JP2012117794A - Boiler - Google Patents

Boiler Download PDF

Info

Publication number
JP2012117794A
JP2012117794A JP2010270714A JP2010270714A JP2012117794A JP 2012117794 A JP2012117794 A JP 2012117794A JP 2010270714 A JP2010270714 A JP 2010270714A JP 2010270714 A JP2010270714 A JP 2010270714A JP 2012117794 A JP2012117794 A JP 2012117794A
Authority
JP
Japan
Prior art keywords
plate
superheater tube
combustion gas
superheater
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010270714A
Other languages
Japanese (ja)
Other versions
JP5717425B2 (en
Inventor
Junji Imada
潤司 今田
Koichi Matsushita
浩市 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010270714A priority Critical patent/JP5717425B2/en
Publication of JP2012117794A publication Critical patent/JP2012117794A/en
Application granted granted Critical
Publication of JP5717425B2 publication Critical patent/JP5717425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a boiler capable of reducing corrosion thinning of superheater tubes and reducing NOx with a simple constitution.SOLUTION: In the boiler 1 including a burner 2 on an upper section of a furnace 3, and constituted to allow a combustion gas generated by combustion of the burner 2 to flow through a superheater tube group 8 disposed in a gas flow channel connected to a side section of the furnace 3, a plate-shaped deflecting member 10 partially cutting off the gas flow channel for deflecting the flow of the combustion gas, is disposed between the superheater tube group 8 and an outlet 4 of the furnace 3, and an installation position of the plate-shaped deflecting member 10 is determined on the basis of distribution of a temperature and a flow rate of the combustion gas passing through the superheater tube array 8a disposed at the most upstream side in the combustion gas flowing direction, of the superheater tube group 8, and the distribution of a temperature of the steam flowing in the superheater tube array 8a at the most upstream side.

Description

本発明は、火炉に設置されたバーナの燃焼により発生した燃焼ガスが、火炉から過熱器管群を通過して流れるように構成されたボイラに関する。   The present invention relates to a boiler configured such that combustion gas generated by combustion of a burner installed in a furnace flows from the furnace through a superheater tube group.

一般に、ボイラは、火炉にてバーナの燃焼により発生した燃焼ガスが、火炉の下流側に配設された過熱器、蒸発器を順に通過して各管内の蒸気や水等の流体と熱交換することにより熱回収する構成を有している。
例えば図10に示す舶用ボイラ1は、上部にバーナ2が設けられた火炉3と、火炉3の側部に接続されるガス流路に配設された各種伝熱管とを有する。伝熱管は、燃焼ガス流れ方向の最も上流側にフロントバンクチューブ7が配設され、その下流側に過熱器管8が配設され、さらに過熱器管8の下流側に蒸発管9が配設されている。この舶用ボイラ1では、バーナ2から噴出する燃料と空気の混合ガスを火炉3内で燃焼させて燃焼ガスを発生させる。燃焼ガスは火炉3からフロントバンクチューブ7、過熱器8、蒸発管群9の順に略水平方向に通過し、上記した各伝熱管内を通流する蒸気又は水等の流体と熱交換した後にガス出口6より外部に排出される。
In general, in a boiler, combustion gas generated by combustion of a burner in a furnace passes through a superheater and an evaporator disposed downstream of the furnace in order, and exchanges heat with a fluid such as steam or water in each pipe. Therefore, it has a configuration for heat recovery.
For example, the marine boiler 1 shown in FIG. 10 includes a furnace 3 provided with a burner 2 at the top, and various heat transfer tubes disposed in a gas flow path connected to a side portion of the furnace 3. In the heat transfer tube, the front bank tube 7 is disposed on the most upstream side in the combustion gas flow direction, the superheater tube 8 is disposed on the downstream side, and the evaporation tube 9 is disposed on the downstream side of the superheater tube 8. Has been. In this marine boiler 1, a mixed gas of fuel and air ejected from a burner 2 is burned in a furnace 3 to generate combustion gas. The combustion gas passes from the furnace 3 in the order of the front bank tube 7, the superheater 8, and the evaporator tube group 9 in the substantially horizontal direction, and after exchanging heat with a fluid such as steam or water flowing through each of the heat transfer tubes described above, the gas It is discharged from the outlet 6 to the outside.

このようなボイラでは、過熱器管や蒸発管を通過する燃焼ガスの流量分布等により部分的に伝熱管の熱負荷が高くなることがあった。伝熱管の中でも過熱器管は最も高温部位に配置され、燃焼ガスの熱や腐食性ガスに曝されることにより減肉が進行しやすい管である。図11は従来の舶用ボイラの腐食速度の一例を示す図であり、同図に示されるように、燃焼ガスの流量が集中し且つ管内の蒸気温度が高い過熱器管部位の腐食速度が局所的に大きくなる。特に上記した舶用ボイラでは、設置スペースの制約が大きいことから火炉が小さい場合が多く、火炉に近接する過熱器管が高温環境下におかれることから減肉が進行しやすく、また火炉の熱負荷が高くなるためNOxが発生しやすいという問題があった。さらにまた、バーナが過熱器側に傾いて設置されることもあり、この場合火炎が過熱器側に傾き、やはり過熱器管の減肉の進行を促進させてしまう。   In such a boiler, the heat load of the heat transfer tube may partially increase due to the flow rate distribution of the combustion gas passing through the superheater tube or the evaporation tube. Among the heat transfer tubes, the superheater tube is arranged at the highest temperature part, and is a tube in which thinning easily proceeds by being exposed to the heat of combustion gas or corrosive gas. FIG. 11 is a diagram showing an example of the corrosion rate of a conventional marine boiler. As shown in FIG. 11, the corrosion rate of the superheater tube portion where the flow rate of the combustion gas is concentrated and the steam temperature in the tube is high is localized. Become bigger. In particular, in the above-described marine boilers, the furnace is often small due to large installation space restrictions, and since the superheater tube close to the furnace is placed in a high-temperature environment, thinning tends to proceed, and the heat load of the furnace Therefore, there is a problem that NOx is likely to be generated. Furthermore, the burner may be installed inclined to the superheater side. In this case, the flame is inclined to the superheater side, which also promotes the progress of the thinning of the superheater tube.

そこで、過熱器管の腐食を防止するために特許文献1(特開2009−198117号公報)では、過熱器管ごとにその周囲を板状の保護部材で覆うようにした構成を提案している。これは、過熱器管と面接触する保護部材により過熱器管に灰が付着するのを防止し、金属腐食、減肉速度を低減するようにしたものである。
一方、燃焼ガスの流量分布を均一にする技術として、特許文献2(特開2002−243106号公報)には、蒸発管群の出口側に整流板を設けた構成が開示されている。これは、整流板の角度を調整することによって過熱器や蒸発管群を流れる燃焼ガスの流動パターンが均一になるようにしたものである。
Therefore, in order to prevent corrosion of the superheater tube, Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2009-198117) proposes a configuration in which the periphery of each superheater tube is covered with a plate-shaped protective member. . This prevents the ash from adhering to the superheater pipe by the protective member that comes into surface contact with the superheater pipe, and reduces the metal corrosion and the thickness reduction rate.
On the other hand, as a technique for making the flow rate distribution of combustion gas uniform, Patent Document 2 (Japanese Patent Laid-Open No. 2002-243106) discloses a configuration in which a rectifying plate is provided on the outlet side of the evaporation tube group. This is to make the flow pattern of the combustion gas flowing through the superheater and the evaporator tube group uniform by adjusting the angle of the rectifying plate.

