JP2012117898A - Defect inspection device, defect information acquisition device and defect inspection method - Google Patents

Defect inspection device, defect information acquisition device and defect inspection method Download PDF

Info

Publication number
JP2012117898A
JP2012117898A JP2010267367A JP2010267367A JP2012117898A JP 2012117898 A JP2012117898 A JP 2012117898A JP 2010267367 A JP2010267367 A JP 2010267367A JP 2010267367 A JP2010267367 A JP 2010267367A JP 2012117898 A JP2012117898 A JP 2012117898A
Authority
JP
Japan
Prior art keywords
scattered light
defect
signal
sample
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010267367A
Other languages
Japanese (ja)
Other versions
JP5628010B2 (en
Inventor
Koji Kawaki
浩司 川木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010267367A priority Critical patent/JP5628010B2/en
Publication of JP2012117898A publication Critical patent/JP2012117898A/en
Application granted granted Critical
Publication of JP5628010B2 publication Critical patent/JP5628010B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a defect inspection device, a defect information acquisition device and a defect inspection method, capable of optimizing further an acquisition amount of a scattered light signal regarding the defect by improving a detection accuracy of the defect to be as the detection object.SOLUTION: The defect inspection device comprises: an inspection light irradiation device 20 for obliquely irradiating a wafer 100 on a specimen support 11 by the inspection light 21; scattered light detectors 30a-30b for detecting scattered light beams 1a-1c from the wafer 100; a defect determination section 45 for logically computing scattered light signals 2a-2b obtained by the scattered light detectors 30a-30b as to the scattered light beams 1a-1c simultaneously generated from a same coordinate on the wafer 100 to determine whether the scattered light signal is a defect signal scattered by the defect or not, and for outputting the scattered light signal only determined as defect signal; a storage section 56 for storing the scattered light signal output from a defect determination section 45; and an operation section 52 for setting a logical arithmetic formula to be used as a criterion of the defect in the defect determination section 45 by combining one selected from a plurality of logical operations or the plural number.

Description

本発明は、半導体ウエハ(以下、単に「ウエハ」と記載する)等の試料の表面上の異物、傷、欠陥、汚れ等(以下、これらを総称して「欠陥」と記載する)を検査する欠陥検査装置、欠陥情報取得装置及び欠陥検査方法に関する。   The present invention inspects foreign matter, scratches, defects, dirt, etc. (hereinafter collectively referred to as “defects”) on the surface of a sample such as a semiconductor wafer (hereinafter simply referred to as “wafer”). The present invention relates to a defect inspection apparatus, a defect information acquisition apparatus, and a defect inspection method.

近年、半導体集積回路装置(IC)の高集積化及び回路パターンの微細化が進み、今日では線幅が1μm以下の回路パターンも製造されるようになってきている。このような微細化したICを高歩留まりで製造するためには、ウエハ表面の欠陥を検出し、欠陥のサイズや形状等の検査、各種半導体製造装置や工程の清浄度の定量的把握等をして製造プロセスを的確に管理することが重要である。そのため、ウエハ製造メーカやIC製造工場等では製造プロセスを的確に管理するためにウエハの欠陥検査が広く実施されている。   In recent years, semiconductor integrated circuit devices (ICs) have been highly integrated and circuit patterns have been miniaturized, and today, circuit patterns having a line width of 1 μm or less have been manufactured. In order to manufacture such miniaturized ICs with a high yield, defects on the wafer surface are detected, the size and shape of the defects are inspected, and the cleanliness of various semiconductor manufacturing equipment and processes is quantitatively grasped. It is important to accurately manage the manufacturing process. Therefore, wafer defect inspection is widely performed in wafer manufacturers, IC manufacturing factories, and the like in order to accurately manage the manufacturing process.

この種の欠陥検査の一手法として、暗視野像を用いたものがある(特許文献1等参照)。これはウエハに対して斜めに検査光を照射してウエハ表面で散乱した散乱光を検出し、散乱光が発生したと推定されるウエハ上の座標や散乱光の強度から欠陥の位置情報や大きさを認識する方式である。   One technique for this type of defect inspection is to use a dark field image (see Patent Document 1). This is because the inspection light is obliquely irradiated to the wafer to detect the scattered light scattered on the wafer surface, and the position information and size of the defect are estimated from the coordinates on the wafer where the scattered light is estimated to be generated and the intensity of the scattered light. This is a method of recognizing

特開2008−241570号公報JP 2008-241570 A

ここで、暗視野像を利用した欠陥検査装置においては、散乱光信号のノイズを抑えるため、複数設けた散乱光検出器の個々の散乱光信号を平均化処理や積分処理等の演算処理によって一つの散乱光信号にまとめ、この演算した散乱光信号をしきい値と比較して散乱光の発生元が欠陥か否かを判定することが一般に行われてきた。   Here, in the defect inspection apparatus using the dark field image, in order to suppress the noise of the scattered light signal, each scattered light signal of the plurality of scattered light detectors is subjected to an arithmetic process such as an averaging process or an integration process. It has been generally performed to determine whether the scattered light source is a defect by collecting the scattered light signals into one scattered light signal and comparing the calculated scattered light signal with a threshold value.

ところが、こうした判定手法では、検出された欠陥に関する演算後の散乱光信号と座標情報しか検査結果として取得(本願ではメモリに記憶されることを言う)されず、欠陥の形状分類等に有効なデータとなり得る複数の散乱光検出器の個々の散乱光信号が取得されない。反面、個々の散乱光信号を取得するにしても散乱光信号の取得量が肥大化してしまうため、これを抑えるために散乱光検出器毎に適切なしきい値を個別に設定しなければならない。多数の散乱光検出器について個別にしきい値を最適化することは簡単ではなく、個々の散乱光信号についてしきい値を最適化して散乱光信号の取得量の過不足を抑えることは容易なことではない。   However, in such a determination method, only the scattered light signal and the coordinate information after the calculation regarding the detected defect are acquired as the inspection result (in this application, it is stored in the memory), and the data is effective for the shape classification of the defect. Individual scattered light signals of the plurality of possible scattered light detectors are not acquired. On the other hand, even if individual scattered light signals are acquired, the amount of acquired scattered light signals is enlarged, and in order to suppress this, an appropriate threshold must be individually set for each scattered light detector. It is not easy to individually optimize the threshold for many scattered light detectors, and it is easy to optimize the threshold for each scattered light signal to reduce the amount of scattered light signal acquisition. is not.

それに対し、上記特許文献1では、検出対象とする欠陥の散乱光パターンの特徴に応じて欠陥検出に関係する少なくとも一つの散乱光検出器を選択し、ウエハ上のある座標で発生した散乱光についてのそれら検出器の散乱光信号(選択信号と称する)が全て対応するしきい値を超えた場合に、検出対象とする欠陥が当該座標に存在しているものと判定し、当該欠陥に関する個々の散乱光信号を取得している。このように同文献では、欠陥検出に関わりのない散乱光信号についてしきい値を適正に設定する必要がない分、検出対象の欠陥を検出する上でしきい値の設定が容易になり、その一方で、欠陥判定のポイントとして選択した散乱光信号が一定以上となることを判定条件とすることにより、散乱光信号の取得量が抑えられる。   On the other hand, in Patent Document 1, at least one scattered light detector related to defect detection is selected according to the characteristics of the scattered light pattern of the defect to be detected, and the scattered light generated at a certain coordinate on the wafer is selected. When the scattered light signals of these detectors (referred to as selection signals) all exceed the corresponding threshold value, it is determined that the defect to be detected exists at the coordinates, and individual defects related to the defect are detected. Scattered light signal is acquired. As described above, in this document, since it is not necessary to appropriately set a threshold value for a scattered light signal not related to defect detection, the threshold value can be easily set in detecting a defect to be detected. On the other hand, the acquisition amount of the scattered light signal can be suppressed by making the determination condition that the scattered light signal selected as the point of defect determination is a certain level or more.

しかしながら、選択信号の全てがしきい値を超えた場合に検出対象の欠陥であると判定する同文献の手法では、検出対象の欠陥信号以外の不要な散乱光信号の取得量が十分に抑えられるとは必ずしも言えない。例えば、散乱光パターンが似ていて、しきい値を超える散乱光信号を出力すべき散乱光検出器(換言すれば選択信号)は重複するものの、分類としては区別したい異種の欠陥が存在する場合、同文献の判定手法では選択信号が全てしきい値を超えてしまえば種類の異なるこれら欠陥の散乱光信号が区別なく取得されてしまう。   However, in the method of the same document that determines that a defect is a detection target defect when all of the selection signals exceed the threshold, the amount of acquisition of unnecessary scattered light signals other than the detection target defect signal can be sufficiently suppressed. Not necessarily. For example, if the scattered light pattern is similar and the scattered light detector (in other words, the selection signal) that should output a scattered light signal that exceeds the threshold value overlaps, but there are different types of defects that you want to distinguish as a classification In the determination method of this document, if all the selection signals exceed the threshold value, the scattered light signals of these different types of defects are acquired without distinction.

本発明は上記に鑑みなされたもので、検出対象とする欠陥の検出精度を向上させ、当該欠陥に関する散乱光信号の取得量をより適正化することができる欠陥検査装置、欠陥情報取得装置及び欠陥検査方法を提供することを目的とする。   The present invention has been made in view of the above. A defect inspection apparatus, a defect information acquisition apparatus, and a defect that can improve the detection accuracy of a defect to be detected and can further optimize the amount of acquisition of a scattered light signal related to the defect. The purpose is to provide an inspection method.

選択肢として複数用意された論理演算を用いて構築した論理演算式を欠陥の判定条件として設定し、この判定条件を満たさない散乱光信号を取得しないようにする。   A logical operation expression constructed using a plurality of logical operations prepared as options is set as a defect determination condition so that a scattered light signal that does not satisfy this determination condition is not acquired.

選択肢として複数用意された論理演算を用いて欠陥の判定条件が任意に設定できるので、検出対象とする欠陥の検出精度を向上させ、当該欠陥に関する散乱光信号の取得量をより適正化することができる。   Since defect determination conditions can be arbitrarily set using a plurality of prepared logical operations as options, it is possible to improve the detection accuracy of a defect to be detected and further optimize the amount of acquisition of scattered light signals related to the defect. it can.

本発明の一実施形態に係る欠陥検査装置を示す模式図である。It is a schematic diagram which shows the defect inspection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る欠陥検査装置に備えられた信号フィルタ部の概略構成を表す機能ブロック図である。It is a functional block diagram showing schematic structure of the signal filter part with which the defect inspection apparatus which concerns on one Embodiment of this invention was equipped. 本発明の一実施形態に係る欠陥検査装置に備えられた制御装置の概略構成を表す機能ブロック図である。It is a functional block diagram showing schematic structure of the control apparatus with which the defect inspection apparatus which concerns on one Embodiment of this invention was equipped. 本発明の一実施形態に係る欠陥検査装置に備えられた信号取得条件の設定画面の一例を表す図である。It is a figure showing an example of the setting screen of the signal acquisition condition with which the defect inspection apparatus which concerns on one Embodiment of this invention was equipped. 本発明の一実施形態に係る欠陥検査装置における欠陥の判定条件のデータの一例を模式的に表した図である。It is the figure which represented typically an example of the data of the determination conditions of the defect in the defect inspection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る欠陥検査装置に備えられた信号フィルタ部による欠陥信号の出力手順を表したフローチャートである。It is a flowchart showing the output procedure of the defect signal by the signal filter part with which the defect inspection apparatus which concerns on one Embodiment of this invention was equipped. 欠陥形状による散乱光の散乱パターンの違いを比較するための模式図で、球形に近い欠陥で散乱した散乱光の散乱パターンをウエハの上方から見た平面図である。It is the model for comparing the difference in the scattering pattern of the scattered light by a defect shape, and is the top view which looked at the scattering pattern of the scattered light scattered by the defect close | similar to a spherical form from the upper direction of the wafer. 欠陥形状による散乱光の散乱パターンの違いを比較するための模式図で、球形とは異なる形状の欠陥で散乱した散乱光の散乱パターンをウエハの上方から見た平面図である。It is a schematic diagram for comparing the difference in scattering pattern of scattered light depending on the defect shape, and is a plan view of the scattered pattern of scattered light scattered by a defect having a shape different from a spherical shape as viewed from above the wafer. 散乱光信号としきい値との比較の概念を表した図である。It is a figure showing the concept of a comparison with a scattered light signal and a threshold value. 本発明の一実施形態に係る欠陥検査装置による作用効果を説明するための説明図である。It is explanatory drawing for demonstrating the effect by the defect inspection apparatus which concerns on one Embodiment of this invention. 従来設定し得た判定条件下で取得される散乱光信号を表した図である。It is a figure showing the scattered light signal acquired on the determination conditions which could be set conventionally. 本発明の一実施形態に係る欠陥検査装置で設定し得る判定条件下で取得される散乱光信号を表した図である。It is a figure showing the scattered light signal acquired on the determination conditions which can be set with the defect inspection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る欠陥検査装置で設定し得る判定条件下で取得不要な信号を指定した場合に取得される散乱光信号を表した図である。It is a figure showing the scattered light signal acquired when the signal which does not need acquisition is designated on the determination conditions which can be set with the defect inspection apparatus which concerns on one Embodiment of this invention.

