わりにレーザダイオード部6の前面にレンズ33を設けてレーザダイオード部6からの信号光をコリメートして平行光とし、さらに、固定部側受光素子10の前面にレンズ34を設けて平行光を集光して固定部側受光素子10に受光させるように構成している。この場合には、図4(a)に示したように回転部側ミラー7及び固定部側ミラー8に貫通孔35を設けておいてもよいし、図4(b)に示したように、中心部のみを透明部36としてもよい。なお、第2の実施の形態の変形例として、図4(c)に示したように、中心部に反射膜37を形成し、その周囲を透明にすることによって、映像信号の伝送系と制御信号の伝送系を入れ替えることもできる。この場合には、回転部2のレーザダイオード部6と回転部側受光素子19とを入れ替え、さらに、固定部3の固定部側受光素子10とレーザダイオード部18とを入れ替えればよい。
<Second Embodiment>
FIG. 3 is a view showing an attachment mechanism for preventing a decrease in optical power by rotation of the rotating unit 2 as a second embodiment of the transmission apparatus according to the present invention, as in FIG. In the figure, the same elements as those in FIG. In this embodiment, the waveguide 9 in FIG. 1 or FIG. 2 is removed, and instead, a lens 33 is provided on the front surface of the laser diode unit 6 to collimate the signal light from the laser diode unit 6 into parallel light, Further, a lens 34 is provided on the front surface of the fixed portion side light receiving element 10 so that parallel light is condensed and received by the fixed portion side light receiving element 10. In this case, as shown in FIG. 4A, a through hole 35 may be provided in the rotating part side mirror 7 and the fixed part side mirror 8, or as shown in FIG. Only the central part may be the transparent part 36. As a modification of the second embodiment, as shown in FIG. 4C, a reflection film 37 is formed at the center and the periphery thereof is made transparent so that the transmission system and control of the video signal are controlled. The signal transmission system can also be replaced. In this case, the laser diode part 6 and the rotating part side light receiving element 19 of the rotating part 2 may be replaced, and the fixed part side light receiving element 10 and the laser diode part 18 of the fixing part 3 may be replaced.

このように、第2の実施の形態によれば、貫通孔30の軸芯部を第1の光伝送路としてレーザダイオード部6から固定部側受光素子10に光信号を伝送する一方、貫通孔30の軸芯部を外れた周囲の領域を第2の光伝送路として、この第2の光伝送路に設けられた固定部側ミラー8及び回転部側ミラー7を介して、レーザダイオード部18から回転部側受光素子19へ光信号を伝送するように構成されているため、第1の光伝送路の光パワーが第2の光学部材及び第1の光学部材によって損なわれることがなくなり、これによって非対称双方向の光伝送を行う電動監視カメラに好適な伝送装置が提供される。   As described above, according to the second embodiment, an optical signal is transmitted from the laser diode unit 6 to the fixed portion side light receiving element 10 using the axial core portion of the through hole 30 as the first optical transmission path, while the through hole is provided. A laser diode unit 18 is provided through a fixed portion side mirror 8 and a rotating portion side mirror 7 provided in the second optical transmission path, with a peripheral region off the 30 axis portion serving as a second optical transmission path. The optical power of the first optical transmission path is not damaged by the second optical member and the first optical member, because the optical signal is transmitted from the optical device to the rotating portion side light receiving element 19. Thus, a transmission device suitable for an electric surveillance camera that performs asymmetric bidirectional optical transmission is provided.

なお、上述した第1、第2の実施の形態では、それぞれ貫通孔30の軸芯部を外れた周囲の領域を第2の光伝送路としたが、貫通孔30が広い場合には軸芯部から外れた周囲の一部の領域を第2の光伝送路としても、第1、第2の実施の形態に準じた性能を有する伝送装置が提供される。   In the first and second embodiments described above, the surrounding area outside the axial core portion of the through hole 30 is used as the second optical transmission path. However, when the through hole 30 is wide, the axial core is used. Even if a part of the area outside the part is used as the second optical transmission line, a transmission apparatus having performance according to the first and second embodiments is provided.