特開2009−198117号公報JP 2009-198117 A 特開2002−243106号公報JP 2002-243106 A

しかしながら、特許文献1に開示されるように過熱器管を保護部材で覆う構成は、過熱器管の腐食や減肉を低減することは可能であるが、1本1本の過熱器管ごとに保護部材で覆うとコストが嵩み、さらに過熱器管は密集して配置されていることから保護部材の取り付け作業が困難であった。
また、特許文献2に開示されるように整流板を設置する構成は、熱回収効率の向上には寄与するものの、整流板が伝熱管群の出口側に配置されているため最も上流側の過熱器管の熱負荷が高くなることは避けられず、過熱器管の部分的な減肉は阻止できなかった。
さらにまた、上記した特許文献1及び特許文献2は、腐食減肉の低減又は熱効率の向上のみを目的としたものであり、NOx低減には新たに別の構成を備える必要があった。
However, as disclosed in Patent Document 1, the configuration in which the superheater pipe is covered with the protective member can reduce corrosion and thinning of the superheater pipe, but each superheater pipe is one by one. Covering with a protective member increases the cost, and the superheater tubes are densely arranged, making it difficult to attach the protective member.
Moreover, although the structure which installs a baffle plate as disclosed by patent document 2 contributes to the improvement of heat recovery efficiency, since the baffle plate is arrange | positioned at the exit side of the heat exchanger tube group, it is the most upstream overheating. It was inevitable that the heat load of the tube was high, and partial thinning of the superheater tube could not be prevented.
Further, Patent Document 1 and Patent Document 2 described above are intended only for reducing corrosion thinning or improving thermal efficiency, and it is necessary to newly provide another configuration for reducing NOx.

したがって、本発明はかかる従来技術の問題に鑑み、簡単な構成により過熱器管の腐食減肉を低減可能で且つ低NOx化を図ることができるボイラを提供することを目的とする。   Therefore, in view of the problems of the prior art, an object of the present invention is to provide a boiler capable of reducing corrosion thinning of a superheater tube and reducing NOx with a simple configuration.

上記の課題を解決するために、本発明に係るボイラは、火炉上部にバーナが設置され、前記バーナの燃焼により発生した燃焼ガスが、前記火炉の側部に接続されるガス流路に配置された過熱器管群を通って流れるように構成されたボイラにおいて、前記過熱器管群と前記火炉の出口との間に、前記ガス流路を部分的に遮蔽して燃焼ガス流れを偏向させる板状偏向部材を設置し、前記板状偏向部材の設置部位が、前記過熱器管群のうち燃焼ガス流れ方向最上流側に配置された過熱器管列を通過する燃焼ガス温度及び流量の分布と、前記最上流側の過熱器管列を流れる蒸気温度の分布とに基づいて設定されていることを特徴とする。   In order to solve the above problems, a boiler according to the present invention is provided with a burner at an upper portion of a furnace, and a combustion gas generated by combustion of the burner is disposed in a gas flow path connected to a side portion of the furnace. In a boiler configured to flow through the superheater tube group, a plate for partially shielding the gas flow path and deflecting the combustion gas flow between the superheater tube group and the outlet of the furnace And a distribution of combustion gas temperature and flow rate passing through a superheater tube row arranged on the most upstream side in the combustion gas flow direction in the superheater tube group. And the distribution of the temperature of the steam flowing through the uppermost superheater tube row.

火炉上部に設置されたバーナにより下方に向けて発生した燃焼ガス流れが、水平方向に向きを変えて通流するボイラにおいては、燃焼ガスの流動パターンが不均一になる。そこで本発明では、ガス流路を部分的に遮蔽して燃焼ガス流れを偏向させる板状偏向部材を設置することによって、高温の燃焼ガス流れを過熱器より上流側で分散させることができ、過熱器管に部分的に過大な熱負荷及び燃焼ガスによる流量負荷がかかることを防止でき、過熱器管の腐食減肉を低減することが可能となる。   In a boiler in which a combustion gas flow generated downward by a burner installed in the upper part of the furnace flows in a horizontal direction, the combustion gas flow pattern becomes non-uniform. Therefore, in the present invention, by installing a plate-shaped deflecting member that partially shields the gas flow path and deflects the combustion gas flow, the high-temperature combustion gas flow can be dispersed upstream from the superheater. It is possible to prevent the heat pipe from being partially subjected to excessive heat load and flow load due to combustion gas, and to reduce corrosion thinning of the superheater pipe.

ここで、過熱器管の腐食減肉現象のメカニズムは複雑であるが、次の2つの要因が大きく影響すると考えられる。一つは過熱器管の温度条件であり、過熱器管が高温になる程腐食減肉が進みやすい。もう一つは、燃焼ガスの流量条件が挙げられる。これは、燃焼ガス中に含まれる低融点灰が付着すると管表面の酸化被膜を破壊して金属を腐食させるため、過熱器管と接触する燃焼ガス流量が大きいほど腐食減肉が進みやすい。また、燃焼ガス流速が速くなることで熱伝達率が上がること、加えて燃焼ガス中に含まれる灰が過熱器管を摺擦し、摩耗を進行させる場合もある。   Here, the mechanism of the corrosion thinning phenomenon of the superheater tube is complicated, but it is thought that the following two factors greatly influence. One is the temperature condition of the superheater tube. As the temperature of the superheater tube becomes higher, the corrosion thinning tends to proceed. The other is the flow rate condition of the combustion gas. This is because if the low melting point ash contained in the combustion gas adheres, the oxide film on the surface of the tube is destroyed and the metal is corroded. Therefore, the larger the flow rate of the combustion gas in contact with the superheater tube, the easier the corrosion reduction. In addition, the heat transfer rate increases as the combustion gas flow rate increases, and in addition, the ash contained in the combustion gas may rub against the superheater tube to cause wear.

そこで本発明では、燃焼ガス温度及び蒸気温度から決定される過熱器管温度と、過熱器管を通過する燃焼ガス流量との両方に基づいて板状偏向部材の設置部位を設定する構成としており、これにより最も腐食減肉しやすい過熱器管部位に確実に板状偏向部材を設置することができ、過熱器管の腐食減肉を低減させることが可能となる。
なお、本発明において板状偏向部材の設置部位は、燃焼ガス温度及び流量の分布と蒸気温度の分布とにより腐食が進行しやすい過熱器管部位を推定し、この推定された過熱器管部位に板状偏向部材を設置することが好ましい。ここで前記推定とは具体的に、燃焼ガス温度及び流量の分布と蒸気温度の分布をシミュレーション又は実測により求め、ここから腐食減肉しやすい過熱器管部位を求めてもよいし、過去の運転履歴から腐食しやすい過熱器管部位を特定してもよい。
Therefore, in the present invention, the superheater tube temperature determined from the combustion gas temperature and the steam temperature, and the configuration for setting the installation site of the plate-like deflection member based on both the combustion gas flow rate passing through the superheater tube, As a result, the plate-like deflecting member can be surely installed in the superheater tube portion where corrosion is most likely to reduce the thickness, and the corrosion thickness reduction of the superheater tube can be reduced.
In the present invention, the installation location of the plate-shaped deflection member is estimated as a superheater tube portion where corrosion is likely to proceed based on the distribution of the combustion gas temperature and flow rate and the distribution of the steam temperature. It is preferable to install a plate-shaped deflection member. Here, specifically, the estimation may be carried out by calculating the distribution of the combustion gas temperature, the flow rate, and the steam temperature by simulation or actual measurement, and from this, the superheater tube portion that is likely to undergo corrosion thinning may be obtained. You may identify the superheater pipe | tube part which is easy to corrode from a log | history.

さらにまた、板状偏向部材を火炉出口に部分的に設置することにより、一部の燃焼ガスは板状偏向部材に衝突後、火炉に戻り火炉壁に沿って上昇してバーナ近傍に戻る。これが自己再循環ガスとなりバーナの主燃焼部のガス温度を低減し、低NOx化を図ることが可能となる。したがって本発明の構成のみで、過熱器管の腐食減肉の低減と低NOx化の両方を達成することが可能となる。   Furthermore, by partially installing the plate-like deflecting member at the furnace outlet, a part of the combustion gas collides with the plate-like deflecting member, returns to the furnace, rises along the furnace wall, and returns to the vicinity of the burner. This becomes self-recirculating gas, and it becomes possible to reduce the gas temperature of the main combustion part of the burner and reduce NOx. Therefore, it is possible to achieve both the reduction of corrosion thinning of the superheater tube and the reduction of NOx only by the configuration of the present invention.

また、前記板状偏向部材が、前記過熱器管列の高さ方向下部に設置されていることが好ましい。
火炉上部にバーナが設置され、火炉側部にガス流路が接続され、該ガス流路に過熱器管群8が配設された舶用ボイラ1においては、燃焼ガスが過熱器管の下部に集中してしまう。そこで本構成では過熱器管の高さ方向下部に板状偏向部材を設置することによって、最も燃焼ガス流量が大きい過熱器管部位の腐食減肉を低減できるとともに、板状偏向部材が小さい面積であっても十分な量の自己再循環ガスを生成することができ低NOx化にも大きく寄与することとなる。
Moreover, it is preferable that the said plate-shaped deflection member is installed in the height direction lower part of the said superheater tube row.
In a marine boiler 1 in which a burner is installed at the top of the furnace, a gas flow path is connected to the furnace side, and a superheater tube group 8 is disposed in the gas flow path, the combustion gas is concentrated at the bottom of the superheater pipe. Resulting in. Therefore, in this configuration, by installing a plate-like deflecting member at the lower part of the superheater tube in the height direction, corrosion thinning of the superheater tube part where the combustion gas flow rate is the largest can be reduced, and the plate-like deflecting member can be reduced in a small area. Even in such a case, a sufficient amount of self-recirculation gas can be generated, which greatly contributes to the reduction of NOx.

この構成においてさらに好ましくは、板状偏向部材は、過熱器管の下端から過熱器管全長の1/8以上1/3以下の高さまで設置するとよい。これは、板状偏向部材の高さが過熱器管全長の1/8未満である場合、燃焼ガスの流量が過大な部分を板状偏向部材で遮蔽しきれず腐食減肉が進行するおそれがあり、且つ自己再循環ガス量が十分に確保できないことが考えられる。一方、板状偏向部材の高さが過熱器管全長の1/3を超える場合、ガス流路の燃焼ガスの通流を妨げてボイラの熱効率が低下するおそれがある。したがって、過熱器管の高さを上記範囲内とすることでボイラの熱効率を低下させることなく過熱器管の腐食減肉の低減及び低NOx化が円滑に図れるものである。   More preferably, in this configuration, the plate-shaped deflection member may be installed from the lower end of the superheater tube to a height of 1/8 or more and 1/3 or less of the total length of the superheater tube. This is because, when the height of the plate-shaped deflecting member is less than 1/8 of the total length of the superheater tube, the portion where the flow rate of the combustion gas is excessive cannot be shielded by the plate-shaped deflecting member, and corrosion thinning may proceed. In addition, it is conceivable that a sufficient amount of self-recirculating gas cannot be secured. On the other hand, when the height of the plate-shaped deflecting member exceeds 1/3 of the total length of the superheater tube, the flow of the combustion gas in the gas flow path may be hindered and the thermal efficiency of the boiler may be reduced. Therefore, by setting the height of the superheater tube within the above range, it is possible to smoothly reduce the reduction in corrosion thickness of the superheater tube and reduce NOx without reducing the thermal efficiency of the boiler.

さらに、前記過熱器管群と前記火炉出口との間に、蒸発管が配設されたボイラであって、前記板状偏向部材が金属材料で形成されているとともに該板状偏向部材が前記蒸発管に接触した状態で設置されていることが好ましい。
このように、蒸発管と板状偏向部材とを接触して配置することにより蒸発管内を流れる冷却水の冷熱が板状偏向部材に伝熱してこの板状偏向部材が冷やされ、高温環境下におかれる板状偏向部材の腐食を抑制することができる。
Furthermore, the boiler is provided with an evaporation pipe between the superheater tube group and the furnace outlet, wherein the plate-like deflecting member is formed of a metal material and the plate-like deflecting member is It is preferable to be installed in contact with the tube.
Thus, by arranging the evaporation pipe and the plate-shaped deflection member in contact with each other, the cooling water of the cooling water flowing in the evaporation pipe is transferred to the plate-shaped deflection member, and the plate-shaped deflection member is cooled, so that the high temperature environment is maintained. Corrosion of the plate-like deflection member placed can be suppressed.

また、前記板状偏向部材が耐火材で形成されていることが好ましい。
このように、板状偏向部材を耐火材で形成することによりコストを安価にでき、さらに耐火材は形状の自由度が大きいため板状偏向部材の設置部位にかかわらず容易に設置できる。なお、耐火材は、焼成した成形耐火材であっても不定形耐火材であってもよい。
Moreover, it is preferable that the said plate-shaped deflection member is formed with a refractory material.
As described above, the plate-shaped deflecting member is made of a refractory material, so that the cost can be reduced. Furthermore, since the refractory material has a large degree of freedom in shape, it can be easily installed regardless of the installation site of the plate-shaped deflecting member. The refractory material may be a fired molded refractory material or an amorphous refractory material.

さらにまた、前記板状偏向部材は、隣り合う前記蒸発管同士の間に設置された複数のフィンから構成されることが好ましい。
このように板状偏向部材を蒸発管同士の間に設置されたフィンで構成することにより、板状偏向部材の設置面積を最小限に抑えることができる。
Furthermore, it is preferable that the plate-shaped deflection member is composed of a plurality of fins installed between the adjacent evaporation tubes.
Thus, by comprising a plate-shaped deflection member by the fin installed between evaporation tubes, the installation area of a plate-shaped deflection member can be suppressed to the minimum.

以上記載のように本発明によれば、ガス流路を部分的に遮蔽して燃焼ガス流れを偏向させる板状偏向部材を設置することによって、高温の燃焼ガス流れを過熱器より上流側で分散させることができ、過熱器管に部分的に過大な熱負荷及び燃焼ガスによる流量負荷がかかることを防止でき、過熱器管の腐食減肉を低減することが可能となる。
また、燃焼ガス温度及び蒸気温度から決定される過熱器管温度と、燃焼ガス流量との両方に基づいて板状偏向部材の設置部位を設定する構成とすることにより、最も腐食減肉が進行しやすい過熱器管部位に確実に板状偏向部材を設置することができる。
さらに、板状偏向部材により偏向した燃焼ガスが自己再循環ガスとなりバーナの主燃焼部のガス温度を低減し、低NOx化を図ることが可能となる。
As described above, according to the present invention, a high-temperature combustion gas flow is dispersed upstream of the superheater by installing a plate-shaped deflecting member that partially shields the gas flow path and deflects the combustion gas flow. It is possible to prevent the superheater tube from being partially subjected to excessive heat load and flow load due to combustion gas, and to reduce the corrosion thinning of the superheater tube.
Further, by adopting a configuration in which the installation site of the plate-like deflecting member is set based on both the superheater tube temperature determined from the combustion gas temperature and the steam temperature and the combustion gas flow rate, the most corrosion thinning progresses. A plate-like deflecting member can be reliably installed in an easy superheater tube part.
Further, the combustion gas deflected by the plate-like deflecting member becomes a self-recirculation gas, and the gas temperature in the main combustion portion of the burner can be reduced, thereby reducing NOx.

本発明の実施形態に係る舶用ボイラの縦断面図である。1 is a longitudinal sectional view of a marine boiler according to an embodiment of the present invention. 板状偏向部材を設置したときの燃焼ガスの流動パターンを模式的に示した図である。It is the figure which showed typically the flow pattern of the combustion gas when installing a plate-shaped deflection member. 板状偏向部材の第1構成例を示す斜視図である。It is a perspective view which shows the 1st structural example of a plate-shaped deflection member. 板状偏向部材の取り付け状態を説明する断面図である。It is sectional drawing explaining the attachment state of a plate-shaped deflection member. 板状偏向部材の第2構成例を示す斜視図である。It is a perspective view which shows the 2nd structural example of a plate-shaped deflection member. 図1のA−A線断面(過熱器管列)における燃焼ガス温度分布を模式的に示した図である。It is the figure which showed typically the combustion gas temperature distribution in the AA line cross section (superheater pipe line) of FIG. ボイラ内の燃焼ガス流量分布を模式的に示した図である。It is the figure which showed typically the combustion gas flow volume distribution in a boiler. 板状偏向部材の設置部位の一例を示す斜視図である。It is a perspective view which shows an example of the installation site | part of a plate-shaped deflection member. 板状偏向部材の設置部位の他の一例を示す斜視図である。It is a perspective view which shows another example of the installation site | part of a plate-shaped deflection member. 従来の舶用ボイラの縦断面図である。It is a longitudinal cross-sectional view of the conventional marine boiler. 従来の舶用ボイラの腐食速度を示す図である。It is a figure which shows the corrosion rate of the conventional marine boiler.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本発明の実施形態に係る構成はボイラ全般に適用可能であるが、特に、船舶に搭載される舶用ボイラ、舶用リヒートボイラ若しくはFPSO(Floating Production, Storage and Offloading system:浮体式海洋石油・ガス生産貯蔵積出設備)向けボイラ等の舶用ボイラ構造を有するボイラに好適に用いられ、以下の実施形態では一例として舶用ボイラに適用した場合につき説明している。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
The configuration according to the embodiment of the present invention can be applied to all boilers. In particular, a marine boiler, a marine reheat boiler, or a FPSO (Floating Production, Storage and Offloading system) mounted on a marine vessel is used. It is suitably used for a boiler having a marine boiler structure such as a boiler for a shipping facility). In the following embodiments, a case where the present invention is applied to a marine boiler will be described as an example.

まず最初に、図1を参照して舶用ボイラ1の全体構成を説明する。ここで、図1は本発明の実施形態に係る舶用ボイラの縦断面図である。
舶用ボイラ1は、主に、バーナ2を有する火炉3と、火炉3の側部に接続されるガス流路に配置されたフロントバンクチューブ7、過熱器管群8、蒸発管群9と、過熱器管群8と火炉3との間に設置された板状偏向部材10とを備える。
First, the overall configuration of the marine boiler 1 will be described with reference to FIG. Here, FIG. 1 is a longitudinal sectional view of a marine boiler according to an embodiment of the present invention.
The marine boiler 1 mainly includes a furnace 3 having a burner 2, a front bank tube 7 disposed in a gas flow path connected to a side portion of the furnace 3, a superheater tube group 8, an evaporation tube group 9, and an overheating. A plate-shaped deflection member 10 installed between the tube group 8 and the furnace 3 is provided.

火炉3は、上部に1又は複数のバーナ2が下向きに設置されており、バーナ2から噴出した燃料と空気とを燃焼させて燃焼ガスを発生する燃焼空間を形成する。燃料の種類は特に限定されないが、例えば、重油や燃料ガス等が用いられる。   The furnace 3 is provided with one or more burners 2 facing downwards, and forms a combustion space in which fuel and air ejected from the burners 2 are burned to generate combustion gases. Although the kind of fuel is not specifically limited, For example, heavy oil, fuel gas, etc. are used.

フロントバンクチューブ7は蒸発管であり、火炉3の輻射熱から過熱器管群8を保護したり、過熱器管群8に流入する燃焼ガスの温度を降温させる目的で設置される。このフロントバンクチューブ7は、複数の蒸発管からなる蒸発管列が燃焼ガス流れ方向に対して垂直面を形成するように配置されている。さらに、この蒸発管列が燃焼ガス流れ方向に複数列設けられて蒸発管群を形成していてもよい。蒸発管列の管同士の間には間隙が存在し、これらの間隙を燃焼ガスが通過するようになっている。   The front bank tube 7 is an evaporation tube, and is installed for the purpose of protecting the superheater tube group 8 from the radiant heat of the furnace 3 and lowering the temperature of the combustion gas flowing into the superheater tube group 8. The front bank tube 7 is arranged such that an evaporation tube row composed of a plurality of evaporation tubes forms a vertical plane with respect to the combustion gas flow direction. Further, a plurality of the evaporation tube rows may be provided in the combustion gas flow direction to form an evaporation tube group. There are gaps between the tubes of the evaporation tube row, and the combustion gas passes through these gaps.

