JP2012119452A - Manufacturing method for reactor coil - Google Patents

Manufacturing method for reactor coil Download PDF

Info

Publication number
JP2012119452A
JP2012119452A JP2010267131A JP2010267131A JP2012119452A JP 2012119452 A JP2012119452 A JP 2012119452A JP 2010267131 A JP2010267131 A JP 2010267131A JP 2010267131 A JP2010267131 A JP 2010267131A JP 2012119452 A JP2012119452 A JP 2012119452A
Authority
JP
Japan
Prior art keywords
coil
mandrel
reactor
rectangular
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010267131A
Other languages
Japanese (ja)
Inventor
Yasushi Nomura
康 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010267131A priority Critical patent/JP2012119452A/en
Publication of JP2012119452A publication Critical patent/JP2012119452A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulating Of Coils (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor coil excellent in productivity, and its manufacturing method as well as a reactor.SOLUTION: The manufacturing method for a reactor coil comprises: a winding process in which an element wire (bare element wire 1) composed of a conductor with no insulation coating having a cross section of other than a flat shape is wound spirally to form a standby coil 10; and a compression process in which a rectangular coil (bare rectangular coil 20) composed of the winding 2 whose element wire has a flat-shaped cross section obtained by compressing the standby coil 10 in an axial direction is formed. Since the winding of the element wire and the compression of the standby coil 10 are performed to the element wire with no insulation coating, damage in the insulation coating is prevented until the rectangular coil is formed.

Description

本発明は、車載用DC-DCコンバータといった電力変換装置を構成するリアクトルに適したリアクトル用コイル、その製造方法、及び前記コイルを用いたリアクトルに関する。   The present invention relates to a reactor coil suitable for a reactor that constitutes a power conversion device such as an in-vehicle DC-DC converter, a manufacturing method thereof, and a reactor using the coil.

電圧の昇降圧動作を行う電力変換装置の構成部品としてリアクトルが使用されている。例えば、特許文献1には、磁性コア中にコイルを配置することで構成されるリアクトルが開示されている。具体的には、コイルの励磁により、磁性コアにおけるコイルの内部に配される部分(以下、内側コア部)と、コイルの外側を覆う部分(以下、外側コア部)とを通る閉磁路が形成される。このリアクトル用のコイルは、断面矩形状の導体の表面に絶縁被覆を形成した被覆平角線をエッジワイズ巻きにして形成させたエッジワイズコイルである。エッジワイズコイルは、横断面が円形の巻線からなるコイルと比較して、導体の占積率を高められるため、リアクトルを小型にすることができる。   A reactor is used as a component of a power converter that performs voltage step-up / step-down operation. For example, Patent Document 1 discloses a reactor configured by arranging a coil in a magnetic core. Specifically, a closed magnetic path that passes through a portion of the magnetic core (hereinafter referred to as the inner core portion) and a portion that covers the outside of the coil (hereinafter referred to as the outer core portion) is formed by exciting the coil. Is done. This coil for a reactor is an edgewise coil formed by edgewise winding a covered rectangular wire having an insulating coating formed on the surface of a conductor having a rectangular cross section. Since the edgewise coil can increase the space factor of the conductor as compared with a coil made of a winding having a circular cross section, the reactor can be made smaller.

特開2009‐033051号公報JP 2009-033051

しかし、巻線として被覆平角線を利用すると、エッジワイズコイルを形成する際に、コイル成形機に供給する被覆平角線の表裏面の向きを一定に保つ必要があり、コイルの成形作業が煩雑になる。また、被覆平角線が曲げられた屈曲部分では、その曲げの外周側に比べて内周側の巻線の厚さが厚くなり易い。その上、絶縁被覆を有する被覆平角線は、コイル成形時に絶縁被覆を損傷させる虞もある。   However, when a coated rectangular wire is used as a winding, when forming an edgewise coil, it is necessary to keep the orientation of the front and back surfaces of the coated rectangular wire supplied to the coil molding machine constant, making the coil forming operation complicated. Become. Further, at the bent portion where the coated rectangular wire is bent, the thickness of the winding on the inner peripheral side tends to be thicker than that on the outer peripheral side of the bending. In addition, the coated rectangular wire having an insulating coating may damage the insulating coating during coil forming.

特に、被覆平角線を巻線としてコイルの端面外形が矩形のエッジワイズコイルを形成する場合、図6に示すように、コイル50を構成する各ターンの角部50Cに位置ずれが生じる虞がある。   In particular, when forming an edgewise coil with a coiled rectangular wire as a winding and having a rectangular end face outer shape, as shown in FIG. 6, there is a risk that the corner 50C of each turn constituting the coil 50 is displaced. .

巻線をほぼ直角に屈曲して角部の形成を繰り返すことでコイルのターンの形成が進むと、成形されたコイルの重量が大きくなる。そのため、コイルの慣性により、ターン数の少ないコイルにつながる巻線を曲げた場合と、ターン数の多いコイルにつながる巻線を曲げた場合とでは巻線の曲げ角にばらつきが生じる。また、繰り出しボビンから巻線をコイル成形機に供給してターン数が多いコイルを形成する場合、巻線の繰り出し初期と終期では、繰出しボビンにおける巻線の巻付け径の差が大きくなる。この巻付け径の相違は、繰り出される巻線の線癖に影響し、角部によってスプリングバック量の相違として現れ、角部の曲げ角にばらつきを生じさせる。   If the coil turns are formed by repeating the formation of the corners by bending the winding substantially at a right angle, the weight of the formed coil increases. Therefore, due to the inertia of the coil, the bending angle of the winding varies between when the winding connected to the coil with a small number of turns is bent and when the winding connected to a coil with a large number of turns is bent. In addition, when a coil having a large number of turns is formed by supplying a winding from a feeding bobbin to a coil forming machine, a difference in winding diameter of the winding on the feeding bobbin becomes large between the initial and final stages of winding. This difference in the winding diameter affects the wire rod of the wound winding wire, and appears as a difference in the amount of spring back depending on the corner portion, causing variations in the bending angle of the corner portion.

一方、この曲げ角のばらつきにより各ターンの角部の位置が少しずつずれたコイルは、その角部における導体の材質がある程度加工硬化しているため、コイル成形後に各ターンの角部の位置ずれを修正することが非常に困難である。   On the other hand, the coil whose position of the corner of each turn is slightly shifted due to the variation in the bending angle is because the material of the conductor at the corner is work hardened to some extent. It is very difficult to correct.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、生産性に優れるリアクトル用コイルの製造方法を提供することにある。   This invention is made | formed in view of the said situation, and the one of the objective is to provide the manufacturing method of the coil for reactors which is excellent in productivity.

また、本発明の他の目的は、上記本発明のリアクトル用コイルの製造方法によって製造されたリアクトル用コイルを提供することにある。   Moreover, the other object of this invention is to provide the coil for reactors manufactured by the manufacturing method of the coil for reactors of the said invention.

更に、本発明の別の目的は、上記本発明のリアクトル用コイルを用いたリアクトルを提供することにある。   Furthermore, another object of the present invention is to provide a reactor using the reactor coil of the present invention.

本発明のリアクトル用コイルの製造方法は、次の巻回工程と圧縮工程とを備えることを特徴とする。
巻回工程:絶縁被覆を有しておらず、かつ横断面が平角形状以外の導体から構成される素線をらせん状に巻回して予備コイルを形成する。
圧縮工程:前記予備コイルを軸方向に圧縮して、前記素線の横断面が平角形状となった巻線からなる平角コイルを形成する。
The manufacturing method of the coil for reactors of this invention is equipped with the following winding process and compression process.
Winding step: A spare coil is formed by spirally winding an element wire that does not have an insulating coating and is made of a conductor having a cross section other than a flat rectangular shape.
Compression step: The auxiliary coil is compressed in the axial direction to form a rectangular coil composed of windings in which the transverse cross section of the element wire has a rectangular shape.

この方法によれば、横断面が平角形状以外の素線で予備コイルを形成するため、この素線をらせん状に巻回する際、コイル成形機に供給する素線の外周方向の向きを厳密に規定する必要はない。また、素線の巻回と予備コイルの圧縮は、絶縁被覆のない素線に対して行われ、絶縁被覆の形成は平角コイルの形成後に行えるため、平角コイルを形成するまでの過程において絶縁被覆の損傷問題を回避できる。その上、平角コイルを形成する巻線の横断面形状は、予備コイルの成形時ではなく、予備コイルの軸方向への圧縮に伴う素線の断面形状の塑性変形により決まるため、巻線の曲げの内側と外側で巻線の厚みに差が生じ難い。さらに、平角コイルを構成する巻線の屈曲形態は、予備コイルを形成した際に暫定的に決まり、予備コイルを圧縮して素線の断面形状を平角形状以外から平角形状に塑性変形させることで確定される。そのため、平角コイルの端面外形が矩形の場合でも、平角コイルを構成する各ターンの角部の位置を揃え易い。   According to this method, since the preliminary coil is formed of a wire having a cross section other than a rectangular shape, when the wire is wound in a spiral shape, the direction of the outer periphery of the wire supplied to the coil forming machine is strictly There is no need to stipulate. In addition, since the winding of the wire and the compression of the spare coil are performed on the wire without insulation coating, and the insulation coating can be formed after the formation of the rectangular coil, the insulation coating is performed in the process until the rectangular coil is formed. The damage problem can be avoided. In addition, the cross-sectional shape of the winding forming the rectangular coil is determined not by the time of forming the preliminary coil, but by the plastic deformation of the cross-sectional shape of the wire due to the axial compression of the preliminary coil. The difference in the thickness of the winding hardly occurs between the inside and the outside. Furthermore, the bending form of the windings constituting the rectangular coil is tentatively determined when the spare coil is formed, and the spare coil is compressed to plastically deform the cross-sectional shape of the strand from a rectangular shape to a rectangular shape. Confirmed. Therefore, even when the end face outer shape of the flat coil is rectangular, it is easy to align the corners of each turn constituting the flat coil.