以下に図面を用いて本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下に図面を用いて本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施形態に係る欠陥検査装置は、欠陥検査の対象であるウエハを試料台に載せ、試料台を移動させつつウエハに斜方照明して複数の散乱光検出器で散乱光を検出し、ウエハ上の同一座標で散乱して各散乱光検出器で同時に検出された一組の散乱光信号(散乱光強度)とそれぞれ対応するしきい値との比較を走査の進行に合わせて時系列的に実行していき、その結果、設定条件を満足する信号の組を欠陥で生じた散乱光信号(以下「欠陥信号」と適宜記載する)と判定して座標情報(走査情報)とともに取得する。これにより検出された欠陥について個々の散乱光検出器の散乱光信号等を柔軟に取得し得るので、欠陥の座標や大きさの情報の他、欠陥の分類に有益な形状等の情報が過不足を抑えて取得され得る。   In the defect inspection apparatus according to the present embodiment, a wafer to be subjected to defect inspection is placed on a sample stage, the wafer is obliquely illuminated while moving the sample stage, and scattered light is detected by a plurality of scattered light detectors. Comparison of a set of scattered light signals (scattered light intensity) scattered at the same coordinates above and simultaneously detected by each scattered light detector and the corresponding threshold values in time series as the scan progresses As a result, a set of signals satisfying the set condition is determined as a scattered light signal caused by a defect (hereinafter, appropriately described as “defect signal”) and acquired together with coordinate information (scanning information). As a result, the scattered light signals of individual scattered light detectors can be acquired flexibly for the detected defects, so there is too much or insufficient information such as useful coordinates for defect classification in addition to defect coordinate and size information. It can be acquired with restraint.

なお、本願明細書で「散乱光信号を取得する」とは散乱光信号を記憶部に記憶することを言い、欠陥信号であると判定されなかった散乱光信号については散乱光信号の取得量の抑制のため取得されない。本実施形態においては、欠陥情報として散乱光信号を過不足なく取得するにあたって欠陥判定の条件設定の自由度を大きく向上させた点に意義がある。以下、本発明の欠陥検査装置の一実施形態について具体的に説明していく。   In the specification of the present application, “acquiring scattered light signals” means storing the scattered light signals in the storage unit. For scattered light signals that are not determined to be defective signals, Not acquired due to suppression. The present embodiment is significant in that the degree of freedom in setting the condition for defect determination is greatly improved when acquiring the scattered light signal as defect information without excess or deficiency. Hereinafter, an embodiment of the defect inspection apparatus of the present invention will be specifically described.

1.構成
(1)欠陥検査装置
図1は本発明の一実施形態に係る欠陥検査装置を示す模式図である。
1. Constitution
(1) Defect Inspection Apparatus FIG. 1 is a schematic diagram showing a defect inspection apparatus according to an embodiment of the present invention.

図1に示した欠陥検査装置は、ウエハ100を載置するステージ装置10と、ステージ装置10上のウエハ100の表面に検査光(レーザ光)21を斜方照射する検査光照射装置20と、ウエハ100からの散乱光1a−1cを検出しそれぞれ散乱光信号2a−2cを出力する複数の散乱光検出器30a−30cと、散乱光検出器30a−30cの散乱光信号から欠陥信号を選別する欠陥情報取得装置40と、ステージ装置10、検査光照射装置20及び欠陥情報取得装置40を制御する制御装置50とを備えている。   The defect inspection apparatus shown in FIG. 1 includes a stage apparatus 10 on which a wafer 100 is placed, an inspection light irradiation apparatus 20 that obliquely irradiates inspection light (laser light) 21 on the surface of the wafer 100 on the stage apparatus 10, and A plurality of scattered light detectors 30a-30c that detect scattered light 1a-1c from wafer 100 and output scattered light signals 2a-2c, respectively, and defect signals are selected from the scattered light signals of scattered light detectors 30a-30c. A defect information acquisition device 40, and a control device 50 that controls the stage device 10, the inspection light irradiation device 20, and the defect information acquisition device 40 are provided.

(2)ステージ装置10
ステージ装置10は、ウエハ100を水平に保持する試料台11と、試料台11を移動させる試料台移動機構12とを備えている。試料台移動機構12は、鉛直軸を中心にθ方向に試料台11を水平面内で回転させるθテーブル13と、試料台11及びθテーブル13を水平方向(XY方向)に移動させるXYテーブル14と、試料台11及びテーブル13,14を上下方向(Z方向)に移動させて検査光21を自動的に合焦させる自動焦点合わせ機構(図示せず)とを備えている。ステージ装置10は、制御装置50からの指令信号に従ってθテーブル13を回転させながらXYテーブル14を適宜XY方向に移動させ、検査光21に対してウエハ100を移動させる。これによってウエハ100の表面が検査光21で走査される。この走査中のθテーブル13及びXYテーブル14の動作を指示する指令信号は、制御装置50によって欠陥情報取得装置40から出力された欠陥信号と同期して関連付けられ、検出された欠陥信号が発生したウエハ100上の座標情報として欠陥信号とともに制御装置50の記憶部56に記憶される。
(2) Stage device 10
The stage apparatus 10 includes a sample stage 11 that holds the wafer 100 horizontally and a sample stage moving mechanism 12 that moves the sample stage 11. The sample stage moving mechanism 12 includes a θ table 13 that rotates the sample stage 11 in the horizontal plane in the θ direction around the vertical axis, and an XY table 14 that moves the sample stage 11 and the θ table 13 in the horizontal direction (XY direction). And an automatic focusing mechanism (not shown) for automatically focusing the inspection light 21 by moving the sample table 11 and the tables 13 and 14 in the vertical direction (Z direction). The stage apparatus 10 appropriately moves the XY table 14 in the XY directions while rotating the θ table 13 in accordance with a command signal from the control apparatus 50, and moves the wafer 100 relative to the inspection light 21. As a result, the surface of the wafer 100 is scanned with the inspection light 21. The command signal instructing the operation of the θ table 13 and the XY table 14 during the scanning is associated with the defect signal output from the defect information acquisition device 40 by the control device 50, and the detected defect signal is generated. Coordinate information on the wafer 100 is stored in the storage unit 56 of the control device 50 together with the defect signal.

(3)検査光照射装置20
検査光照射装置20は、ステージ装置10の斜め上方に位置し、検査光21を集光する集光レンズ(図示せず)とともに照射光学系を構成しており、ウエハ100に対する検査光21の光軸はウエハ100の表面に直交する線に対して傾斜している。検査光照射装置20からウエハ100の表面に斜めに照射された検査光21は、上記集光レンズで集光されてステージ装置10上に載置されたウエハ100に低角度で照射される。
(3) Inspection light irradiation device 20
The inspection light irradiation device 20 is positioned obliquely above the stage device 10 and constitutes an irradiation optical system together with a condenser lens (not shown) that condenses the inspection light 21, and the light of the inspection light 21 on the wafer 100. The axis is inclined with respect to a line perpendicular to the surface of the wafer 100. The inspection light 21 irradiated obliquely onto the surface of the wafer 100 from the inspection light irradiation apparatus 20 is condensed by the condenser lens and irradiated onto the wafer 100 placed on the stage apparatus 10 at a low angle.

(4)散乱光検出器30a−30c
散乱光検出器30a−30cは、ステージ装置10上のウエハ100よりも上方に位置しており、ウエハ100の表面で検査光21が乱反射して発生した散乱光1a−1cをそれぞれ集光し検出する。散乱光検出器30a−30cの検出信号2a−2cはそれぞれA/D変換器31a−31cに入力され、散乱光強度を数値的に表すデジタル信号に変換される。本実施形態では3つの散乱光検出器30a−30cを設けた場合を例示しているが、散乱光検出器は複数(すなわち2つ以上)あれば良く、2つ又は4つ以上にもなり得る。要求される欠陥の分類精度を向上させる上で、平面視及び側面視で設置角度を異にした散乱光検出器がさらに増設され得る。
(4) Scattered light detectors 30a-30c
The scattered light detectors 30a-30c are located above the wafer 100 on the stage device 10, and collect and detect scattered light 1a-1c generated by the irregular reflection of the inspection light 21 on the surface of the wafer 100, respectively. To do. The detection signals 2a-2c of the scattered light detectors 30a-30c are respectively input to the A / D converters 31a-31c and converted into digital signals that numerically represent the scattered light intensity. In the present embodiment, the case where three scattered light detectors 30a to 30c are provided is illustrated, but the number of scattered light detectors may be plural (that is, two or more), and may be two or four or more. . In order to improve the required defect classification accuracy, a scattered light detector having a different installation angle in the plan view and the side view can be further added.

(5)欠陥情報取得装置40
欠陥情報取得装置40は、散乱光信号2a−2cを演算処理する演算処理部41と、欠陥の判定等を実行する信号フィルタ部42とを備えている。
(5) Defect information acquisition device 40
The defect information acquisition device 40 includes an arithmetic processing unit 41 that performs arithmetic processing on the scattered light signals 2a to 2c, and a signal filter unit 42 that executes defect determination and the like.

(5-1)演算処理部41
演算処理部41は、散乱光検出器30a−30cの個々の散乱光信号2a−2cを入力し、それら散乱光信号2a−2cを基に所定の数学演算処理(例えば平均化処理、積分処理等)を実行してノイズの少ない一つの散乱光信号2xを算出する。この演算処理部41で算出された散乱光信号2xも、散乱光検出器30a−30cの個々の散乱光信号2a−2cと同じく、欠陥判定に供され記憶部56に記憶され得る散乱光信号に含まれる。
(5-1) Arithmetic processing unit 41
The arithmetic processing unit 41 inputs the individual scattered light signals 2a-2c of the scattered light detectors 30a-30c, and performs predetermined mathematical arithmetic processing (for example, averaging processing, integration processing, etc.) based on the scattered light signals 2a-2c. ) To calculate one scattered light signal 2x with less noise. The scattered light signal 2x calculated by the arithmetic processing unit 41 is also converted into a scattered light signal that can be used for defect determination and stored in the storage unit 56 in the same manner as the individual scattered light signals 2a-2c of the scattered light detectors 30a-30c. included.

(5-2)信号フィルタ部42
信号フィルタ部42は、時系列的に随時入力される散乱光信号2a−2c,2xの中から欠陥信号以外を除去し、事前に設定した条件を満足する欠陥信号のみを選択して上記記憶部56に出力する回路である。
(5-2) Signal filter unit 42
The signal filter unit 42 removes signals other than the defect signal from the scattered light signals 2a-2c and 2x that are input as needed in time series, and selects only the defect signal that satisfies a preset condition and selects the storage unit. 56 is a circuit to output to 56.

図2は信号フィルタ部42の概略構成を表す機能ブロック図である。   FIG. 2 is a functional block diagram illustrating a schematic configuration of the signal filter unit 42.

図2に示すように、信号フィルタ部42は、比較要否弁別部43a−43c,43xと、しきい値比較部44a−44c,44xと、欠陥判定部45と、取得信号弁別部46a−46c,46xとを備えている。   As shown in FIG. 2, the signal filter unit 42 includes comparison necessity discrimination units 43a-43c, 43x, threshold value comparison units 44a-44c, 44x, a defect determination unit 45, and acquired signal discrimination units 46a-46c. , 46x.