本発明によれば、回転部側発光素子及び固定部側受光素子により回転部から固定部へ光信号を伝送し、固定部側発光素子、固定部側光学部材、回転部側光学部材及び回転部側受光素子により固定部から回転部へ光信号を伝送することができるため、非対称双方向の光伝送を行う電動監視カメラに適用できる。   According to the present invention, an optical signal is transmitted from the rotating part to the fixed part by the rotating part side light emitting element and the fixed part side light receiving element, and the fixed part side light emitting element, the fixed part side optical member, the rotating part side optical member, and the rotating part. Since the optical signal can be transmitted from the fixed part to the rotating part by the side light receiving element, it can be applied to an electric surveillance camera that performs asymmetric bidirectional optical transmission.

本発明に係る伝送装置を収納した電動監視カメラの第1の実施の形態の概略構成図である。It is a schematic block diagram of 1st Embodiment of the electric surveillance camera which accommodated the transmission apparatus which concerns on this invention. 本発明の第1の実施の形態の光学系の取付機構を示した図である。It is the figure which showed the attachment mechanism of the optical system of the 1st Embodiment of this invention. 本発明の第2の実施の形態の光学系の取付機構を示した図である。It is the figure which showed the attachment mechanism of the optical system of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の回転部側ミラー、固定部側ミラーの構成例を示した斜視図である。It is the perspective view which showed the structural example of the rotation part side mirror of the 2nd Embodiment of this invention, and a fixed part side mirror. 従来の電動監視カメラの概略構成図である。It is a schematic block diagram of the conventional electric surveillance camera. 従来の電動監視カメラの結合部の詳細な構成を示す断面図である。It is sectional drawing which shows the detailed structure of the coupling | bond part of the conventional electric surveillance camera.

符号の説明Explanation of symbols

1 電動監視カメラ
2 回転部
3 固定部
4 カメラ
6 レーザダイオード部(第1の発光素子)
7 回転部側ミラー(第1の光学部材)
8 固定部側ミラー(第2の光学部材)
9 導波路
10 固定部側受光素子(第2の受光素子)
18 レーザダイオード部(第2の発光素子)
19 回転部側受光素子(第1の受光素子)
20 電力送信モジュール
21 電力受信モジュール
30 貫通孔
31 回転部側保持部材
32 固定部側保持部材
33、34 レンズ
35 貫通孔
36 透明部
37 反射膜
DESCRIPTION OF SYMBOLS 1 Electric surveillance camera 2 Rotating part 3 Fixed part 4 Camera 6 Laser diode part (1st light emitting element)
7 Rotating part side mirror (first optical member)
8 Fixed part side mirror (second optical member)
9 Waveguide 10 Light receiving element on fixed side (second light receiving element)
18 Laser diode part (second light emitting element)
19 Rotating part side light receiving element (first light receiving element)
DESCRIPTION OF SYMBOLS 20 Power transmission module 21 Power receiving module 30 Through-hole 31 Rotating part side holding member 32 Fixed part side holding member 33, 34 Lens 35 Through hole 36 Transparent part 37 Reflective film

Claims (1)

所定の部材に固定される固定部に収納される固定部側装置と、回転軸方向に貫通する貫通孔を有する結合部を介して、前記固定部に回転可能に結合される回転部に収納される回転部側装置とが、前記貫通孔の軸芯部に延在する第1の光伝送路及び前記軸芯部の周囲に延在する第2の光伝送路を通して双方向に光信号を伝送する伝送装置であって、
前記回転部側装置は、
前記第1の光伝送路に信号光を射出する第1の発光素子と、
前記貫通孔から径方向外側に外れた位置に装着される第1の受光素子と、
前記第2の光伝送路を進行してきた信号光の進路を変えて前記第1の受光素子に受光させる第1の光学部材とを備え、
前記固定部側装置は、
前記第1の光伝送路を進行してきた信号光を受光する第2の受光素子と、
前記貫通孔から径方向外側に外れた位置に装着され、信号光を径方向内側に射出する第2の発光素子と、
前記第2の発光素子から射出された信号光の進路を変えて前記第2の光伝送路に進行させる第2の光学部材とを備えた伝送装置。
It is housed in a rotating part that is rotatably coupled to the fixed part via a fixed part side device accommodated in a fixed part fixed to a predetermined member and a coupling part having a through-hole penetrating in the rotation axis direction. The rotating unit side device transmits the optical signal bidirectionally through the first optical transmission path extending to the axial core portion of the through hole and the second optical transmission path extending around the axial core portion. A transmission device for
The rotating unit side device is:
A first light emitting element that emits signal light to the first optical transmission line;
A first light receiving element mounted at a position deviated radially outward from the through hole;
A first optical member that causes the first light receiving element to receive a light by changing a path of the signal light traveling through the second optical transmission path;
The fixed part side device is:
A second light receiving element for receiving signal light traveling through the first optical transmission line;
A second light emitting element that is mounted at a position that is radially outward from the through hole and emits signal light radially inward;
A transmission apparatus comprising: a second optical member that changes a path of signal light emitted from the second light emitting element and travels to the second optical transmission path.
JP2006060267A 2006-03-06 2006-03-06 Transmitter Withdrawn JP2007243357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060267A JP2007243357A (en) 2006-03-06 2006-03-06 Transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060267A JP2007243357A (en) 2006-03-06 2006-03-06 Transmitter

Publications (1)

Publication Number Publication Date
JP2007243357A true JP2007243357A (en) 2007-09-20

Family

ID=38588476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060267A Withdrawn JP2007243357A (en) 2006-03-06 2006-03-06 Transmitter

Country Status (1)

Country Link
JP (1) JP2007243357A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105713A (en) * 2007-10-24 2009-05-14 Mitsubishi Electric Corp Imaging apparatus
EP2136551A2 (en) * 2008-06-16 2009-12-23 Fujinon Corporation Omnidirectional imaging apparatus
JP2011151790A (en) * 2009-12-09 2011-08-04 Honeywell Internatl Inc Noncontact data transfer from mobile system
JP2012119890A (en) * 2010-11-30 2012-06-21 Jvc Kenwood Corp Optical transmission rotary joint
JP2013201678A (en) * 2012-03-26 2013-10-03 Canon Inc Rotation-type imaging device
US8555824B2 (en) 2007-12-12 2013-10-15 Cummins Power Generation Ip, Inc. Air flow arrangement for two diesel generator sets in shipping container
JP2018129863A (en) * 2018-05-14 2018-08-16 パナソニックIpマネジメント株式会社 Imaging device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105713A (en) * 2007-10-24 2009-05-14 Mitsubishi Electric Corp Imaging apparatus
US8555824B2 (en) 2007-12-12 2013-10-15 Cummins Power Generation Ip, Inc. Air flow arrangement for two diesel generator sets in shipping container
EP2136551A2 (en) * 2008-06-16 2009-12-23 Fujinon Corporation Omnidirectional imaging apparatus
EP2136551A3 (en) * 2008-06-16 2010-02-03 Fujinon Corporation Omnidirectional imaging apparatus
JP2011151790A (en) * 2009-12-09 2011-08-04 Honeywell Internatl Inc Noncontact data transfer from mobile system
JP2012119890A (en) * 2010-11-30 2012-06-21 Jvc Kenwood Corp Optical transmission rotary joint
JP2013201678A (en) * 2012-03-26 2013-10-03 Canon Inc Rotation-type imaging device
JP2018129863A (en) * 2018-05-14 2018-08-16 パナソニックIpマネジメント株式会社 Imaging device

Similar Documents

Publication Publication Date Title
JP2007243357A (en) Transmitter
JP4080503B2 (en) Non-contact connector
JP4978335B2 (en) Rotary joint
JP4985231B2 (en) Rotary joint
JP3687453B2 (en) Electric head
JP5276007B2 (en) Rotating transmitter
US8014679B2 (en) Optical space transmission device including rotatable member
KR100778285B1 (en) Contactless connector
JP2007120742A (en) Rotary joint
JPH01283505A (en) Optoelectronics coupler
JP2009130803A (en) Rotary joint
KR101504092B1 (en) Slip ring based on using plastic optical fiber
JP2008227731A (en) Rotary coupler and electronic appliance
JP2012119890A (en) Optical transmission rotary joint
JPH09284612A (en) Motor driven pan head
JP4826444B2 (en) Rotary joint
WO2016125658A1 (en) Optical transmission device, optical reception device, and optical cable
JP2009105710A (en) Imaging apparatus
JP2005311677A (en) Signal transmission mechanism
JP2008124236A (en) Noncontact connector
KR100608045B1 (en) Display combining structure
JPH0730787A (en) Small sized tripod
CA3044320C (en) Optic and aircraft transmission system
CN109541614B (en) Light reaching device
JP2000304979A (en) Rotary coupler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100303