過熱器管群8は管内を蒸気が通流しており、この蒸気と燃焼ガスとが熱交換することにより過熱蒸気を生成する。この構成はフロントバンクチューブ7と同様に、複数の過熱器管からなる過熱器管列8aが燃焼ガス流れ方向に対して垂直面を形成するように配設され、この過熱器管列8aがガス流れ方向に複数列設けられて過熱器管群8を形成している。そして、過熱器管同士の間の間隙を燃焼ガスが通過するようになっている。
蒸発管群9は管内を水が通流しており、この水と燃焼ガスとが熱交換することにより蒸気を生成する。この構成は過熱器管群8と略同一であるが、一般に蒸発管群9は過熱器管群8よりも多数の伝熱管から構成される。
In the superheater tube group 8, steam flows through the tubes, and heat is exchanged between the steam and the combustion gas to generate superheated steam. In this configuration, similar to the front bank tube 7, a superheater tube row 8a composed of a plurality of superheater tubes is disposed so as to form a vertical plane with respect to the combustion gas flow direction. A plurality of rows are provided in the flow direction to form the superheater tube group 8. The combustion gas passes through the gap between the superheater tubes.
The evaporation tube group 9 has water flowing through the tube, and steam is generated by heat exchange between the water and the combustion gas. This configuration is substantially the same as that of the superheater tube group 8, but the evaporation tube group 9 is generally composed of a larger number of heat transfer tubes than the superheater tube group 8.

板状偏向部材10は、過熱器管群8と火炉3との間に設置され、ガス流路を部分的に遮蔽して燃焼ガス流れを偏向させる。好適には板状偏向部材10は燃焼ガス流れ方向に対して略垂直に設置される。この板状偏向部材10は耐火材又は金属材料で形成される。板状偏向部材10を耐火材で形成する場合、焼成した成形耐火材であっても不定形耐火材であってもよく、これによりコストを安価にでき、さらに耐火材は形状の自由度が大きいため板状偏向部材の設置部位にかかわらず容易に設置できる。板状偏向部材10を金属材料で形成する場合、板状偏向部材10はフロントバンクチューブ7に接触した状態で設置する。板状偏向部材10とフロントバンクチューブ7とを接触して配置することによりフロントバンクチューブ7内を流れる水の冷熱が板状偏向部材10に伝熱してこの板状偏向部材10が冷やされ、高温環境下におかれる板状偏向部材10の腐食を抑制することができる。なお、金属材料を用いる場合には、フロントバンクチューブ7と同一材料又は近似する線膨張係数を有する材料を用いることが熱膨張の観点からより好ましい。
なお、板状偏向部材10の設置部位については後述する。
The plate-like deflecting member 10 is installed between the superheater tube group 8 and the furnace 3, and partially shields the gas flow path to deflect the combustion gas flow. The plate-shaped deflecting member 10 is preferably installed substantially perpendicular to the combustion gas flow direction. This plate-shaped deflection member 10 is formed of a refractory material or a metal material. When the plate-like deflecting member 10 is formed of a refractory material, it may be a fired molded refractory material or an indeterminate refractory material, thereby reducing the cost, and the refractory material has a high degree of freedom in shape. Therefore, it can be easily installed regardless of the installation site of the plate-like deflection member. When the plate-shaped deflection member 10 is formed of a metal material, the plate-shaped deflection member 10 is installed in contact with the front bank tube 7. By arranging the plate-like deflecting member 10 and the front bank tube 7 in contact with each other, the cold heat of the water flowing in the front bank tube 7 is transferred to the plate-like deflecting member 10 to cool the plate-like deflecting member 10, and the high temperature. Corrosion of the plate-like deflection member 10 placed in the environment can be suppressed. In addition, when using a metal material, it is more preferable from a viewpoint of thermal expansion to use the material which has the same material as the front bank tube 7, or a linear expansion coefficient.
In addition, the installation site | part of the plate-shaped deflection member 10 is mentioned later.

図2は板状偏向部材を設置したときの燃焼ガスの流動パターンを模式的に示した図である。同図に示されるように、火炉3で発生した大部分の燃焼ガスは従来のボイラと同様に火炉からボイラ後流へ流れるが、一部の燃焼ガスは板状偏向部材10により分散したり、板状偏向部材10に衝突して火炉3内に戻る循環流を形成したりする。これにより過熱器管群8に部分的に過大な熱負荷及び燃焼ガスによる流量負荷がかかることを防止でき、過熱器管群8の腐食減肉を低減することが可能となる。また循環流を形成する燃焼ガスが自己再循環ガスとなりバーナ2の主燃焼部のガス温度を低減し、低NOx化を図ることが可能となる。したがって本構成のみで、過熱器管の腐食減肉の低減と低NOx化の両方を達成することが可能となる。   FIG. 2 is a diagram schematically showing a flow pattern of combustion gas when a plate-like deflection member is installed. As shown in the figure, most of the combustion gas generated in the furnace 3 flows from the furnace to the downstream of the boiler in the same manner as the conventional boiler, but some of the combustion gas is dispersed by the plate-like deflecting member 10, A circulating flow that collides with the plate-like deflecting member 10 and returns to the furnace 3 is formed. Thereby, it is possible to prevent the superheater tube group 8 from being partially subjected to excessive heat load and flow load due to combustion gas, and to reduce the corrosion thinning of the superheater tube group 8. In addition, the combustion gas forming the circulation flow becomes self-recirculation gas, and the gas temperature in the main combustion portion of the burner 2 can be reduced, thereby reducing NOx. Therefore, with this configuration alone, it is possible to achieve both reduction in corrosion thinning of the superheater tube and reduction in NOx.

図3及び図5に板状偏向部材10の具体的な構成例を示す。
図3に示す第1構成例において板状偏向部材10は、フロントバンクチューブ7の火炉側前面に設置される。板状偏向部材10を耐火材で形成する場合は、一枚の大判の板状耐火材を成形し、図4に示すようにU字状の固定治具11によりこの板状耐火材をフロントバンクチューブ7に取り付けてもよい。板状偏向部材10を金属材料で形成する場合は、一枚の大判の金属板をフロントバンクチューブ7にスポット溶接等で固定してもよいし、図4に示すようにU字状の固定治具11により金属板をフロントバンクチューブ7に取り付けてもよい。この場合、固定治具11とフロントバンクチューブ7との間に隙間をもたせておくことが好ましく、これにより金属板とフロントバンクチューブ7の線膨張係数に差がある場合にも適用可能となる。
3 and 5 show a specific configuration example of the plate-like deflection member 10.
In the first configuration example shown in FIG. 3, the plate-like deflection member 10 is installed on the front side of the furnace side of the front bank tube 7. When the plate-shaped deflecting member 10 is formed of a refractory material, a single large-sized plate-shaped refractory material is formed, and this plate-shaped refractory material is front-banked by a U-shaped fixing jig 11 as shown in FIG. It may be attached to the tube 7. When the plate-shaped deflection member 10 is formed of a metal material, a single large-sized metal plate may be fixed to the front bank tube 7 by spot welding or the like, or a U-shaped fixing jig as shown in FIG. A metal plate may be attached to the front bank tube 7 with the tool 11. In this case, it is preferable to provide a gap between the fixing jig 11 and the front bank tube 7, and this is applicable even when there is a difference in the linear expansion coefficient between the metal plate and the front bank tube 7.

図5に示す第2構成例において板状偏向部材10は、フロントバンクチューブ7の隣り合う蒸発管同士の間に設置された複数のフィンから構成される。板状偏向部材10を耐火材で形成する場合は、蒸発管の間隙に応じた幅に成形された耐火材を蒸発管の間隙に嵌め込み固定してもよいし、不図示の締結部材により耐火材を蒸発管の間隙に固定してもよい。また、不定形耐火材を蒸発管の間隙に埋設してもよい。板状偏向部材10を金属材料で形成する場合は、蒸発管の間隙に金属板を溶接してもよい。このように板状偏向部材10を蒸発管同士の間に設置されたフィンで構成することにより、板状偏向部材10の設置面積を最小限に抑えることができる。   In the second configuration example shown in FIG. 5, the plate-shaped deflection member 10 is composed of a plurality of fins installed between adjacent evaporation tubes of the front bank tube 7. When the plate-like deflecting member 10 is formed of a refractory material, a refractory material formed in a width corresponding to the gap between the evaporation pipes may be fitted and fixed in the gap between the evaporation pipes, or a refractory material may be secured by a fastening member (not shown) May be fixed in the gap between the evaporation tubes. In addition, an amorphous refractory material may be embedded in the gap between the evaporation tubes. When the plate-shaped deflection member 10 is formed of a metal material, a metal plate may be welded to the gap between the evaporation tubes. Thus, by comprising the plate-shaped deflection member 10 with the fins installed between the evaporation tubes, the installation area of the plate-shaped deflection member 10 can be minimized.

次に、板状偏向部材10の設置部位について具体的に説明する。
板状偏向部材10の設置部位は、過熱器管群8のうち燃焼ガス流れ方向最上流側に配置された過熱器管列8aを通過する燃焼ガス温度及び流量の分布と、最上流側の過熱器管列8aを流れる蒸気温度の分布とに基づいて腐食が進行しやすい過熱器管部位を推定し、この推定された過熱器管部位に板状偏向部材10を設置する。ここで前記した推定とは具体的に、燃焼ガス温度及び流量の分布と蒸気温度の分布をシミュレーション又は実測により求め、ここから腐食減肉しやすい過熱器管部位を求めてもよいし、過去の運転履歴から腐食しやすい過熱器管部位を特定してもよい。
Next, the installation site | part of the plate-shaped deflection member 10 is demonstrated concretely.
The plate-shaped deflecting member 10 is installed in the superheater tube group 8 with the distribution of the combustion gas temperature and flow rate passing through the superheater tube row 8a disposed on the most upstream side in the combustion gas flow direction, and the most upstream side overheating. Based on the distribution of the temperature of the steam flowing through the tube array 8a, the superheater tube portion where corrosion is likely to proceed is estimated, and the plate-like deflection member 10 is installed in the estimated superheater tube portion. Specifically, the above-described estimation may be performed by calculating the distribution of the combustion gas temperature, the flow rate and the distribution of the steam temperature by simulation or actual measurement, from which a superheater tube portion that is likely to undergo corrosion thinning may be obtained. You may identify the superheater pipe | tube part which is easy to corrode from an operation history.

例えば、燃焼ガス温度及び流量の分布と蒸気温度の分布から腐食しやすい過熱器管部位を推定する場合、図6に示すように過熱器管列8aを通過する燃焼ガスの温度分布と、図7に示すように燃焼ガスの流量分布と、過熱器管列8aの蒸気温度分布(不図示)とに基づいて腐食しやすい過熱器管部位を求め、この部位に板状偏向部材10を設置する。ここで、図6は図1のA−A線断面(過熱器管列8a)における燃焼ガス温度分布を模式的に示した図で、図7はボイラ内の燃焼ガス流量分布を模式的に示した図である。なお、図7はボイラ全体の燃焼ガス流量分布を示しているが、板状偏向部材10の設置部位の設定には図中A−A線断面(過熱器管列8a)における燃焼ガス流量分布が用いられる。   For example, when estimating a superheater tube portion that is susceptible to corrosion from the distribution of combustion gas temperature and flow rate and the distribution of steam temperature, the temperature distribution of the combustion gas passing through the superheater tube row 8a as shown in FIG. As shown in FIG. 4, a superheater tube portion that is likely to corrode is obtained based on the flow rate distribution of the combustion gas and the steam temperature distribution (not shown) of the superheater tube row 8a, and the plate-like deflection member 10 is installed in this portion. Here, FIG. 6 is a diagram schematically showing the combustion gas temperature distribution in the section AA (superheater tube row 8a) in FIG. 1, and FIG. 7 is a diagram schematically showing the combustion gas flow rate distribution in the boiler. It is a figure. FIG. 7 shows the combustion gas flow distribution of the entire boiler, but the setting of the installation site of the plate-like deflecting member 10 requires the combustion gas flow distribution in the section AA (superheater tube row 8a) in the figure. Used.

一方、過去の運転履歴から腐食しやすい過熱器管部位を推定する場合、図11に示すように、板状偏向部材10が取り付けられていないボイラにおいて腐食の進行速度を測定し、進行速度が大きい部位を腐食しやすい過熱器管部位として特定し、ここに板状偏向部材10を設置する。ここで、図11は板状偏向部材を備えていない舶用ボイラの腐食速度を示す図である。図中、ボイラ幅方向とは、図1に示すボイラにおいて紙面手前から奥へ向かう方向で、ガス流路の幅方向に一致する。   On the other hand, when estimating the superheater tube part that is likely to corrode from the past operation history, as shown in FIG. 11, the progress speed of the corrosion is measured in the boiler to which the plate-like deflection member 10 is not attached, and the progress speed is large. The part is specified as a superheater tube part that is easily corroded, and the plate-like deflecting member 10 is installed here. Here, FIG. 11 is a figure which shows the corrosion rate of the marine boiler which is not provided with the plate-shaped deflection member. In the figure, the boiler width direction is the direction from the front of the paper to the back in the boiler shown in FIG. 1 and coincides with the width direction of the gas flow path.

過熱器管の腐食減肉速度は、過熱器管の温度条件と燃焼ガスの流量条件とが大きく影響するため、上記したように燃焼ガス温度及び蒸気温度から決定される過熱器管温度と、過熱器管列8aを通過する燃焼ガス流量との両方に基づいて板状偏向部材10の設置部位を設定することにより、最も腐食減肉しやすい過熱器管部位に確実に板状偏向部材10を設置することができ、過熱器管の腐食減肉を低減させることが可能となる。   The corrosion thinning rate of the superheater tube is greatly influenced by the temperature condition of the superheater tube and the flow rate condition of the combustion gas. Therefore, as described above, the superheater tube temperature determined from the combustion gas temperature and the steam temperature, By setting the installation site of the plate-like deflection member 10 based on both the flow rate of the combustion gas passing through the instrument tube row 8a, the plate-like deflection member 10 is reliably installed at the superheater tube site where corrosion is most likely to occur. It is possible to reduce the corrosion thinning of the superheater tube.

図8は過熱器管群に対する板状偏向部材の設置部位の一例を説明する図である。
過熱器管群8は、火炉側に位置する直管状の過熱器管と、その下流側に位置する直管状の過熱器管とが上方の屈曲管で接続され、それぞれがヘッダ81、82に接続された構成となっている。ヘッダ81、82の管内は所定間隔で仕切られ、一つの仕切られたヘッダに複数本の過熱器管が接続されて、図中矢印で示す蒸気流れ方向に蒸気が流れるようになっている。
FIG. 8 is a diagram for explaining an example of an installation site of the plate-like deflection member with respect to the superheater tube group.
In the superheater tube group 8, a straight tubular superheater tube located on the furnace side and a straight tubular superheater tube located on the downstream side of the superheater tube group 8 are connected by an upper bent tube, and are connected to headers 81 and 82, respectively. It has been configured. The pipes of the headers 81 and 82 are partitioned at a predetermined interval, and a plurality of superheater pipes are connected to one partitioned header so that steam flows in the steam flow direction indicated by arrows in the figure.

板状偏向部材10の設置部位は、図8に示すように過熱器管列8aの高さ方向下部に設置されていることが好ましい。図1に示したように火炉上部にバーナ2が設置され、火炉側部にガス流路が接続され、該ガス流路に過熱器管群8が配設された舶用ボイラ1においては、燃焼ガスが過熱器管列8aの下部に集中してしまう。そこで過熱器管列8aの高さ方向下部に板状偏向部材10を設置することによって、最も燃焼ガス流量が大きい過熱器管部位の腐食減肉を低減できるとともに、板状偏向部材10が小さい面積であっても十分な量の自己再循環ガスを生成することができ低NOx化にも大きく寄与することとなる。なお、図8では、板状偏向部材10は過熱器管列8aの全幅に亘って設置している。   As shown in FIG. 8, the installation site of the plate-like deflection member 10 is preferably installed at the lower part in the height direction of the superheater tube row 8a. As shown in FIG. 1, in a marine boiler 1 in which a burner 2 is installed at an upper part of a furnace, a gas flow path is connected to a furnace side, and a superheater tube group 8 is disposed in the gas flow path, Will concentrate in the lower part of the superheater tube row 8a. Therefore, by installing the plate-like deflecting member 10 at the lower portion in the height direction of the superheater tube row 8a, the corrosion thinning of the superheater tube portion where the combustion gas flow rate is the highest can be reduced, and the plate-like deflecting member 10 has a small area. Even so, a sufficient amount of self-recirculation gas can be generated, which greatly contributes to the reduction of NOx. In FIG. 8, the plate-shaped deflection member 10 is installed over the entire width of the superheater tube row 8a.

この構成においてさらに好ましくは、板状偏向部材10の高さHは、過熱器管列8aの下端から過熱器管全長Hの1/8以上1/3以下の高さとするとよい。これは、板状偏向部材10の高さHが過熱器管全長Hの1/8未満である場合、燃焼ガスの流量が過大な部分を板状偏向部材10で遮蔽しきれず腐食減肉が進行するおそれがあり、且つ自己再循環ガス量が十分に確保できないことが考えられる。一方、板状偏向部材10の高さHが過熱器管全長の1/3を超える場合、ガス流路の燃焼ガスの通流を妨げて舶用ボイラ1の熱効率が低下するおそれがある。したがって、過熱器管の高さHを上記範囲内とすることで舶用ボイラ1の熱効率を低下させることなく過熱器管の腐食減肉の低減及び低NOx化が円滑に図れるものである。 More preferably in this configuration, the height H of the plate-like deflecting member 10, may be from the lower end of the superheater tube array 8a 1/8 or 1/3 of the height of the superheater tube full length H 0. This is because when the height H of the plate-shaped deflecting member 10 is less than 1/8 of the superheater tube total length H 0 , the portion where the flow rate of the combustion gas is excessive cannot be completely shielded by the plate-shaped deflecting member 10 and corrosion thinning occurs. There is a possibility that it may proceed, and it is considered that a sufficient amount of self-recirculating gas cannot be secured. On the other hand, when the height H of the plate-shaped deflecting member 10 exceeds 1/3 of the total length of the superheater tube, the flow of the combustion gas in the gas flow path may be hindered and the thermal efficiency of the marine boiler 1 may be reduced. Therefore, by setting the height H of the superheater tube within the above range, the reduction in corrosion thickness of the superheater tube and the reduction of NOx can be smoothly achieved without lowering the thermal efficiency of the marine boiler 1.

図9は過熱器管群に対する板状偏向部材の設置部位の他の一例を説明する図である。
同図において、板状偏向部材19の高さ方向の構成は図8と同一である。一方、板状偏向部材10の幅Wは過熱器管列8aの幅Wより小さくなっている。この板状偏向部材10の幅Wと、幅方向における板状偏向部材10の設置部位は、過熱器管列8aを通過する燃焼ガス温度及び流量の分布と、過熱器管列8aを流れる蒸気温度の分布とに基づいて設定される。
FIG. 9 is a view for explaining another example of the installation site of the plate-like deflection member for the superheater tube group.
In the figure, the configuration in the height direction of the plate-like deflection member 19 is the same as that in FIG. On the other hand, the width W of the plate-like deflecting member 10 is smaller than the width W 0 of the superheater tube array 8a. The width W of the plate-like deflection member 10 and the installation site of the plate-like deflection member 10 in the width direction are the distribution of the combustion gas temperature and flow rate passing through the superheater tube row 8a, and the temperature of the steam flowing through the superheater tube row 8a. Is set based on the distribution of.

上記説明したように本実施形態では、ガス流路を部分的に遮蔽して燃焼ガス流れを偏向させる板状偏向部材10を設置することによって、高温の燃焼ガス流れを過熱器管群8より上流側で分散させることができ、過熱器管に部分的に過大な熱負荷及び燃焼ガスによる流量負荷がかかることを防止でき、過熱器管の腐食減肉を低減することが可能となる。
また、燃焼ガス温度及び蒸気温度から決定される過熱器管温度と、過熱器管列8aを通過する燃焼ガス流量との両方に基づいて板状偏向部材10の設置部位を設定する構成とすることにより、最も腐食減肉しやすい過熱器管部位に確実に板状偏向部材10を設置することができる。
さらに、板状偏向部材10により偏向した燃焼ガスが自己再循環ガスとなりバーナの主燃焼部のガス温度を低減し、低NOx化を図ることが可能となる。
As described above, in this embodiment, by installing the plate-like deflecting member 10 that partially shields the gas flow path and deflects the combustion gas flow, the high-temperature combustion gas flow is upstream from the superheater tube group 8. Therefore, it is possible to prevent the superheater tube from being partially subjected to excessive heat load and flow rate load due to combustion gas, and to reduce corrosion thinning of the superheater tube.
Moreover, it is set as the structure which sets the installation site | part of the plate-shaped deflection member 10 based on both the superheater tube temperature determined from combustion gas temperature and steam temperature, and the combustion gas flow rate which passes the superheater tube row 8a. Thus, the plate-like deflecting member 10 can be reliably installed at the superheater tube portion where corrosion is most likely to occur.
Further, the combustion gas deflected by the plate-like deflecting member 10 becomes a self-recirculation gas, and the gas temperature in the main combustion portion of the burner can be reduced, thereby reducing NOx.

1 舶用ボイラ
2 バーナ
3 火炉
7 フロントバンクチューブ
8 過熱器管群
8a 過熱器管列
9 蒸発管群
10 板状偏向部材
11 固定治具
DESCRIPTION OF SYMBOLS 1 Marine boiler 2 Burner 3 Furnace 7 Front bank tube 8 Superheater tube group 8a Superheater tube row 9 Evaporation tube group 10 Plate-shaped deflection member 11 Fixing jig

Claims (5)

火炉上部にバーナが設置され、前記バーナの燃焼により発生した燃焼ガスが、前記火炉の側部に接続されるガス流路に配設された過熱器管群を通って流れるように構成されたボイラにおいて、
前記過熱器管群と前記火炉の出口との間に、前記ガス流路を部分的に遮蔽して燃焼ガス流れを偏向させる板状偏向部材を設置し、前記板状偏向部材の設置部位が、前記過熱器管群のうち燃焼ガス流れ方向最上流側に配置された過熱器管列を通過する燃焼ガス温度及び流量の分布と、前記最上流側の過熱器管列を流れる蒸気温度の分布とに基づいて設定されていることを特徴とするボイラ。
A boiler in which a burner is installed at the top of the furnace, and combustion gas generated by the combustion of the burner flows through a superheater tube group disposed in a gas flow path connected to a side of the furnace. In
Between the superheater tube group and the outlet of the furnace, a plate-like deflection member that partially shields the gas flow path and deflects the flow of combustion gas is installed, and the installation site of the plate-like deflection member is: Distribution of combustion gas temperature and flow rate passing through a superheater tube row arranged on the most upstream side in the combustion gas flow direction in the superheater tube group, and distribution of steam temperature flowing through the superheater tube row on the most upstream side Boiler characterized by being set based on.
前記板状偏向部材が、前記過熱器管列の高さ方向下部に設置されていることを特徴とする請求項1に記載のボイラ。   The boiler according to claim 1, wherein the plate-like deflection member is installed at a lower portion in the height direction of the superheater tube row. 前記過熱器管群と前記火炉出口との間に、蒸発管が配設されたボイラであって、
前記板状偏向部材が金属材料で形成されているとともに該板状偏向部材が前記蒸発管に接触した状態で設置されていることを特徴とする請求項1又は2に記載のボイラ。
A boiler in which an evaporation pipe is disposed between the superheater tube group and the furnace outlet,
3. The boiler according to claim 1, wherein the plate-shaped deflection member is formed of a metal material, and is installed in a state where the plate-shaped deflection member is in contact with the evaporation pipe.
前記板状偏向部材が耐火材で形成されていることを特徴とする請求項1乃至3のいずれか一項に記載のボイラ。   The boiler according to any one of claims 1 to 3, wherein the plate-shaped deflection member is formed of a refractory material. 前記板状偏向部材は、隣り合う前記蒸発管同士の間に設置された複数のフィンから構成されることを特徴とする請求項3又は4に記載のボイラ。   5. The boiler according to claim 3, wherein the plate-shaped deflection member includes a plurality of fins installed between the adjacent evaporation tubes. 6.
JP2010270714A 2010-12-03 2010-12-03 boiler Active JP5717425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270714A JP5717425B2 (en) 2010-12-03 2010-12-03 boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270714A JP5717425B2 (en) 2010-12-03 2010-12-03 boiler

Publications (2)

Publication Number Publication Date
JP2012117794A true JP2012117794A (en) 2012-06-21
JP5717425B2 JP5717425B2 (en) 2015-05-13

Family

ID=46500832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270714A Active JP5717425B2 (en) 2010-12-03 2010-12-03 boiler

Country Status (1)

Country Link
JP (1) JP5717425B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360034B1 (en) 2012-09-24 2014-02-12 한국전력공사 Device for flow uniformity of boiler
CN105318306A (en) * 2014-08-04 2016-02-10 哈尔滨新东环保设备安装工程有限公司 Two-drum settling chamber spraying denitration corner-tube boiler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1777674A (en) * 1929-09-05 1930-10-07 Kingsley L Martin Water-tube boiler
JPS5032302A (en) * 1973-07-23 1975-03-29
JPS5415101U (en) * 1977-07-04 1979-01-31
JPS6076708U (en) * 1983-10-25 1985-05-29 三菱重工業株式会社 fluid heating device
JPS60216103A (en) * 1984-04-11 1985-10-29 バブコツク日立株式会社 Guide structure of combustion gas
JPH0425911U (en) * 1990-06-26 1992-03-02

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1777674A (en) * 1929-09-05 1930-10-07 Kingsley L Martin Water-tube boiler
JPS5032302A (en) * 1973-07-23 1975-03-29
JPS5415101U (en) * 1977-07-04 1979-01-31
JPS6076708U (en) * 1983-10-25 1985-05-29 三菱重工業株式会社 fluid heating device
JPS60216103A (en) * 1984-04-11 1985-10-29 バブコツク日立株式会社 Guide structure of combustion gas
JPH0425911U (en) * 1990-06-26 1992-03-02

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360034B1 (en) 2012-09-24 2014-02-12 한국전력공사 Device for flow uniformity of boiler
CN105318306A (en) * 2014-08-04 2016-02-10 哈尔滨新东环保设备安装工程有限公司 Two-drum settling chamber spraying denitration corner-tube boiler
CN105318306B (en) * 2014-08-04 2017-10-03 哈尔滨四方锅炉有限公司 A kind of pair of drum expansion chamber sprays denitration corner tube boiler

Also Published As

Publication number Publication date
JP5717425B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
US11287158B2 (en) Heat exchanger and hot water apparatus
JP4773374B2 (en) Heat exchanger
JP6847649B2 (en) Boiler, how to assemble the boiler and how to install the rectifying member
JP5717425B2 (en) boiler
KR20140051760A (en) Environmental-friendly heat exchanger
WO2018139669A1 (en) Gas-to-gas heat exchanger
KR20100054383A (en) Condensing gas for boiler latent heat heat exchanger
JP6971867B2 (en) Sealing device and sealing method for exhaust heat recovery boiler and exhaust heat recovery boiler equipped with this
US6500221B2 (en) Cooled tubes arranged to form impact type particle separators
JP5148426B2 (en) Reheat boiler
JP5374344B2 (en) Marine boiler structure
WO2017033957A1 (en) Heat transfer tube protector, heat exchanger comprising same, and boiler comprising same
TW448288B (en) Heat exchanger
JP7130569B2 (en) HEAT EXCHANGER, BOILER, AND METHOD FOR ADJUSTING HEAT EXCHANGER
JP7097746B2 (en) Heat source machine
JP2008224184A (en) Suspension type heat transfer tube group and boiler device having this transfer tube group
JP5134393B2 (en) Marine boiler
JP2005055132A (en) Coal burning boiler
JP7316388B2 (en) Boiler heat transfer panel structure
AU2018298911B2 (en) A fluidized bed reaction chamber comprising a tubular waterwall structure
JP2019178843A (en) Vibration control device of heat transfer tube, heat exchanger and boiler
US10955201B2 (en) Heat exchanger, boiler, and setting method for heat exchanger
JP2023124137A (en) Heat exchanger and hot water device having the same
US20150323222A1 (en) Heat Exchanger Device and System Technologies
KR20080100007A (en) Heat exchanger having rolled pins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140815

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150317

R150 Certificate of patent or registration of utility model

Ref document number: 5717425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150