(i)比較要否弁別部43a−43c,43x
比較要否弁別部43a−43c,43xには、個々の散乱光信号2a−2c,2xについて欠陥判定用のしきい値と比較する必要があるか否かの情報が設定されている。これら比較要否弁別部43a−43c,43xは、しきい値比較部44a−44c,44xにおいて夫々散乱光信号としきい値との大小関係を判定する必要があるか否かを弁別する。
(I) Comparison necessity discrimination part 43a-43c, 43x
Information indicating whether or not each of the scattered light signals 2a-2c and 2x needs to be compared with a threshold value for defect determination is set in the comparison necessity discrimination units 43a to 43c and 43x. These comparison necessity discrimination units 43a-43c, 43x discriminate whether or not the threshold value comparison units 44a-44c, 44x need to determine the magnitude relationship between the scattered light signal and the threshold value.

(ii)しきい値比較部44a−44c,44x
しきい値比較部44a−44c,44xには、個々の散乱光信号2a−2c,2xについて欠陥判定に用いるしきい値が設定されており、対応する比較要否弁別部で“比較判定要”と弁別されたしきい値比較部は、対応する比較要否弁別部から入力された散乱光信号をしきい値と比較し、その大小関係の判定情報を付して欠陥判定部45に出力する。対応する比較要否弁別部で“比較判定不要”と弁別されたしきい値比較部は、対応する比較要否弁別部から入力された散乱光信号をしきい値と比較せずに、そのまま欠陥判定部45に出力する。
(Ii) Threshold comparison units 44a-44c, 44x
In the threshold comparison units 44a-44c, 44x, threshold values used for defect determination are set for the individual scattered light signals 2a-2c, 2x, and the corresponding comparison necessity discrimination unit “comparison determination required”. Is compared with the threshold value, and the determination information of the magnitude relation is added to the defect determination unit 45 and output to the defect determination unit 45. . The threshold comparison section discriminated as “comparison determination unnecessary” by the corresponding comparison necessity discrimination section does not compare the scattered light signal input from the corresponding comparison necessity discrimination section with the threshold value, and is defective as it is. It outputs to the determination part 45.

(iii)欠陥判定部45
欠陥判定部45は、ウエハ100上の同一座標から同時に発生した散乱光1a−1cについての散乱光検出器30a−30bによる一組の散乱光信号2a−2c,2xが欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された組の散乱光信号のみを選択して取得信号弁別部46a−46c−46xに出力する処理部である。この欠陥判定部45は、散乱光信号2a−2c,2xが欠陥で散乱した欠陥信号か否かを判定するのに、当該散乱光信号2a−2c,2xを論理演算する。ここで欠陥の判定条件として用いる論理演算式は、選択肢として用意された論理演算(後述)で散乱光信号2a−2c,2xのしきい値に対する大小関係の各比較結果を結合して構築され、欠陥判定部45に設定されている。
(Iii) Defect determination unit 45
The defect determination unit 45 determines whether the set of scattered light signals 2a-2c and 2x by the scattered light detectors 30a-30b for the scattered light 1a-1c generated simultaneously from the same coordinates on the wafer 100 is a defect signal scattered by a defect. It is a processing unit that determines whether or not, selects only the scattered light signal of the group determined to be a defect signal, and outputs to the acquired signal discriminating units 46a-46c-46x. The defect determination unit 45 performs a logical operation on the scattered light signals 2a-2c and 2x to determine whether or not the scattered light signals 2a-2c and 2x are defect signals scattered by defects. Here, the logical operation expression used as the defect determination condition is constructed by combining the comparison results of the magnitude relationship with respect to the threshold values of the scattered light signals 2a-2c and 2x by a logical operation (described later) prepared as an option. The defect determination unit 45 is set.

(iv)取得信号弁別部46a−46c,46x
取得信号弁別部46a−46c,46xは、欠陥信号と判定された組の散乱光信号2a−2c,2xの出力の可否を弁別するものであり、欠陥判定部45から入力された散乱光信号2a−2c,2xを記憶部56に記憶すべく制御装置50に出力するか否かの情報が、散乱光信号2a−2c,2xについて個別に設定されている。
(Iv) Acquired signal discriminators 46a-46c, 46x
The acquired signal discriminating units 46a-46c, 46x discriminate whether or not the set of scattered light signals 2a-2c, 2x determined to be defect signals can be output, and the scattered light signal 2a input from the defect determining unit 45. -2c, 2x are set individually for the scattered light signals 2a-2c, 2x, as to whether to output to the control device 50 to store them in the storage unit 56.

(6)制御装置50
図3は制御装置50の概略構成を表す機能ブロック図である。
(6) Control device 50
FIG. 3 is a functional block diagram illustrating a schematic configuration of the control device 50.

制御装置50は、制御装置本体51と、操作部52と、表示部53とを備えている。   The control device 50 includes a control device main body 51, an operation unit 52, and a display unit 53.

(6-1)制御装置本体51
制御装置本体51は、入出力部54と、演算部55と、記憶部56とを備えている。
(6-1) Control device body 51
The control device main body 51 includes an input / output unit 54, a calculation unit 55, and a storage unit 56.

入出力部54は、ステージ装置10、検査光照射装置20、欠陥情報取得装置40、操作部52及び表示部53との間で信号を授受するためのインターフェイスである。   The input / output unit 54 is an interface for exchanging signals among the stage device 10, the inspection light irradiation device 20, the defect information acquisition device 40, the operation unit 52, and the display unit 53.

演算部55は、操作部52、ステージ装置10及び欠陥情報取得装置40等から入力される信号や予め格納されたプログラムに従って各種演算処理を実行し、表示部53、ステージ装置10、検査光照射装置20及び欠陥情報取得装置40等に対する各種信号を演算するものである。   The calculation unit 55 executes various calculation processes in accordance with signals input from the operation unit 52, the stage device 10, the defect information acquisition device 40, and the like or a program stored in advance, and the display unit 53, the stage device 10, the inspection light irradiation device. 20 and various signals for the defect information acquisition device 40 and the like are calculated.

記憶部56は、制御装置本体51に対して入力される各種信号やプログラム等を記憶するものである。欠陥情報取得装置40から入力される欠陥信号は、この記憶部56に座標情報と関連付けられて記憶される。また、上記判定条件の要素となる論理演算の選択肢のデータもこの記憶部56の所定の領域に予め格納されている。論理演算の選択肢としては、論理積(AND)、論理和(OR)、否定(NOT)、否定論理積(NAND)、排他的論理和(XOR)、否定論理和(NOR)等、各種論理演算が使用され得る。   The storage unit 56 stores various signals and programs input to the control device main body 51. The defect signal input from the defect information acquisition device 40 is stored in the storage unit 56 in association with the coordinate information. In addition, data of logical operation choices that are elements of the determination conditions are also stored in a predetermined area of the storage unit 56 in advance. As logical operation options, various logical operations such as logical product (AND), logical sum (OR), negation (NOT), negative logical product (NAND), exclusive logical sum (XOR), negative logical sum (NOR), etc. Can be used.

(6-2)操作部52
操作部52は、制御装置本体51に対してオペレータが指示入力するためのインターフェイスであり、本実施形態ではこの操作部52を操作することによって欠陥情報取得装置40の欠陥判定部45で欠陥の判定に用いる判定条件を後述する操作画面で構築する。本実施形態において上記ウエハ100上の同一座標から同時に発生した散乱光についての散乱光検出器30a−30cによる一組の散乱光信号2a−2c,2xが欠陥で散乱した欠陥信号か否かを判定する判定条件は論理演算式で適宜構築されるものであり、選択肢として用意された複数の論理演算の中から選択した一又は複数を組み合わせて設定される。操作部52は、この判定条件を設定する条件設定部として機能する。
(6-2) Operation unit 52
The operation unit 52 is an interface for an operator to input an instruction to the control device main body 51. In this embodiment, the defect determination unit 45 of the defect information acquisition device 40 determines a defect by operating the operation unit 52. The judgment conditions used in the above are constructed on the operation screen described later. In this embodiment, it is determined whether or not the pair of scattered light signals 2a-2c and 2x by the scattered light detectors 30a-30c for the scattered light generated simultaneously from the same coordinates on the wafer 100 are defect signals scattered by the defect. The determination condition to be set is appropriately constructed by a logical operation expression, and is set by combining one or a plurality selected from a plurality of logical operations prepared as options. The operation unit 52 functions as a condition setting unit that sets the determination condition.

(6-3)表示部53
表示部53は、制御装置本体51からの表示信号に応じた表示内容を表示する液晶モニタ等の表示装置であり、信号フィルタ部42による欠陥判定や欠陥信号の出力等の各種設定を行う設定画面60(図4参照)や、欠陥検査の結果等の各種画面を表示する。
(6-3) Display unit 53
The display unit 53 is a display device such as a liquid crystal monitor that displays display contents according to a display signal from the control device main body 51, and a setting screen for performing various settings such as defect determination and output of a defect signal by the signal filter unit 42. 60 (see FIG. 4) and various screens such as the result of defect inspection are displayed.

(7)設定画面60
図4は信号取得条件の設定画面の一例を表す図である。
(7) Setting screen 60
FIG. 4 is a diagram illustrating an example of a setting screen for signal acquisition conditions.

図4に示した設定画面60は操作部52からの操作信号に応じて制御装置本体51が表示部53に表示させた画面である。この設定画面60には、比較要否設定領域61、しきい値設定領域62、判定条件設定領域63、取得信号設定領域64、及び論理演算選択領域65が表示されている。   A setting screen 60 shown in FIG. 4 is a screen displayed on the display unit 53 by the control device main body 51 in response to an operation signal from the operation unit 52. On this setting screen 60, a comparison necessity setting area 61, a threshold setting area 62, a determination condition setting area 63, an acquisition signal setting area 64, and a logical operation selection area 65 are displayed.

(7-1)比較要否設定領域61
比較要否設定領域61は、信号フィルタ部42の上記比較要否弁別部43a−43c,43xの設定をする領域であり、散乱光信号2a−2c,2xについて個別にチェックボックス61a−61c,61xを有している。欠陥判定に用いる信号を選択し操作部52を操作して対応するチェックボックスにチェックを入れることで、チェックの入った散乱光信号は欠陥判定に使用される信号、チェックの入っていない散乱光信号は欠陥判定に使用されない信号として設定され、個々のしきい値比較部でしきい値との比較判定を実行するか否かについての設定情報が対応する比較要否設定部に格納される。図4では、しきい値との比較を実行するしきい値比較部としてしきい値比較部44a−44cを選択し、チェックボックス61a−61cにチェックを入れた状態を例示している。
(7-1) Comparison necessity setting area 61
The comparison necessity setting area 61 is an area for setting the comparison necessity discrimination sections 43a-43c, 43x of the signal filter section 42, and the scattered light signals 2a-2c, 2x are individually check boxes 61a-61c, 61x. have. By selecting a signal to be used for defect determination, operating the operation unit 52 and checking the corresponding check box, a scattered light signal with a check is a signal used for defect determination, a scattered light signal without a check Is set as a signal that is not used for defect determination, and setting information as to whether or not each threshold comparison unit performs comparison determination with a threshold value is stored in the corresponding comparison necessity setting unit. FIG. 4 illustrates a state in which the threshold value comparison units 44a to 44c are selected as threshold value comparison units that perform comparison with the threshold value and the check boxes 61a to 61c are checked.

(7-2)しきい値設定領域62
しきい値設定領域62は、信号フィルタ部42の上記しきい値比較部44a−44c,44xの設定をする領域であり、散乱光信号2a−2c,2xについて個別にしきい値入力欄62a−62c,62xを有している。欠陥判定に使用する散乱光信号に対し、操作部52を操作して個々のしきい値入力欄にしきい値を入力することで、それぞれ対応するしきい値設定部にしきい値が設定される。図4では、欠陥判定に使用する散乱光信号2a−2cについて、しきい値入力欄62a−62cにしきい値を入力した状態を例示している。なお、同図では、便宜上、入力したしきい値をα、β、γで代替して図示しているが、数値化された散乱光信号2a−2c,2xと比較するしきい値であるので、実際には数値が入力される。
(7-2) Threshold setting area 62
The threshold value setting area 62 is an area for setting the threshold value comparison sections 44a-44c, 44x of the signal filter section 42. The threshold value input fields 62a-62c are individually set for the scattered light signals 2a-2c, 2x. , 62x. By operating the operation unit 52 and inputting a threshold value into each threshold value input field for the scattered light signal used for defect determination, a threshold value is set in the corresponding threshold value setting unit. FIG. 4 illustrates a state in which threshold values are input in the threshold value input fields 62a-62c for the scattered light signals 2a-2c used for defect determination. In the figure, for convenience, the input threshold values are replaced with α, β, and γ, but these are threshold values to be compared with the quantified scattered light signals 2a-2c and 2x. Actually, a numerical value is input.

