JP2012116997A - Method for volume-decrease treatment of hard-to-decompose waste, and apparatus for volume-decrease treatment - Google Patents

Method for volume-decrease treatment of hard-to-decompose waste, and apparatus for volume-decrease treatment Download PDF

Info

Publication number
JP2012116997A
JP2012116997A JP2010269887A JP2010269887A JP2012116997A JP 2012116997 A JP2012116997 A JP 2012116997A JP 2010269887 A JP2010269887 A JP 2010269887A JP 2010269887 A JP2010269887 A JP 2010269887A JP 2012116997 A JP2012116997 A JP 2012116997A
Authority
JP
Japan
Prior art keywords
exchange resin
superheated steam
ion exchange
ion
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010269887A
Other languages
Japanese (ja)
Other versions
JP5672446B2 (en
Inventor
Katsutoshi Heta
勝敏 部田
Takahiro Oike
崇博 大池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2010269887A priority Critical patent/JP5672446B2/en
Publication of JP2012116997A publication Critical patent/JP2012116997A/en
Application granted granted Critical
Publication of JP5672446B2 publication Critical patent/JP5672446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To provide, in a volume-decrease treatment making use of a ball-type dry distillation furnace, such a volume-decrease treatment apparatus for an ion-exchange resin as can improve remarkably the volume-decrease ratio; and to provide a method for volume-decrease treatment.SOLUTION: This volume-decrease treatment method for an ion-exchange resin, comprises a superheated steam contact process of supplying an ion-exchange resin and a superheated steam into a metal-made closed reaction vessel and of contacting the ion-exchange resin with a superheated steam of 400°C or higher and an additional thermal treatment process of treating the ion-exchange resin, which has passed through the superheated steam contact process, under an ambient temperature of 460°C or higher, wherein the superheated steam contact process conducts the thermal decomposition of a cationic ion exchange resin having an exchange group of -SOin the presence of superheated steam, thus separating and removing the exchange group of -SOas sulfurous gas or sulfuric acid gas, and the additional thermal treatment process decomposes a substrate which has separated the exchange group of -SO.

Description

本発明は、難分解性廃棄物、特にイオン交換樹脂の減容処理方法および減容処理装置に関するものである、   The present invention relates to a volume-reducing treatment method and a volume-reducing treatment apparatus for a hardly decomposable waste, particularly an ion exchange resin.

原子力発電所では、機器の腐食防止のため、系統水の浄化や系統に注入する水の浄化に大量のイオン交換樹脂が使用されている。これらのイオン交換樹脂は性能が経年劣化するため、所定期間使用した後、廃棄物となる。従来、原子力発電所で発生する使用済のイオン交換樹脂は、放射能レベルにより分別され、それぞれ貯蔵タンクに水とともに貯留されていた。   In nuclear power plants, a large amount of ion exchange resin is used to purify system water and water injected into the system to prevent corrosion of equipment. Since these ion-exchange resins deteriorate in performance over time, they become waste after being used for a predetermined period. Conventionally, used ion exchange resins generated at nuclear power plants are sorted by radioactivity level and stored together with water in storage tanks.

イオン交換樹脂は自然状態では安定で難分解性であるという特性を有するが、有機物質であるため長期的には変質する可能性もある。したがって、使用済のイオン交換樹脂を廃棄物として処分する際には、無機化し安定化することが必要となる。   The ion exchange resin has a characteristic that it is stable and hardly decomposable in a natural state, but since it is an organic substance, it may be deteriorated in the long term. Therefore, when disposing of the used ion exchange resin as waste, it is necessary to make it mineralized and stabilized.

これらの、原子力発電所で発生する使用済のイオン交換樹脂の処理方法として、焼却処理、熱分解処理、酸化分解処理など様々な無機化減容技術が開発されており、現在、一部の原子力発電所では、放射能レベルが低いものについて、800℃以上の高温焼却処理が行われている。一方、放射能レベルが比較的高いものについては、高温焼却処理時に使用される処理炉を構成する耐火物の処理問題や、高温焼却に伴うCsの飛散の問題などがあり、高温焼却処理の採用は困難であり、そのまま水とともに貯蔵タンクに貯留されているのが現状である。   Various mineralization volume reduction technologies such as incineration treatment, thermal decomposition treatment, and oxidative decomposition treatment have been developed as a treatment method for these used ion exchange resins generated at nuclear power plants. At power plants, high-temperature incineration processing at 800 ° C. or higher is performed for those with low radioactivity levels. On the other hand, those with relatively high levels of radioactivity have problems with the treatment of refractories that constitute the processing furnace used during high-temperature incineration, and the problem of Cs scattering associated with high-temperature incineration. Is difficult and is currently stored in a storage tank together with water.

これらの問題に対し、本願出願人は、ボール型乾留炉を使用して、耐火物を使用することなく、金属製の閉鎖系反応容器内で使用済イオン交換樹脂を無機化減容処理する技術を開示している(特許文献1)。   In response to these problems, the applicant of the present application uses a ball-type carbonization furnace to make a used ion-exchange resin mineralized in a metal closed system reaction vessel without using a refractory. (Patent Document 1).

