JP2008149304A - Sludge drying method and dried sludge obtained after drying - Google Patents

Sludge drying method and dried sludge obtained after drying Download PDF

Info

Publication number
JP2008149304A
JP2008149304A JP2006357226A JP2006357226A JP2008149304A JP 2008149304 A JP2008149304 A JP 2008149304A JP 2006357226 A JP2006357226 A JP 2006357226A JP 2006357226 A JP2006357226 A JP 2006357226A JP 2008149304 A JP2008149304 A JP 2008149304A
Authority
JP
Japan
Prior art keywords
sludge
drying
hydrolysis
generated
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006357226A
Other languages
Japanese (ja)
Inventor
Hiroshi Une
浩 宇根
Hisao Amo
久男 天羽
Hiroyuki Sei
弘之 静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EVEREST KK
Ritekku KK
Original Assignee
EVEREST KK
Ritekku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EVEREST KK, Ritekku KK filed Critical EVEREST KK
Priority to JP2006357226A priority Critical patent/JP2008149304A/en
Publication of JP2008149304A publication Critical patent/JP2008149304A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Drying Of Solid Materials (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drying method, a system and dried matter by drying sludge with supply of low thermal energy, in a drying process of sewage sludge generated in a sewage sludge treating process or sludge generated in the waste water treating process of a food factory (hereafter sludge), by a drying method not by vaporization but by a chemical reaction. <P>SOLUTION: In the sludge drying process, sludge is set in a high pressure and high temperature state to vaporize moisture contained in sludge to high pressure steam; sludge is subjected to hydrolysis using the steam; and oxidized for decomposition using humidified air to dry sludge using hydrolysis reaction heat and oxidizing decomposition reaction heat. By drying sludge by this process, hydrolyzed or oxidized and decomposed dried sludge is obtained. In this drying process, a large amount of wastewater and exhaust gas generated by decompressing after the completion of the drying process is introduce into a cleaning facility, then is reused in the dying process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、浄水場や食品工場で排水処理時に発生する汚泥を効率的かつ低エネルギー供給で乾燥させる乾燥方法及び乾燥後得られる汚泥乾燥物に関するものである。  The present invention relates to a drying method for drying sludge generated at the time of wastewater treatment at a water purification plant or a food factory with an efficient and low energy supply, and a sludge dried product obtained after drying.

従来、浄水場で発生する下水汚泥に代表される汚泥(主成分の80%以上が有機物である汚泥)の乾燥方法としては、乾燥熱源として、天日を使用する方法が提案されている。この方法は、乾燥槽の底部に濾過材または敷砂を敷き、水分と汚泥を分離しながら、天日で乾燥させるものである。(例えば特許文献1)しかし、この方法は広大な敷地と排気対策が必要である。  Conventionally, as a drying method of sludge represented by sewage sludge generated in a water purification plant (sludge in which 80% or more of the main component is organic matter), a method of using sunlight as a drying heat source has been proposed. In this method, a filter medium or sand is laid on the bottom of a drying tank and dried in the sun while separating moisture and sludge. However, this method requires a vast site and exhaust measures.

また、汚泥の乾燥に必要な供給エネルギーを低減させる方法として、遠心薄膜乾燥機(例えば特許文献2)が挙げられる。この方法は、汚泥と水分を遠心薄膜機で分離する。この遠心分離時に熱風を用いて遠心後の汚泥を乾燥させると同時に、遠心分離で発生した汚泥含有汚水の乾燥も行う方法である。本法は伝熱効率が高く、汚泥の乾燥効率が良い方法である。しかし、構造が複雑で、システムが大規模である。更に、処理時間がかかり、処理能力が低いという欠点を持つ。  Moreover, a centrifugal thin film dryer (for example, patent document 2) is mentioned as a method of reducing the supply energy required for drying sludge. In this method, sludge and moisture are separated by a centrifugal thin film machine. In this centrifugation, hot air is used to dry the sludge after centrifugation, and at the same time, the sludge-containing sludge generated by centrifugation is also dried. This method has high heat transfer efficiency and good sludge drying efficiency. However, the structure is complex and the system is large. In addition, the processing time is long and the processing capacity is low.

更に、真空蒸留釜を用いた減圧汚泥乾燥方法が提案されている。本法は減圧することによる沸点降下作用を用い、低い供給エネルギーで汚泥を乾燥させる方法である。(例えば特許文献3)このため、速やかな乾燥が可能であり、臭気を防ぐこともできる。しかし、処理時間がかかるため、処理能力が低くなるという欠点があった。  Furthermore, a vacuum sludge drying method using a vacuum distillation kettle has been proposed. This method is a method of drying sludge with low supply energy using the boiling point lowering action by reducing the pressure. (For example, patent document 3) For this reason, quick drying is possible and an odor can also be prevented. However, since processing time is required, there is a drawback that the processing capacity is lowered.

特開2006−239634号(第6頁、図1)JP 2006-239634 (6th page, FIG. 1) 特開平8−318300号(第6頁、図1)JP-A-8-318300 (6th page, FIG. 1) 特開2004−313918号(第6頁、図1)JP 2004-313918 (page 6, FIG. 1)

上記方法に代表される従来の汚泥乾燥方法は、すべて、含有水分を蒸発させる方法であった。水分を蒸発させるためには、蒸発潜熱に見合う膨大な熱エネルギーの供給が必要となる。供給エネルギーを効率良く利用するためには、遠心薄膜乾燥機や減圧乾燥機のような大規模な装置やシステムが必要となっている。
そこで我々は、蒸発ではない化学反応による乾燥法により、低い熱エネルギーの供給で汚泥を乾燥する乾燥方法とシステム及び乾燥物を得ることを課題とした。
All the conventional sludge drying methods represented by the above methods are methods for evaporating the contained water. In order to evaporate the water, it is necessary to supply enormous heat energy commensurate with the latent heat of vaporization. In order to efficiently use the supplied energy, a large-scale apparatus or system such as a centrifugal thin film dryer or a vacuum dryer is required.
Therefore, we made it a subject to obtain a drying method and system for drying sludge with a low thermal energy supply and a dried product by a drying method by a chemical reaction that is not evaporation.

本発明は上記課題を解決するために、下水処理過程で発生する下水汚泥や食品工場の排水処理工程で発生する汚泥(以下汚泥という)を乾燥する工程において、該汚泥を高圧、高温下におくことにより、該汚泥が含有する水分を高圧蒸気化し、該蒸気を用い、該汚泥を加水分解し、かつ酸素を用い、酸化分解する事により、該加水分解反応熱及び酸化分解反応熱を用いて該汚泥を乾燥する方法及び、該汚泥を該工程で乾燥することにより得られる乾燥物である。  In order to solve the above-mentioned problems, the present invention places the sludge under high pressure and high temperature in a step of drying sewage sludge generated in the sewage treatment process or sludge generated in the wastewater treatment process of the food factory (hereinafter referred to as sludge). The water contained in the sludge is vaporized at high pressure, the steam is used, the sludge is hydrolyzed, and oxygen is used for oxidative decomposition, thereby using the hydrolysis reaction heat and the oxidation decomposition reaction heat. A method for drying the sludge, and a dried product obtained by drying the sludge in the step.

また、該乾燥工程において、乾燥工程終了後減圧する際に発生する大量の廃液及び排気を浄化設備導入後、該乾燥工程内に再利用する方法である。  Further, in the drying process, a large amount of waste liquid and exhaust gas generated when the pressure is reduced after completion of the drying process is reused in the drying process after the introduction of purification equipment.

本発明における汚泥は、その乾燥成分の50%以上が有機物であり、脱水→乾燥→焼却の工程を経て、処分されている汚泥が対象である。該汚泥は水分含量70%以上であり、親水有機物を多く含むため、結合水として含水している場合が多い。このため、乾燥に蒸発潜熱以上のエネルギー供給が必要となる傾向がある。  The sludge in the present invention is 50% or more of the dry components thereof, and the sludge that has been disposed of through the steps of dehydration → drying → incineration is the target. Since the sludge has a water content of 70% or more and contains a lot of hydrophilic organic substances, it often contains water as bound water. For this reason, there exists a tendency for the energy supply more than an evaporation latent heat to be needed for drying.

本発明で用いる高圧条件とは、5Mpa以上100Mpa以下である。これは、5Mpa以上で加水分解反応性を有する水蒸気が得られるためである。また、100Mpa以上では、水蒸気が亜臨界に達し、加水分解性よりも強力な溶媒性を示すため適さない。  The high pressure conditions used in the present invention are 5 Mpa or more and 100 Mpa or less. This is because water vapor having hydrolysis reactivity at 5 Mpa or more can be obtained. Further, if it is 100 Mpa or more, water vapor reaches subcriticality and exhibits a solvent property stronger than hydrolyzability, which is not suitable.

本発明で用いる高温度とは、150℃以上300℃以下である。これは、150℃以上で、加水分解反応を開始するため及び、汚泥中の水分が蒸発し、必要な圧力に達するためである。300℃以上では、水の臨界条件となり、溶媒性のみとなるため適さない。  The high temperature used in the present invention is 150 ° C. or higher and 300 ° C. or lower. This is because the hydrolysis reaction is started at 150 ° C. or higher, and the water in the sludge is evaporated to reach a necessary pressure. Above 300 ° C., it becomes a critical condition of water and is not suitable because it has only solvent properties.

本発明で汚泥を高温、高圧にするための熱の供給方法は、加熱空気である。バーナーもしくは蒸気によって加熱された空気を汚泥が封入された耐圧容器内に導入することにより、汚泥を所定の温度及び圧力まで上昇させることが好ましい。加熱空気を用いることにより、汚泥の水分が有効に加水分解反応に利用される。また、未反応の水分蒸発にも有効である。  In the present invention, the heat supply method for making the sludge high temperature and high pressure is heated air. It is preferable to raise the sludge to a predetermined temperature and pressure by introducing air heated by a burner or steam into a pressure-resistant container in which the sludge is enclosed. By using heated air, the moisture of sludge is effectively utilized for the hydrolysis reaction. It is also effective for unreacted water evaporation.

本発明における乾燥時間は、加水分解反応時間として、30分以上120分以下、加水分解物乾燥時間として、30分以上が好ましい。加水分解反応時間、乾燥時間ともに、汚泥の含水率に依存する。含水率が高ければ、反応時間、乾燥時間ともに長くなる傾向がある。  The drying time in the present invention is preferably 30 minutes or more and 120 minutes or less as the hydrolysis reaction time, and 30 minutes or more as the hydrolysis product drying time. Both the hydrolysis reaction time and the drying time depend on the moisture content of the sludge. If the water content is high, both the reaction time and the drying time tend to be long.

本発明では、汚泥の加水分解反応終了後、耐圧容器を減圧する過程において、大量の水蒸気が放出される。放出された水蒸気を冷却し、排水として、処理し、処理水を冷却水として再利用する。  In the present invention, a large amount of water vapor is released in the process of depressurizing the pressure vessel after completion of the sludge hydrolysis reaction. The discharged water vapor is cooled, treated as waste water, and the treated water is reused as cooling water.

本発明で発生する乾燥汚泥は、水蒸気による加水分解及び酸化反応による熱分解を受けているため、初期の汚泥に比較して、低分子化されている。また、分子末端が水酸基あるいはカルボン酸基であるため、高い燃焼性が期待できる。含水分量が低く、且つ燃焼性が高いため、助燃材としての用途が可能である。  The dried sludge generated in the present invention is hydrolyzed by water vapor and thermally decomposed by an oxidation reaction, and therefore has a lower molecular weight than the initial sludge. Moreover, since the molecular terminal is a hydroxyl group or a carboxylic acid group, high combustibility can be expected. Since it has a low moisture content and high combustibility, it can be used as a combustion aid.

本発明において、汚泥中の水分は加水分解反応により、汚泥分子中に組み込まれる。即ち、水分が水としての性状ではなく、水素分子と水酸分子に分解し、汚泥分子中に取り込まれることになる。この状態では、蒸発潜熱も発生せず、少量の外部供給エネルギーで汚泥を乾燥することが可能となる。  In the present invention, water in the sludge is incorporated into the sludge molecules by a hydrolysis reaction. That is, the water is not in the form of water, but is decomposed into hydrogen molecules and hydroxyl molecules and taken into the sludge molecules. In this state, no latent heat of evaporation is generated, and the sludge can be dried with a small amount of externally supplied energy.

本発明における汚泥乾燥の熱源は、外部から供給された加熱空気である。と同時に、被乾燥物が化学反応(汚泥と水分とが反応して起こる加水分解反応及び汚泥と酸素と反応して起こる酸化分解反応)から発生する化学反応熱も乾燥熱源となっている。これらの反応は基本的に発熱反応であり、供給熱源以上の熱量を発生する場合もある。これらの反応熱を乾燥に利用することによって、汚泥自らが発する熱で汚泥を乾燥することが可能となる。このため、外部から汚泥乾燥のために供給するエネルギーは大幅に節約できる。  The heat source for sludge drying in the present invention is heated air supplied from the outside. At the same time, the heat of chemical reaction generated from the chemical reaction (hydrolysis reaction caused by reaction between sludge and moisture and oxidative decomposition reaction caused by reaction between sludge and oxygen) is also a heat source for drying. These reactions are basically exothermic reactions and may generate more heat than the supply heat source. By using these reaction heats for drying, it becomes possible to dry the sludge with the heat generated by the sludge itself. For this reason, the energy supplied for sludge drying from the outside can be saved greatly.

以上述べてきたように本発明は、従来行われてきた水分を蒸発させて乾燥させるという概念とは全く異なる概念、即ち、化学反応を行わせ、その反応熱を利用した汚泥の乾燥方法である。このため、汚泥の水分を蒸発させるために必要な大量の供給エネルギー(蒸発潜熱)を軽減し、得られた汚泥乾燥物の燃焼性も向上する乾燥方法である。更に、本発明で得られた汚泥乾燥物は、エネルギー燃料源を海外に依存する日本に於いて、代替燃料として重要な役割を果たすものと考えられる。  As described above, the present invention is a completely different concept from the conventional concept of evaporating and drying moisture, that is, a method of drying sludge using chemical heat and reaction heat. . For this reason, it is a drying method that reduces a large amount of supply energy (evaporation latent heat) necessary for evaporating the water in the sludge and improves the combustibility of the obtained sludge dry matter. Furthermore, the sludge dried product obtained in the present invention is considered to play an important role as an alternative fuel in Japan, which depends on overseas energy fuel sources.

以下本発明の実施形態を図に基づいて詳しく説明する。図1は本発明の実施におけるフローを示したものである。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a flow in the implementation of the present invention.

脱水処理された汚泥は汚泥貯蔵サイロ1に貯蔵する。サイロより加水分解乾燥機2にスクリュープンプで所定量(加水分解乾燥機2の処理容量分)注入する。汚泥注入の際、汚泥攪拌機2−2を回転させ、汚泥が加水分解乾燥機2全体に均等に注入されるようにする。  The dewatered sludge is stored in the sludge storage silo 1. A predetermined amount (for the processing capacity of the hydrolysis dryer 2) is injected into the hydrolysis dryer 2 from the silo with a screw pump. During the sludge injection, the sludge stirrer 2-2 is rotated so that the sludge is evenly injected into the entire hydrolysis dryer 2.

汚泥注入終了後、汚泥投入口2−1上部の耐圧蓋を閉める。ボイラー4より供給される蒸気を、空気加熱器5及び加水分解乾燥機2のジャケット部に導入し、所定温度(250℃)に加温する。  After completion of the sludge injection, the pressure-resistant lid at the top of the sludge inlet 2-1 is closed. Steam supplied from the boiler 4 is introduced into the air heater 5 and the jacket of the hydrolysis dryer 2 and heated to a predetermined temperature (250 ° C.).

コンプレッサー3より所定の加圧空気(0.78MPa)を空気加熱器5に導入する。加熱された(250℃)の空気を加水分解乾燥機2に導入する。  Predetermined pressurized air (0.78 MPa) is introduced into the air heater 5 from the compressor 3. Heated (250 ° C.) air is introduced into the hydrolysis dryer 2.

加水分解乾燥機2内温度が250℃に達したら、調圧弁11の圧力を3Mpaに調整する。次いで、調圧弁12の圧力を調整し、加水分解乾燥機2の内部圧力を2Mpa、250℃になるようにする。  When the temperature in the hydrolysis dryer 2 reaches 250 ° C., the pressure of the pressure regulating valve 11 is adjusted to 3 Mpa. Next, the pressure of the pressure regulating valve 12 is adjusted so that the internal pressure of the hydrolysis dryer 2 is 2 Mpa and 250 ° C.

加水分解乾燥機2に注入された汚泥は、250℃に加温され、水分蒸発が開始する。水蒸気により、加水分解乾燥機2内部の圧力は上昇し、所定の圧力、温度(2Mpa、250℃)となる。所定圧力以上に上昇した余剰の水蒸気は、調圧弁12から蒸気冷却器6に放出される。  The sludge injected into the hydrolysis dryer 2 is heated to 250 ° C., and moisture evaporation starts. Due to the water vapor, the pressure inside the hydrolysis dryer 2 rises to a predetermined pressure and temperature (2 Mpa, 250 ° C.). Excess water vapor that has risen above the predetermined pressure is discharged from the pressure regulating valve 12 to the steam cooler 6.

汚泥攪拌機2−2を回転させながら、所定の圧力、温度(2Mpa、250℃)を30分間から1時間保持する。この間に、水蒸気は汚泥と加水分解反応を起こし、化学反応乾燥が開始する。  While rotating the sludge stirrer 2-2, a predetermined pressure and temperature (2 Mpa, 250 ° C.) are maintained for 30 minutes to 1 hour. During this time, water vapor undergoes a hydrolysis reaction with sludge, and chemical reaction drying starts.

化学反応乾燥が終了後、調圧弁12の圧力を30分間かけて下げ、余剰の水蒸気を蒸気冷却器6に開放する。開放中、調圧弁11を開放し、加熱空気を加水分解乾燥機2に送り込む。これにより、汚泥の酸化熱分解反応を起こさせる。と同時に、汚泥中の水分を蒸発、乾燥させる。この間、加水分解乾燥機2内部では、汚泥が化学反応熱を発生するため、所定温度維持に必要な外部エネルギーの供給は極めて低い。このため、ボイラー4やコンプレッサー3の稼働率は通常の乾燥に比べ、はるかに低くなる。  After the chemical reaction drying is completed, the pressure of the pressure regulating valve 12 is decreased over 30 minutes, and excess water vapor is opened to the steam cooler 6. During the opening, the pressure regulating valve 11 is opened, and heated air is fed into the hydrolysis dryer 2. Thereby, the oxidation thermal decomposition reaction of sludge is caused. At the same time, the water in the sludge is evaporated and dried. During this time, since the sludge generates heat of chemical reaction inside the hydrolysis dryer 2, the supply of external energy necessary for maintaining a predetermined temperature is extremely low. For this reason, the operation rate of the boiler 4 and the compressor 3 becomes far lower than normal drying.

調圧弁12の開放により、加水分解乾燥機2内の圧力を常圧にする。さらに、余剰の水分を常圧化で加熱空気により乾燥させ、化学反応乾燥工程は終了する。工程終了後、加水分解乾燥機2の汚泥乾燥物搬出口2−3を開け、汚泥攪拌機2−2を回転させる。汚泥乾燥物は、汚泥攪拌機2−2に押し出され、汚泥乾燥物搬出口2−3より加水分解乾燥機2外へ放出される。  By opening the pressure regulating valve 12, the pressure in the hydrolysis dryer 2 is brought to normal pressure. Furthermore, excess water is dried with heated air at normal pressure, and the chemical reaction drying step is completed. After the completion of the process, the sludge dried product outlet 2-3 of the hydrolysis dryer 2 is opened, and the sludge stirrer 2-2 is rotated. The sludge dried product is pushed out to the sludge agitator 2-2 and discharged out of the hydrolysis dryer 2 from the sludge dried product outlet 2-3.

蒸気冷却器6に導入された水蒸気は、冷却水により冷却される。冷却された水蒸気は、凝集し、水に戻る。この際発生した水には、汚泥の加水分解によって生じた水可溶性低分子や高圧を開放したことで共に放出された汚泥微粉が混入している。このため、冷却によって生じた水は、不純物の混入した廃液である。この廃液は凝集直後であるため、高温であり、且つ乾燥前の汚泥の性状に依存して、様々な物質を混入している。  The water vapor introduced into the steam cooler 6 is cooled by the cooling water. The cooled water vapor aggregates and returns to water. The water generated at this time is mixed with water-soluble low molecules generated by the hydrolysis of sludge and sludge fine powder released by releasing the high pressure. For this reason, the water produced by cooling is a waste liquid mixed with impurities. Since this waste liquid is immediately after agglomeration, it is at a high temperature and contains various substances depending on the properties of the sludge before drying.

発生した廃液は、廃液沈殿槽7に導入される。廃液沈殿槽7内で凝集剤を用い、固液分離及び廃液の2次冷却を行う。この際、沈殿した汚泥については、微量オゾンを廃液中に溶解し、オゾンにより活性化された微生物含有活性汚泥を用いて、汚泥の減容化を行っている。また、固液分離した廃液については、廃液浄化槽8に導入される。  The generated waste liquid is introduced into the waste liquid precipitation tank 7. Using a flocculant in the waste liquid precipitation tank 7, solid-liquid separation and secondary cooling of the waste liquid are performed. At this time, for the precipitated sludge, a small amount of ozone is dissolved in the waste liquid, and the volume of sludge is reduced by using the microorganism-containing activated sludge activated by ozone. In addition, the solid-liquid separated waste liquid is introduced into the waste liquid purification tank 8.

廃液浄化槽8の導入された廃液は、廃液が溶解している成分に従い、最適の方法で処理される。MO膜、凝集沈殿等の方法を組合せ、冷却水、ボイラー水として使用可能な中水レベルに浄化された処理水は、処理水貯水槽9の蓄えられる。  The waste liquid introduced into the waste liquid septic tank 8 is treated by an optimum method according to the component in which the waste liquid is dissolved. Treated water that has been purified to a medium water level that can be used as cooling water or boiler water by combining methods such as MO membrane and coagulation sedimentation is stored in the treated water storage tank 9.

処理水貯水槽9に蓄えられた処理水は、ポンプで蒸気冷却器6に送られ、水蒸気の冷却水として再利用される。また、ボイラー4の熱交換用水としても再利用される。余剰の処理水については、オーバーフローとして、排水基準まで浄化し、外部に放出される。  The treated water stored in the treated water storage tank 9 is sent to the steam cooler 6 by a pump and reused as steam cooling water. It is also reused as heat exchange water for the boiler 4. Excess treated water is purified to the drainage standard as an overflow and discharged to the outside.

汚泥の加水分解や酸化分解反応によって発生した低分子化合物は加水分解乾燥機2から排出される水蒸気に溶解し、臭気の原因となる。また、汚泥サイロには汚泥が本来含有している低分子化合物があり、臭気の原因となっている。これら臭気原因物質は、それぞれの発生源から配管により集められ、排気脱臭器10を通して屋外に排気される。  The low molecular weight compound generated by the sludge hydrolysis or oxidative decomposition reaction dissolves in the water vapor discharged from the hydrolysis dryer 2 and causes odor. Sludge silos contain low-molecular compounds that are inherently contained in sludge, which causes odor. These odor-causing substances are collected from each source by piping and exhausted to the outdoors through the exhaust deodorizer 10.

汚泥乾燥工程において、最も臭気原因物質を発生する場所は、汚泥貯蔵サイロ1、廃液沈殿槽7、廃液浄化槽8である。そこで、これらの場所を排気配管でつなぎ、排気脱臭器10を通してファンで吸引し、屋外に排気する。  In the sludge drying process, the most odor-causing substances are generated in the sludge storage silo 1, the waste liquid sedimentation tank 7, and the waste liquid purification tank 8. Therefore, these places are connected by an exhaust pipe, sucked by a fan through the exhaust deodorizer 10, and exhausted outdoors.

以上の汚泥乾燥工程で得られた汚泥乾燥物は、水分含量20%前後であった。また、燃焼カロリーは約8,000kcal/kgと高く、補助燃料として好適であると考えられる。  The dried sludge obtained in the above sludge drying process had a water content of around 20%. In addition, the burned calorie is as high as about 8,000 kcal / kg, and is considered suitable as an auxiliary fuel.

本発明における汚泥乾燥実施例のフロー図Flow chart of sludge drying example in the present invention

符号の説明Explanation of symbols

1、汚泥貯蔵サイロ
2、加水分解乾燥機
2−1、汚泥投入口
2−2、汚泥攪拌機
2−3、汚泥乾燥物搬出口
3、コンプレッサー
4、ボイラー
5、空気加熱器
6、蒸気冷却器
7、廃液沈殿槽
8、廃液浄化槽
9、処理水貯水槽
10、排気脱臭器
11、調圧弁
12、調圧弁
1, sludge storage silo 2, hydrolysis dryer 2-1, sludge inlet 2-2, sludge stirrer 2-3, sludge dried product outlet 3, compressor 4, boiler 5, air heater 6, steam cooler 7 , Waste liquid sedimentation tank 8, waste liquid purification tank 9, treated water storage tank 10, exhaust deodorizer 11, pressure regulating valve 12, pressure regulating valve

Claims (5)

下水処理過程で発生する下水汚泥や食品工場の排水処理工程で発生する汚泥(以下汚泥という)を乾燥する工程において、該汚泥を高圧、高温下におくことにより、該汚泥が含有する水分を高圧蒸気化し、該蒸気を用い、該汚泥を加水分解し、かつ酸素を用い、酸化分解する事により、該加水分解反応熱及び酸化分解反応熱を用いて該汚泥を乾燥する方法及び、該汚泥を該工程で乾燥することにより得られる乾燥物。  In the process of drying sewage sludge generated in the sewage treatment process and sludge generated in the wastewater treatment process of food factories (hereinafter referred to as sludge), the sludge is kept under high pressure and high temperature, so that the moisture contained in the sludge is increased. A method of drying the sludge using the hydrolysis reaction heat and the oxidation decomposition reaction heat by evaporating, hydrolyzing the sludge using the vapor, and using oxygen to oxidatively decompose the sludge; A dried product obtained by drying in this step. 該乾燥工程において、乾燥工程終了後減圧する際に発生する大量の排液及び排気を浄化設備導入後、該乾燥工程内に再利用することを特徴とする請求項1の方法。  2. The method according to claim 1, wherein in the drying step, a large amount of drainage and exhaust gas generated when the pressure is reduced after completion of the drying step is reused in the drying step after the introduction of purification equipment. 該加水分解における圧力が5Mpa以上100Mpa以下であり、温度が150℃以上300℃以下である請求項1の方法。  The method according to claim 1, wherein the pressure in the hydrolysis is 5 Mpa to 100 Mpa, and the temperature is 150 ° C to 300 ° C. 該汚泥を加熱する方法が加熱乾燥空気を用いることを特徴とする請求項1の方法。  The method of claim 1, wherein the method of heating the sludge uses heated and dry air. 該乾燥物の水分含有量が25%以下であり、該汚泥に比較して加水分解及び酸化分解されることにより、低分子化していることを特徴とする請求項1の乾燥物。  2. The dried product according to claim 1, wherein the dried product has a water content of 25% or less and is hydrolyzed and oxidatively decomposed as compared with the sludge, thereby reducing the molecular weight.
JP2006357226A 2006-12-15 2006-12-15 Sludge drying method and dried sludge obtained after drying Pending JP2008149304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006357226A JP2008149304A (en) 2006-12-15 2006-12-15 Sludge drying method and dried sludge obtained after drying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006357226A JP2008149304A (en) 2006-12-15 2006-12-15 Sludge drying method and dried sludge obtained after drying

Publications (1)

Publication Number Publication Date
JP2008149304A true JP2008149304A (en) 2008-07-03

Family

ID=39652079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006357226A Pending JP2008149304A (en) 2006-12-15 2006-12-15 Sludge drying method and dried sludge obtained after drying

Country Status (1)

Country Link
JP (1) JP2008149304A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557378A (en) * 2011-05-16 2012-07-11 南京鑫翔新型建筑材料有限责任公司 Sludge drying process
CN103466912A (en) * 2013-09-29 2013-12-25 江苏兆盛环保集团有限公司 Process and device for sludge pyrolysis
CN104628237A (en) * 2015-01-23 2015-05-20 广东电网有限责任公司电力科学研究院 Sludge drying incineration system based on thermal power plant
CN104803576A (en) * 2015-04-02 2015-07-29 东南大学 Steam rotating heat conduction sludge drying device
JP5865465B1 (en) * 2014-11-13 2016-02-17 大旺新洋株式会社 Sludge drying method and apparatus
JP2020157299A (en) * 2014-09-23 2020-10-01 アワマ ゲー・エム・ベー・ハーawama GmbH Wastewater treatment method and wastewater treatment apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557378A (en) * 2011-05-16 2012-07-11 南京鑫翔新型建筑材料有限责任公司 Sludge drying process
CN103466912A (en) * 2013-09-29 2013-12-25 江苏兆盛环保集团有限公司 Process and device for sludge pyrolysis
JP2020157299A (en) * 2014-09-23 2020-10-01 アワマ ゲー・エム・ベー・ハーawama GmbH Wastewater treatment method and wastewater treatment apparatus
JP7167091B2 (en) 2014-09-23 2022-11-08 アワマ ゲー・エム・ベー・ハー Wastewater treatment method and wastewater treatment equipment
JP5865465B1 (en) * 2014-11-13 2016-02-17 大旺新洋株式会社 Sludge drying method and apparatus
CN104628237A (en) * 2015-01-23 2015-05-20 广东电网有限责任公司电力科学研究院 Sludge drying incineration system based on thermal power plant
CN104803576A (en) * 2015-04-02 2015-07-29 东南大学 Steam rotating heat conduction sludge drying device

Similar Documents

Publication Publication Date Title
JP2008149304A (en) Sludge drying method and dried sludge obtained after drying
US20040168990A1 (en) Method of and arrangement for continuous hydrolysis of organic material
WO2006117934A1 (en) Organic waste disposal facility and method of disposal
JP2007203213A (en) Method and apparatus for treating highly wet waste before hydration, and dehydration system equipped with this apparatus
JP2010195994A (en) Method and apparatus for producing dechlorinated fuel
JP2005501701A (en) Method for treating waste material and treatment plant corresponding to the method
JPH0783878B2 (en) Sewage sludge treatment method
KR101496177B1 (en) Treating apparatus of organic waste and treating method for using the same
WO2015181769A1 (en) Method for transforming waste and system for performing said method
JPH09507036A (en) Evaporative concentrating and drying apparatus and method having vapor purification capability
JPH0932513A (en) Exhaust washing waste water power generation system
JP3318483B2 (en) Supercritical water oxidation method of organic sludge and organic sludge supply device used for the method
JP5127064B2 (en) Polymer wax peeling waste liquid treatment method
JP2006341168A (en) Surplus activated sludge reduction method
JP5441787B2 (en) Organic wastewater treatment method and treatment apparatus
JP2013103201A (en) Integrated treatment system of organic waste and waste water
Zhang et al. Alkali-catalyzed supercritical water gasification of sewage sludge: effect of liquid residue reuse as homogenous catalyst
JP2008214486A (en) Method and apparatus for producing carbonized fuel
JPH081198A (en) Anaerobic digestion treatment of organic matter sludge
JP3154933B2 (en) Water treatment sludge treatment method and treatment equipment
JPH08206691A (en) Treatment of sludge
JPH1080699A (en) Treatment of organic sludge
JPH02253900A (en) Treatment of sludge
JPH1057998A (en) Treatment of sludge and system therefor
CN217830024U (en) Sequencing batch alternating type hydrothermal reaction device for preparing sodium polyacrylate water treatment agent