(7-3)論理演算選択領域65
論理演算選択領域65は、判定条件を構築する論理演算の選択肢を表示する領域であり、図4では、論理積(AND)を使用するためのアンドアイコン65A、論理和(OR)を使用するためのオアアイコン65B、否定(NOT)を使用するためのノットアイコン65C、否定論理積(NAND)を使用するためのナンドアイコン65Dを選択肢として用意した場合を例示している。図4の例にはないが、排他的論理和(XOR)、否定論理和(NOR)等のその他の論理演算も用意され得る。各論理演算アイコン65A−65Dを判定条件設定領域63にドラッグアンドドロップし、欠陥判定に用いる散乱光信号を当該論理演算で結合することで、欠陥の判定条件が設定される。
(7-3) Logical operation selection area 65
The logical operation selection area 65 is an area for displaying logical operation choices for constructing the determination condition. In FIG. 4, an AND icon 65A for using the logical product (AND) and a logical sum (OR) are used. In this example, an OR icon 65B, a knot icon 65C for using negation (NOT), and a NAND icon 65D for using NAND (NAND) are prepared as options. Although not in the example of FIG. 4, other logical operations such as exclusive OR (XOR) and negative OR (NOR) can be prepared. Each logic operation icon 65A-65D is dragged and dropped into the determination condition setting area 63, and the scattered light signal used for defect determination is combined by the logical operation, thereby setting a defect determination condition.

(7-4)判定条件設定領域63
判定条件設定領域63は、信号フィルタ部42の上記欠陥判定部45の設定をする領域であり、比較要否設定領域61、しきい値設定領域62及び論理演算選択領域65の操作に伴い、この判定条件設定領域63には欠陥判定に使用する散乱光信号と論理演算との結合状態が記号等で表示され、判定条件が模式的に表示される。この判定条件設定領域63で設定された欠陥の判定条件は、欠陥判定部45に格納される。
(7-4) Determination condition setting area 63
The determination condition setting area 63 is an area in which the defect determination section 45 of the signal filter section 42 is set. This operation is performed in accordance with the operation of the comparison necessity setting area 61, the threshold setting area 62, and the logical operation selection area 65. In the determination condition setting area 63, the coupling state between the scattered light signal used for defect determination and the logical operation is displayed with a symbol or the like, and the determination condition is schematically displayed. The defect determination conditions set in the determination condition setting area 63 are stored in the defect determination unit 45.

散乱光信号、及び散乱光信号を結合する論理演算は任意に選択できるため、例えばアンドアイコン65A又はオアアイコン65B、及びノットアイコン65C又はナンドアイコン65Dを併用することで、散乱光信号2a−2c,2xから選択した少なくとも一つの散乱光信号が対応するしきい値を超えることと、それ以外の信号から選択した少なくとも一つの散乱光信号が対応するしきい値以下であることを判定条件に含め、両条件を同時に満足する散乱光信号の組を欠陥信号と判定するといったことも可能である。図4は判定条件が、(散乱光信号2a)AND((散乱光信号2b)NAND(散乱光信号2c))と設定された場合を例示している。すなわち、
(A)散乱光信号2aが対応するしきい値αを超え、かつ、
(B)散乱光信号2b,2cがいずれも対応するしきい値β、γ以下である
場合に、その散乱光信号2a−2c,2xの組は欠陥信号であると判定される例である。
Since the scattered light signal and the logical operation for combining the scattered light signals can be arbitrarily selected, for example, by using the AND icon 65A or the OR icon 65B and the knot icon 65C or the NAND icon 65D together, the scattered light signals 2a-2c, The determination condition includes that at least one scattered light signal selected from 2x exceeds a corresponding threshold value and that at least one scattered light signal selected from other signals is equal to or lower than the corresponding threshold value, It is also possible to determine a set of scattered light signals satisfying both conditions simultaneously as a defect signal. FIG. 4 illustrates a case where the determination condition is set as (scattered light signal 2a) AND ((scattered light signal 2b) NAND (scattered light signal 2c)). That is,
(A) the scattered light signal 2a exceeds the corresponding threshold value α, and
(B) In this example, when the scattered light signals 2b and 2c are equal to or less than the corresponding threshold values β and γ, the set of the scattered light signals 2a to 2c and 2x is determined to be a defect signal.

なお、判定条件は、基本的には同一又は異なる複数の論理演算を組み合わせて構築されることが想定されるが、例えば欠陥判定に用いる散乱光信号が2つである場合にはいずれかの論理演算が単独で用いられる場合もあるし、欠陥判定に用いる散乱光信号が一つである場合にはいずれの論理演算も用いず、単に当該欠陥信号がしきい値を超えるか否かで判定処理を実行することもあり得る。   It is assumed that the determination condition is basically constructed by combining a plurality of the same or different logical operations. For example, when there are two scattered light signals used for defect determination, In some cases, the calculation is used alone, or when there is only one scattered light signal used for defect determination, no logical operation is used, and the determination process is based on whether or not the defect signal simply exceeds the threshold value. May be executed.

また、設定画面60の判定条件の設定は、完全なマニュアル設定で一から構築することも勿論できるが、例えば欠陥種毎に名前を付けてファイルとして保存しておくことができ、欠陥検出の実行の度に判定条件に微調整を加えてファイルを上書き保存、又は名前を変えて保存することにより、判定条件の精度を徐々に高めていくことができる。   In addition, the setting of the determination condition on the setting screen 60 can of course be built from scratch with a complete manual setting, but for example, a name can be stored for each defect type and a defect can be detected. The accuracy of the determination condition can be gradually improved by finely adjusting the determination condition each time and overwriting the file or saving the file with a different name.

(7-5)取得信号設定領域64
取得信号設定領域64は、取得信号弁別部46a−46c,46xの設定をする領域であり、散乱光信号2a−2c,2xについて個別にチェックボックス64a−64c,64xを有している。同一座標で同時に発生した散乱光信号2a−2c,2xのある組の信号が欠陥信号であると判定された場合に、そのうちのどの信号を制御装置50に出力して記憶部52に記憶させるかを選択し、操作部52を操作して対応するチェックボックスにチェックを入れることで、チェックの入った散乱光信号は制御装置50に出力される信号、チェックの入っていない散乱光信号はたとえ欠陥信号であっても制御装置50に出力しない信号として設定され、それぞれ対応する取得信号選択部に設定情報が格納される。図4では、散乱光信号2a−2cを選択し、チェックボックス64a−64cにチェックを入れた状態を例示している。すなわち、ある組の散乱光信号2a−2c,2xが欠陥信号であると判定された場合、その欠陥信号のうちの散乱光信号2a−2cのみを取得し、散乱光信号2xについては取得しない例である。
(7-5) Acquisition signal setting area 64
The acquisition signal setting area 64 is an area for setting the acquisition signal discriminating units 46a-46c, 46x, and has check boxes 64a-64c, 64x individually for the scattered light signals 2a-2c, 2x. When it is determined that a certain set of scattered light signals 2a-2c, 2x generated simultaneously at the same coordinates is a defect signal, which signal is output to the control device 50 and stored in the storage unit 52? Is selected, and the corresponding check box is checked by operating the operation unit 52, so that the scattered light signal that is checked is output to the control device 50, and the scattered light signal that is not checked is defective. Even if it is a signal, it is set as a signal that is not output to the control device 50, and setting information is stored in a corresponding acquired signal selection unit. FIG. 4 illustrates a state where the scattered light signal 2a-2c is selected and the check boxes 64a-64c are checked. That is, when it is determined that a certain set of scattered light signals 2a-2c, 2x is a defect signal, only the scattered light signal 2a-2c of the defect signals is acquired, and the scattered light signal 2x is not acquired. It is.

(8)判定条件データ
図5は欠陥の判定条件のデータの一例を模式的に表した図である。
(8) Determination Condition Data FIG. 5 is a diagram schematically showing an example of defect determination condition data.

図5に示したテーブル80は、図4の判定条件設定領域63に例示した判定条件のデータを例示しており、当該判定条件が2つの論理演算(AND及びNAND)を要素としているため行84,85の二行で構成されている。列81a−81c,81xは、それぞれ散乱光信号2a−2c,2xを欠陥判定に使用するか否かの情報を表しており、使用する(対応するしきい値との大小関係を判断する)散乱光信号は「○」、使用しない(しきい値との大小関係は判断しない)散乱光信号は「−」で表してある。「○」「−」は比較要否設定領域61の設定により定まる。列82,83には論理演算選択領域65で選択した論理演算が表されている。列82には同一行の条件に適用される論理演算が、列83は次行の条件との間で適用される論理演算が表されている。   The table 80 illustrated in FIG. 5 exemplifies the data of the determination condition illustrated in the determination condition setting area 63 of FIG. 4, and the determination condition includes two logical operations (AND and NAND), so that the row 84 , 85. Columns 81a to 81c and 81x represent information indicating whether or not the scattered light signals 2a to 2c and 2x are used for defect determination, respectively, and are used (determine the magnitude relationship with the corresponding threshold value). A light signal is represented by “◯”, and a scattered light signal not used (does not determine the magnitude relationship with the threshold value) is represented by “−”. “◯” and “−” are determined by the setting of the comparison necessity setting area 61. Columns 82 and 83 represent the logical operations selected in the logical operation selection area 65. Column 82 represents a logical operation applied to the condition of the same row, and column 83 represents a logical operation applied to the condition of the next row.

前述したように、図4の判定条件設定領域63に例示した論理演算式は、(散乱光信号2a)AND((散乱光信号2b)NAND(散乱光信号2c))であり、(A)散乱光信号2aが対応するしきい値αを超え、かつ、(B)散乱光信号2b,2cがいずれも対応するしきい値β、γ以下である場合に、その散乱光信号2a−2c,2xの組は欠陥信号であると判定する判定条件である。図5の例において、行84,85はそれぞれ条件(A)及び(B)を表しており、行84では単に“散乱光信号2aがしきい値αを超えるか否か”という条件を表している一方で、行85では列82の論理演算がNANDに設定され“散乱光信号2b,2cの双方がそれぞれ対応するしきい値β、γ以下であるか否か”という条件を表している。そして、行84の列83に論理演算としてANDが設定されているため、これら行84,85の条件(A)及び(B)がANDで結合され、上記判定条件を構成している。   As described above, the logical arithmetic expression illustrated in the determination condition setting region 63 of FIG. 4 is (scattered light signal 2a) AND ((scattered light signal 2b) NAND (scattered light signal 2c)), and (A) scattered light. When the optical signal 2a exceeds the corresponding threshold value α and (B) the scattered light signals 2b and 2c are both equal to or lower than the corresponding threshold values β and γ, the scattered light signals 2a-2c and 2x Is a determination condition for determining that the signal is a defect signal. In the example of FIG. 5, the rows 84 and 85 represent the conditions (A) and (B), respectively, and the row 84 simply represents the condition “whether or not the scattered light signal 2a exceeds the threshold value α”. On the other hand, in row 85, the logical operation in column 82 is set to NAND and represents the condition "whether both scattered light signals 2b and 2c are equal to or less than the corresponding threshold values β and γ, respectively". Since AND is set as a logical operation in the column 83 of the row 84, the conditions (A) and (B) of the rows 84 and 85 are combined by AND to constitute the determination condition.

2.欠陥検査手順
続いて本実施形態における欠陥検査手順を説明する。
2. Defect Inspection Procedure Subsequently, the defect inspection procedure in this embodiment will be described.

(1)条件設定
まず、検出対象とする欠陥の特徴を基に上記設定画面60で欠陥の判定条件を設定する、又は検出対象とする欠陥種に対応する判定条件のファイルを開き、必要に応じて設定画面60で判定条件に調整を加える。ここでは、先の図4に例示した設定画面60の判定条件に合わせて、検出対象とする欠陥の散乱光パターンが、
(a)散乱光検出器30aに入射する散乱光1aが強く、かつ
(b)散乱光検出器30b,30cに入射する散乱光1b,1cが弱い
という特徴を持つ欠陥を対象として、一から判定条件を設定する場合を例示する。
(1) Condition setting First, the defect determination condition is set on the setting screen 60 based on the feature of the defect to be detected, or the determination condition file corresponding to the defect type to be detected is opened, and if necessary In the setting screen 60, adjustments are made to the determination conditions. Here, in accordance with the determination condition of the setting screen 60 illustrated in FIG. 4 above, the scattered light pattern of the defect to be detected is
Judgment is made from scratch for defects having characteristics that (a) the scattered light 1a incident on the scattered light detector 30a is strong and (b) the scattered light 1b, 1c incident on the scattered light detectors 30b, 30c is weak. The case where conditions are set is illustrated.