本発明のリアクトル用コイルの製造方法の一形態として、前記圧縮工程は、金型を用いて行う形態が挙げられる。具体的には、前記予備コイルの内周形状に沿った心棒によって該予備コイルの内周を支持し、圧縮後の予備コイルの外形を形成する外金型を前記心棒の外周に同心状に配置する。そして、前記心棒と外金型との間に嵌る上金型と下金型とによって前記予備コイルを挟持しながら圧縮する。   As one form of the manufacturing method of the coil for reactors of this invention, the form to perform the said compression process using a metal mold | die is mentioned. Specifically, the inner periphery of the auxiliary coil is supported by the mandrel along the inner peripheral shape of the auxiliary coil, and the outer mold that forms the outer shape of the auxiliary coil after compression is arranged concentrically on the outer periphery of the mandrel. To do. Then, the auxiliary coil is compressed while being sandwiched between the upper die and the lower die that are fitted between the mandrel and the outer die.

この方法によれば、各金型により予備コイルの内外周及び両端面を適切に支持して圧縮が行えるため、予備コイルの形状を保持したまま各ターンをほぼ均一に塑性変形させることができる。それにより、平角コイルの各ターンを構成する巻線の横断面形状を均一に形成し易い。   According to this method, the inner and outer circumferences and both end faces of the auxiliary coil can be appropriately supported and compressed by the respective molds, so that each turn can be plastically deformed substantially uniformly while maintaining the shape of the auxiliary coil. Thereby, it is easy to form the cross-sectional shape of the winding which comprises each turn of a flat coil uniformly.

本発明のリアクトル用コイルの製造方法の一形態として、金型を用いて圧縮工程を行う場合、前記心棒と外金型の各々は、互いに放射状に分離できる複数の心棒分割片と外金型分割片を備える形態が挙げられる。前記心棒は、前記心棒分割片同士の間隔を可変とすることで心棒の外形サイズを可変とする拡径部材を備える。前記外金型は、前記外金型分割片同士を当接した際、前記平角コイルの外形に適合した内周面を形成する。   As one form of the manufacturing method of the coil for reactors of this invention, when performing a compression process using a metal mold | die, each of the said mandrel and an outer metal mold | die is divided into a plurality of mandrel division pieces and outer metal mold divisions that can be separated from each other radially The form provided with a piece is mentioned. The mandrel includes a diameter-expanding member that varies the outer size of the mandrel by varying the interval between the mandrel split pieces. The outer mold forms an inner peripheral surface adapted to the outer shape of the rectangular coil when the outer mold divided pieces are brought into contact with each other.

この方法によれば、心棒分割片の間隔を広げた状態の心棒とすることで、圧縮時に予備コイルの内周を心棒で支持することができ、心棒分割片の間隔を狭めた状態の心棒とすることで、平角コイルを心棒から容易に取り外すことができる。また、分割式の外金型とすることで、外金型を平角コイルの外周方向に分割して開くことで、容易に同コイルを取り出すことができる。   According to this method, by making the mandrel in a state in which the interval between the mandrel split pieces is widened, the inner periphery of the spare coil can be supported by the mandrel at the time of compression, By doing so, the flat coil can be easily detached from the mandrel. Moreover, by using a split outer die, the outer die can be easily taken out by dividing and opening the outer die in the outer peripheral direction of the rectangular coil.

本発明のリアクトル用コイルの製造方法の一形態として、前記巻回工程は、前記予備コイルの軸方向から見た端面形状が円形となるように前記導体を巻回し、前記圧縮工程は、前記端面形状を維持したまま圧縮する形態が挙げられる。   As one form of the manufacturing method of the coil for reactors of this invention, the said winding process winds the said conductor so that the end surface shape seen from the axial direction of the said preliminary coil may become circular, and the said compression process includes the said end surface. The form which compresses with the shape maintained is mentioned.

この方法によれば、円筒状の平角コイルを容易に形成することができる。   According to this method, a cylindrical rectangular coil can be easily formed.

本発明のリアクトル用コイルの製造方法の一形態として、前記巻回工程は、前記予備コイルの軸方向から見た端面形状が多角形となるように前記導体を巻回し、前記圧縮工程は、前記端面形状を維持したまま圧縮する形態が挙げられる。   As one form of the manufacturing method of the coil for reactors of this invention, the said winding process winds the said conductor so that the end surface shape seen from the axial direction of the said preliminary coil may become a polygon, and the said compression process includes the said The form which compresses, maintaining an end surface shape is mentioned.

この方法によれば、角筒状の平角コイルを容易に形成することができる。   According to this method, a rectangular tube-shaped rectangular coil can be easily formed.

本発明のリアクトル用コイルの製造方法の一形態として、更に、前記平角コイルを構成する巻線の表面の少なくとも一部に絶縁被覆を形成する被覆工程を備える形態が挙げられる。   As one form of the manufacturing method of the coil for reactors of this invention, the form further provided with the coating process which forms an insulation coating in at least one part of the surface of the coil | winding which comprises the said flat coil.

この方法によれば、平角コイルの形成後に絶縁被覆の形成を行うため、平角コイルを形成するまでの過程において絶縁被覆の損傷問題を回避できる。   According to this method, since the insulating coating is formed after the rectangular coil is formed, the problem of damage to the insulating coating can be avoided in the process until the rectangular coil is formed.

本発明のリアクトル用コイルの製造方法の一形態として、前記被覆工程は、塗装により絶縁被覆を形成する形態が挙げられる。   As one form of the manufacturing method of the coil for reactors of this invention, the said coating process includes the form which forms insulation coating by coating.

この方法によれば、平角コイルの表面に塗装を施すことで、絶縁被覆を容易に形成することができる。   According to this method, the insulating coating can be easily formed by coating the surface of the rectangular coil.

本発明のリアクトル用コイルの製造方法の一形態として、前記被覆工程は、樹脂モールドにより絶縁被覆を形成する形態が挙げられる。   As one form of the manufacturing method of the coil for reactors of this invention, the said coating process includes the form which forms insulation coating with a resin mold.

この方法によれば、平角コイルの表面を樹脂モールドにより覆うことで、絶縁被覆を容易に形成することができる。   According to this method, the insulating coating can be easily formed by covering the surface of the flat coil with the resin mold.

一方、本発明のリアクトル用コイルは、上述した本発明のリアクトル用コイルの製造方法により得られたことを特徴とする。   On the other hand, the reactor coil of the present invention is obtained by the above-described method for manufacturing a reactor coil of the present invention.

この構成によれば、平角コイルを構成する巻線の曲げの内側と外側で厚みの差が小さく、絶縁被覆の損傷が実質的にないコイルとすることができる。特に、端面外形が多角形の平角コイルの場合でも、各ターンの角部の位置が揃ったコイルとすることができる。そのため、本発明のコイルと磁性コアとを組み合わせてリアクトルを製造する際、この組立作業を容易にすることができる。   According to this configuration, it is possible to obtain a coil in which the difference in thickness is small between the inside and outside of the bending of the winding constituting the rectangular coil and the insulation coating is not substantially damaged. In particular, even in the case of a rectangular rectangular coil whose end face outer shape is a polygon, it can be a coil in which the corner portions of each turn are aligned. Therefore, when manufacturing a reactor combining the coil of this invention and a magnetic core, this assembly work can be made easy.

本発明のリアクトルは、上述した本発明のリアクトル用コイルと、該リアクトル用コイルが配置される磁性コアとを備えることを特徴とする。   The reactor of this invention is provided with the coil for reactors of this invention mentioned above, and the magnetic core by which this coil for reactors is arrange | positioned, It is characterized by the above-mentioned.

本発明のリアクトル用コイルは、その形状が整っているため、そのコイルを用いたリアクトルの形状も整ったものとすることができる。また、本発明のリアクトル用コイルは、絶縁被覆の損傷の実質的にないコイルとできるため、そのコイルを用いたリアクトルは、コイルと磁性コアとの絶縁を十分に確保することができる。   Since the shape of the reactor coil according to the present invention is arranged, the shape of the reactor using the coil can be arranged. Moreover, since the coil for reactors of this invention can be used as a coil which does not have damage of insulation coating substantially, the reactor using the coil can fully ensure the insulation with a coil and a magnetic core.