しかし、原子力発電所で発生する使用済のイオン交換樹脂には、陽イオン交換樹脂と陰イオン交換樹脂とがあり、従来のボール型乾留炉を使用して減容処理を行った場合、陰イオン交換樹脂は良好な減容率(1/20程度)で処理されるが、陽イオン交換樹脂の減容率は1/2程度に留まり、通常これらが1:1の割合で混合された廃樹脂の減容率は1/4程度に留まり、近年の減容率向上の需要に十分には対応できていない問題があった。   However, used ion exchange resins generated at nuclear power plants include cation exchange resins and anion exchange resins. When volume reduction treatment is performed using a conventional ball-type carbonization furnace, anion ions are used. The exchange resin is treated with a good volume reduction rate (about 1/20), but the volume reduction rate of the cation exchange resin is only about 1/2, and it is usually a waste resin in which these are mixed at a ratio of 1: 1. However, the volume reduction rate was only about 1/4, and there was a problem that the demand for improvement in volume reduction rate in recent years could not be sufficiently met.

特開昭63−171400号公報JP 63-171400 A

本発明の目的は前記を解決し、ボール型乾留炉を利用した減容処理に際し、減容率を顕著に改善することができるイオン交換樹脂の減容処理方法および減容処理装置の技術を提供することである。   SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems and provide a technique for volume reduction treatment method and volume reduction treatment apparatus of ion exchange resin capable of remarkably improving the volume reduction rate in volume reduction treatment using a ball type carbonization furnace. It is to be.

上記課題を解決するためになされた本発明のイオン交換樹脂の減容処理方法は、金属製の密閉式反応容器にイオン交換樹脂及び過熱水蒸気を供給して、イオン交換樹脂を400℃以上の過熱水蒸気と接触させる過熱水蒸気接触工程と、該過熱水蒸気接触工程を経たイオン交換樹脂を、更に、460℃以上の雰囲気温度下で処理する追加熱処理工程からなるイオン交換樹脂の減容処理方法であって、該過熱水蒸気接触工程において、過熱水蒸気の存在下で、交換基−SOを有する陽イオン交換樹の熱分解を行って、交換基−SOを亜硫酸ガス或いは硫酸ガスとして分離除去し、追加熱処理工程において、交換基−SOを分離した基体を分解することを特徴とするものである。 In order to solve the above problems, the ion exchange resin volume reduction treatment method of the present invention is to supply an ion exchange resin and superheated steam to a metal sealed reaction vessel so that the ion exchange resin is heated to 400 ° C. or higher. A method for reducing the volume of an ion exchange resin comprising a superheated steam contact step for contacting with water vapor, and an additional heat treatment step for treating the ion exchange resin that has undergone the superheated steam contact step at an atmospheric temperature of 460 ° C. or higher. in superheated steam contacting step in the presence of superheated steam, and subjected to thermal decomposition of the cation exchange resin having an exchange group -SO 3, separating and removing exchange group -SO 3 as sulfurous acid gas or sulfuric acid gas, additional In the heat treatment step, the substrate from which the exchange group —SO 3 is separated is decomposed.

請求項2記載の発明は、請求項1記載のイオン交換樹脂の減容処理方法において、イオン交換樹脂が原子力発電所で発生する使用済のイオン交換樹脂であることを特徴とするものである。   The invention described in claim 2 is the ion exchange resin volume reduction treatment method according to claim 1, wherein the ion exchange resin is a used ion exchange resin generated at a nuclear power plant.

請求項3記載の発明は、請求項1または2記載のイオン交換樹脂の減容処理方法に用いる減容処理装置であって、金属製の密閉式反応容器と、該容器の下部に配置された粉体貯留部からなり、該密閉式反応容器は、該容器内温度を反応時に400〜700℃にまで上昇する外部加熱手段と、該容器内に充填されたセラミック製または金属製のボールと、該ボールを機械的に撹拌できる撹拌翼と、該容器の上部から該ボール上へ、室温のイオン交換樹脂を供給するイオン交換樹脂供給ノズルと、該容器の上部から該ボール上へ400〜700℃の過熱水蒸気を供給する過熱水蒸気供給ノズルを備え、該粉体貯留部は、貯留部内温度を460〜700℃に維持する外部電気式ヒータを備えることを特徴とするものである。   Invention of Claim 3 is a volume reduction processing apparatus used for the volume reduction processing method of the ion exchange resin of Claim 1 or 2, Comprising: It arrange | positioned in the metal sealed reaction container and the lower part of this container The sealed reaction vessel comprises a powder reservoir, and the external reaction means for raising the temperature in the vessel to 400 to 700 ° C. during the reaction, a ceramic or metal ball filled in the vessel, A stirring blade capable of mechanically stirring the ball, an ion exchange resin supply nozzle for supplying an ion exchange resin at room temperature from the upper part of the container to the ball, and 400 to 700 ° C. from the upper part of the container to the ball. The superheated steam supply nozzle for supplying superheated steam is provided, and the powder storage section includes an external electric heater that maintains the temperature in the storage section at 460 to 700 ° C.

請求項4記載の発明は、請求項3記載のイオン交換樹脂の減容処理装置において、粉体貯留部の下部に過熱水蒸気を供給する過熱水蒸気供給ノズルを備えることを特徴とするものである。   According to a fourth aspect of the present invention, there is provided an ion exchange resin volume reduction treatment apparatus according to the third aspect, further comprising a superheated steam supply nozzle for supplying superheated steam to a lower portion of the powder reservoir.