この場合、散乱光信号2xは欠陥判定に用いないため、設定画面60ではチェックボックス61xのチェックを外してチェックボックス61a−61cにチェックを入れる。そして、しきい値入力欄62aに欠陥からの散乱光信号2aが超えるべき散乱光強度αをしきい値として入力するとともに、しきい値入力欄62b,62cには、欠陥からの散乱光信号2aであれば超えてはならない(超えた場合には他種の欠陥である可能性が高い、又は欠陥ではない可能性が高い)散乱光強度β、γをしきい値として入力する。しきい値入力欄62xは空欄で良い。   In this case, since the scattered light signal 2x is not used for defect determination, the check box 61x is unchecked in the setting screen 60 and the check boxes 61a-61c are checked. Then, the scattered light intensity α that should be exceeded by the scattered light signal 2a from the defect is input as a threshold value to the threshold value input column 62a, and the scattered light signal 2a from the defect is input to the threshold value input columns 62b and 62c. If so, the scattered light intensities β and γ that are not likely to be exceeded (there is a high possibility that they are other types of defects or are not likely to be defects) are input as threshold values. The threshold value input column 62x may be blank.

次に、散乱光パターンの上記の特徴(b)を基に、散乱光信号2b,2cを指定してナンドアイコン65Dを判定条件設定領域63にドラッグアンドドロップし、上記特徴(a)を基に、散乱光信号2a及びNAND記号を指定してアンドアイコン65Aを判定条件設定領域63にドラッグアンドドロップする。これにより、(散乱光信号2a)AND((散乱光信号2b)NAND(散乱光信号2c))という判定条件が設定され、
(A)散乱光信号2aが対応するしきい値αを超え、かつ、
(B)散乱光信号2b,2cがいずれも対応するしきい値β、γ以下である
場合に、その散乱光信号2a−2c,2xの組は欠陥信号であると判定されるようになる。
Next, based on the feature (b) of the scattered light pattern, the scattered light signals 2b and 2c are designated, and the NAND icon 65D is dragged and dropped onto the determination condition setting area 63. Based on the feature (a), Then, the scattered light signal 2a and the NAND symbol are designated, and the AND icon 65A is dragged and dropped into the determination condition setting area 63. Thereby, a determination condition of (scattered light signal 2a) AND ((scattered light signal 2b) NAND (scattered light signal 2c)) is set,
(A) the scattered light signal 2a exceeds the corresponding threshold value α, and
(B) When both the scattered light signals 2b and 2c are equal to or less than the corresponding threshold values β and γ, the set of the scattered light signals 2a to 2c and 2x is determined to be a defect signal.

最後に、欠陥信号の成分として散乱光信号2xが不要である場合には、取得信号設定領域64でチェックボックス64xのチェックを外してチェックボックス64a−64cにチェックを入れる。   Finally, when the scattered light signal 2x is not necessary as a defect signal component, the check box 64x is unchecked in the acquisition signal setting area 64 and the check boxes 64a to 64c are checked.

(2)検査実行
(2-1)スキャニング
操作部52を操作して検査開始を指示すると、制御装置50は、予め格納されたプログラムに従ってウエハ100のスキャンを開始する。まず、制御装置50からの指令信号によりθテーブル13が回転し、検査光照射装置20によりウエハ100上に検査光21が低角度で照射される。その後、制御装置50からの指令信号によりXYテーブル14がXY方向に移動し、ウエハ100上に検査光21が走査される。ウエハ100上に検査光21が照射されると、ウエハ100の表面の欠陥や回路パターン(パターン形成後の場合)から暗視野下の散乱光1a−1cが発生する。この散乱光1a−1cはそれぞれ散乱光検出器30a−30cに入射する。
(2) Inspection execution
(2-1) When the scanning operation unit 52 is operated to instruct to start an inspection, the control device 50 starts scanning the wafer 100 according to a program stored in advance. First, the θ table 13 is rotated by a command signal from the control device 50, and the inspection light irradiation device 20 irradiates the wafer 100 with the inspection light 21 at a low angle. Thereafter, the XY table 14 is moved in the XY direction by a command signal from the control device 50, and the inspection light 21 is scanned on the wafer 100. When the inspection light 21 is irradiated onto the wafer 100, scattered light 1a-1c in the dark field is generated from a defect on the surface of the wafer 100 or a circuit pattern (after pattern formation). The scattered light 1a-1c is incident on the scattered light detectors 30a-30c.

散乱光検出器30a−30cからの散乱光信号2a−2cは、それぞれA/D変換機31a−31cで散乱光強度を表す数値に変換(デジタル信号化)され、欠陥情報取得装置40に入力される。欠陥情報取得装置40に入力された散乱光信号2a−2cは演算処理部41及び信号フィルタ部42の比較要否弁別部43a−43cにそれぞれ入力される。演算処理部41に入力された散乱光信号2a−2cは、所定の演算処理を施されてノイズの少ない一つの散乱光信号2xにまとめられ、信号フィルタ部42の比較要否弁別部43xに入力される。散乱光検出器30a−30cに同時(或いは予め設定された微小な時間範囲内)に入射した散乱光1a−1cについての散乱光信号2a−2c,2xは、ウエハ100上の同一座標で発生した一組の散乱光信号として扱われ、制御装置50から送られてくる座標情報と関連付けられる。   The scattered light signals 2a-2c from the scattered light detectors 30a-30c are converted (digital signals) into numerical values representing the scattered light intensity by the A / D converters 31a-31c, respectively, and input to the defect information acquisition device 40. The The scattered light signal 2a-2c input to the defect information acquisition device 40 is input to the arithmetic processing unit 41 and the comparison necessity discrimination unit 43a-43c of the signal filter unit 42, respectively. The scattered light signals 2 a-2 c input to the arithmetic processing unit 41 are subjected to predetermined arithmetic processing and are combined into one scattered light signal 2 x with less noise, and input to the comparison necessity discrimination unit 43 x of the signal filter unit 42. Is done. Scattered light signals 2 a-2 c and 2 x for scattered light 1 a-1 c incident on the scattered light detectors 30 a-30 c simultaneously (or within a preset minute time range) are generated at the same coordinates on the wafer 100. It is treated as a set of scattered light signals and is associated with coordinate information sent from the control device 50.

(2-2)欠陥情報取得
図6は信号フィルタ部42による欠陥信号の出力手順を表したフローチャートである。
(2-2) Defect Information Acquisition FIG. 6 is a flowchart showing a defect signal output procedure by the signal filter unit 42.

図6のフローチャートは、ウエハ100上の同一座標から同時発生した散乱光1a−1cについての一組の散乱光信号2a−2c,2xに対する処理を表しており、随時入力される散乱光信号2a−2c,2xの各組について図6の処理がそれぞれ実行される。   The flowchart of FIG. 6 shows processing for a set of scattered light signals 2a-2c and 2x with respect to the scattered light 1a-1c generated simultaneously from the same coordinates on the wafer 100, and the scattered light signal 2a- inputted as needed. The processing of FIG. 6 is executed for each set of 2c and 2x.

<ステップ101>
ステップ101では、比較要否弁別部43a−43c,43xの有効フラグをチェックし、しきい値比較部44a−44c,44xについて散乱光信号2a−2c,2xをしきい値と比較するか否かをそれぞれ弁別する。図4の設定画面60に例示した設定下では、比較要否弁別部43a−43cにのみ有効フラグが立っているので、比較要否弁別部43a−43cに対応するしきい値比較部44a−44cにおいてそれぞれ散乱光信号2a−2cがしきい値と比較され、しきい値比較部44xに入力される散乱光信号2xはしきい値と比較されないこととなる。
<Step 101>
In step 101, the validity flag of the comparison necessity discriminating units 43a-43c, 43x is checked, and the threshold value comparing units 44a-44c, 44x are to compare the scattered light signals 2a-2c, 2x with the threshold values. Are distinguished from each other. Under the setting exemplified in the setting screen 60 of FIG. 4, since the valid flag is set only in the comparison necessity discrimination unit 43a-43c, the threshold value comparison units 44a-44c corresponding to the comparison necessity discrimination unit 43a-43c. Each of the scattered light signals 2a-2c is compared with the threshold value in FIG. 2, and the scattered light signal 2x input to the threshold value comparing unit 44x is not compared with the threshold value.

<ステップ102>
ステップ102では、対応する比較要否弁別部で有効フラグを付されたしきい値比較部において、それぞれ入力される散乱光信号をしきい値と比較してしきい値に対する大小関係を判定する。図4の設定画面60に例示した設定下では、比較要否弁別部43a−43cにのみ有効フラグが立っているので、しきい値比較部44a−44cにおいてそれぞれ散乱光信号2a−2cがしきい値α、β、γと比較され、具体的には、しきい値比較部44aでは散乱光信号2aがしきい値αを超えるか否か、しきい値比較部44b,44cでは散乱光信号2b,2cがそれぞれしきい値β、γ以下であるか否かが判定される。この場合、散乱光信号2aは、しきい値αよりも大きな値であればその旨の情報とともに欠陥判定部45に入力され、しきい値α以下の値であれば情報を付されずに欠陥判定部45に入力される。他方、散乱光信号2b,2cは、それぞれしきい値β、γ以下の値であればその旨の情報とともに欠陥判定部45に入力され、しきい値β、γより大きな値であれば情報を付されずに欠陥判定部45に入力される。しきい値比較部44xでは、散乱光信号2xをしきい値と比較せず、散乱光信号2xはしきい値比較部44xを経由して何ら情報を付されずに欠陥判定部45に入力される。
<Step 102>
In step 102, the threshold value comparison unit to which the valid flag is attached by the corresponding comparison necessity discrimination unit compares the input scattered light signal with the threshold value, and determines the magnitude relation with respect to the threshold value. Under the setting illustrated in the setting screen 60 of FIG. 4, since the valid flag is set only in the comparison necessity discrimination unit 43a-43c, the threshold value comparison unit 44a-44c has the threshold value of the scattered light signal 2a-2c. Specifically, the threshold value comparing unit 44a determines whether or not the scattered light signal 2a exceeds the threshold value α, and the threshold value comparing units 44b and 44c determines whether the scattered light signal 2b is compared with the values α, β, and γ. , 2c are determined to be less than or equal to threshold values β and γ, respectively. In this case, if the scattered light signal 2a is a value larger than the threshold value α, it is input to the defect determination unit 45 together with information to that effect, and if the scattered light signal 2a is a value equal to or smaller than the threshold value α, the defect is not given information. Input to the determination unit 45. On the other hand, if the scattered light signals 2b and 2c are values below the threshold values β and γ, they are input to the defect determination unit 45 together with information to that effect, and if the values are larger than the threshold values β and γ, the information is displayed. It is input to the defect determination unit 45 without being attached. The threshold comparison unit 44x does not compare the scattered light signal 2x with the threshold value, and the scattered light signal 2x is input to the defect determination unit 45 via the threshold comparison unit 44x without any information. The

<ステップ103>
ステップ103では、しきい値比較部44a−44c,44xにより散乱光信号2a−2c,2xに付された情報を基に欠陥判定部45で欠陥判定処理が実行される。図4の設定画面60に例示した設定下では、
(A)散乱光信号2aが対応するしきい値αを超え、かつ、
(B)散乱光信号2b,2cがいずれも対応するしきい値β、γ以下である
という判定条件が満たされた散乱光信号2a−2c,2xの組が欠陥信号であると判定される。この判定条件を満足しない組の散乱光信号2a−2c,2xは欠陥信号ではないと判定され、欠陥判定部45は当該散乱光信号2a−2c,2xを取得信号弁別部46a−46c,46xに出力せずに遮断して図6の手順を終了する。他方、判定条件を満たした組の散乱光信号2a−2c,2xは欠陥信号であると判定され、欠陥判定部45は当該散乱光信号2a−2c,2xを取得信号弁別部46a−46c,46xに出力する。
<Step 103>
In step 103, a defect determination process is executed by the defect determination unit 45 based on information given to the scattered light signals 2a-2c, 2x by the threshold comparison units 44a-44c, 44x. Under the settings exemplified in the setting screen 60 of FIG.
(A) the scattered light signal 2a exceeds the corresponding threshold value α, and
(B) A set of scattered light signals 2a-2c and 2x that satisfies the determination condition that the scattered light signals 2b and 2c are equal to or less than the corresponding threshold values β and γ is determined to be a defect signal. The set of scattered light signals 2a-2c, 2x that does not satisfy this determination condition is determined not to be a defect signal, and the defect determination unit 45 converts the scattered light signals 2a-2c, 2x into acquired signal discrimination units 46a-46c, 46x. The procedure shown in FIG. 6 is terminated by shutting off without outputting. On the other hand, the set of scattered light signals 2a-2c, 2x that satisfy the determination condition is determined to be a defect signal, and the defect determination unit 45 obtains the scattered light signals 2a-2c, 2x as acquired signal discriminating units 46a-46c, 46x. Output to.