本発明のリアクトル用コイルの製造方法によれば、形状が整った平角コイルを生産性よく製造することができる。特に、端面外形が多角形のエッジワイズコイルを製造する場合、角部の位置ずれが少なく、形状が整った平角コイルを得ることができる。   According to the method for manufacturing a reactor coil of the present invention, a rectangular coil having a well-shaped shape can be manufactured with high productivity. In particular, when manufacturing an edgewise coil having a polygonal end face shape, a rectangular coil having a small shape and a well-formed shape can be obtained.

本発明のリアクトル用コイルは、その形状が整って、かつ絶縁被覆の損傷が実質的にないコイルとすることができる。   The reactor coil of the present invention can be a coil having a uniform shape and substantially free from damage to the insulation coating.

本発明のリアクトルは、コイルと磁性コアとの絶縁性が十分に確保でき、かつ形状の整ったリアクトルとすることができる。   The reactor of the present invention can ensure a sufficient insulation between the coil and the magnetic core, and can be a reactor with a well-formed shape.

実施形態に係るリアクトル用コイルの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the coil for reactors which concerns on embodiment. 実施形態の方法に用いる金型と予備コイルの説明図である。It is explanatory drawing of the metal mold | die and spare coil which are used for the method of embodiment. (A)は予備コイル圧縮前の図2の金型を示す説明図、(B)は予備コイル圧縮時の図2の金型を示す説明図、(C)は圧縮後の図2の金型を示す説明図である。(A) is an explanatory view showing the mold shown in FIG. 2 before compression of the preliminary coil, (B) is an explanatory view showing the mold shown in FIG. 2 when the preliminary coil is compressed, and (C) is a mold shown in FIG. 2 after compression. It is explanatory drawing which shows. 図3(B)のI-I断面図である。It is II sectional drawing of FIG. 3 (B). (A)は実施形態に係るリアクトルの概略図、(B)は(A)の縦断面図である。(A) is the schematic of the reactor which concerns on embodiment, (B) is a longitudinal cross-sectional view of (A). コイルの角部の位置ずれを示す説明図である。It is explanatory drawing which shows the position shift of the corner | angular part of a coil.

以下、本発明の実施の形態を図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

〔実施形態1〕
{概要}
ここでは、円筒状のエッジワイズコイルを製造する方法を例として図1〜図4に基づいて本発明を説明する。この製造方法は、概略的に述べると、巻回工程、圧縮工程、被覆工程を備える。より具体的には、各工程は次のように行われる(図1)。
巻回工程:絶縁被覆がない裸素線1を巻回して予備コイル10を形成する。
圧縮工程:予備コイル10を圧縮して平角の巻線2からなる裸平角コイル20を形成する。
被覆工程:裸平角コイル20の表面に絶縁被覆を形成し、被覆平角コイルとする。
以下、各工程ごとに本例の製造方法をさらに詳しく説明する。
Embodiment 1
{Overview}
Here, the present invention will be described based on FIGS. 1 to 4 by taking a method of manufacturing a cylindrical edgewise coil as an example. This manufacturing method generally includes a winding process, a compression process, and a coating process. More specifically, each process is performed as follows (FIG. 1).
Winding step: A spare coil 10 is formed by winding a bare wire 1 having no insulation coating.
Compression step: The spare coil 10 is compressed to form a bare rectangular coil 20 composed of the rectangular winding 2.
Coating process: An insulating coating is formed on the surface of the bare rectangular coil 20 to form a coated rectangular coil.
Hereafter, the manufacturing method of this example is demonstrated in detail for every process.

{巻回工程}
巻回工程は、絶縁被覆がなく、横断面が平角形状でない裸素線1を巻回して予備コイル10を形成する工程である。
{Winding process}
The winding step is a step of forming the spare coil 10 by winding the bare wire 1 having no insulating coating and having a flat cross section.

(裸素線)
裸素線1は、絶縁被覆を持たない導電線である。この裸素線1で予備コイル10を形成することで、予備コイル成形時に絶縁被覆が損傷するという問題を回避できる。裸素線1の材質には、導電性の高い材料が好適に利用できる。例えば、銅、銅合金、アルミニウム、アルミニウム合金などが挙げられる。裸素線1の断面形状は、平角形状以外とする。例えば、円形や楕円形が好適に挙げられる。特に、裸素線1の外周面が曲面で構成され、平面を有さない裸素線1であれば、予備コイル10を形成するコイル成形機に裸素線1を供給する際、同素線1の外周方向の向きを厳密に規定する必要がないため好ましい。とりわけ、横断面が円形の丸線は製造も取り扱いも容易にでき、裸素線1として好適に利用できる。本例では、銅からなる丸線を裸素線1に用いている。丸線の直径は、裸平角コイル20を構成する巻線2の厚さよりも大きな寸法としておく。
(Bare bare wire)
The bare wire 1 is a conductive wire having no insulation coating. By forming the spare coil 10 with the bare wire 1, it is possible to avoid the problem that the insulation coating is damaged when the spare coil is formed. As the material of the bare wire 1, a material having high conductivity can be suitably used. For example, copper, a copper alloy, aluminum, an aluminum alloy, etc. are mentioned. The cross-sectional shape of the bare wire 1 is other than a rectangular shape. For example, a circular shape and an elliptical shape are preferable. In particular, when the bare wire 1 is formed of a curved surface and does not have a flat surface, when the bare wire 1 is supplied to the coil forming machine for forming the spare coil 10, the same wire is used. Since it is not necessary to strictly define the direction of the outer peripheral direction of 1, it is preferable. In particular, a round wire having a circular cross section can be easily manufactured and handled and can be suitably used as the bare wire 1. In this example, a round wire made of copper is used for the bare wire 1. The diameter of the round wire is set to be larger than the thickness of the winding 2 constituting the bare rectangular coil 20.

(巻回条件)
このような裸素線1は、らせん状に巻回されて、所定のターン数の予備コイル10に成形される。このコイル成形は、常温でももちろんできるが、絶縁被覆のない裸素線1が加工対象であるため、適宜な温度に裸素線1を加熱して行うことも可能である。この際の加熱温度は、裸素線1の屈曲が常温時に比べて容易になり、かつ裸素線1が過度に軟化して断線しない程度の温度範囲が選択できる。本例では常温にて裸素線1の巻回を行っている。
(Winding condition)
Such bare wire 1 is spirally wound and formed into a spare coil 10 having a predetermined number of turns. Of course, this coil forming can be performed at room temperature, but since the bare wire 1 without insulation coating is the object to be processed, the bare wire 1 can be heated to an appropriate temperature. The heating temperature at this time can be selected in such a temperature range that the bending of the bare wire 1 is easier than at normal temperature, and the bare wire 1 is not excessively softened and disconnected. In this example, the bare wire 1 is wound at room temperature.

(予備コイルの形状)
予備コイル10の端面を軸方向から見た形状(端面外形)は、円形や楕円形の他、矩形を代表例とする多角形など、種々の形態が挙げられる。つまり、予備コイル10の形状には、円筒状や角筒状のいずれもが利用できる。本例では、予備コイル10の端面外形を円形としている。また、予備コイル10のピッチは、広い尤度をもって選択できる。後述する圧縮工程で予備コイル10が圧縮され、予備コイル10のピッチよりも小さいピッチに裸平角コイル20が成形されるからである。
(Shape of spare coil)
The shape (end surface outer shape) of the end face of the auxiliary coil 10 viewed from the axial direction includes various forms such as a polygon having a rectangular shape as a representative example in addition to a circular shape and an elliptical shape. That is, as the shape of the auxiliary coil 10, either a cylindrical shape or a rectangular tube shape can be used. In this example, the outer shape of the end face of the auxiliary coil 10 is circular. Further, the pitch of the spare coil 10 can be selected with a wide likelihood. This is because the preliminary coil 10 is compressed in the compression step described later, and the bare rectangular coil 20 is formed at a pitch smaller than the pitch of the preliminary coil 10.

{圧縮工程}
圧縮工程は、予備コイル10をその軸方向に圧縮して裸素線1の横断面形状を変形させ、横断面が平角形状の巻線2からなる裸平角コイル20を形成する工程である。この圧縮は、予備コイル10のらせん形状を保持したまま同コイル10を圧縮できるよう、金型を用いて行うことが好ましい。金型の構成と併せて、圧縮工程を図2〜図4に基づいて説明する。
{Compression process}
The compression step is a step in which the auxiliary coil 10 is compressed in the axial direction to deform the cross-sectional shape of the bare wire 1 to form a bare flat coil 20 composed of the winding 2 having a flat cross-section. This compression is preferably performed using a mold so that the coil 10 can be compressed while maintaining the helical shape of the auxiliary coil 10. A compression process is demonstrated based on FIGS. 2-4 with the structure of a metal mold | die.

(金型の構成)
金型30は、図2に示すように、心棒31と外金型33を備え、さらに図3に示すように、上金型35と下金型37を備える。
(Mold configuration)
The mold 30 includes a mandrel 31 and an outer mold 33 as shown in FIG. 2, and further includes an upper mold 35 and a lower mold 37 as shown in FIG.

<心棒>
心棒31は、予備コイル10の内周側を支持して、裸平角コイル20の内周面を成形するための部材である。従って、裸平角コイル20の内周形状に合わせた横断面形状の棒材が心棒31として利用できる。本例では、横断面が円形の心棒31を用いている。この心棒31は、予備コイル10を圧縮後、裸平角コイル20を心棒31から容易に取り外すため、分割式とすることが好ましい。本例では、心棒31の軸を中心として、放射状に4等分される心棒分割片31Pと、各分割片の間に介在される拡径部材31Bとを備える心棒31を用いている。各分割片31Pは、断面が扇形の棒状体で構成される。この心棒分割片31Pの分割数は特に問わない。
<Mandrel>
The mandrel 31 is a member for supporting the inner peripheral side of the auxiliary coil 10 and molding the inner peripheral surface of the bare flat coil 20. Therefore, a bar having a cross-sectional shape matching the inner peripheral shape of the bare rectangular coil 20 can be used as the mandrel 31. In this example, a mandrel 31 having a circular cross section is used. The mandrel 31 is preferably of a split type in order to easily remove the bare rectangular coil 20 from the mandrel 31 after the spare coil 10 is compressed. In this example, a mandrel 31 including a mandrel segment piece 31P that is radially divided into four parts around the axis of the mandrel 31 and a diameter-expanding member 31B interposed between the segment pieces is used. Each divided piece 31P is configured by a rod-shaped body having a sector cross section. The number of divisions of the mandrel division piece 31P is not particularly limited.

一方、拡径部材31Bは、各心棒分割片31Pの間に挿脱されることで、各分割片31Pの間隔を変え、心棒31の外径を可変とする。本例では、各心棒分割片31P同士の間の形状に合わせて、十字状に組み合わせた板材を拡径部材31Bとしている。拡径部材31Bを各心棒分割片31Pの間に介在させた状態において、各分割片31Pの外周面(円筒面の一部)と拡径部材31Bを構成する板材の外側面とは、ほぼ連続的につながる円筒状の曲面を形成する。そして、そのときの心棒31の外径が、予備コイル10の内径よりも若干小さく、ほぼ裸平角コイル20の内径に相当する。この拡径部材31Bの板材の数は心棒分割片31Pの分割数に合わせて適宜選択すれば良い。また、拡径部材31Bの一端部は、その長手方向と直交する平面ではなく、一端側に向かうに従って各板材の厚みが小さくなる山型に構成されている。これは、各心棒分割片31Pの間に拡径部材31Bを挿入し易くするためである。その他、拡径部材31Bにおける心棒分割片31Pとの接触面は、本例では平面で構成しているが、板材に適宜な数の孔を設けても良い。この孔により、拡径部材31Bの板材と心棒分割片31Pとの接触面積を小さくし、両者31P、31Bの摩擦を低減することで心棒分割片31P同士の間に拡径部材31Bを挿脱しやすくできる。この拡径部材31Bの挿脱動作は、拡径部材31Bをモータやシリンダなどの適宜なアクチュエータ(図示略)で駆動することが好ましい。   On the other hand, the diameter-expanding member 31B is inserted and removed between the mandrel segment pieces 31P, thereby changing the interval between the segment pieces 31P and making the outer diameter of the mandrel 31 variable. In this example, a plate member combined in a cross shape in accordance with the shape between the mandrel split pieces 31P is used as the diameter expanding member 31B. In a state in which the enlarged member 31B is interposed between the mandrel segment pieces 31P, the outer peripheral surface (a part of the cylindrical surface) of each segment piece 31P and the outer surface of the plate member constituting the enlarged member 31B are substantially continuous. A cylindrical curved surface is formed. The outer diameter of the mandrel 31 at that time is slightly smaller than the inner diameter of the spare coil 10 and substantially corresponds to the inner diameter of the bare rectangular coil 20. The number of plate members of the diameter-expanding member 31B may be appropriately selected according to the number of divisions of the mandrel division pieces 31P. Further, one end portion of the diameter-expanding member 31B is not a plane orthogonal to the longitudinal direction, but is formed in a mountain shape in which the thickness of each plate member decreases toward one end side. This is to facilitate insertion of the diameter-expanding member 31B between the mandrel split pieces 31P. In addition, the contact surface of the diameter-expanding member 31B with the mandrel split piece 31P is a flat surface in this example, but an appropriate number of holes may be provided in the plate material. This hole reduces the contact area between the plate material of the enlarged member 31B and the mandrel segment 31P, and reduces the friction between the both members 31P and 31B, making it easier to insert and remove the enlarged member 31B between the mandrel segments 31P. it can. In the insertion / removal operation of the diameter-expanding member 31B, the diameter-expanding member 31B is preferably driven by an appropriate actuator (not shown) such as a motor or a cylinder.

<外金型>
外金型33は、予備コイル10の外周に配置されて、裸平角コイル20の外周面を成形するための部材である。従って、裸平角コイル20の外周形状に合わせた内周面をもつ筒状部材が外金型33として利用できる。この外金型33も、裸平角コイル10を外金型33から容易に取り出すため、分割式とすることが好ましい。本例では、放射状に4等分される外金型分割片33Pで外金型を構成している。つまり、各外金型分割片33Pは、円弧状の湾曲片で構成される。この外金型分割片33Pの分割数は特に問わない。
<Outer mold>
The outer mold 33 is a member that is disposed on the outer periphery of the auxiliary coil 10 and forms the outer peripheral surface of the bare flat coil 20. Therefore, a cylindrical member having an inner peripheral surface matched to the outer peripheral shape of the bare rectangular coil 20 can be used as the outer mold 33. The outer mold 33 is also preferably a split type so that the bare rectangular coil 10 can be easily taken out from the outer mold 33. In this example, the outer mold is constituted by the outer mold dividing pieces 33P radially divided into four equal parts. That is, each outer mold division piece 33P is formed of an arcuate curved piece. The number of divisions of the outer mold division piece 33P is not particularly limited.

また、この外金型33は、図示しない開閉機構により、各分割片33P同士が当接して円筒に形成された状態と、各分割片33P同士が離れた状態との間で、各分割片33Pを径方向に駆動することができる。この駆動も、モータやシリンダなどの適宜なアクチュエータを備える開閉機構(図示略)で行うことが好ましい。予備コイル10の圧縮時は各分割片33P同士を閉じ、裸平角コイル20の取出時は各分割片33P同士を開く。   Further, the outer mold 33 is divided into a state in which each of the divided pieces 33P is formed between a state where each of the divided pieces 33P comes into contact with each other by a not-illustrated opening / closing mechanism and a state where the divided pieces 33P are separated from each other. Can be driven in the radial direction. This driving is also preferably performed by an opening / closing mechanism (not shown) including an appropriate actuator such as a motor or a cylinder. When the spare coil 10 is compressed, the divided pieces 33P are closed, and when the bare rectangular coil 20 is taken out, the divided pieces 33P are opened.

上金型35と下金型37は、心棒31と外金型33との間に配置された予備コイル10を、その軸方向に圧縮する部材である。本例では、上下のいずれの金型35、37も、心棒31と外金型33の間に介在されて、その軸方向にスライドされる短円筒状の部材を用いている。つまり、下金型37は予備コイル10の下端面を下から支持し、上金型35は予備コイル10の上端面を下方に向けて押圧する。この上金型35と下金型37は、その一方が軸方向にスライド自在であっても良いし、双方が軸方向にスライド自在であっても良い。   The upper mold 35 and the lower mold 37 are members that compress the spare coil 10 disposed between the mandrel 31 and the outer mold 33 in the axial direction thereof. In this example, the upper and lower molds 35 and 37 are short cylindrical members that are interposed between the mandrel 31 and the outer mold 33 and are slid in the axial direction thereof. That is, the lower mold 37 supports the lower end surface of the preliminary coil 10 from below, and the upper mold 35 presses the upper end surface of the preliminary coil 10 downward. One of the upper mold 35 and the lower mold 37 may be slidable in the axial direction, or both may be slidable in the axial direction.

<金型の利用手順と動作>
予備コイル10の圧縮は、上記の金型30の各構成部材を図3のように組み合わせて行う。
<Die usage procedure and operation>
The compression of the preliminary coil 10 is performed by combining the constituent members of the mold 30 as shown in FIG.

まず、成形しておいた予備コイル10を用意する。次に、図3(A)に示すように、予め各心棒分割片31P同士の間に拡径部材31Bを挿入した心棒31を下金型37の内側に嵌め込んだ状態としておき、その心棒31の外周に予備コイル10を嵌め込む。   First, the preliminarily molded preliminary coil 10 is prepared. Next, as shown in FIG. 3A, the mandrel 31 in which the diameter-expanding member 31B is inserted between the mandrel split pieces 31P in advance is fitted in the lower mold 37, and the mandrel 31 is placed. The spare coil 10 is fitted on the outer periphery of the.

