JP2012119600A - Method of manufacturing coil - Google Patents

Method of manufacturing coil Download PDF

Info

Publication number
JP2012119600A
JP2012119600A JP2010270048A JP2010270048A JP2012119600A JP 2012119600 A JP2012119600 A JP 2012119600A JP 2010270048 A JP2010270048 A JP 2010270048A JP 2010270048 A JP2010270048 A JP 2010270048A JP 2012119600 A JP2012119600 A JP 2012119600A
Authority
JP
Japan
Prior art keywords
coil
electromagnetic coil
paint
coating
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010270048A
Other languages
Japanese (ja)
Inventor
Ryota Saito
亮太 齋藤
Keiichi Honda
啓一 本田
Hideaki Hara
秀明 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Original Assignee
Trinity Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp filed Critical Trinity Industrial Corp
Priority to JP2010270048A priority Critical patent/JP2012119600A/en
Publication of JP2012119600A publication Critical patent/JP2012119600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)
  • Drying Of Solid Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a coil in which a coating that covers a surface of the coil can be heated uniformly without unevenness.SOLUTION: According to a method of solidifying a coating in manufacturing a coil, when an AC current is applied to an electromagnetic coil W, the impedance of the coil allows the electromagnetic coil W to be heated by itself, thereby allowing the coating that covers the electromagnetic coil W to be uniformly heated without unevenness. This allows the electromagnetic coil W having stable electrical properties to be manufactured. Heating the coating from the inside thereof allows a moisture content and a solvent in the coating to be vaporized from an outer surface of the coating in an unsolidified state, and thereafter heating the coating from the outside thereof can prevent bubble-shaped swells and crater-shaped recesses from remaining on a surface of the insulating coating. The method can reduce a time required for completely solidifying the coating compared to a case in which the coating is solidified only by self-heating of the electromagnetic coil W.

Description

本発明は、塗料にて被覆されたコイルを製造するためのコイル製造方法に関する。   The present invention relates to a coil manufacturing method for manufacturing a coil coated with a paint.

この種の従来のコイル製造方法としては、コイルを塗料に浸漬する工程と、塗料から引き上げたコイルを加熱して、表面を覆った塗料を固化させる工程とを備えたものが知られている(例えば、特許文献1参照)。そして、塗料の固化は、熱風や遠赤外線による加熱が一般的であった。   As this type of conventional coil manufacturing method, a method including a step of immersing a coil in paint and a step of heating the coil pulled up from the paint to solidify the paint covering the surface is known ( For example, see Patent Document 1). The solidification of the paint is generally performed by heating with hot air or far infrared rays.

特開2009−125629号公報(段落[0018]〜[0020])JP 2009-125629 A (paragraphs [0018] to [0020])

ところが、上述した従来のコイル製造方法では、コイルの部位によって加熱ムラが生じ易いという問題があった。   However, the above-described conventional coil manufacturing method has a problem that uneven heating tends to occur depending on the portion of the coil.

本発明は、上記事情に鑑みてなされたもので、コイルの表面を覆った塗料をムラ無く均一に加熱することが可能なコイル製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coil manufacturing method capable of uniformly heating a paint covering the surface of a coil without unevenness.

上記目的を達成するためになされた請求項1の発明に係るコイル製造方法は、コイルの表面を塗料で覆った後、コイルに交流を通電して自己発熱させて、塗料を乾燥又は硬化させ、塗料にて被覆されたコイルを製造するところに特徴を有する。   In the coil manufacturing method according to the invention of claim 1 made to achieve the above object, the surface of the coil is covered with a paint, and then the coil is energized with self-heating to dry or harden the paint. It is characterized by producing coils coated with paint.

請求項2の発明は、請求項1に記載のコイル製造方法において、コイルは、電磁コイルであり、塗料は、乾燥又は硬化して電磁コイルを被覆する絶縁皮膜になるところに特徴を有する。   The invention of claim 2 is characterized in that, in the coil manufacturing method of claim 1, the coil is an electromagnetic coil, and the paint is dried or cured to become an insulating film covering the electromagnetic coil.

請求項3の発明は、請求項2に記載のコイル製造方法において、電磁コイルの表面の塗料の皮膜を、電磁コイルの自己発熱によって内側から加熱した後、外側からヒーターにて加熱するところに特徴を有する。   The invention of claim 3 is characterized in that, in the coil manufacturing method of claim 2, the coating film on the surface of the electromagnetic coil is heated from the inside by self-heating of the electromagnetic coil and then heated by the heater from the outside. Have

請求項4の発明は、請求項3に記載のコイル製造方法において、電磁コイルの両端末部を巻回部分から同一方向に突出する構造に形成しておき、電磁コイルの巻回部分を受容しかつ、巻回部分の巻回軸方向又は、巻回軸と両端末部分の突出方向とに共に直交した方向の何れかの方向から巻回部分を見たときの輪郭部分に対して隙間を空けて隣接する内側面を有した溝形発熱体をヒーターとして備えておき、溝形発熱体を発熱させかつ、電磁コイルの巻回部分を溝形発熱体内に遊嵌させて溝形発熱体の長手方向に移動し、塗料を加熱するところに特徴を有する。   According to a fourth aspect of the present invention, in the coil manufacturing method according to the third aspect, both end portions of the electromagnetic coil are formed in a structure protruding in the same direction from the winding portion, and the winding portion of the electromagnetic coil is received. In addition, there is a gap with respect to the contour portion when the winding portion is viewed from either the winding axis direction of the winding portion or the direction orthogonal to both the winding axis and the protruding direction of both end portions. A groove-shaped heating element having an adjacent inner surface is provided as a heater, the groove-shaped heating element is heated, and the winding portion of the electromagnetic coil is loosely fitted in the groove-shaped heating element so that the length of the groove-shaped heating element is increased. It is characterized in that it moves in the direction and heats the paint.

請求項5の発明は、請求項4に記載のコイル製造方法において、溝形発熱体の外側にIHコイルを配置しておき、IHコイルによって溝形発熱体を誘導加熱するところに特徴を有する。   The invention of claim 5 is characterized in that, in the coil manufacturing method according to claim 4, an IH coil is disposed outside the groove-shaped heating element, and the groove-shaped heating element is induction-heated by the IH coil.

[請求項1及び2の発明]
請求項1の発明によれば、コイルの表面を塗料で覆った後で、そのコイルに交流を通電すると、コイルのインピーダンスによってコイル自体が自己発熱するので、コイルの表面を覆った塗料をムラ無く均一に加熱することができる。また、請求項2の発明によれば、電磁コイルを被覆した絶縁被膜を形成することができる。
[Inventions of Claims 1 and 2]
According to the first aspect of the present invention, after the coil surface is covered with the coating material, when alternating current is applied to the coil, the coil itself self-heats due to the impedance of the coil. It can be heated uniformly. Further, according to the invention of claim 2, an insulating film covering the electromagnetic coil can be formed.

ここで、本発明に係るコイルは、電磁コイルに限定されるものではなく、コイルスプリングであってもよい。また、塗料は、絶縁被覆を形成するためのものに限定されるものではなく、例えば、防錆用や装飾用の塗料であってもよい。   Here, the coil which concerns on this invention is not limited to an electromagnetic coil, A coil spring may be sufficient. The paint is not limited to the one for forming the insulating coating, and may be a rust preventive or decorative paint, for example.

[請求項3の発明]
請求項3の発明によれば、塗料を内側から加熱することで、塗料に含まれる水分や溶剤を未固化状態の塗料の外面から揮散させ、その後、塗料の外側からヒーターにて加熱するので、固化後の絶縁被膜に気泡状の膨らみやクレーター状の凹みが残ることを防止することができる。また、コイルの自己発熱だけで固化させる場合に比べて、塗料の完全固化までに要する時間を短縮することが可能になる。
[Invention of claim 3]
According to the invention of claim 3, by heating the paint from the inside, the moisture and solvent contained in the paint are volatilized from the outer surface of the unsolidified paint, and then heated by the heater from the outside of the paint. It is possible to prevent bubble-like swelling and crater-like dents from remaining in the solidified insulating coating. In addition, it is possible to shorten the time required for complete solidification of the paint as compared with the case of solidifying only by self-heating of the coil.

[請求項4及び5の発明]
請求項4の発明によれば、電磁コイルの輪郭部分に対して、隙間を開けて隣接した溝形発熱体の内側面からの放射熱で塗料を効果的に加熱することができる。ここで、溝形発熱体は、通電による電気抵抗で自己発熱する構成でもよいし、請求項5の発明のように、IHコイルによって誘導加熱される構成でもよい。
[Inventions of Claims 4 and 5]
According to invention of Claim 4, a coating material can be effectively heated with the radiant heat from the inner surface of the groove-shaped heat generating body which opened the clearance gap and opened with respect to the outline part of the electromagnetic coil. Here, the groove heating element may be configured to self-heat with electric resistance caused by energization, or may be configured to be induction heated by an IH coil as in the invention of claim 5.

本発明の一実施形態に係る塗料固化装置の側断面図1 is a side sectional view of a paint solidifying apparatus according to an embodiment of the present invention. 前段加熱エリアの正面図Front view of front heating area 後段加熱エリアの正面図Front view of rear heating area 電磁コイルの斜視図Perspective view of electromagnetic coil 変形例に係る塗料固化装置の後段加熱エリアの正面図Front view of the subsequent heating area of the paint solidifying device according to the modification

以下、本発明の一実施形態を、図1〜図4に基づいて説明する。本実施形態で例示する金属製ワークは、例えば、モータ用の電磁コイルWであって図4に示されている。同図に示すように、電磁コイルWは、偏平断面の銅線を巻回軸方向から見て四角形になるように巻回すると共に、1対の端末部Wb,Wbを巻回部Waの四角形の一辺から同じ方向に直線状に突出させた構造になっている。巻回部Waの表面は、例えば電着塗装によって塗料で被覆されている。これに対し、1対の端末部Wb,Wbは塗料で被覆されずに銅線が露出している。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. The metal workpiece exemplified in this embodiment is, for example, an electromagnetic coil W for a motor and is shown in FIG. As shown in the figure, the electromagnetic coil W winds a copper wire having a flat cross section so that it becomes a square when viewed from the winding axis direction, and a pair of terminal portions Wb, Wb are squares of the winding portion Wa. It has a structure that protrudes linearly from one side in the same direction. The surface of the winding portion Wa is covered with a paint by, for example, electrodeposition coating. On the other hand, the pair of terminal portions Wb and Wb are not covered with the paint and the copper wire is exposed.

巻回部Waが未固化状態の塗料で覆われた電磁コイルWは、コンベア30によって塗料固化装置10に向けて搬送される。コンベア30は、巻回部Waを上にした状態で電磁コイルWを保持するチャック治具31,31を一体に備えている。また、コンベア30は絶縁部材で構成されており、例えば、前進と停止とを繰り返すタクト搬送(間欠搬送)を行う。   The electromagnetic coil W in which the winding portion Wa is covered with the unsolidified paint is conveyed toward the paint solidifying device 10 by the conveyor 30. The conveyor 30 is integrally provided with chuck jigs 31 and 31 that hold the electromagnetic coil W with the winding portion Wa facing upward. Moreover, the conveyor 30 is comprised with the insulating member, for example, performs the tact conveyance (intermittent conveyance) which repeats advancing and a stop.

チャック治具31,31は絶縁体で構成され、電磁コイルWのうち、銅線が露出した1対の端末部Wb,Wbを把持している。また、チャック治具31,31は、巻回部Waの巻回軸が、コンベア30による搬送方向と平行になるように電磁コイルWを保持している(図2参照)。   The chuck jigs 31 and 31 are made of an insulator, and grip a pair of terminal portions Wb and Wb of the electromagnetic coil W where the copper wire is exposed. Further, the chuck jigs 31 and 31 hold the electromagnetic coil W so that the winding axis of the winding part Wa is parallel to the conveying direction by the conveyor 30 (see FIG. 2).

塗料固化装置10は、電磁コイルWの搬送方向に沿って直線状に延びている。詳細には、塗料固化装置10は、角筒状のトンネル構造をなした加熱炉11を備え、その加熱炉11のうち搬入口11Aに近い側に前段加熱エリアAR1が設けられ、搬出口11Bに近い側に後段加熱エリアAR2が設けられている。   The paint solidifying device 10 extends linearly along the conveying direction of the electromagnetic coil W. Specifically, the paint solidifying device 10 includes a heating furnace 11 having a rectangular tube-shaped tunnel structure, and a front heating area AR1 is provided on the side of the heating furnace 11 close to the carry-in port 11A, and the carry-out port 11B has A rear heating area AR2 is provided on the near side.

加熱炉11のうち、後段加熱エリアAR2の内側には、溝形発熱体35が配設されている。溝形発熱体35は、加熱炉11と平行に延びた角溝形構造をなしており、電磁コイルWは、その巻回部Waが溝形発熱体35の内側に遊嵌した状態で、溝形発熱体35の長手方向に移動するようになっている。詳細には、溝形発熱体35は、電磁コイルWをその巻回軸方向から見たときに四角形をなした巻回部Waの輪郭部分に対して、三方から所定の隙間を空けて隣接する内側面を有している。   In the heating furnace 11, a groove-shaped heating element 35 is disposed inside the rear heating area AR2. The groove-shaped heating element 35 has a rectangular groove-shaped structure extending in parallel with the heating furnace 11, and the electromagnetic coil W is formed in a state in which the winding portion Wa is loosely fitted inside the groove-shaped heating element 35. The shape heating element 35 moves in the longitudinal direction. In detail, the groove-shaped heating element 35 is adjacent to the contour portion of the winding portion Wa having a quadrangular shape when the electromagnetic coil W is viewed from the winding axis direction with a predetermined gap from three sides. It has an inner surface.

溝形発熱体35は、例えば、電磁コイルWよりも電気抵抗の大きい金属(例えば、鉄、ステンレス等)で構成されている。また、加熱炉11の内面には、溝形発熱体35における幅方向の両側壁の外面及び天井壁の外面に近接するように複数のIHコイル36,36が設けられている。さらに、加熱炉11のうち、少なくとも後段加熱エリアAR2に対応する部分は、断熱構造となっている。例えば、全体が断熱材で構成されるか或いは、内面に断熱材がライニングされている。   The groove-shaped heating element 35 is made of, for example, a metal (for example, iron, stainless steel, etc.) having a larger electric resistance than the electromagnetic coil W. A plurality of IH coils 36 and 36 are provided on the inner surface of the heating furnace 11 so as to be close to the outer surface of both side walls in the width direction of the groove-shaped heating element 35 and the outer surface of the ceiling wall. Further, at least a portion of the heating furnace 11 corresponding to the rear heating area AR2 has a heat insulating structure. For example, the whole is made of a heat insulating material, or the heat insulating material is lined on the inner surface.

図1に示すように、後段加熱エリアAR2の所定位置には、溝形発熱体35の温度を計測するための温度センサ22が設けられている。その計測結果に基づいて、加熱炉制御部12が、溝形発熱体35の発熱温度を自動調節する。例えば、後段加熱エリアAR2を進むに従って温度が高くなるようにIHコイル36,36に流す交流の電流値又は周波数を調節する。   As shown in FIG. 1, a temperature sensor 22 for measuring the temperature of the groove-shaped heating element 35 is provided at a predetermined position in the rear heating area AR2. Based on the measurement result, the heating furnace control unit 12 automatically adjusts the heat generation temperature of the channel heating element 35. For example, the value or frequency of the alternating current flowing through the IH coils 36 and 36 is adjusted so that the temperature becomes higher as it proceeds through the rear heating area AR2.

加熱炉11のうち、前段加熱エリアAR1には可撓性の摺接端子34,34が設けられている。摺接端子34,34は、交流電源37に導通接続されて、加熱炉11の幅方向の両側面に固定されている。摺接端子34,34は、電磁コイルWの通過領域に向かって突出しており、電磁コイルWのうち、塗料で覆われていない両端末部Wb,Wbと摺接可能となっている。電磁コイルWをタクト搬送するコンベア30は、摺接端子34,34と1対の端末部Wb,Wbとが接触した位置で一時停止するようになっており、このとき、電磁コイルWと摺接端子34,34とを含む電気回路が形成可能となっている。なお、交流電源37と電磁コイルWとの導通接続は、摺接端子34,34以外の方法で行ってもよい。   Of the heating furnace 11, flexible sliding terminals 34, 34 are provided in the front heating area AR1. The slidable contact terminals 34 are connected to an AC power source 37 and are fixed to both side surfaces of the heating furnace 11 in the width direction. The sliding contact terminals 34, 34 protrude toward the passing area of the electromagnetic coil W, and can be slidably contacted with both terminal portions Wb, Wb that are not covered with the paint in the electromagnetic coil W. The conveyer 30 for carrying the tactile conveyance of the electromagnetic coil W is temporarily stopped at a position where the sliding contact terminals 34, 34 and the pair of terminal portions Wb, Wb are in contact with each other. An electric circuit including the terminals 34 and 34 can be formed. The conductive connection between the AC power source 37 and the electromagnetic coil W may be performed by a method other than the sliding contact terminals 34 and 34.

前段加熱エリアAR1のうち、摺接端子34,34が設けられた位置には、放射温度計14,14が設けられている。放射温度計14,14は、電磁コイルWにおける1対の端末部Wb,Wbの温度を非接触で計測可能となっており、その計測結果に基づいて、加熱炉制御部12が電磁コイルWの発熱温度を自動調節するようになっている。具体的には、交流電源37の電流値又は周波数を調節して、例えば、前段加熱エリアAR1を進むに従って徐々に電磁コイルWが昇温するように自動調節される。   Radiation thermometers 14 and 14 are provided at positions where the sliding contact terminals 34 and 34 are provided in the front heating area AR1. The radiation thermometers 14 and 14 can measure the temperature of the pair of terminal portions Wb and Wb in the electromagnetic coil W in a non-contact manner. Based on the measurement result, the heating furnace control unit 12 can detect the temperature of the electromagnetic coil W. The exothermic temperature is automatically adjusted. Specifically, by adjusting the current value or frequency of the AC power supply 37, for example, the electromagnetic coil W is automatically adjusted so as to gradually increase in temperature as it advances through the preceding heating area AR1.

次に本実施形態の塗料固化装置10の動作について説明する。電着塗装工程にて巻回部Waが塗料で覆われた電磁コイルWは、その端末部Wb,Wbをチャック治具31,31にて把持された状態で、搬入口11Aから加熱炉11内へと搬入され、前段加熱エリアAR1、後段加熱エリアAR2の順にタクト搬送されながら加熱される。   Next, operation | movement of the coating material solidification apparatus 10 of this embodiment is demonstrated. The electromagnetic coil W in which the winding portion Wa is covered with the paint in the electrodeposition coating process, the terminal portions Wb and Wb are gripped by the chuck jigs 31 and 31, and the inside of the heating furnace 11 from the carry-in port 11A. And heated while being transported in the order of the front heating area AR1 and the rear heating area AR2.

前段加熱エリアAR1では、電磁コイルWに対して交流が直接通電される。すると、電磁コイルWがインピーダンスによって自己発熱する。これにより、電磁コイルWの表面を覆った塗料が、内側(電磁コイルW側)から加熱される。また、前段加熱エリアAR1を先に進むに従って、電磁コイルWの発熱温度が徐々に上昇する。そして、前段加熱エリアAR1における加熱により、塗料に含まれる水分や溶剤が気化して未固化状態の塗料の外面から揮散する。   In the pre-heating area AR1, alternating current is directly applied to the electromagnetic coil W. Then, the electromagnetic coil W generates heat by impedance. Thereby, the coating material which covered the surface of the electromagnetic coil W is heated from the inner side (electromagnetic coil W side). Moreover, the heat generation temperature of the electromagnetic coil W gradually rises as it proceeds through the preceding heating area AR1. And the water | moisture content and solvent which are contained in a coating material evaporate by the heating in the front | former stage heating area AR1, and are volatilized from the outer surface of the unsolidified coating material.

前段加熱エリアAR1に次ぐ後段加熱エリアAR2では、IHコイル36,36に高周波電流を流すことで、溝形発熱体35が誘導加熱され、その溝形発熱体35からの放射熱により、電磁コイルWを覆った塗料が外側から加熱される。なお、後段加熱エリアAR2における加熱中も、電磁コイルWの余熱により、塗料は内側から加熱される。そして、加熱炉11内を所定時間かけて移動することで、電磁コイルWを覆った塗料が完全に固化して絶縁被膜が形成される。   In the subsequent heating area AR2 subsequent to the preceding heating area AR1, the groove-shaped heating element 35 is induction-heated by passing a high-frequency current through the IH coils 36, 36, and the electromagnetic coil W is radiated by the radiant heat from the groove-shaped heating element 35. The coating covering the surface is heated from the outside. Even during heating in the rear heating area AR2, the paint is heated from the inside by the residual heat of the electromagnetic coil W. Then, by moving within the heating furnace 11 over a predetermined time, the paint covering the electromagnetic coil W is completely solidified and an insulating film is formed.

このように本実施形態によれば、巻回部Waを塗料で覆った後で電磁コイルWに交流電流を通電すると、インピーダンスによって電磁コイルWが自己発熱するので、電磁コイルWを覆った塗料をムラ無く均一に加熱することができる。   As described above, according to the present embodiment, when an alternating current is applied to the electromagnetic coil W after covering the winding portion Wa with the paint, the electromagnetic coil W self-heats due to the impedance. It can be heated uniformly without unevenness.

また、塗料を内側から加熱することで、塗料の水分や溶剤を未固化状態の塗料の外面から揮散させ、その後、塗料を外側から加熱するので、固化後の絶縁被膜に気泡状の膨らみやクレーター状の凹みが残ることを防止することができる。また、電磁コイルWの自己発熱だけで固化させる場合に比べて、塗料の完全固化までに要する時間を短縮することが可能になる。   In addition, by heating the paint from the inside, the moisture and solvent of the paint are volatilized from the outer surface of the unsolidified paint, and then the paint is heated from the outside. It is possible to prevent the dents from being left. Moreover, compared with the case where it solidifies only by the self-heating of the electromagnetic coil W, it becomes possible to shorten the time required until the paint is completely solidified.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)上記実施形態では、電磁コイルWを覆った塗料を外側から加熱するための後段加熱エリアAR2を設けていたが、後段加熱エリアAR2を設けずに、電磁コイルWの自己発熱のみで塗料を固化させてもよい。   (1) In the above embodiment, the rear heating area AR2 for heating the coating material covering the electromagnetic coil W from the outside is provided. However, the coating material is formed only by self-heating of the electromagnetic coil W without providing the rear heating area AR2. May be solidified.

(2)上記実施形態では、溝形発熱体35を誘導加熱によって発熱させる構成としていたが、通電による電気抵抗で自己発熱させる構成としてもよい。   (2) In the above embodiment, the groove-shaped heating element 35 is configured to generate heat by induction heating, but may be configured to self-heat using electrical resistance caused by energization.

(3)上記実施形態では、電磁コイルWを加熱炉11内でタクト搬送しながら加熱を行っていたが、加熱炉11内を一定速度で搬送しながら加熱を行ってもよい。   (3) In the above embodiment, heating is performed while the electromagnetic coil W is transported in the heating furnace 11 in a tact manner. However, heating may be performed while transporting the heating coil 11 at a constant speed.

(4)上記実施形態では、本発明に係る「コイル」として電磁コイルを例示したが、コイルスプリングであってもよい。また、塗料は、絶縁被覆を形成するためのものに限定されるものではなく、例えば、防錆用や装飾用の塗料であってもよい。   (4) In the above embodiment, the electromagnetic coil is exemplified as the “coil” according to the present invention, but a coil spring may be used. The paint is not limited to the one for forming the insulating coating, and may be a rust preventive or decorative paint, for example.

(5)上記実施形態では、電磁コイルWの巻回軸方向とコンベア30による電磁コイルWの搬送方向とを平行となるようにしていたが、図5に示すように、電磁コイルWの巻回軸及び1対の端末部Wb,Wbの突出方向とに直交した方向で電磁コイルWを搬送するようにしてもよい。この場合、溝形発熱体35の内側面を、電磁コイルWの巻回軸及び1対の端末部Wb,Wbの突出方向とに直交した方向から巻回部Waを見たときの輪郭部分に隙間を空けて隣接させればよい。   (5) In the above embodiment, the winding axis direction of the electromagnetic coil W and the conveyance direction of the electromagnetic coil W by the conveyor 30 are parallel to each other. However, as shown in FIG. You may make it convey the electromagnetic coil W in the direction orthogonal to the protrusion direction of an axis | shaft and a pair of terminal part Wb and Wb. In this case, the inner side surface of the groove-shaped heating element 35 is an outline portion when the winding portion Wa is viewed from a direction orthogonal to the winding axis of the electromagnetic coil W and the protruding direction of the pair of terminal portions Wb and Wb. What is necessary is just to make a clearance and adjoin.

10 塗料固化装置
35 溝形発熱体(ヒーター)
36 IHコイル
37 交流電源
W 電磁コイル(コイル)
Wa 巻回部
Wb 端末部
10 Paint solidifying device 35 Channel heating element (heater)
36 IH coil 37 AC power supply W Electromagnetic coil (coil)
Wa winding part Wb terminal part

Claims (5)

コイルの表面を塗料で覆った後、前記コイルに交流を通電して自己発熱させて、前記塗料を乾燥又は硬化させ、前記塗料にて被覆されたコイルを製造することを特徴とするコイル製造方法。   A method of manufacturing a coil, comprising: covering a coil surface with a paint; and applying an alternating current to the coil to cause self-heating, drying or curing the paint, and manufacturing a coil covered with the paint. . 前記コイルは、電磁コイルであり、前記塗料は、乾燥又は硬化して前記電磁コイルを被覆する絶縁皮膜になることを特徴とする請求項1に記載のコイル製造方法。   The coil manufacturing method according to claim 1, wherein the coil is an electromagnetic coil, and the paint is dried or cured to become an insulating film that covers the electromagnetic coil. 前記電磁コイルの表面の塗料の皮膜を、前記電磁コイルの自己発熱によって内側から加熱した後、外側からヒーターにて加熱することを特徴とする請求項2に記載のコイル製造方法。   The coil manufacturing method according to claim 2, wherein the coating film on the surface of the electromagnetic coil is heated from the inside by self-heating of the electromagnetic coil and then heated by a heater from the outside. 前記電磁コイルの両端末部を巻回部分から同一方向に突出する構造に形成しておき、
前記電磁コイルの巻回部分を受容しかつ、巻回部分の巻回軸方向又は、前記巻回軸と前記両端末部分の突出方向とに共に直交した方向の何れかの方向から前記巻回部分を見たときの輪郭部分に対して隙間を空けて隣接する内側面を有した溝形発熱体を前記ヒーターとして備えておき、
前記溝形発熱体を発熱させかつ、前記電磁コイルの巻回部分を前記溝形発熱体内に遊嵌させて前記溝形発熱体の長手方向に移動し、前記塗料を加熱することを特徴とする請求項3に記載のコイル製造方法。
Both end portions of the electromagnetic coil are formed in a structure protruding in the same direction from the wound portion,
The winding portion receives the winding portion of the electromagnetic coil and from either the winding axis direction of the winding portion or the direction orthogonal to the winding axis and the protruding direction of the both end portions. A heater with a groove-shaped heating element having an inner surface adjacent to the contour portion when viewed with a gap,
The groove-shaped heating element is heated, and the winding portion of the electromagnetic coil is loosely fitted in the groove-shaped heating element to move in the longitudinal direction of the groove-shaped heating element to heat the paint. The coil manufacturing method according to claim 3.
前記溝形発熱体の外側にIHコイルを配置しておき、前記IHコイルによって前記溝形発熱体を誘導加熱することを特徴とする請求項4に記載のコイル製造方法。   The coil manufacturing method according to claim 4, wherein an IH coil is disposed outside the groove-shaped heating element, and the groove-shaped heating element is induction-heated by the IH coil.
JP2010270048A 2010-12-03 2010-12-03 Method of manufacturing coil Pending JP2012119600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270048A JP2012119600A (en) 2010-12-03 2010-12-03 Method of manufacturing coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270048A JP2012119600A (en) 2010-12-03 2010-12-03 Method of manufacturing coil

Publications (1)

Publication Number Publication Date
JP2012119600A true JP2012119600A (en) 2012-06-21

Family

ID=46502088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270048A Pending JP2012119600A (en) 2010-12-03 2010-12-03 Method of manufacturing coil

Country Status (1)

Country Link
JP (1) JP2012119600A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099513A1 (en) * 2011-12-28 2013-07-04 中央発條株式会社 Method for coating spring member
JP2014234567A (en) * 2013-06-03 2014-12-15 日本電信電話株式会社 Method and device for manufacturing conductive fiber
JP2015029963A (en) * 2013-08-02 2015-02-16 住友電気工業株式会社 Method of manufacturing insulation coating wire material, manufacturing device of insulation coating wire material, and insulation coating wire material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099513A1 (en) * 2011-12-28 2013-07-04 中央発條株式会社 Method for coating spring member
JP2014234567A (en) * 2013-06-03 2014-12-15 日本電信電話株式会社 Method and device for manufacturing conductive fiber
JP2015029963A (en) * 2013-08-02 2015-02-16 住友電気工業株式会社 Method of manufacturing insulation coating wire material, manufacturing device of insulation coating wire material, and insulation coating wire material

Similar Documents

Publication Publication Date Title
JP2012115801A (en) Method for solidification of coating material and method of manufacturing coil
US20100320194A1 (en) Method and device for heating stator
JP2012119600A (en) Method of manufacturing coil
CN111567881A (en) Mobile heating assembly, aerosol generating device and implementation method
US20160107253A1 (en) Reel-to-reel manufacturing plant for interlinked continuous and discontinuous processing steps
JP2019509010A5 (en)
US7316064B2 (en) Induction reflow apparatus and method of using the same
JP2012115802A (en) Method for solidification of coating material and method of manufacturing coil
JP5942679B2 (en) Reactor manufacturing equipment and manufacturing method
JP6161479B2 (en) Induction heating device
JP2013178244A (en) Method and apparatus for measuring temperature of strand-like material
KR101754444B1 (en) Drying device for electrode
JP2005222964A (en) Reflow soldering apparatus and method
JP5359945B2 (en) Temperature control method and temperature control apparatus
Park et al. Roll-to-roll infrared and hot-air sintering of gravure-printed Ag layer based on in situ tension measuring and analysis
JP6065403B2 (en) Paint drying apparatus and paint drying method
CN202615939U (en) A control device for preheating an outer mould of a cable extruder
JP2020515415A (en) Method and apparatus for manufacturing hardened sheet metal products
US20190189305A1 (en) Method of preparing epoxy coated bus bars for use in electrical distribution equipment
JP2013135057A (en) Method and apparatus for producing resin burying metal component
CN212488459U (en) Movable heating assembly and aerosol generating device
JP2021158097A (en) Apparatus and method for manufacturing conductor
JP2004301391A (en) Drying device and induction heating type heater to be used for the same
JP2006310198A (en) Induction heating device and its method
US11009328B1 (en) Ammunition case mouth sealing system and related method