<ステップ104>
ステップ104では、取得信号弁別部46a−46c,46xの有効フラグをチェックし、取得信号弁別部46a−46c,46xに入力された散乱光信号2a−2c,2xを記憶部56に出力するか、出力せずに遮断するかを散乱光2a−2c−2xについてそれぞれ弁別する。図4の設定画面60に例示した設定下では、取得信号弁別部46a−46cにのみ有効フラグが立っているので、取得信号弁別部46a−46cに入力された散乱光信号2a−2cは記憶部56に出力され、取得信号弁別部46xに入力される散乱光信号2xは記憶部56に出力されることなく遮断されることとなる。
<Step 104>
In step 104, the effective flags of the acquisition signal discriminating units 46a-46c, 46x are checked, and the scattered light signals 2a-2c, 2x input to the acquisition signal discrimination units 46a-46c, 46x are output to the storage unit 56, or The scattered light 2a-2c-2x is discriminated whether it is blocked without being output. Under the setting illustrated in the setting screen 60 of FIG. 4, since the valid flag is set only in the acquisition signal discriminating unit 46a-46c, the scattered light signal 2a-2c input to the acquisition signal discriminating unit 46a-46c is stored in the storage unit. The scattered light signal 2x output to 56 and input to the acquired signal discriminating unit 46x is blocked without being output to the storage unit 56.

<ステップ105>
ステップ105では、取得信号弁別部46a−46c,46xに散乱光信号2a−2c,2xが入力された場合に、有効フラグを付された取得信号弁別部のみから記憶部56に散乱光信号が出力される。図4の設定画面60に例示した設定下では、取得信号弁別部46a−46cにのみ有効フラグが立っているので、取得信号弁別部46a−46cに入力された散乱光信号2a−2cが制御装置50に出力されて座標情報とともに記憶部56に記憶され、取得信号弁別部46xに入力される散乱光信号2xは記憶部56に記憶されることなく取得信号弁別部46xで遮断される。
<Step 105>
In step 105, when the scattered light signals 2a-2c, 2x are input to the acquired signal discriminating units 46a-46c, 46x, the scattered light signal is output to the storage unit 56 only from the acquired signal discriminating unit with the valid flag. Is done. Under the setting illustrated in the setting screen 60 of FIG. 4, since the effective flag is set only in the acquisition signal discriminating unit 46a-46c, the scattered light signal 2a-2c input to the acquisition signal discrimination unit 46a-46c is controlled by the control device. The scattered light signal 2x that is output to 50 and stored together with the coordinate information in the storage unit 56 and input to the acquisition signal discrimination unit 46x is not stored in the storage unit 56 but is blocked by the acquisition signal discrimination unit 46x.

信号フィルタ部42は、以上のステップ101−105の手順を随時入力される散乱光信号2a−2c,2xの組にそれぞれ実行し、ウエハ100上の欠陥に起因する欠陥信号と判定し、かつ予め取得するように指示されていた信号のみを選別して記憶部56に記憶させる。   The signal filter unit 42 executes the above-described steps 101-105 for each set of scattered light signals 2a-2c, 2x that are input as needed, determines that the signal is a defect signal due to a defect on the wafer 100, and Only the signals instructed to be acquired are selected and stored in the storage unit 56.

3.作用効果
(1)従来の技術的課題
図7及び図8は欠陥形状による散乱光の散乱パターンの違いを比較するための模式図で、図7は球形に近い欠陥で散乱した散乱光の散乱パターンを、図8は球形とは異なる形状の欠陥で散乱した散乱光の散乱パターンを、それぞれウエハ100の上方から見た平面図で表している。
3. Effect
(1) Conventional technical problems FIGS. 7 and 8 are schematic diagrams for comparing the difference in scattering pattern of scattered light depending on the defect shape, and FIG. 7 shows the scattering pattern of scattered light scattered by a defect close to a sphere. FIG. 8 is a plan view of a scattered pattern of scattered light scattered by a defect having a shape different from a spherical shape, as viewed from above the wafer 100.

図7及び図8において、ウエハ100の表面上にはそれぞれ欠陥X1,X2が存在し、欠陥X1,X2に対して検査光照射装置20により検査光21が照射されると欠陥X1,X2から発生した散乱光1a−1cがそれぞれ散乱光検出器30a−30cで検出される。散乱光1a−1cは必ずしも全方位に一様に散乱する訳ではなく欠陥X1,X2の形状によって散乱光1a−1cの強度のばらつき方が異なってくる。具体的には、図7のように欠陥X1が球形に近く散乱光1a−1cの強度がほぼ等しくなる場合があるのに対し、図8のように欠陥X2の形状が球形とは程遠く(例えば三角形状)、例えば散乱光1aの強度に比べて散乱光1b,1cの強度が著しく弱くなるといったように、欠陥X2の形状に起因して散乱光1a−1cの強度にばらつきが生じる場合もある。   7 and 8, defects X1 and X2 exist on the surface of the wafer 100, respectively, and the defects X1 and X2 are generated from the defects X1 and X2 when the inspection light irradiation device 20 irradiates the defects X1 and X2. The scattered light 1a-1c is detected by the scattered light detectors 30a-30c. The scattered light 1a-1c does not necessarily scatter uniformly in all directions, and the intensity variation of the scattered light 1a-1c differs depending on the shapes of the defects X1 and X2. Specifically, the defect X1 may be nearly spherical as shown in FIG. 7 and the intensity of the scattered light 1a-1c may be substantially equal, whereas the shape of the defect X2 is far from the spherical shape as shown in FIG. The intensity of the scattered light 1a-1c may vary due to the shape of the defect X2, such that the intensity of the scattered light 1b, 1c is significantly weaker than the intensity of the scattered light 1a. .

図9に示したように、一般的な欠陥検査装置と同様、散乱光検出器30a−30cの個々の散乱光信号2a−2cを欠陥判定に用いず、散乱光信号2a−2cを演算処理してまとめたノイズの少ない一つの散乱光信号2xをしきい値σと比較し、単純にしきい値σを超えた散乱光信号2xを欠陥信号と判定するとした場合、取得される欠陥信号は散乱光信号2x及びその座標情報のみであって散乱光信号2a−2cが取得されないため、欠陥の形状を分析するための情報量が必ずしも十分でない。   As shown in FIG. 9, as in a general defect inspection apparatus, the scattered light signals 2a-2c of the scattered light detectors 30a-30c are not used for defect determination, and the scattered light signals 2a-2c are processed. When one scattered light signal 2x with less noise is compared with the threshold value σ and the scattered light signal 2x exceeding the threshold σ is simply determined as a defect signal, the acquired defect signal is scattered light. Since only the signal 2x and its coordinate information are obtained and the scattered light signal 2a-2c is not acquired, the amount of information for analyzing the shape of the defect is not always sufficient.

しかしながら、個々の散乱光信号2a−2cを併せて取得しようとすると、散乱光信号の取得量の肥大化を抑えるためにも、散乱光信号2a−2cのそれぞれに適切なしきい値を設定しなければならない。散乱光信号2a−2cのしきい値を個別に最適化することは容易ではなく、しきい値の設定の微差で散乱光信号の取得量の過不足量が著しく増大し得る。   However, if the individual scattered light signals 2a-2c are to be acquired together, an appropriate threshold must be set for each of the scattered light signals 2a-2c in order to suppress an increase in the amount of acquired scattered light signals. I must. It is not easy to individually optimize the threshold values of the scattered light signals 2a to 2c, and the amount of the scattered light signal acquired may be significantly increased due to a slight difference in threshold setting.

そこで、例えば散乱光信号2a−2c,2xの中から欠陥判定に用いる一又は複数の信号を欠陥の特徴に応じて任意に選択し、欠陥判定用の信号として選択した信号がいずれも対応するしきい値を超えた場合、当該散乱光信号2a−2c,2xの組を欠陥信号と判定して取得することが考えられた(便宜上、これを「従来設定し得た判定条件」と適宜記載する)。この場合、ノイズを低減した散乱光信号2xのみならず、その成分である散乱光信号2a−2cが併せて取得されるので、欠陥の座標や大きさだけでなく形状の分類、分析等にも有益である。また、散乱光信号2a−2c,2xのうち欠陥判定に用いられるのは選択した散乱光信号のみであるため、全ての散乱光信号をしきい値と比較する場合に比べてしきい値の設定や調整が容易になる。   Therefore, for example, one or a plurality of signals used for the defect determination are selected from the scattered light signals 2a-2c and 2x according to the feature of the defect, and any of the signals selected as the defect determination signal corresponds. When the threshold value is exceeded, it is considered that the set of the scattered light signals 2a-2c, 2x is determined as a defect signal (for convenience, this is appropriately described as “determination condition that can be set in the past”). ). In this case, since not only the scattered light signal 2x with reduced noise but also the scattered light signal 2a-2c, which is a component thereof, are acquired together, not only the coordinates and size of the defect but also the classification and analysis of the shape It is beneficial. Further, since only the selected scattered light signal is used for defect determination among the scattered light signals 2a-2c, 2x, the threshold value is set as compared with the case where all the scattered light signals are compared with the threshold value. And adjustment becomes easy.

しかしながら、「従来設定し得た判定条件」の下では、例えば、散乱光パターンがある程度似ていて、しきい値を超える散乱光を検出すべき散乱光検出器が共通するものの、種類としては区別したい異種の欠陥が存在する場合、選択信号が全てしきい値を超えさえすれば種類の異なるこれら欠陥に関して区別なく散乱光信号が取得されてしまい、不要な散乱光信号の取得量を抑える点では改善の余地があった。   However, under “judgment conditions that can be set in the past”, for example, although the scattered light pattern is similar to some extent and the scattered light detectors that should detect scattered light exceeding the threshold value are common, they are distinguished as types. If there are different types of defects, the scattered light signals are acquired without distinction for these different types of defects as long as the selection signals all exceed the threshold value, and the amount of unnecessary scattered light signals acquired can be reduced. There was room for improvement.

(2)本実施形態の優位性
(2-1)判定条件の柔軟性
以下、上記の従来設定し得た判定条件と具体的に比較しながら本実施形態で設定し得る判定条件の優位性について説明する。
(2) Advantage of this embodiment
(2-1) Flexibility of determination conditions Hereinafter, the superiority of the determination conditions that can be set in the present embodiment will be described while specifically comparing with the determination conditions that can be set conventionally.

ここで、図10は本実施形態の優位性を説明するための説明図である。   Here, FIG. 10 is an explanatory diagram for explaining the superiority of the present embodiment.

図10のように、例えば、散乱光信号2a−2c,2xに対してそれぞれしきい値を20,30,25,27と設定した場合において、時刻t1−t6の間の散乱光信号2a−2cの値が図10のように推移したとする。また、時刻t3の散乱光信号2a−2c,2xのみが検出対象とする真の欠陥信号であるが、判定条件を満たした時刻の散乱光信号2a−2c,2xはいずれも取得されることとする。   As shown in FIG. 10, for example, when the threshold values are set to 20, 30, 25, and 27 for the scattered light signals 2a-2c and 2x, the scattered light signal 2a-2c during the time t1-t6. Is assumed to change as shown in FIG. Moreover, although only the scattered light signals 2a-2c, 2x at the time t3 are true defect signals to be detected, the scattered light signals 2a-2c, 2x at the time when the determination condition is satisfied are both acquired. To do.