予備コイル10の外周に外金型33を配置する。その際、各外金型分割片33P同士が当接させて、円筒状の外金型33を形成するようにする。この外金型33の配置は、外金型分割片33Pの開閉機構(図示略)を動作して行う。   An outer mold 33 is disposed on the outer periphery of the spare coil 10. At this time, the outer mold division pieces 33P are brought into contact with each other to form the cylindrical outer mold 33. The outer mold 33 is arranged by operating an opening / closing mechanism (not shown) of the outer mold dividing piece 33P.

続いて、図3(B)に示すように、予備コイル10の上方から上金型35を心棒31と外金型33との間に挿入して、予備コイル10を圧縮する。この圧縮により、予備コイル10は、その軸方向に圧縮されて隣接するターン同士が圧接される。さらに圧縮を続けると、予備コイル10を構成する裸素線が塑性変形される。裸素線の外周は、心棒31、外金型33、上下金型35、37で拘束されているため、素線の横断面形状は円形から矩形へと変形される。   Subsequently, as shown in FIG. 3B, the upper die 35 is inserted between the mandrel 31 and the outer die 33 from above the spare coil 10 to compress the spare coil 10. By this compression, the auxiliary coil 10 is compressed in the axial direction, and adjacent turns are pressed against each other. When the compression is further continued, the bare wire constituting the auxiliary coil 10 is plastically deformed. Since the outer periphery of the bare wire is constrained by the mandrel 31, the outer die 33, and the upper and lower dies 35 and 37, the cross-sectional shape of the bare wire is deformed from a circle to a rectangle.

上記圧縮終了時の金型内の状態を図4に示す。この裸素線の横断面形状の変形により、予備コイルは、横断面が矩形の巻線2から構成される裸平角コイル20に成形される。   FIG. 4 shows the state in the mold at the end of the compression. Due to the deformation of the cross section of the bare wire, the reserve coil is formed into a bare flat coil 20 composed of the winding 2 having a rectangular cross section.

裸平角コイル20の成形後、上金型35を上方に逃がし(図3(C)参照)、外金型33を開いて裸平角コイル20を露出させる。次に、拡径部材33Bを下方に引き抜き、各心棒分割片31P同士を互いに動かせる状態とする。この状態であれば、各心棒分割片31P同士を近接させる方向に移動させることで、裸平角コイル20と各心棒分割片31Pとの間に空隙を形成することができ、裸平角コイル20を容易に心棒分割片31Pの外周から取り外すことができる。取り出した裸平角コイル20は、次の被覆工程に供される。   After forming the bare rectangular coil 20, the upper die 35 is allowed to escape upward (see FIG. 3C), and the outer die 33 is opened to expose the bare rectangular coil 20. Next, the diameter-expanding member 33B is pulled out downward so that the mandrel split pieces 31P can be moved relative to each other. In this state, by moving the mandrel segment pieces 31P in a direction to bring them close to each other, a gap can be formed between the bare rectangular coil 20 and each mandrel segment piece 31P, and the bare rectangular coil 20 can be easily formed. The mandrel split piece 31P can be removed from the outer periphery. The bare rectangular coil 20 taken out is subjected to the next coating process.

{被覆工程}
被覆工程は、裸平角コイルを構成する巻線の表面に絶縁被覆を形成し、被覆平角コイルとする工程である。絶縁被覆の形成手段の具体例としては、塗装と樹脂モールドが挙げられる。
{Coating process}
The coating step is a step of forming an insulating coating on the surface of the winding constituting the bare rectangular coil to form a coated rectangular coil. Specific examples of the means for forming the insulating coating include painting and resin molding.

(塗装)
塗装は、裸平角コイルを構成する巻線の全周を覆うように形成することで、同コイルの各ターン間を絶縁する。具体的には、エナメル塗装、粉体塗装などが好適に利用できる。塗装材料の主成分としては、ポリイミド、ポリアミドイミドやエポキシが挙げられる。塗装による絶縁被覆の厚さは、20μm以上100μm以下が好ましく、厚いほどピンホールを低減できて絶縁性を高められる。
(Painting)
The coating is formed so as to cover the entire circumference of the winding constituting the bare rectangular coil, thereby insulating the turns of the coil. Specifically, enamel coating, powder coating, and the like can be suitably used. Examples of the main component of the coating material include polyimide, polyamideimide, and epoxy. The thickness of the insulation coating by painting is preferably 20 μm or more and 100 μm or less, and the thicker the pinholes can be reduced and the insulation can be improved.

(樹脂モールド)
樹脂モールドは裸平角コイルを構成する巻線の全周を覆うように形成することで、同コイルの各ターン間を絶縁する。樹脂モールドに用いる樹脂としては、絶縁性と耐熱性に優れた樹脂が利用できる。具体的には、不飽和ポリエステル、エポキシ、ウレタン、ポリフェニレンスルフィド(PPS)、ポリブチレンテレフタレート(PBT)、アクリロニトリル-ブタジエン-スチレン(ABS)などが挙げられる。この樹脂モールドは、巻線の表面に薄く形成し、コイルのらせん形態が樹脂モールドの外部から認識できるようにしても良いし、各ターン間を樹脂でつないでコイルの螺旋形態が外部から認識できないようにしても良い。後者の具体例としては、樹脂モールドの外形が円筒状の場合や、裸平角コイルと後述する磁性コアとの組合体を一括して樹脂モールドし、ほぼ組合体の外形に沿った形状の樹脂モールドとすることが挙げられる。その場合、絶縁被覆の形成と共にリアクトルも形成される。樹脂モールドの絶縁被覆の厚さは、ターン間では上述した塗装と同等以上の厚みとし、ターン間以外の箇所の厚みはさらに厚いことが多い。
(Resin mold)
The resin mold is formed so as to cover the entire circumference of the winding constituting the bare rectangular coil, thereby insulating the turns of the coil. As the resin used for the resin mold, a resin excellent in insulation and heat resistance can be used. Specific examples include unsaturated polyester, epoxy, urethane, polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), and acrylonitrile-butadiene-styrene (ABS). This resin mold may be thinly formed on the surface of the winding so that the helical form of the coil can be recognized from the outside of the resin mold, or the coil helical form cannot be recognized from outside by connecting each turn with resin. You may do it. Specific examples of the latter include a resin mold having a cylindrical outer shape, or a resin mold in which a combination of a flat rectangular coil and a magnetic core, which will be described later, is collectively molded, and a resin mold having a shape substantially along the outer shape of the combination. And so on. In that case, the reactor is formed together with the formation of the insulating coating. The thickness of the insulating coating of the resin mold is equal to or greater than that of the above-described coating between turns, and the thickness of portions other than between the turns is often thicker.

(被覆時の裸平角コイル)
上述した塗装と樹脂モールドのいずれの場合であっても、絶縁被覆を形成する際は、裸平角コイルのターン間を広げた状態で塗装や樹脂モールドを行う。通常、裸平角コイルのターン同士は、上述した圧縮工程での圧縮により当接又は近接している。そのため、ターン間を広げた状態で塗装や樹脂モールドを行えば、そのターン間に塗装材料や樹脂モールドの樹脂が十分に充填されて、各ターン間の絶縁を確保することができる。広げたターン間の間隔は、塗装材料又は樹脂モールドの樹脂がターン間に入り込むことができる程度であれば、狭い方が好ましい。過度にターン間の間隔を広げると、その状態に裸平角コイルが塑性変形してしまい、被覆平角コイルの軸方向の長さが大きくなる虞がある。
(Bare flat coil when covered)
In any case of the above-described coating and resin molding, when forming the insulating coating, the coating or resin molding is performed in a state where the turn between the turns of the bare rectangular coil is widened. Normally, the turns of the bare rectangular coils are in contact with or close to each other due to compression in the compression process described above. Therefore, if painting or resin molding is performed in a state where the turns are widened, the coating material or resin of the resin mold is sufficiently filled between the turns, and insulation between the turns can be ensured. The interval between the widened turns is preferably narrow as long as the coating material or the resin of the resin mold can enter between the turns. If the interval between turns is excessively widened, the bare rectangular coil is plastically deformed in that state, and the axial length of the covered rectangular coil may be increased.

(絶縁被覆の硬化)
被覆工程には、形成した樹脂被覆の硬化過程が含まれる。塗装、樹脂モールドのいずれであっても、塗装材料又は樹脂モールドの樹脂を硬化させることで、絶縁被膜を十分な硬度の膜とする。例えば、エナメル塗装では、通常、焼付による被覆の乾燥・硬化が行われる。絶縁被覆を硬化させることで、被覆平角コイルが形成される。
(Hardening of insulation coating)
The coating process includes a curing process of the formed resin coating. Regardless of whether the coating or the resin mold is used, the insulating film is made a film having sufficient hardness by curing the resin of the coating material or the resin mold. For example, in enamel coating, the coating is usually dried and cured by baking. A coated rectangular coil is formed by curing the insulating coating.

{作用効果}
上記のリアクトル用コイルの製造方法によれば、次の効果を奏することができる。
{Effect}
According to the above method for manufacturing a reactor coil, the following effects can be obtained.

(1)横断面が平角形状以外の裸素線で予備コイルを形成するため、この裸素線をらせん状に巻回する際、コイル成形機に供給する裸素線の周方向の向きを厳密に規定する必要はない。そのため、予備コイルの成形性に優れる。   (1) Since the reserve coil is formed of a bare strand whose cross section is not a flat rectangular shape, the circumferential direction of the bare strand supplied to the coil forming machine is strictly determined when the bare strand is wound spirally. There is no need to stipulate. Therefore, it is excellent in the formability of the preliminary coil.

(2)裸素線の巻回と予備コイルの圧縮は、絶縁被覆のない裸素線に対して行われ、絶縁被覆の形成は裸平角コイルの形成後に行えるため、裸平角コイルを形成するまでの過程において絶縁被覆の損傷問題を回避できる。   (2) The winding of the bare wire and the compression of the spare coil are performed on the bare wire without insulation coating, and since the insulation coating can be formed after the bare rectangular coil is formed, until the bare rectangular coil is formed In this process, the problem of damage to the insulation coating can be avoided.

(3)裸平角コイルを形成する巻線の横断面形状は、予備コイルの成形時ではなく、予備コイルの軸方向への圧縮に伴う素線の断面形状の塑性変形により決まる。つまり、巻線のほぼ厚み方向に対する圧縮により裸素線の断面形状が変形される。そのため、巻線の曲げの内側と外側で巻線の厚みに差が生じ難い。その結果、全長に亘って一様な厚みの巻線からなる裸平角コイルを形成できる。   (3) The cross-sectional shape of the winding forming the bare rectangular coil is determined not by the time of forming the spare coil but by the plastic deformation of the cross-sectional shape of the strands accompanying the compression of the spare coil in the axial direction. That is, the cross-sectional shape of the bare wire is deformed by compression in the substantially thickness direction of the winding. Therefore, a difference in the thickness of the winding hardly occurs between the inside and outside of the winding bending. As a result, it is possible to form a bare rectangular coil composed of windings having a uniform thickness over the entire length.

(4)裸平角コイルを構成する巻線の屈曲形態は、予備コイルを形成した際に暫定的に決まる。端面外形が矩形の裸平角コイルを製造する際、裸平角線をエッジワイズ巻きする場合に比べれば、同じ断面積の丸線を巻回した場合の方が屈曲しやすく、角部の曲げ角のばらつきが生じ難い。また、裸平角コイルを構成する巻線の屈曲形態は、予備コイルを圧縮して裸素線の断面形状を平角形状に塑性変形させることで確定される。その際、裸素線は、心棒、外金型及び上下金型で予備コイルの形状が拘束された状態で圧縮され、巻線の屈曲箇所だけでなく、直線箇所も含む巻線の全長に亘って裸素線の断面形状が塑性変形により変形される。そのため、裸平角コイルの端面外形が矩形の場合、圧縮前の予備コイルに角部の位置ずれが多少あったとしても、角部の屈曲形態は実質的に上記断面形状の塑性変形に伴って修正して確定されると考えられる。その結果、裸平角コイルを構成する各ターンの角部の位置を揃え易く、形状の整った裸平角コイルを形成することができる。   (4) The bending form of the windings constituting the bare rectangular coil is provisionally determined when the preliminary coil is formed. When manufacturing a bare rectangular coil with a rectangular end face profile, it is easier to bend when round wires with the same cross-sectional area are wound than when winding a bare rectangular wire edgewise. Difficult to occur. The bending form of the windings constituting the bare rectangular coil is determined by compressing the spare coil and plastically deforming the cross-sectional shape of the bare strand into a flat shape. At that time, the bare wire is compressed in a state in which the shape of the spare coil is constrained by the mandrel, the outer die, and the upper and lower dies, and extends over the entire length of the winding including not only the winding bent portion but also the straight portion. Thus, the cross-sectional shape of the bare wire is deformed by plastic deformation. Therefore, when the end face of the bare rectangular coil is rectangular, even if there is some misalignment of the corner of the pre-compression pre-coil, the bent shape of the corner is substantially corrected along with the plastic deformation of the cross-sectional shape. It is thought that it will be confirmed. As a result, it is easy to align the corners of the turns constituting the bare rectangular coil, and it is possible to form a bare rectangular coil with a well-formed shape.

{リアクトル}
次に、上述した方法により得られた被覆平角コイルを用いたリアクトルを図5に基づいて説明する。
{Reactor}
Next, a reactor using the coated rectangular coil obtained by the above-described method will be described with reference to FIG.

このリアクトル100は、上述の被覆平角コイル40と、このコイル40の励磁により閉磁路を形成する磁性コア120とを備える。磁性コア120は、主にコイル40の内部に配される内側コア部120iと、コイル40の外周を覆う外側コア部120oとに分けることができる。このリアクトル100のコイル40に電流を流せば、図5(B)中の矢印に示すように、内側コア部120iと外側コア部120oを通る閉磁路が形成される。以下、このリアクトル100におけるコイル40以外の各構成部材とリアクトル100の製造方法とを順に説明する。   The reactor 100 includes the above-described coated rectangular coil 40 and a magnetic core 120 that forms a closed magnetic circuit by excitation of the coil 40. The magnetic core 120 can be divided into an inner core part 120 i mainly disposed inside the coil 40 and an outer core part 120 o covering the outer periphery of the coil 40. When a current is passed through the coil 40 of the reactor 100, a closed magnetic path passing through the inner core portion 120i and the outer core portion 120o is formed as shown by the arrow in FIG. Hereinafter, each constituent member other than the coil 40 in the reactor 100 and a method for manufacturing the reactor 100 will be described in order.

(磁性コア)
リアクトル100の磁性コア120は、既述のように内側コア部120iと、外側コア部120oとに分けられる。これら内側コア部120iと外側コア部120oは、同一の磁気特性を有するように構成しても良いし、異なる磁気特性を有するように構成しても良い。後者の場合、外側コア部120oの比透磁率が、内側コア部120iの比透磁率よりも小さくなるように両コア部120i,120oを構成することが好ましい。ここで、一般に、比透磁率が高くなると、飽和磁束密度も高くなり、比透磁率が低くなると、飽和磁束密度も低くなる。つまり、『外側コア部120oの比透磁率』<『内側コア部120iの比透磁率』とすると、『外側コア部120oの飽和磁束密度』<『内側コア部120iの飽和磁束密度』となる。このような構成とすることで、両コア部120i,120oの磁気特性を同一とした場合に比べて、同じ性能でありながらコンパクトなリアクトル100となる。
(Magnetic core)
As described above, the magnetic core 120 of the reactor 100 is divided into the inner core portion 120i and the outer core portion 120o. The inner core portion 120i and the outer core portion 120o may be configured to have the same magnetic characteristics, or may be configured to have different magnetic characteristics. In the latter case, it is preferable to configure both the core portions 120i and 120o so that the relative permeability of the outer core portion 120o is smaller than the relative permeability of the inner core portion 120i. Here, in general, when the relative permeability increases, the saturation magnetic flux density also increases, and when the relative permeability decreases, the saturation magnetic flux density also decreases. That is, if “relative permeability of outer core portion 120o” <“relative permeability of inner core portion 120i”, “saturation magnetic flux density of outer core portion 120o” <“saturation magnetic flux density of inner core portion 120i”. By adopting such a configuration, a compact reactor 100 is obtained with the same performance as compared with the case where the magnetic characteristics of both the core portions 120i and 120o are the same.

磁性コア120の両コア部120i,120oの具体的な構成には、大きく分けて次の4つがある。   The specific configurations of both core portions 120i and 120o of the magnetic core 120 are roughly divided into the following four.

まず、第一の構成は、絶縁被膜を有する複数の電磁鋼板を積層した積層鋼板を使用した構成である。   First, a 1st structure is a structure which uses the laminated steel plate which laminated | stacked the several electromagnetic steel plate which has an insulating film.

第二の構成は、軟磁性金属粒子の表面に絶縁性の膜を形成した軟磁性粉末を含む粉体を加圧成形し、その成形体を焼成することで得られる圧粉磁心を使用した構成である。軟磁性金属粒子としてはFeやFe合金を使用でき、絶縁性の膜としてはリン酸塩やシリコーン樹脂を使用することができる。また、圧粉磁心の作製に使用する粉体は、更に酸化アルミニウムや窒化硼素、窒化アルミニウムなどの非磁性粉末のフィラーを含んでいても良く、この非磁性粉末の量によってコア部の磁気特性を変更することができる。   The second configuration is a configuration using a powder magnetic core obtained by press-molding a powder containing soft magnetic powder in which an insulating film is formed on the surface of soft magnetic metal particles, and firing the compact. It is. Fe or Fe alloy can be used as the soft magnetic metal particles, and phosphate or silicone resin can be used as the insulating film. The powder used for the production of the powder magnetic core may further contain a filler of nonmagnetic powder such as aluminum oxide, boron nitride or aluminum nitride, and the magnetic properties of the core portion can be controlled by the amount of the nonmagnetic powder. Can be changed.

第三の構成は、軟磁性粉末を含む粉体を、粉体のままコア部として使用する構成である。例えば、粉体を加圧成形するが焼成はしないことで、第三の構成を備えるコア部となる。その他、コア部の外周形状を保持するケースを用意し、そのケースに粉体を充填することでも第三の構成を備えるコア部となる。なお、この第三の構成においても、粉体はフィラーを含んでいてかまわない。   The third configuration is a configuration in which a powder containing soft magnetic powder is used as a core part as it is. For example, the core is provided with the third configuration by pressure-molding the powder but not firing. In addition, a core part having the third configuration can be obtained by preparing a case for holding the outer peripheral shape of the core part and filling the case with powder. In this third configuration as well, the powder may contain a filler.

第四の構成は、バインダとなる非磁性の樹脂中に、上記第二、第三の構成と同様の軟磁性粉末を含む粉体を混合した混合流体を作製し、その混合流体を射出成形や注型成形などで成形体とした後、樹脂を硬化させることで得られる成形硬化体とする構成である。この場合、成形硬化体は、非磁性の樹脂からなるマトリックス中に、軟磁性粉末が分散した構成を備える。非磁性のマトリックスの材質には、エポキシ樹脂やフェノール樹脂、シリコーン樹脂などを利用することができる。また、この非磁性のマトリックスは、酸化アルミニウムやシリカといったセラミックからなる非磁性粉末のフィラーを含んでいても良い。   In the fourth configuration, a mixed fluid is prepared by mixing a powder containing soft magnetic powder similar to the second and third configurations in a nonmagnetic resin serving as a binder. It is the structure made into the shaping | molding hardening body obtained by hardening resin after making it into a molded object by cast molding etc. FIG. In this case, the molded cured body has a configuration in which soft magnetic powder is dispersed in a matrix made of a nonmagnetic resin. An epoxy resin, a phenol resin, a silicone resin, or the like can be used as the material of the nonmagnetic matrix. The nonmagnetic matrix may contain a nonmagnetic powder filler made of ceramic such as aluminum oxide or silica.

ところで、上記第四の構成を採用した内側コア部120i(外側コア部120o)であれば、この内側コア部120i(外側コア部120o)自身にコイル40を保持する機能を持たせることができる。これは、内側コア部120i(外側コア部120o)の作製の際、混合流体がコイル40の外周面に回り込むため、混合流体を硬化させたときに内側コア部120i(外側コア部120o)とコイル40とが密着するからである。コイル40は、裸平角コイルの成形後に絶縁被覆を形成して得られるため、その絶縁被覆に欠陥が少なく、内側コア部120i(外側コア部120o)とコイル40とが密着する構成であっても何ら問題にならない。   By the way, if it is the inner core part 120i (outer core part 120o) which employ | adopted the said 4th structure, this inner core part 120i (outer core part 120o) itself can be provided with the function to hold | maintain the coil 40. FIG. This is because when the inner core portion 120i (outer core portion 120o) is manufactured, the mixed fluid wraps around the outer peripheral surface of the coil 40, so that when the mixed fluid is cured, the inner core portion 120i (outer core portion 120o) and the coil This is because 40 is in close contact. Since the coil 40 is obtained by forming an insulation coating after forming a bare rectangular coil, the insulation coating has few defects, and the inner core portion 120i (outer core portion 120o) and the coil 40 are in close contact with each other. It doesn't matter at all.

上記4つの構成は各コア部120i,120oによって異なる構成を選択することができる。例えば、第二の構成である圧粉磁心で内側コア部120iを作製し、第四の構成である成形硬化体で外側コア部120oを作製することが挙げられる。また、第一の構成である積層鋼板は一般に、高比透磁率で低飽和磁束密度であるので、この積層鋼板で内側コア部120iを形成し、第二、第三、第四の構成で外側コア部120oを形成しても良い。あるいは、第二、第三、第四の構成のいずれかで、両コア部120i,120oを一体に形成してもかまわない。   The above four configurations can be selected differently depending on the cores 120i and 120o. For example, the inner core portion 120i is produced with the dust core having the second configuration, and the outer core portion 120o is produced with the molded and cured body having the fourth configuration. In addition, since the laminated steel sheet of the first configuration generally has a high relative permeability and a low saturation magnetic flux density, the inner core portion 120i is formed from this laminated steel sheet, and the outer side is formed by the second, third, and fourth structures. The core part 120o may be formed. Alternatively, both the core portions 120i and 120o may be integrally formed in any of the second, third, and fourth configurations.

以上の構成を備えるリアクトル100は、例えばハイブリッド自動車の電力変換回路に使用される。自動車用リアクトルへの通電条件は、最大電流(直流):100〜1000A、平均電圧:100〜1000V、使用周波数:5〜100kHzとなっており、非常に過酷な条件である。このような過酷な条件であっても、上記リアクトル100は、欠陥が殆どない絶縁被覆を有するコイル40を備えるため、自動車用リアクトルとして十分な特性を発揮すると期待される。   Reactor 100 having the above configuration is used, for example, in a power conversion circuit of a hybrid vehicle. The energizing conditions for the automobile reactor are extremely severe conditions, with the maximum current (DC): 100 to 1000 A, the average voltage: 100 to 1000 V, and the operating frequency: 5 to 100 kHz. Even under such harsh conditions, the reactor 100 is expected to exhibit sufficient characteristics as a reactor for an automobile because the reactor 100 includes the coil 40 having an insulation coating with almost no defects.

(リアクトルの製造方法)
上記リアクトル100は、用意したコイル40の内部に内側コア部120iを配置すると共に、この内側コア部120iに繋がるようにコイル40の外側に外側コア部120oを配置することで製造される。ここでは、両コア部120i,120oを異なる部材とする場合を説明する。
(Reactor manufacturing method)
The reactor 100 is manufactured by arranging the inner core part 120i inside the prepared coil 40 and arranging the outer core part 120o outside the coil 40 so as to be connected to the inner core part 120i. Here, a case where both core parts 120i and 120o are different members will be described.

予め圧粉磁心や積層鋼板で内側コア部120iを作製し、この内側コア部120iをコイル40の内部に収納した組合体を作製する。そして、別途用意した金型に組合体を配置し、金型内に上記混合流体を充填し、樹脂を硬化させる。その他、圧粉磁心で有底筒状の外側コア部120oを作製し、その外側コア部120oの内部にコイル40を配置した後、コイル40の内部に混合流体を充填して内側コア部120iを作製しても良い。   The inner core portion 120i is prepared in advance with a dust core or a laminated steel plate, and an assembly in which the inner core portion 120i is housed in the coil 40 is manufactured. And an assembly is arrange | positioned to the metal mold | die prepared separately, the said mixed fluid is filled in a metal mold | die, and resin is hardened. In addition, after manufacturing the bottomed cylindrical outer core part 120o with a dust core and arranging the coil 40 inside the outer core part 120o, the inner core part 120i is filled with a mixed fluid inside the coil 40. It may be produced.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、2つのコイルが並列に配置され、その一端側にて巻線の一部で連結された状態の平角コイルを、実施形態1と同様に丸線による予備コイルの成形と圧縮を経ることで得ることが期待できる。この場合、2つのコイルをつなぐ連結個所は、特開2008-186980号公報の図3に示すように、S字状に形成することが予備コイルの圧縮を行う都合上好ましい。また、この一対の並列コイルには、特開2008-028290号公報の図2に示すように、環状の磁性コアを組み合わせてリアクトルを構成すればよい。その他、内側コイルと外側コイルからなる2つのコイルを同軸に配した状態でも、実施形態1と同様に丸線による予備コイルの成形と圧縮を経ることで得ることが期待できる。この場合、内側予備コイルと外側予備コイルとの間には筒状の仕切り金型を配置すれば良い。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, a rectangular coil in which two coils are arranged in parallel and connected by a part of a winding at one end thereof is subjected to molding and compression of a preliminary coil by a round wire as in the first embodiment. You can expect to get. In this case, as shown in FIG. 3 of Japanese Patent Application Laid-Open No. 2008-186980, it is preferable that the connecting portion connecting the two coils is formed in an S shape for the purpose of compressing the spare coil. Further, as shown in FIG. 2 of Japanese Patent Laid-Open No. 2008-028290, the pair of parallel coils may be combined with an annular magnetic core to form a reactor. In addition, even in a state where two coils including an inner coil and an outer coil are arranged coaxially, it can be expected to be obtained by forming and compressing a preliminary coil using a round wire as in the first embodiment. In this case, a cylindrical partition mold may be disposed between the inner spare coil and the outer spare coil.

本発明のリアクトル用コイルの製造方法は、車両用リアクトルを構成するコイルを製造することに好適に利用できる。また、この方法により得られたリアクトル用コイルや、そのコイルを用いたリアクトルは、ハイブリッド車や電気自動車といった車両の電力変換装置などに好適に利用できる。   The manufacturing method of the coil for reactors of this invention can be utilized suitably for manufacturing the coil which comprises the reactor for vehicles. Further, the reactor coil obtained by this method and the reactor using the coil can be suitably used for a power conversion device of a vehicle such as a hybrid vehicle or an electric vehicle.

10 予備コイル
1 裸素線
20 裸平角コイル
2 巻線
30 金型
31 心棒 31P 心棒分割片 31B 拡径部材
33 外金型 33P 外金型分割片
35 上金型
37 下金型
40 被覆平角コイル
100 リアクトル
120 磁性コア 120i 内側コア部 120o 外側コア部
50 コイル 50C 角部
10 Spare coil
1 Bare wire
20 Bare rectangular coil
2 windings
30 mold
31 Mandrel 31P Mandrel split piece 31B Expanding member
33 Outer mold 33P Outer mold split piece
35 Upper mold
37 Lower mold
40 Coated flat coil
100 reactors
120 Magnetic core 120i Inner core 120o Outer core
50 Coil 50C Corner

Claims (10)

絶縁被覆を有しておらず、かつ横断面が平角形状以外の導体から構成される素線をらせん状に巻回して予備コイルを形成する巻回工程と、
前記予備コイルを軸方向に圧縮して、前記素線の横断面が平角形状となった巻線からなる平角コイルを形成する圧縮工程とを備えることを特徴とするリアクトル用コイルの製造方法。
A winding step in which a preliminary coil is formed by spirally winding an element wire that does not have an insulating coating and whose cross section is made of a conductor other than a rectangular shape;
A method of manufacturing a reactor coil, comprising: a compression step of compressing the preliminary coil in an axial direction to form a rectangular coil including a winding having a rectangular cross section of the element wire.
前記圧縮工程は、
前記予備コイルの内周形状に沿った心棒によって該予備コイルの内周を支持し、
圧縮後の予備コイルの外形を形成する外金型を前記心棒の外周に同心状に配置し、
前記心棒と外金型との間に嵌る上金型と下金型とによって前記予備コイルを挟持しながら圧縮することを特徴とする請求項1に記載のリアクトル用コイルの製造方法。
The compression step includes
Supporting the inner periphery of the auxiliary coil by a mandrel along the inner peripheral shape of the auxiliary coil;
An outer mold that forms the outer shape of the pre-compressed coil is arranged concentrically on the outer periphery of the mandrel,
2. The method for manufacturing a reactor coil according to claim 1, wherein the auxiliary coil is compressed while being sandwiched between an upper mold and a lower mold that are fitted between the mandrel and an outer mold.
前記心棒と外金型の各々は、互いに放射状に分離できる複数の心棒分割片と外金型分割片を備え、
前記心棒は、前記心棒分割片同士の間隔を可変とすることで心棒の外形サイズを可変とする拡径部材を備え、
前記外金型は、前記外金型分割片同士を当接した際、前記平角コイルの外形に適合した内周面を形成することを特徴とする請求項2に記載のリアクトル用コイルの製造方法。
Each of the mandrel and the outer mold includes a plurality of mandrel split pieces and outer mold split pieces that can be separated from each other radially,
The mandrel includes a diameter-expanding member that can vary the outer size of the mandrel by making the interval between the mandrel split pieces variable,
3. The method for manufacturing a reactor coil according to claim 2, wherein the outer mold forms an inner peripheral surface adapted to an outer shape of the rectangular coil when the outer mold divided pieces are brought into contact with each other. .
前記巻回工程は、前記予備コイルの軸方向から見た端面形状が円形となるように前記素線を巻回し、
前記圧縮工程は、前記端面形状を維持したまま圧縮することを特徴とする請求項1〜3のいずれか1項に記載のリアクトル用コイルの製造方法。
In the winding step, the wire is wound so that the end face shape of the auxiliary coil viewed from the axial direction is circular,
4. The method for manufacturing a reactor coil according to claim 1, wherein the compression step is performed while the shape of the end surface is maintained.
前記巻回工程は、前記予備コイルの軸方向から見た端面形状が多角形となるように前記素線を巻回し、
前記圧縮工程は、前記端面形状を維持したまま圧縮することを特徴とする請求項1〜3のいずれか1項に記載のリアクトル用コイルの製造方法。
In the winding step, the wire is wound so that the end surface shape viewed from the axial direction of the auxiliary coil is a polygon,
4. The method for manufacturing a reactor coil according to claim 1, wherein the compression step is performed while the shape of the end surface is maintained.
更に、前記平角コイルを構成する巻線の表面の少なくとも一部に絶縁被覆を形成する被覆工程を備えることを特徴とする請求項1〜5のいずれか1項に記載のリアクトル用コイルの製造方法。   6. The method for manufacturing a reactor coil according to claim 1, further comprising a coating step of forming an insulating coating on at least a part of the surface of the winding constituting the rectangular coil. . 前記被覆工程は、塗装により絶縁被覆を形成することを特徴とする請求項6に記載のリアクトル用コイルの製造方法。   7. The method for manufacturing a reactor coil according to claim 6, wherein in the coating step, an insulating coating is formed by painting. 前記被覆工程は、樹脂モールドにより絶縁被覆を形成することを特徴とする請求項6に記載のリアクトル用コイルの製造方法。   7. The method for manufacturing a reactor coil according to claim 6, wherein in the covering step, an insulating coating is formed by a resin mold. 請求項1〜8のいずれか1項に記載のリアクトル用コイルの製造方法により得られたことを特徴とするリアクトル用コイル。   A reactor coil obtained by the method for manufacturing a reactor coil according to any one of claims 1 to 8. 請求項9に記載のリアクトル用コイルと、
前記リアクトル用コイルが配置される磁性コアとを備えることを特徴とするリアクトル。
The reactor coil according to claim 9,
And a magnetic core on which the reactor coil is disposed.
JP2010267131A 2010-11-30 2010-11-30 Manufacturing method for reactor coil Pending JP2012119452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010267131A JP2012119452A (en) 2010-11-30 2010-11-30 Manufacturing method for reactor coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010267131A JP2012119452A (en) 2010-11-30 2010-11-30 Manufacturing method for reactor coil

Publications (1)

Publication Number Publication Date
JP2012119452A true JP2012119452A (en) 2012-06-21

Family

ID=46501979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010267131A Pending JP2012119452A (en) 2010-11-30 2010-11-30 Manufacturing method for reactor coil

Country Status (1)

Country Link
JP (1) JP2012119452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218849A (en) * 2014-05-20 2015-12-07 国立大学法人電気通信大学 Deformed wire coil spring, manufacturing method of deformed wire coil spring, and manipulator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954855A (en) * 1972-09-28 1974-05-28
JPS55134919A (en) * 1979-04-09 1980-10-21 Toshiba Corp Synthetic resin mold electromagnetic winding
JPS56161631A (en) * 1980-05-16 1981-12-12 Hitachi Ltd Manufacture of electromagnetic coil
JPS6187311A (en) * 1984-10-05 1986-05-02 Mitsubishi Electric Corp Bobbin of coil
JPH0547575A (en) * 1991-08-13 1993-02-26 Matsushita Electric Ind Co Ltd Manufacture of rotary transformer
JP2009033051A (en) * 2007-07-30 2009-02-12 Sumitomo Electric Ind Ltd Core for reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954855A (en) * 1972-09-28 1974-05-28
JPS55134919A (en) * 1979-04-09 1980-10-21 Toshiba Corp Synthetic resin mold electromagnetic winding
JPS56161631A (en) * 1980-05-16 1981-12-12 Hitachi Ltd Manufacture of electromagnetic coil
JPS6187311A (en) * 1984-10-05 1986-05-02 Mitsubishi Electric Corp Bobbin of coil
JPH0547575A (en) * 1991-08-13 1993-02-26 Matsushita Electric Ind Co Ltd Manufacture of rotary transformer
JP2009033051A (en) * 2007-07-30 2009-02-12 Sumitomo Electric Ind Ltd Core for reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218849A (en) * 2014-05-20 2015-12-07 国立大学法人電気通信大学 Deformed wire coil spring, manufacturing method of deformed wire coil spring, and manipulator

Similar Documents

Publication Publication Date Title
CN102612720B (en) High current magnetic component and methods of manufacture
JP5629304B2 (en) Litz wire coil
WO2014174658A1 (en) Armature coil and manufacturing method therefor
US9197107B2 (en) Stator, method for manufacturing stator, and flat conductor for winding
EP2413336A1 (en) Reactor
US20070145854A1 (en) Motor
JP5152701B2 (en) Reactor, coil molding, and converter
CN102105953A (en) High current amorphous powder core inductor
CN107112128B (en) For manufacturing the method and system of collapse coil
CN107408450A (en) Reactor
JP2010219252A (en) Reactor coil member, method of manufacturing the same, and reactor
US8466767B2 (en) Electromagnetic coil assemblies having tapered crimp joints and methods for the production thereof
JP2010245458A (en) Coil member for reactor and reactor
JP2012069786A (en) Reactor
JP2012119452A (en) Manufacturing method for reactor coil
JP5246020B2 (en) COIL, COIL MANUFACTURING METHOD, COIL MOLDED BODY, AND REACTOR
JP2013138266A (en) Method of manufacturing coil for reactor, and reactor
CN109791833B (en) Coil, reactor, and design method for coil
JP2012069598A (en) Reactor and manufacturing method therefor
JP5499349B2 (en) Winding structure and electrical equipment using the same
JP2010245456A (en) Reactor assembly
JP2010245456A5 (en)
JP5242490B2 (en) Production method of ground coil for magnetic levitation railway
JP6539024B2 (en) Coil and coil component
JP5555933B2 (en) Winding manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140917