請求項5記載の発明は、請求項3または4に記載のイオン交換樹脂の減容処理装置において、該容器は、内径300〜1000mmのドラム形状を有し、該容器内に充填されたボールは10〜25mmの粒径を有することを特徴とするものである。   The invention according to claim 5 is the ion exchange resin volume reduction apparatus according to claim 3 or 4, wherein the container has a drum shape with an inner diameter of 300 to 1000 mm, and the balls filled in the container are It has a particle size of 10 to 25 mm.

請求項6記載の発明は、請求項3〜5の何れかに記載のイオン交換樹脂の減容処理装置において、該ボールを機械的に撹拌できる撹拌翼の回転数が0.1〜2rpmであることを特徴とするものである。   According to a sixth aspect of the present invention, in the ion exchange resin volume reduction processing apparatus according to any one of the third to fifth aspects, the rotation speed of the stirring blade capable of mechanically stirring the ball is 0.1 to 2 rpm. It is characterized by this.

請求項7記載の発明は、請求項3〜6の何れかに記載のイオン交換樹脂の減容処理装置において、過熱水蒸気供給ノズルを複数備え、該過熱水蒸気供給ノズルは拡張ノズルであることを特徴とするものである。   A seventh aspect of the present invention is the ion exchange resin volume reduction processing apparatus according to any one of the third to sixth aspects, comprising a plurality of superheated steam supply nozzles, wherein the superheated steam supply nozzles are expansion nozzles. It is what.

請求項8記載の発明は、請求項3〜7の何れかに記載のイオン交換樹脂の減容処理装置において、過熱水蒸気供給ノズルは、過熱水蒸気を流速0.1m/s以上で供給する流速制御手段を備えることを特徴とするものである。   The invention according to claim 8 is the ion exchange resin volume reduction treatment apparatus according to any one of claims 3 to 7, wherein the superheated steam supply nozzle controls the flow rate of superheated steam at a flow rate of 0.1 m / s or more. Means are provided.

請求項9記載の発明は請求項3〜8の何れかに記載のイオン交換樹脂の減容処理装置において、反応容器内の圧力を−0.5〜−10kPaに維持する圧力制御手段を備えることを特徴とするものである。   A ninth aspect of the present invention is the ion exchange resin volume reduction processing apparatus according to any one of the third to eighth aspects, further comprising pressure control means for maintaining the pressure in the reaction vessel at -0.5 to -10 kPa. It is characterized by.

(化1)には、陽イオン交換樹脂と陰イオン交換樹脂の各々について、化学式を示している。これらを熱分解は、水分の蒸発(100℃付近における第一段階)、イオン交換基の分離(200〜300℃における第2段階)、脱水素反応による基体の炭化(300〜600℃における第3段階)の、各段階を経て行われることが知られている。
In (Chemical Formula 1), chemical formulas are shown for each of the cation exchange resin and the anion exchange resin. These are thermally decomposed by evaporation of water (first stage at around 100 ° C.), separation of ion exchange groups (second stage at 200 to 300 ° C.), and carbonization of the substrate by dehydrogenation (third at 300 to 600 ° C.). It is known that it is performed through each stage.

陽イオン交換樹脂の減容率が低い要因として、200〜300℃における2段階で分離した交換基(-SOH)の一部が、熱分解の際にスルホニル架橋−SO−を形成し、スルホン架橋を形成して、より熱的に安定化する現象が知られている。(参考:下記(化2))。
As a factor for the low volume reduction rate of the cation exchange resin, a part of the exchange group (—SO 3 H) separated in two stages at 200 to 300 ° C. forms a sulfonyl bridge —SO 2 — during the thermal decomposition. A phenomenon is known in which a sulfone bridge is formed to stabilize more thermally. (Reference: The following (Chemical Formula 2)).

本出願人は、下記(化3)に示すように、ベンゼンスルホン酸に水蒸気を作用させて交換基(-SOH)を先行分解させることにより、スルホン架橋を防止する方式に思い至った。しかしながら、本願出願人の検討から、単に高温の過熱水蒸気雰囲気下で、陽イオン交換樹脂を積層静置しただけでは、減容率は1/2程度に留まり、一旦スルホニル架橋が形成されると、金属材料が使える温度域(700℃以下)で長時間過熱蒸気雰囲気に保持しても熱分解は進行しなくなり、加熱蒸気の接触による減容率の上昇効果は得られないことが判明した。
As shown in the following (Chemical Formula 3), the present applicant has come up with a method for preventing sulfone crosslinking by causing water vapor to act on benzenesulfonic acid to decompose the exchange group (—SO 3 H) in advance. However, from the applicant's study, simply by laminating and standing the cation exchange resin in a high-temperature superheated steam atmosphere, the volume reduction rate remains about 1/2, and once the sulfonyl bridge is formed, It was found that thermal decomposition does not proceed even if kept in a superheated steam atmosphere for a long time in a temperature range (700 ° C. or less) in which a metal material can be used, and the effect of increasing the volume reduction rate due to contact with heated steam cannot be obtained.

これに対し、本発明では、イオン交換樹脂を400℃以上の過熱水蒸気と接触させる過熱水蒸気接触工程において、過熱水蒸気の存在下で、交換基−SOを有する陽イオン交換樹の熱分解を行って、交換基−SOを亜硫酸ガス或いは硫酸ガスとして分離除去し、更に、460℃以上の雰囲気温度下で処理する追加熱処理工程において、交換基−SOを分離した基体を分解する構成により、分解した交換基−SOが樹脂同士をスルホニル架橋する前に、蒸気と反応させて亜硫酸ガス或いは硫酸ガスとして陽イオン交換樹脂から分離させ、陽イオン交換樹脂におけるスルホニル架橋の形成を抑制可能とし、これによりイオン交換樹脂全体の減容率を向上させることに成功した。 On the other hand, in the present invention, in the superheated steam contact step in which the ion exchange resin is contacted with superheated steam at 400 ° C. or higher, the cation exchange tree having the exchange group —SO 3 is pyrolyzed in the presence of superheated steam. Te, an exchange group -SO 3 was separated and removed as sulfur dioxide or sulfuric acid gas, further in an additional heat treatment step of treating in an atmosphere temperature of not less than 460 ° C., by decomposing constituting the base separating the exchange group -SO 3, Before the decomposed exchange group —SO 3 reacts with the sulfonyl bridge between the resins, it is reacted with steam and separated from the cation exchange resin as sulfurous acid gas or sulfuric acid gas, thereby making it possible to suppress the formation of the sulfonyl bridge in the cation exchange resin, This succeeded in improving the volume reduction rate of the entire ion exchange resin.

請求項3記載の発明によれば、金属製の密閉式反応容器と、該容器の下部に配置された粉体貯留部からなる減容処理装置を使用し、該密閉式反応容器は、該容器内温度を反応時に400〜700℃にまで上昇する外部加熱手段と、該容器内に充填されたセラミック製または金属製のボールと、該ボールを機械的に撹拌できる撹拌翼と、該容器の上部から該ボール上へ、室温のイオン交換樹脂を供給するイオン交換樹脂供給ノズルと、該容器の上部から該ボール上へ400〜700℃の過熱水蒸気を供給する過熱水蒸気供給ノズルを備え、該粉体貯留部は、貯留部内温度を460〜700℃に維持する外部電気式ヒータを備えるため、該容器の上部に投入された室温のイオン交換樹脂が、イオン交換基の分離が生じる温度領域(200〜300℃における第2段階)を通過し、該樹脂はボールの回転により滞留することなく、該容器上部に分散して加熱蒸気と効率よく接触し、分解した交換基−SOが樹脂同士をスルホニル架橋する前に、蒸気と反応させて亜硫酸ガス或いは硫酸ガスとして陽イオン交換樹脂から分離させることができるため、更に効果的に陽イオン交換樹脂におけるスルホニル架橋の形成を抑制することができる。さらに、交換基−SOが分離した樹脂は易分解性のポリスチレン(460℃で分解)となっており、大部分はボール間を落下中に分解し、少量が粉体貯留部において分解する。これにより、スルホン架橋形成に起因する陽イオン交換樹脂の減容率低下現象を効果的に回避し、従来に比較して、イオン交換樹脂全体の減容率を顕著に改善することができる。 According to invention of Claim 3, the volume reduction processing apparatus which consists of a metal sealed reaction container and the powder storage part arrange | positioned at the lower part of this container is used, and this sealed reaction container is this container. External heating means for raising the internal temperature to 400 to 700 ° C. during the reaction, a ceramic or metal ball filled in the vessel, a stirring blade capable of mechanically stirring the ball, and an upper portion of the vessel An ion exchange resin supply nozzle for supplying an ion exchange resin at room temperature onto the ball from above, and a superheated steam supply nozzle for supplying superheated steam at 400 to 700 ° C. onto the ball from the top of the container, Since the storage unit includes an external electric heater that maintains the internal temperature of the storage unit at 460 to 700 ° C., the ion exchange resin at room temperature charged in the upper portion of the container is in a temperature region (200 to 200) at which separation of ion exchange groups occurs. 300 Passes through the second stage) in, the resin without staying by rotation of the ball, and good contact heating steam and efficiency is dispersed in said container upper portion, the exchange group -SO 3 decomposed to sulfonyl crosslink the resin to each other Since it can be made to react with a vapor | steam before and can be isolate | separated from a cation exchange resin as a sulfurous acid gas or a sulfuric acid gas, formation of the sulfonyl bridge | crosslinking in a cation exchange resin can be suppressed more effectively. Furthermore, the resin from which the exchange group —SO 3 is separated is easily degradable polystyrene (decomposes at 460 ° C.), most of which decomposes between the balls while falling, and a small amount decomposes in the powder reservoir. Thereby, the phenomenon of reducing the volume reduction rate of the cation exchange resin due to the formation of the sulfone bridge can be effectively avoided, and the volume reduction rate of the entire ion exchange resin can be remarkably improved as compared with the conventional case.

本発明のイオン交換樹脂の減容処理装置を備える廃棄物処理設備の説明図である。It is explanatory drawing of a waste treatment facility provided with the volume reduction processing apparatus of the ion exchange resin of this invention.

以下に本発明の好ましい実施形態を示す。
図1において、1は金属製の密閉式反応容器、2は該容器1の内部温度を反応時に400〜700℃にまで上昇する外部ヒータ、3は該容器1の内部に充填されたセラミック製または金属製のボール、4は該ボール3を機械的に撹拌できる撹拌翼、5は該容器1の上部から該ボール3上へイオン交換樹脂を供給するイオン交換樹脂供給ノズル、6は該容器1の上部から該ボール3上へ400〜700℃の過熱水蒸気を供給する過熱水蒸気供給ノズルである。密閉式反応容器1の下部には、密閉式反応容器1内での分解によって発生した残渣(主に酸化鉄)が排出される粉体貯留部9が配置されている。
Preferred embodiments of the present invention are shown below.
In FIG. 1, 1 is a metal sealed reaction vessel, 2 is an external heater that raises the internal temperature of the vessel 1 to 400 to 700 ° C. during the reaction, 3 is made of ceramic filled in the vessel 1 or A metal ball, 4 is a stirring blade capable of mechanically stirring the ball 3, 5 is an ion exchange resin supply nozzle for supplying an ion exchange resin from above the vessel 1 onto the ball 3, and 6 is a vessel of the vessel 1. This is a superheated steam supply nozzle for supplying superheated steam at 400 to 700 ° C. from above to the balls 3. In the lower part of the sealed reaction vessel 1, a powder storage unit 9 is disposed in which a residue (mainly iron oxide) generated by decomposition in the sealed reaction vessel 1 is discharged.

密閉式反応容器1は、径が例えば400mmで長さが500mmである金属製の円筒体を立設して構成され、反応容器内の圧力を−0.5〜−10kPaに維持する圧力制御手段と、該容器1の内部温度を反応時に400〜700℃にまで上昇する外部電気式ヒータ2を備えている。   The closed-type reaction vessel 1 is constituted by standing a metal cylinder having a diameter of, for example, 400 mm and a length of 500 mm, and maintains the pressure in the reaction vessel at −0.5 to −10 kPa. And an external electric heater 2 that raises the internal temperature of the container 1 to 400 to 700 ° C. during the reaction.

この円筒体の軸心部には、密閉式反応容器1の上部に設置された駆動モータによって低速(約0.1〜2rpm)で回転される回転軸が設けられている。この回転軸の周部には、外縁が前記円筒体の内周面に近接位置されるように、また内縁が回転軸との間に空間を形成するようにして螺旋翼である撹拌翼4が取り付けられている。   A rotating shaft that is rotated at a low speed (about 0.1 to 2 rpm) by a drive motor installed at the top of the sealed reaction vessel 1 is provided at the axial center of the cylindrical body. Agitating blades 4 that are spiral blades are provided around the periphery of the rotating shaft so that the outer edge is positioned close to the inner peripheral surface of the cylindrical body and the inner edge forms a space between the rotating shaft and the inner periphery. It is attached.

密閉式反応容器1内のボールは、耐蝕性のあるセラミックボールあるいは、高ニッケル系合金でハステロイ、インコネル製であって、10〜25mmの粒径を有し、該撹拌翼4により撹拌されながら密閉式反応容器1内の周縁部を上昇し、これに伴って形成される空間部に、密閉式反応容器1内の上部に位置しているボールが順次下降していく。   The ball in the sealed reaction vessel 1 is a corrosion-resistant ceramic ball or a high nickel-based alloy made of Hastelloy and Inconel, and has a particle size of 10 to 25 mm and is sealed while being stirred by the stirring blade 4. The peripheral edge in the reaction container 1 is raised, and the balls located at the upper part in the sealed reaction container 1 are sequentially lowered into the space formed as a result.

イオン交換樹脂を密閉式反応容器1内へ供給するイオン交換樹脂供給ノズル5の前段にはスクリューフィーダ式の供給手段(図示しない)を備えてイオン交換樹脂を均等に供給することが好ましい。   It is preferable to provide a screw feeder type supply means (not shown) upstream of the ion exchange resin supply nozzle 5 for supplying the ion exchange resin into the sealed reaction vessel 1 to supply the ion exchange resin evenly.

イオン交換樹脂供給ノズル5から密閉式反応容器1内に供給されたイオン交換樹脂は初期には含水状態であり、基本的にはボール3の表面に付着して、炉内を移動する。このためイオン交換樹脂の密閉式反応容器1での滞留時間はボールの下降時間と同じである。ボールの下降時間は、撹拌翼の寸法、回転数、ボールの寸法、充填層高さで自由に調節可能であるが、ボールの下降時間(すなわち、イオン交換樹脂の密閉式反応容器1での滞留時間)は減容率向上には長い程好ましい。具体的には、ボールの径を小さくする、回転軸の回転数を小さくする、ボール充填層の長さを長くする方法を採用することができる。   The ion exchange resin supplied into the sealed reaction vessel 1 from the ion exchange resin supply nozzle 5 is initially in a water-containing state, and basically adheres to the surface of the ball 3 and moves in the furnace. For this reason, the residence time of the ion exchange resin in the sealed reaction vessel 1 is the same as the ball lowering time. The ball descent time can be freely adjusted by the size of the stirring blade, the number of revolutions, the ball size, and the height of the packed bed, but the ball descent time (that is, retention of the ion exchange resin in the sealed reaction vessel 1) The longer the time) is, the better the volume reduction rate is. Specifically, a method of reducing the diameter of the ball, reducing the rotation speed of the rotating shaft, or increasing the length of the ball packed layer can be employed.

密閉式反応容器1の上部に備えた過熱水蒸気供給ノズル6からは、ボール3の表面に付着したイオン交換樹脂へ400〜700℃の過熱水蒸気を供給する。イオン交換樹脂は室温で供給されるため、密閉式反応容器1の上層部では、200〜300℃の低温領域をイオン交換樹脂は通過する。   Superheated steam at 400 to 700 ° C. is supplied to the ion exchange resin attached to the surface of the ball 3 from the superheated steam supply nozzle 6 provided in the upper part of the sealed reaction vessel 1. Since the ion exchange resin is supplied at room temperature, the ion exchange resin passes through a low temperature region of 200 to 300 ° C. in the upper layer portion of the sealed reaction vessel 1.

イオン交換基の分離が生じる温度領域(200〜300℃における第2段階)を通過する際に、過熱水蒸気を流速0.1m/s以上で供給しつつボールを撹拌し、イオン交換樹脂と過熱水蒸気を効率よく接触させている。これにより、分解した交換基−SOが樹脂同士をスルホニル架橋する前に、蒸気と反応させて亜硫酸ガス或いは硫酸ガスとして陽イオン交換樹脂から分離させ、陽イオン交換樹脂中の分解したSO3-Hが、スチレンと再架橋し、安定となり難分解性となることを防止し、これにより、スルホン架橋形成に起因する陽イオン交換樹脂の減容率低下現象を効果的に回避し、従来に比較して、イオン交換樹脂全体の減容率を顕著に改善している。具体的には、例えば、従来の乾留法では減容率が1/2程度であったものにつき、当該イオン交換樹脂と過熱水蒸気を効率よく接触させながら処理する方法を採用することにより、1/4程度にまで改善することができる。 When passing through a temperature range (second stage at 200 to 300 ° C.) where ion exchange group separation occurs, the ball is agitated while supplying superheated steam at a flow rate of 0.1 m / s or more, and the ion exchange resin and superheated steam are supplied. Is in efficient contact. Thus, before the decomposed exchange group —SO 3 is sulfonyl-crosslinked between the resins, it is reacted with steam and separated from the cation exchange resin as sulfurous acid gas or sulfuric acid gas, and the decomposed SO 3 − in the cation exchange resin is separated. Prevents H from re-crosslinking with styrene and becoming stable and difficult to decompose, thereby effectively avoiding the phenomenon of reduced cation exchange resin volume reduction resulting from the formation of sulfone crosslinks. Thus, the volume reduction rate of the entire ion exchange resin is remarkably improved. Specifically, for example, by adopting a method in which the ion exchange resin and superheated steam are efficiently brought into contact with each other when the volume reduction rate is about 1/2 in the conventional dry distillation method, 1 / It can be improved to about 4.

密閉式反応容器1内での分解によって発生した残渣(主に酸化鉄)は、粉体貯留部9に排出され、密閉式反応容器1内に堆積する残渣処理に伴う各種問題も効果的に回避可能な構造となっている。本発明では、該粉体貯留部9の温度を、ポリスチレンの分解温度以上の460℃以上、好ましくは500℃以上に管理することにより、更に、減容率を1/20にまで大幅に向上可能としている。温度を維持するための手段は、図2に示すように粉体貯留部外部電気式ヒータ10、粉体貯留部過熱水蒸気ノズル11、またはその組み合わせで実施することができる。なお、図2に示す装置によって、イオン交換樹脂以外の、可燃物、難燃物、有機廃液などの処理を行うことも可能である。   Residues (mainly iron oxide) generated by decomposition in the sealed reaction vessel 1 are discharged into the powder reservoir 9 and effectively avoid various problems associated with residue processing accumulated in the sealed reaction vessel 1. It has a possible structure. In the present invention, by controlling the temperature of the powder reservoir 9 to 460 ° C. or higher, preferably 500 ° C. or higher, which is higher than the decomposition temperature of polystyrene, the volume reduction rate can be further improved to 1/20. It is said. The means for maintaining the temperature can be implemented by the powder reservoir external electric heater 10, the powder reservoir superheated steam nozzle 11, or a combination thereof as shown in FIG. In addition, it is also possible to process a combustible material, a flame-retardant material, an organic waste liquid, etc. other than an ion exchange resin with the apparatus shown in FIG.

密閉式反応容器1内での分解によって発生した分解ガス(CO、CxHy)及び、硫酸ガス、亜硫酸ガスなどは、焼結金属フィルタ7を経て排ガス出口8から排出され、後段の二次燃焼器、洗浄塔などの排ガス処理系で処理されるため、原子力発電所で発生する使用済のイオン交換樹脂を、放射能による環境汚染の危険を伴わず安全に減容処理することができる。焼結金属フィルタ7をセラミックフィルタとすることも可能である。   The cracked gas (CO, CxHy), sulfuric acid gas, sulfurous acid gas, etc. generated by the decomposition in the closed reaction vessel 1 are discharged from the exhaust gas outlet 8 through the sintered metal filter 7, and the secondary combustor in the subsequent stage, Since it is treated in an exhaust gas treatment system such as a washing tower, it is possible to safely reduce the volume of spent ion exchange resin generated at a nuclear power plant without risk of environmental pollution due to radioactivity. The sintered metal filter 7 can be a ceramic filter.

1 金属製の密閉式反応容器
2 外部電気式ヒータ
3 ボール
4 撹拌翼
5 イオン交換樹脂供給ノズル
6 過熱水蒸気供給ノズル
7 焼結金属フィルタ
8 排ガス出口
9 粉体貯留部
10粉体貯留部外部電気式ヒータ
11粉体貯留部過熱水蒸気ノズル
1 Metal closed reaction vessel 2 External electric heater 3 Ball 4 Stirring blade 5 Ion exchange resin supply nozzle 6 Superheated steam supply nozzle 7 Sintered metal filter 8 Exhaust gas outlet 9 Powder reservoir 10 Powder reservoir external electric type Heater 11 powder reservoir superheated steam nozzle

Claims (9)

金属製の密閉式反応容器にイオン交換樹脂及び過熱水蒸気を供給して、イオン交換樹脂を400℃以上の過熱水蒸気と接触させる過熱水蒸気接触工程と、該過熱水蒸気接触工程を経たイオン交換樹脂を、更に、460℃以上の雰囲気温度下で処理する追加熱処理工程からなるイオン交換樹脂の減容処理方法であって、
該過熱水蒸気接触工程において、過熱水蒸気の存在下で、交換基−SOを有する陽イオン交換樹の熱分解を行って、交換基−SOを亜硫酸ガス或いは硫酸ガスとして分離除去し、追加熱処理工程において、交換基−SOを分離した基体を分解することを特徴とするイオン交換樹脂の減容処理方法。
An ion exchange resin and superheated steam are supplied to a metal sealed reaction vessel, and a superheated steam contact step in which the ion exchange resin is brought into contact with superheated steam at 400 ° C. or higher, and an ion exchange resin that has undergone the superheated steam contact step, Furthermore, the volume reduction processing method of the ion exchange resin which consists of an additional heat treatment process processed under atmospheric temperature of 460 degreeC or more,
In superheated steam contacting step in the presence of superheated steam, and subjected to thermal decomposition of the cation exchange resin having an exchange group -SO 3, separating and removing exchange group -SO 3 as sulfurous acid gas or sulfuric acid gas, additional heat treatment in step compacting treatment method of the ion exchange resin, which comprises decomposing the substrate separating the exchange group -SO 3.
イオン交換樹脂が原子力発電所で発生する使用済のイオン交換樹脂であることを特徴とする請求項1記載のイオン交換樹脂の減容処理方法。   2. The method of reducing the volume of an ion exchange resin according to claim 1, wherein the ion exchange resin is a used ion exchange resin generated at a nuclear power plant. 金属製の密閉式反応容器と、該容器の下部に配置された粉体貯留部からなり、
該密閉式反応容器は、該容器内温度を反応時に400〜700℃にまで上昇する外部加熱手段と、該容器内に充填されたセラミック製または金属製のボールと、該ボールを機械的に撹拌できる撹拌翼と、該容器の上部から該ボール上へ、室温のイオン交換樹脂を供給するイオン交換樹脂供給ノズルと、該容器の上部から該ボール上へ400〜700℃の過熱水蒸気を供給する過熱水蒸気供給ノズルを備え、
該粉体貯留部は、貯留部内温度を460〜700℃に維持する外部電気式ヒータを備えることを特徴とするイオン交換樹脂の減容処理装置。
It consists of a metal sealed reaction vessel and a powder reservoir disposed at the bottom of the vessel,
The sealed reaction vessel comprises an external heating means for raising the temperature in the vessel to 400 to 700 ° C. during the reaction, a ceramic or metal ball filled in the vessel, and mechanical stirring of the ball A stirring blade, an ion exchange resin supply nozzle for supplying an ion exchange resin at room temperature from the top of the container onto the ball, and a superheat for supplying superheated steam at 400 to 700 ° C. onto the ball from the top of the container Equipped with a water vapor supply nozzle,
The powder storage unit includes an external electric heater that maintains the internal temperature of the storage unit at 460 to 700 ° C.
粉体貯留部の下部に加熱水蒸気を供給する加熱水蒸気供給ノズルを備えることを特徴とする請求項3記載のイオン交換樹脂の減容処理装置。   4. A volume reduction treatment apparatus for ion-exchange resin according to claim 3, further comprising a heated steam supply nozzle for supplying heated steam to a lower part of the powder storage unit. 該容器は、内径300〜1000mmのドラム形状を有し、該容器内に充填されたボールは10〜25mmの粒径を有することを特徴とする請求項3または4に記載のイオン交換樹脂の減容処理装置。   5. The ion exchange resin reduction according to claim 3, wherein the container has a drum shape with an inner diameter of 300 to 1000 mm, and the balls filled in the container have a particle size of 10 to 25 mm. Yong processing equipment. 該ボールを機械的に撹拌できる撹拌翼の回転数が0.1〜2rpmであることを特徴とする請求項3〜5の何れかに記載のイオン交換樹脂の減容処理装置。   The volume reduction processing apparatus for ion-exchange resin according to any one of claims 3 to 5, wherein the rotation speed of a stirring blade capable of mechanically stirring the ball is 0.1 to 2 rpm. 過熱水蒸気供給ノズルを複数備え、該過熱水蒸気供給ノズルは拡張ノズルであることを特徴とする請求項3〜6の何れかに記載のイオン交換樹脂の減容処理装置。   The ion-exchange resin volume reduction treatment apparatus according to any one of claims 3 to 6, wherein a plurality of superheated steam supply nozzles are provided, and the superheated steam supply nozzles are expansion nozzles. 過熱水蒸気供給ノズルは、過熱水蒸気を流速0.1m/s以上で供給する流速制御手段を備えることを特徴とする請求項3〜7の何れかに記載のイオン交換樹脂の減容処理装置。   The ion-exchange resin volume reduction treatment device according to any one of claims 3 to 7, wherein the superheated steam supply nozzle includes a flow rate control means for supplying superheated steam at a flow rate of 0.1 m / s or more. 反応容器内の圧力を−0.5〜−10kPaに維持する圧力制御手段を備えることを特徴とする請求項3〜8の何れかに記載のイオン交換樹脂の減容処理装置。   The ion exchange resin volume reduction treatment apparatus according to any one of claims 3 to 8, further comprising pressure control means for maintaining the pressure in the reaction vessel at -0.5 to -10 kPa.
JP2010269887A 2010-12-03 2010-12-03 Volume reduction treatment method and volume reduction treatment apparatus for persistent degradable waste Active JP5672446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269887A JP5672446B2 (en) 2010-12-03 2010-12-03 Volume reduction treatment method and volume reduction treatment apparatus for persistent degradable waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269887A JP5672446B2 (en) 2010-12-03 2010-12-03 Volume reduction treatment method and volume reduction treatment apparatus for persistent degradable waste

Publications (2)

Publication Number Publication Date
JP2012116997A true JP2012116997A (en) 2012-06-21
JP5672446B2 JP5672446B2 (en) 2015-02-18

Family

ID=46500226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269887A Active JP5672446B2 (en) 2010-12-03 2010-12-03 Volume reduction treatment method and volume reduction treatment apparatus for persistent degradable waste

Country Status (1)

Country Link
JP (1) JP5672446B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016191A (en) * 2012-07-06 2014-01-30 Ngk Insulators Ltd Apparatus for reducing volume of radioactive waste
JP2015072132A (en) * 2013-10-01 2015-04-16 日本碍子株式会社 Volume reduction processing device of radioactive wastes, and volume reduction processing method
JP2016172845A (en) * 2015-03-17 2016-09-29 日本碍子株式会社 Volume reduction processing method and volume reduction processing apparatus for low-degradable waste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107300A (en) * 1982-12-10 1984-06-21 株式会社日立製作所 Method of processing radioactive resin waste
JPS6138499A (en) * 1984-07-30 1986-02-24 株式会社日立製作所 Method and device for treating used ion exchange resin by steam decomposition
JPS63171400A (en) * 1987-01-09 1988-07-15 日本碍子株式会社 Processor for waste containing combustible
JP2002521701A (en) * 1998-07-28 2002-07-16 スタッズビク インコーポレイテッド Thermal decomposition of organic waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107300A (en) * 1982-12-10 1984-06-21 株式会社日立製作所 Method of processing radioactive resin waste
JPS6138499A (en) * 1984-07-30 1986-02-24 株式会社日立製作所 Method and device for treating used ion exchange resin by steam decomposition
JPS63171400A (en) * 1987-01-09 1988-07-15 日本碍子株式会社 Processor for waste containing combustible
JP2002521701A (en) * 1998-07-28 2002-07-16 スタッズビク インコーポレイテッド Thermal decomposition of organic waste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016191A (en) * 2012-07-06 2014-01-30 Ngk Insulators Ltd Apparatus for reducing volume of radioactive waste
JP2015072132A (en) * 2013-10-01 2015-04-16 日本碍子株式会社 Volume reduction processing device of radioactive wastes, and volume reduction processing method
JP2016172845A (en) * 2015-03-17 2016-09-29 日本碍子株式会社 Volume reduction processing method and volume reduction processing apparatus for low-degradable waste

Also Published As

Publication number Publication date
JP5672446B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5651885B2 (en) Ion exchange resin volume reduction treatment system and ion exchange resin volume reduction treatment method
US4481891A (en) Apparatus for rendering PCB virulence-free
EP3806205B1 (en) Method and apparatus for producing carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries
JP5672446B2 (en) Volume reduction treatment method and volume reduction treatment apparatus for persistent degradable waste
JP2010106133A (en) Process and apparatus for making waste into fuel
CN108372197A (en) A kind of combination process based on thermal desorption for pollution administration soil
TWI392547B (en) Recycle method of electrical equipment
JP2015505862A (en) Reactor for drying and roasting biomass, preferably lignocellulose biomass
WO2018107805A1 (en) Organic matter self-energized pyrolysis and combustion periodic reaction device and method
JP5961044B2 (en) Volume reduction treatment method and volume reduction treatment apparatus for persistent degradable waste
JP2009179485A (en) Activated carbon, method for producing the same, and production apparatus
JP3207355U (en) Volume reduction processing equipment
JP2008149304A (en) Sludge drying method and dried sludge obtained after drying
JP5990417B2 (en) Volume reduction equipment for radioactive waste
KR100770390B1 (en) Method of processing alkali-activation exhaust gas
BR102019011275A2 (en) SOLVENT SYSTEM FOR CLEANING FIXED BED BALL CATALYST IN SITU
WO2021192034A1 (en) Volume reduction method for waste, volume reduction device for waste
CN103836633A (en) Pyrolysis device applied to wasted TBP pyrolysis and incineration process
JP2018187532A (en) Organic waste treatment apparatus and organic waste treatment method
CN114867792A (en) Process for the ecological purification and reactivation of carbon black obtained from the pyrolysis of used tyres
JP2010013491A (en) Method for treating carbonized product to inhibit heat generation
JP2015179008A (en) Volume reduction processing method and volume reduction processing apparatus for hardly-decomposable waste
JP2017149598A (en) Apparatus for producing hydrogen using biomass as raw material
JP4959604B2 (en) Slurry production method and slurry production system
JP6730815B2 (en) Volume reduction processing method and volume reduction apparatus for hardly decomposable waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5672446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150