まず、「従来設定し得た判定条件」の下で取得される信号を特定する。ここでは、散乱光信号2a,2bを判定条件に用いる信号とし、散乱光信号2a,2bがいずれも対応するしきい値(30,25)を超えた場合に、当該散乱光信号2a,2bと同時刻に発生した散乱光信号2a−2c,2xが欠陥信号であると判定することとする。この場合、信号フィルタ部42では、図11に白黒反転させて図示したように、真の欠陥信号である時刻t3の散乱光信号2a−2c,2xは取得されるものの、同様に散乱光信号2a,2bがいずれも対応するしきい値30,25を超える時刻t1,t5,t6の散乱光信号2a−2c,2xも取得されてしまう。つまり、真の欠陥信号の他に、現実には検出対象の欠陥によるものではない時刻t1,t5,t6の合計12の不要な散乱光信号が取得されてしまう。   First, a signal acquired under “determination conditions that can be set in the past” is specified. Here, the scattered light signals 2a and 2b are used as determination conditions. When the scattered light signals 2a and 2b exceed the corresponding threshold values (30 and 25), the scattered light signals 2a and 2b It is determined that the scattered light signals 2a-2c and 2x generated at the same time are defect signals. In this case, the signal filter unit 42 obtains the scattered light signals 2a-2c and 2x at time t3, which are true defect signals, as shown in FIG. , 2b exceed the corresponding threshold values 30, 25, and the scattered light signals 2a-2c, 2x at times t1, t5, t6 are also acquired. That is, in addition to the true defect signal, a total of 12 unnecessary scattered light signals at times t1, t5, and t6 that are not actually caused by the defect to be detected are acquired.

次に本実施形態で設定し得る判定条件下で取得される散乱光信号を特定する。ここでは、ANDとNOTとを組み合わせて論理演算式を構築し、散乱光信号2a,2bがしきい値(30,25)を超えることに加え、散乱光信号2cがしきい値(27)以下であることを同時に満たすことを判定条件とする。この場合、図12に示したように、真の欠陥信号である時刻t3の散乱光信号2a−2c,2xの他に取得される不要な信号は、時刻t1の散乱光信号2a−2c,2xのみとなる。つまり、図11の例で取得されていた不要な散乱光信号のうち時刻t5,t6の合計6つの信号の取得が抑制される。   Next, the scattered light signal acquired under the determination conditions that can be set in the present embodiment is specified. Here, a logical operation expression is constructed by combining AND and NOT, and in addition to the scattered light signals 2a and 2b exceeding the threshold value (30, 25), the scattered light signal 2c is equal to or lower than the threshold value (27). The determination condition is to satisfy the above simultaneously. In this case, as shown in FIG. 12, in addition to the scattered light signals 2a-2c and 2x at time t3, which are true defect signals, unnecessary signals acquired are scattered light signals 2a-2c and 2x at time t1. It becomes only. That is, acquisition of a total of six signals at times t5 and t6 among the unnecessary scattered light signals acquired in the example of FIG. 11 is suppressed.

以上のように、本実施形態によれば、複数用意された論理演算の選択肢を任意に組み合わせて欠陥の判定条件として論理演算式を構築することができるので、欠陥の判定条件を柔軟に設定することができ、検出対象とする欠陥の検出精度を向上させるとともに、当該欠陥に関する散乱光信号の取得量をより適正化することができ、不要な散乱光信号の取得量を抑えて取得データの肥大化を抑えることができる。   As described above, according to the present embodiment, a logical operation expression can be constructed as a defect determination condition by arbitrarily combining a plurality of prepared logical operation options, so the defect determination condition is flexibly set. It is possible to improve the detection accuracy of the defect to be detected and to further optimize the acquisition amount of the scattered light signal related to the defect, and to suppress the acquisition amount of the unnecessary scattered light signal and enlarge the acquisition data Can be suppressed.

(2-2)不要な信号の取得量の更なる抑制
本実施形態の場合、取得信号弁別部46a−46c,46xを設けたことで、欠陥判定部45で欠陥信号と判定された散乱光信号2a−2c,2xの中から指定された散乱光信号のみを弁別して記憶部56に出力することができる。欠陥信号と判定された場合でも、例えば分析に利用する信号が限られていて散乱光信号2a−2c,2xの全てを取得する必要がないときには、取得する必要のない信号を取得信号弁別部で遮断することができ、不要な信号の取得量を更に抑制することができる。例えば図12に示した例で散乱光信号2xを取得する必要がないときは、図13に示したように、時刻t1,t3の散乱光信号2xが除去され、不要な散乱光信号の取得量がさらに二つ削減される。
(2-2) Further suppression of unnecessary signal acquisition amount In the case of this embodiment, the scattered light signal determined as the defect signal by the defect determination unit 45 by providing the acquisition signal discriminating units 46a-46c, 46x. Only the scattered light signal designated from 2a-2c and 2x can be discriminated and output to the storage unit 56. Even when the signal is determined to be a defect signal, for example, when the signals used for analysis are limited and it is not necessary to acquire all of the scattered light signals 2a-2c and 2x, the acquisition signal discriminating unit outputs signals that do not need to be acquired. It is possible to block, and the amount of unnecessary signal acquisition can be further suppressed. For example, when it is not necessary to acquire the scattered light signal 2x in the example illustrated in FIG. 12, the scattered light signal 2x at the times t1 and t3 is removed as illustrated in FIG. Are further reduced by two.

4.その他
上記実施形態では、不要な信号の取得量の更なる抑制を狙って取得信号弁別部46a−46c,46xを設けた場合を例に挙げて説明したが、判定条件の設定自由度を向上させるという本質的効果を得る上では、取得信号弁別部46a−46c,46xは必ずしも必要なく、不要であれば省略することができる。また、散乱光信号2a−2c,2xについてしきい値との比較を実行する必要があるか否かを比較要否弁別部43a−43c,43xで弁別できるようにしたが、欠陥判定に使用しない信号がしきい値と比較されても特に問題はないため、判定条件の設定自由度を向上させるという本質的効果を得る上では、比較要否弁別部43a−43c,43xも必ずしも必要なく、不要であれば省略することができる。
4). In the above-described embodiment, the case where the acquisition signal discriminators 46a-46c, 46x are provided with the aim of further suppressing the acquisition amount of unnecessary signals has been described as an example. However, the degree of freedom in setting determination conditions is improved. The acquisition signal discriminating units 46a to 46c and 46x are not always necessary to obtain the essential effect, and can be omitted if unnecessary. In addition, the comparison necessity discrimination units 43a-43c and 43x can discriminate whether or not it is necessary to execute comparison with the threshold values for the scattered light signals 2a-2c and 2x, but they are not used for defect determination. Since there is no particular problem even if the signal is compared with the threshold value, the comparison necessity discrimination parts 43a-43c, 43x are not always necessary and unnecessary for obtaining the essential effect of improving the degree of freedom in setting the determination condition. If so, it can be omitted.

また、個々の散乱光信号2a−2cを演算処理して一つにまとめた散乱光信号2xを欠陥判定用の信号に含めることとしたが、散乱光信号2xが不要な場合には、演算処理部41、比較要否弁別部43x、しきい値比較部44x及び取得信号弁別部46xは省略可能である。   In addition, the scattered light signal 2x, which is obtained by calculating the individual scattered light signals 2a-2c and combining them into one, is included in the defect determination signal. However, if the scattered light signal 2x is not required, the arithmetic processing is performed. The part 41, the comparison necessity discrimination part 43x, the threshold value comparison part 44x, and the acquired signal discrimination part 46x can be omitted.

1a−c 散乱光
2a−c,x 散乱光信号
11 試料台
12 試料台移動機構
20 検査光照射装置
21 検査光(レーザ光)
30a−c 散乱光検出器
41 演算処理部
42 信号フィルタ部
43a−c,x 比較要否弁別部
44a−c,x しきい値比較部
45 欠陥判定部
46a−c,x 取得信号弁別部
52 操作部(条件設定部)
56 記憶部
100 ウエハ(試料)
α、β、γ、σ しきい値
1a-c scattered light 2a-c, x scattered light signal 11 sample table 12 sample table moving mechanism 20 inspection light irradiation device 21 inspection light (laser light)
30a-c Scattered light detector 41 Arithmetic processing section 42 Signal filter section 43a-c, x Comparison necessity discrimination section 44a-c, x Threshold comparison section 45 Defect determination section 46a-c, x Acquisition signal discrimination section 52 Operation Part (condition setting part)
56 Storage Unit 100 Wafer (Sample)
α, β, γ, σ threshold

Claims (12)

試料を載置する試料台と、
前記試料台を移動させる試料台移動機構と、
移動する前記試料台上の試料に検査光を斜方照射する検査光照射装置と、
試料からの散乱光を検出する複数の散乱光検出器と、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを出力する欠陥判定部と、
前記欠陥判定部から出力された散乱光信号を記憶する記憶部と、
複数の論理演算から選択した一又は複数を組み合わせて前記欠陥判定部で欠陥の判定条件として用いる論理演算式を設定する条件設定部と
を備えたことを特徴とする欠陥検査装置。
A sample stage on which the sample is placed;
A sample stage moving mechanism for moving the sample stage;
An inspection light irradiation device for obliquely irradiating inspection light onto the sample on the moving sample stage;
A plurality of scattered light detectors for detecting scattered light from the sample;
The scattered light signals generated by the plurality of scattered light detectors for the scattered light generated simultaneously from the same coordinates on the sample are logically operated to determine whether or not the scattered light signal is a defect signal scattered by a defect. A defect determination unit that outputs only the scattered light signal determined as:
A storage unit for storing the scattered light signal output from the defect determination unit;
A defect inspection apparatus comprising: a condition setting unit that sets a logical operation expression used as a defect determination condition in the defect determination unit by combining one or a plurality selected from a plurality of logical operations.
試料を載置する試料台と、
前記試料台を移動させる試料台移動機構と、
移動する前記試料台上の試料に検査光を斜方照射する検査光照射装置と、
試料からの散乱光を検出する複数の散乱光検出器と、
前記複数の散乱光検出器の個々の散乱光信号を対応する欠陥判定用のしきい値と比較して夫々しきい値に対する大小関係を判定する複数のしきい値比較部と、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号の前記しきい値比較部の比較結果を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを出力する欠陥判定部と、
前記欠陥判定部から出力された散乱光信号を記憶する記憶部と、
選択肢として用意された複数の論理演算から選択した一又は複数の論理演算によって前記しきい値比較部の比較結果を結合して前記欠陥判定部で欠陥の判定条件として用いる論理演算式を設定する条件設定部と
を備えたことを特徴とする欠陥検査装置。
A sample stage on which the sample is placed;
A sample stage moving mechanism for moving the sample stage;
An inspection light irradiation device for obliquely irradiating inspection light onto the sample on the moving sample stage;
A plurality of scattered light detectors for detecting scattered light from the sample;
A plurality of threshold comparison units for comparing individual scattered light signals of the plurality of scattered light detectors with corresponding threshold values for defect determination, respectively, for determining a magnitude relationship with respect to the threshold values;
A defect in which the scattered light signal is scattered by a defect by performing a logical operation on the comparison result of the threshold value comparison unit of the scattered light signal by the plurality of scattered light detectors with respect to the scattered light generated simultaneously from the same coordinates on the sample. A defect determination unit that determines whether the signal is a signal and outputs only a scattered light signal determined to be a defect signal;
A storage unit for storing the scattered light signal output from the defect determination unit;
A condition for setting a logical operation expression used as a defect determination condition in the defect determination unit by combining the comparison results of the threshold value comparison unit by one or a plurality of logical operations selected from a plurality of logical operations prepared as options A defect inspection apparatus comprising a setting unit.
試料を載置する試料台と、
前記試料台を移動させる試料台移動機構と、
移動する前記試料台上の試料に検査光を斜方照射する検査光照射装置と、
試料からの散乱光を検出する複数の散乱光検出器と、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを出力する欠陥判定部と、
前記欠陥判定部から出力された散乱光信号を記憶する記憶部と、
少なくとも一つの散乱光信号が対応するしきい値を超えること、及び他の少なくとも一つの散乱光信号が対応するしきい値以下であることを同時に満たす論理演算式を、前記欠陥判定部で用いる欠陥の判定条件として設定する欠陥判定部と
を備えたことを特徴とする欠陥検査装置。
A sample stage on which the sample is placed;
A sample stage moving mechanism for moving the sample stage;
An inspection light irradiation device for obliquely irradiating inspection light onto the sample on the moving sample stage;
A plurality of scattered light detectors for detecting scattered light from the sample;
It is determined whether or not the scattered light signals by the plurality of scattered light detectors for the scattered light generated simultaneously from the same coordinates on the sample are defect signals scattered by the defect, and only the scattered light signal determined as the defect signal is used. A defect determination unit to output;
A storage unit for storing the scattered light signal output from the defect determination unit;
A defect that uses a logical operation expression that simultaneously satisfies that at least one scattered light signal exceeds a corresponding threshold value and that at least one other scattered light signal is equal to or less than a corresponding threshold value in the defect determination unit. A defect inspection apparatus comprising a defect determination unit that is set as the determination condition.
請求項1の欠陥検査装置において、
前記欠陥判定部で欠陥信号と判定された散乱光信号の中から指定された散乱光信号のみを弁別して前記記憶部に出力する取得信号弁別部を備えたことを特徴とする欠陥検査装置。
The defect inspection apparatus according to claim 1,
A defect inspection apparatus comprising: an acquisition signal discriminating unit that discriminates only a scattered light signal designated from scattered light signals determined to be a defect signal by the defect determination unit and outputs the discriminated signal to the storage unit.
請求項2の欠陥検査装置において、
前記複数のしきい値比較部の散乱光信号としきい値との比較を実行するか否かを弁別する比較要否弁別部を備えたことを特徴とする欠陥検査装置。
The defect inspection apparatus according to claim 2,
A defect inspection apparatus comprising a comparison necessity discrimination unit for discriminating whether or not to perform comparison between scattered light signals of the plurality of threshold comparison units and thresholds.
請求項1の欠陥検査装置において、
欠陥判定に供され前記記憶部に記憶され得る散乱光信号として、前記複数の散乱光検出器の個々の散乱光信号を数学演算処理して一つにした散乱光信号を含むことを特徴とする欠陥検査装置。
The defect inspection apparatus according to claim 1,
The scattered light signal that is used for defect determination and can be stored in the storage unit includes a scattered light signal that is obtained by performing mathematical operation on the individual scattered light signals of the plurality of scattered light detectors. Defect inspection equipment.
複数の論理演算から選択した一又は複数を組み合わせて構築した論理演算式を欠陥の判定条件として用い、試料上の同一座標から同時に発生した散乱光についての複数の散乱光検出器による散乱光信号を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを記憶部に出力することを特徴とする欠陥情報取得装置。   Using a logical operation formula constructed by combining one or more selected from a plurality of logical operations as a defect judgment condition, scattered light signals from multiple scattered light detectors for scattered light generated simultaneously from the same coordinate on the sample A defect information acquisition apparatus characterized by performing a logical operation to determine whether or not the scattered light signal is a defect signal scattered by a defect and outputting only the scattered light signal determined to be a defect signal to a storage unit. 複数の散乱光検出器の個々の散乱光信号を対応する欠陥判定用のしきい値と比較して夫々しきい値に対する大小関係を判定する複数のしきい値比較部と、
選択肢として用意された複数の論理演算から選択した一又は複数の論理演算によって前記しきい値比較部の比較結果を結合して構築した論理演算式を欠陥の判定条件として用い、試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号の前記しきい値比較部の比較結果を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを記憶部に出力する欠陥判定部と
を備えたことを特徴とする欠陥情報取得装置。
A plurality of threshold comparison units for comparing individual scattered light signals of the plurality of scattered light detectors with corresponding thresholds for defect determination and determining a magnitude relationship with respect to the threshold values,
Using the logical operation formula constructed by combining the comparison results of the threshold comparison unit by one or a plurality of logical operations selected from a plurality of logical operations prepared as options as the defect judgment conditions, the same coordinates on the sample A logical operation is performed on the comparison result of the threshold value comparison unit of the scattered light signal by the plurality of scattered light detectors with respect to the scattered light generated simultaneously, and it is determined whether or not the scattered light signal is a defect signal scattered by a defect. And a defect determination unit that outputs only the scattered light signal determined to be a defect signal to the storage unit.
少なくとも一つの散乱光信号が対応するしきい値を超えること、及び他の少なくとも一つの散乱光信号が対応するしきい値以下であることを同時に満たす論理演算式を欠陥の判定条件として用い、試料上の同一座標から同時に発生した散乱光についての複数の散乱光検出器による散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、欠陥信号と判定された散乱光信号のみを記憶部に出力することを特徴とする欠陥情報取得装置。   Using a logical arithmetic expression that simultaneously satisfies that at least one scattered light signal exceeds a corresponding threshold value and that at least one other scattered light signal is equal to or lower than the corresponding threshold value as a defect determination condition, It is determined whether or not the scattered light signal from the plurality of scattered light detectors for the scattered light generated simultaneously from the same coordinates above is a defect signal scattered by the defect, and only the scattered light signal determined to be a defect signal is stored in the storage unit. A defect information acquisition apparatus characterized by outputting the defect information. 複数の論理演算から選択した一又は複数を組み合わせて構築した論理演算式を欠陥の判定条件として設定し、
移動する試料台上の試料に検査光を斜方照射して試料からの散乱光を複数の散乱光検出器で検出し、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、
欠陥信号と判定された散乱光信号のみを記憶部に記憶する
ことを特徴とする欠陥検査方法。
A logical operation formula constructed by combining one or more selected from a plurality of logical operations is set as a defect judgment condition,
The sample on the moving sample stage is obliquely irradiated with inspection light, and the scattered light from the sample is detected by multiple scattered light detectors.
A logical operation of the scattered light signals by the plurality of scattered light detectors for scattered light generated simultaneously from the same coordinates on the sample to determine whether the scattered light signal is a defect signal scattered by a defect;
Only a scattered light signal determined as a defect signal is stored in a storage unit.
選択肢として用意された複数の論理演算から選択した一又は複数の論理演算によって散乱光信号と対応するしきい値との比較結果を結合して構築した論理演算式を欠陥の判定条件として設定し、
移動する試料台上の試料に検査光を斜方照射して試料からの散乱光を複数の散乱光検出器で検出し、
前記複数の散乱光検出器の個々の散乱光信号を対応する欠陥判定用のしきい値と比較して夫々しきい値に対する大小関係を判定し、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号のしきい値との比較結果を論理演算して当該散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、
欠陥信号と判定された散乱光信号のみを記憶部に記憶する
ことを特徴とする欠陥検査方法。
A logical operation expression constructed by combining the comparison result of the scattered light signal and the corresponding threshold value by one or a plurality of logical operations selected from a plurality of logical operations prepared as options is set as a defect judgment condition,
The sample on the moving sample stage is obliquely irradiated with inspection light, and the scattered light from the sample is detected by multiple scattered light detectors.
Each scattered light signal of the plurality of scattered light detectors is compared with a corresponding defect determination threshold value to determine a magnitude relationship with respect to each threshold value,
Whether the scattered light signal is a defect signal scattered by a defect by performing a logical operation on a comparison result of the scattered light signal generated by the plurality of scattered light detectors with respect to the scattered light generated simultaneously from the same coordinates on the sample. Determine whether or not
Only a scattered light signal determined as a defect signal is stored in a storage unit.
少なくとも一つの散乱光信号が対応するしきい値を超えること、及び他の少なくとも一つの散乱光信号が対応するしきい値以下であることを同時に満たす論理演算式を、前記欠陥判定部で用いる欠陥の判定条件として設定し、
移動する試料台上の試料に検査光を斜方照射して試料からの散乱光を複数の散乱光検出器で検出し、
前記試料上の同一座標から同時に発生した散乱光についての前記複数の散乱光検出器による散乱光信号が欠陥で散乱した欠陥信号か否かを判定し、
欠陥信号と判定された散乱光信号のみを記憶部に記憶する
ことを特徴とする欠陥検査方法。
A defect that uses a logical operation expression that simultaneously satisfies that at least one scattered light signal exceeds a corresponding threshold value and that at least one other scattered light signal is equal to or less than a corresponding threshold value in the defect determination unit. Set as the judgment condition of
The sample on the moving sample stage is obliquely irradiated with inspection light, and the scattered light from the sample is detected by multiple scattered light detectors.
Determining whether or not the scattered light signal by the plurality of scattered light detectors for the scattered light generated simultaneously from the same coordinates on the sample is a defect signal scattered by a defect,
Only a scattered light signal determined as a defect signal is stored in a storage unit.
JP2010267367A 2010-11-30 2010-11-30 Defect inspection apparatus, determination condition construction apparatus, and defect inspection method Expired - Fee Related JP5628010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010267367A JP5628010B2 (en) 2010-11-30 2010-11-30 Defect inspection apparatus, determination condition construction apparatus, and defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010267367A JP5628010B2 (en) 2010-11-30 2010-11-30 Defect inspection apparatus, determination condition construction apparatus, and defect inspection method

Publications (2)

Publication Number Publication Date
JP2012117898A true JP2012117898A (en) 2012-06-21
JP5628010B2 JP5628010B2 (en) 2014-11-19

Family

ID=46500903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010267367A Expired - Fee Related JP5628010B2 (en) 2010-11-30 2010-11-30 Defect inspection apparatus, determination condition construction apparatus, and defect inspection method

Country Status (1)

Country Link
JP (1) JP5628010B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136697A1 (en) * 2018-12-25 2020-07-02 株式会社日立ハイテク Defect inspection device
WO2021245810A1 (en) * 2020-06-02 2021-12-09 株式会社日立ハイテク Defect inspection device and defect inspection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032600A (en) * 2006-07-31 2008-02-14 Hitachi High-Technologies Corp Visual inspection apparatus
JP2008241570A (en) * 2007-03-28 2008-10-09 Hitachi High-Technologies Corp Defect detection apparatus and defect detection method
JP2010217129A (en) * 2009-03-19 2010-09-30 Hitachi High-Technologies Corp Inspecting method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032600A (en) * 2006-07-31 2008-02-14 Hitachi High-Technologies Corp Visual inspection apparatus
JP2008241570A (en) * 2007-03-28 2008-10-09 Hitachi High-Technologies Corp Defect detection apparatus and defect detection method
JP2010217129A (en) * 2009-03-19 2010-09-30 Hitachi High-Technologies Corp Inspecting method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136697A1 (en) * 2018-12-25 2020-07-02 株式会社日立ハイテク Defect inspection device
WO2021245810A1 (en) * 2020-06-02 2021-12-09 株式会社日立ハイテク Defect inspection device and defect inspection method

Also Published As

Publication number Publication date
JP5628010B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP4699873B2 (en) Defect data processing and review equipment
JP6106743B2 (en) Pattern measuring apparatus and semiconductor measuring system
JP4230838B2 (en) Inspection recipe setting method and defect inspection method in defect inspection apparatus
US8558999B2 (en) Defect inspection apparatus and method utilizing multiple inspection conditions
US20220214287A1 (en) Automatic defect classification
US20040228515A1 (en) Method of inspecting defects
US20020188917A1 (en) Defect inspection method and defect inspection apparatus
JP2004294358A (en) Method and apparatus for inspecting defect
JP4864504B2 (en) Crystal wafer inspection method and apparatus for silicon wafer
TWI780309B (en) Detecting die repeating programmed defects located in backgrounds with non-repeating features
CN102738029B (en) Method for detecting specific defect and system used for detecting specific defect
JP4078280B2 (en) Circuit pattern inspection method and inspection apparatus
JP5707291B2 (en) Charged particle beam system that supports image classification
JP2014077798A (en) Image processing apparatus and computer program
CN104062305A (en) Defect analysis method for integrated circuit
JP2008227028A (en) Data processor and data processing method
JP5628010B2 (en) Defect inspection apparatus, determination condition construction apparatus, and defect inspection method
JP5655045B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
US8358406B2 (en) Defect inspection method and defect inspection system
TWI832931B (en) Semiconductor inspection system and method and related non-transitory computer-readable storage medium
US9535009B2 (en) Inspection system
JP4594833B2 (en) Defect inspection equipment
JP2013210231A (en) Disk surface inspection method and device therefor
JP4374381B2 (en) Inspection support system, data processing apparatus, and data processing method
US9036141B2 (en) Surface inspection apparatus and surface inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141001

R150 Certificate of patent or registration of utility model

Ref document number: 5628010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees