JP2012116915A - Glass fiber-reinforced resin composition - Google Patents

Glass fiber-reinforced resin composition Download PDF

Info

Publication number
JP2012116915A
JP2012116915A JP2010266545A JP2010266545A JP2012116915A JP 2012116915 A JP2012116915 A JP 2012116915A JP 2010266545 A JP2010266545 A JP 2010266545A JP 2010266545 A JP2010266545 A JP 2010266545A JP 2012116915 A JP2012116915 A JP 2012116915A
Authority
JP
Japan
Prior art keywords
component
carbon atoms
group
glass fiber
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010266545A
Other languages
Japanese (ja)
Other versions
JP5684548B2 (en
Inventor
Maiko Murai
麻衣子 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2010266545A priority Critical patent/JP5684548B2/en
Publication of JP2012116915A publication Critical patent/JP2012116915A/en
Application granted granted Critical
Publication of JP5684548B2 publication Critical patent/JP5684548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition which has excellent mechanical strength, reduced anisotropy in a mold shrinkage, and high impact properties with a resin composition as a substrate comprising a polycarbonate resin reinforced with flat cross-sectional glass fiber.SOLUTION: The glass fiber-reinforced resin composition contains: (A) 40 to 99 pts.wt. of a resin component (A component) comprising a polycarbonate-polyorganosiloxane copolymer (A-1 component) composed of a carbonate constituting unit represented by general formula [1] and a carbonate constituting unit represented by general formula [3] and a polycarbonate resin (A-2 component) composed of the carbonate constituting unit represented by the general formula [1], wherein the weight ratio between the A-1 component and the A-2 component (A-1 component/A-2 component) is 10/90 to 100/0; and (B) 1 to 60 pts.wt. of a reinforcing filler (B component) comprising the flat cross-sectional glass fiber (B-1 component), in which the average value of the major axis in the fiber cross-section is 10 to 50 μm and the average value between the major axis and the minor axis (major axis/minor axis) is 1.5 to 8.0, and a filler (B-2 component) other than the B-1 component, wherein the weight ratio between the B-1 component and the B-2 component (B-1 component/B-2 component) is 5/95 to 100/0.

Description

本発明は、衝撃特性の改善されたガラス繊維強化樹脂組成物に関する。更に詳しくは、扁平断面ガラス繊維で強化されたポリカーボネート−オルガノシロキサン共重合樹脂を含む熱可塑性樹脂を基体とし、機械的強度に優れ、かつ成形収縮率の異方性が小さく、さらに高い衝撃特性を併せ持つガラス繊維強化樹脂組成物に関する。   The present invention relates to a glass fiber reinforced resin composition having improved impact characteristics. More specifically, a thermoplastic resin containing a polycarbonate-organosiloxane copolymer resin reinforced with flat cross-section glass fibers is used as a base, has excellent mechanical strength, and has a small anisotropy in molding shrinkage, and further has high impact characteristics. The present invention also relates to a glass fiber reinforced resin composition.

ガラス繊維で強化された熱可塑性樹脂は機械的強度、加工性に優れているため広く利用されている。特に、ポリカーボネート樹脂は、機械的強度、寸法安定性や難燃性といったその優れた特性から機械部品、自動車部品、電気・電子部品、事務機器部品などの多くの用途に用いられている。一方で、ポリカーボネート樹脂にガラス繊維を配合した樹脂組成物は機械的強度、剛性は優れるものの繊維の配向による成形収縮率の異方性が生じてしまう欠点を有している。近年のカメラ部品や事務機器部品などの精密機械部品などの成形品に用いる場合には、機械的強度、低異方性、難燃性の良好なガラス繊維強化熱可塑性樹脂が求められている。   Thermoplastic resins reinforced with glass fibers are widely used because of their excellent mechanical strength and processability. In particular, polycarbonate resins are used in many applications such as mechanical parts, automobile parts, electrical / electronic parts, and office equipment parts because of their excellent properties such as mechanical strength, dimensional stability and flame retardancy. On the other hand, although the resin composition which mix | blended glass fiber with the polycarbonate resin is excellent in mechanical strength and rigidity, it has the fault that the anisotropy of the mold shrinkage ratio by fiber orientation will arise. In recent years, when used for molded parts such as precision machine parts such as camera parts and office equipment parts, a glass fiber reinforced thermoplastic resin having good mechanical strength, low anisotropy, and flame retardancy is required.

例えば芳香族ポリカーボネート樹脂と特定の断面形状を有するガラスフィラーと各種フィラーからなる樹脂組成物(特許文献1参照)は公知である。しかしながらかかる公報は良好な機械的強度が不十分である。また特定のポリカーボネート系共重合とポリカーボネート−ポリオルガノシロキサン共重合体などと組み合わせた樹脂と扁平断面ガラス繊維からなる樹脂組成物は公知である(特許文献2参照)。しかしながらかかる公報は良好な機械的強度と難燃特性が不十分であった。   For example, a resin composition (see Patent Document 1) comprising an aromatic polycarbonate resin, a glass filler having a specific cross-sectional shape, and various fillers is known. However, such publications have insufficient good mechanical strength. Moreover, a resin composition comprising a resin combined with a specific polycarbonate copolymer and a polycarbonate-polyorganosiloxane copolymer and a flat cross-section glass fiber is known (see Patent Document 2). However, such publications have insufficient good mechanical strength and flame retardant properties.

特開2007−186571号公報JP 2007-186571 A 特開2009−280636号公報JP 2009-280636 A

上記に鑑み本発明の目的は、扁平断面ガラス繊維で強化されたポリカーボネート樹脂を含む樹脂組成物を基体として、機械的強度に優れ、成形収縮率の異方性が小さく、高い衝撃特性を有する樹脂組成物を提供することにある。本発明者は、上記目的を達成せんとして鋭意検討を重ねた結果、特定の断面形状を有するガラス繊維とポリカーボネート−ポリオルガノシロキサン共重合体樹脂を利用することにより、かかる目的を達成できることを見出し、更に鋭意検討を進め本発明を完成するに至った。   In view of the above, an object of the present invention is to use a resin composition containing a polycarbonate resin reinforced with flat cross-section glass fibers as a base, a resin having excellent mechanical strength, small anisotropy of molding shrinkage, and high impact characteristics. It is to provide a composition. As a result of earnest studies as a result of achieving the above object, the present inventors have found that such an object can be achieved by using a glass fiber having a specific cross-sectional shape and a polycarbonate-polyorganosiloxane copolymer resin, The present invention has been completed through further investigation.

本発明によれば、上記課題は、(A)下記一般式〔1〕で表されるカーボネート構成単位および下記一般式〔3〕で表されるカーボネート構成単位からなるポリカーボネート−ポリオルガノシロキサン共重合体(A−1成分)、並びに下記一般式〔1〕で表されるカーボネート構成単位からなるポリカーボネート樹脂(A−2成分)よりなり、A−1成分とA−2成分の重量比(A−1成分/A−2成分)が10/90〜100/0である樹脂成分(A成分)40〜99重量部、並びに(B)繊維断面の長径の平均値が10〜50μm、長径と短径の比(長径/短径)の平均値が1.5〜8.0である扁平断面ガラス繊維(B−1成分)およびB−1成分以外の充填材(B−2成分)よりなり、B−1成分とB−2成分の重量比(B−1成分/B−2成分)が5/95〜100/0である強化充填材(B成分)1〜60重量部を含有するガラス繊維強化樹脂組成物により達成される。   According to the present invention, the above-described problem is solved by: (A) a polycarbonate-polyorganosiloxane copolymer comprising a carbonate structural unit represented by the following general formula [1] and a carbonate structural unit represented by the following general formula [3]. (A-1 component) and a polycarbonate resin (A-2 component) comprising a carbonate structural unit represented by the following general formula [1], and the weight ratio of the A-1 component to the A-2 component (A-1 (Component / A-2 component) is 10/90 to 100/0 resin component (component A) 40 to 99 parts by weight, and (B) the average value of the major axis of the fiber cross section is 10 to 50 μm, the major axis and the minor axis It consists of a flat cross-section glass fiber (B-1 component) having an average ratio (major axis / minor axis) of 1.5 to 8.0 and a filler (B-2 component) other than the B-1 component, and B- Weight ratio of 1 component to B-2 component (B-1 component Is accomplished by component B-2) is 5/95 to / 0 a is reinforcing filler (B component) glass fiber reinforced resin composition containing 1 to 60 parts by weight.

Figure 2012116915
[上記一般式〔1〕において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式〔2〕で表される基からなる群より選ばれる少なくとも一つの基である。]
Figure 2012116915
[In General Formula [1], R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or 6 to 6 carbon atoms. 20 cycloalkyl groups, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, aryl groups having 3 to 14 carbon atoms, aryloxy groups having 3 to 14 carbon atoms, carbon atoms Represents a group selected from the group consisting of an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group, and a carboxyl group. E and f are each an integer of 1 to 4, and W is a single bond or at least one group selected from the group consisting of groups represented by the following general formula [2]. . ]

Figure 2012116915
[上記一般式〔2〕においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。]
Figure 2012116915
[In the above general formula [2], R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, carbon Represents a group selected from the group consisting of an aryl group having 3 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, and R 19 and R 20 each independently represent a hydrogen atom, a halogen atom, or a carbon atom having 1 to 18 carbon atoms. Alkyl groups, alkoxy groups having 1 to 10 carbon atoms, cycloalkyl groups having 6 to 20 carbon atoms, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, and 3 carbon atoms. -14 aryl group, aryloxy group having 6 to 10 carbon atoms, aralkyl group having 7 to 20 carbon atoms, aralkyloxy group having 7 to 20 carbon atoms, nitro group, aldehyde group, cyano group and It represents a group selected from the group consisting of carboxyl groups, and when there are a plurality thereof, they may be the same or different, g is an integer of 1 to 10, and h is an integer of 4 to 7. ]

Figure 2012116915
[上記一般式〔3〕において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは300未満の自然数である。Xは炭素原子数2〜8の二価脂肪族基である。]
Figure 2012116915
[In the above general formula [3], R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a substitution having 6 to 12 carbon atoms. Or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number Q is 0 or a natural number, and p + q is a natural number less than 300. X is a divalent aliphatic group having 2 to 8 carbon atoms. ]

以下、更に本発明の詳細について説明する。
(A成分)
(A−1成分:ポリカーボネート−ポリオルガノシロキサン共重合体)
本発明のA−1成分として使用されるポリカーボネート−ポリオルガノシロキサン共重合体とは上記一般式〔1〕で表されるカーボネート構成単位および上記一般式〔3〕で表されるカーボネート構成単位からなるポリカーボネート共重合体である。
Hereinafter, the details of the present invention will be described.
(A component)
(A-1 component: Polycarbonate-polyorganosiloxane copolymer)
The polycarbonate-polyorganosiloxane copolymer used as the component A-1 of the present invention comprises a carbonate structural unit represented by the above general formula [1] and a carbonate structural unit represented by the above general formula [3]. Polycarbonate copolymer.

上記一般式〔1〕で表されるカーボネート構成単位を誘導する二価フェノール(I)としては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、および1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。   Examples of the dihydric phenol (I) for deriving the carbonate structural unit represented by the general formula [1] include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis ( 4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methyl) Phenyl) propane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3′-biphenyl) propane, 2,2-bis ( 4-hydroxy-3-isopropylphenyl) propane, 2,2-bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (4 Hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxy) Phenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 9,9 -Bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) ) Cyclopentane, 4,4'-dihydroxydiphenyl ether, 4,4'- Hydroxy-3,3′-dimethyldiphenyl ether, 4,4′-sulfonyldiphenol, 4,4′-dihydroxydiphenyl sulfoxide, 4,4′-dihydroxydiphenyl sulfide, 2,2′-dimethyl-4,4 '-Sulfonyldiphenol, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 2,2'-diphenyl-4,4'- Sulfonyldiphenol, 4,4′-dihydroxy-3,3′-diphenyldiphenyl sulfoxide, 4,4′-dihydroxy-3,3′-diphenyldiphenyl sulfide, 1,3-bis {2- (4-hydroxyphenyl) Propyl} benzene, 1,4-bis {2- (4-hydroxyphenyl) propyl} Benzene, 1,4-bis (4-hydroxyphenyl) cyclohexane, 1,3-bis (4-hydroxyphenyl) cyclohexane, 4,8-bis (4-hydroxyphenyl) tricyclo [5.2.1.02,6 Decane, 4,4 ′-(1,3-adamantanediyl) diphenol, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, and the like.

なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、および1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’−スルホニルジフェノール、および9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。   Among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4′-sulfonyldiphenol, 2,2′-dimethyl- 4,4′-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, and 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene is preferred, especially 2,2-bis (4-hydroxyphenyl) propane, 1,1-biphenyl. (4-hydroxyphenyl) cyclohexane (BPZ), 4,4'-sulfonyl diphenol, and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is preferred. Among them, 2,2-bis (4-hydroxyphenyl) propane having excellent strength and good durability is most preferable. Moreover, you may use these individually or in combination of 2 or more types.

上記一般式〔3〕で表されるカーボネート構成単位において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、好ましくは水素原子、炭素数1〜6のアルキル基、又は炭素数6〜12の置換若しくは無置換のアリール基であり、水素原子、炭素数1〜6のアルキル基、又はフェニル基が特に好ましい。 R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、好ましくは水素原子、炭素原子数1〜10のアルキル基であり、水素原子、炭素原子数1〜4のアルキル基が特に好ましい。上記式〔3〕で表されるカーボネート構成単位を誘導するジヒドロキシアリール末端ポリジオルガノシロキサン(II)としては、例えば下記一般式(I)に示すような化合物が好適に用いられる。 In the carbonate structural unit represented by the general formula [3], R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or carbon. A substituted or unsubstituted aryl group having 6 to 12 carbon atoms, preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, a hydrogen atom, carbon An alkyl group of 1 to 6 or a phenyl group is particularly preferable. R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, preferably a hydrogen atom or 1 to 10 carbon atoms. An alkyl group, particularly preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. As the dihydroxyaryl-terminated polydiorganosiloxane (II) for deriving the carbonate structural unit represented by the above formula [3], for example, a compound represented by the following general formula (I) is preferably used.

Figure 2012116915
Figure 2012116915

ジヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素−炭素結合を有するフェノール類、好適にはビニルフェノール、2−アリルフェノール、イソプロペニルフェノール、2−メトキシ−4−アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2−アリルフェノール)末端ポリジオルガノシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2−アリルフェノール)末端ポリジメチルシロキサン、および(2−メトキシ−4−アリルフェノール)末端ポリジメチルシロキサンが好ましい。   The dihydroxyaryl-terminated polydiorganosiloxane (II) is a phenol having an olefinically unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol, or 2-methoxy-4-allylphenol. It is easily produced by hydrosilylation reaction at the end of a polysiloxane chain having a degree of polymerization of. Of these, (2-allylphenol) -terminated polydiorganosiloxane, (2-methoxy-4-allylphenol) -terminated polydiorganosiloxane are preferred, and (2-allylphenol) -terminated polydimethylsiloxane and (2-methoxy-) are particularly preferred. 4-Allylphenol) -terminated polydimethylsiloxane is preferred.

ここで、p+q(ジオルガノシロキサン重合度)は好ましくは2〜290、より好ましくは5〜100である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形品の表面外観に優れる。上記下限以上の共重合体は、凝集力の低いポリジオルガノシロキサン部位の導入によるレオロジー特性の改質効果が高く、構造粘性指数を高くしやすい。その結果、剪断流動時の高い流動性を保持しつつ燃焼時のドリップが抑制された難燃性の高い樹脂成型品を得ることができる。かかる上限以下の共重合体は、ポリジオルガノシロキサンドメインの平均サイズと規格化分散を小さくしやすい。その結果優れた表面外観を有する樹脂成形品を得ることができる。上記上限以下のポリジオルガノシロキサン単位は、その単位重量あたりのモル数が増加し、ポリカーボネート中に該単位が均等に組み込まれやすくなる。ジオルガノシロキサン重合度が大きいと、ポリジオルガノシロキサン単位のポリカーボネート中への組み込みが不均等になるとともに、ポリマー分子中のポリジオルガノシロキサン単位の割合が増加するため、該単位を含むポリカーボネートと、含まないポリカーボネートとが生じやすく、かつ相互の相溶性が低下しやすくなる。その結果として大きなポリジオルガノシロキサンドメインが生じやすくなる。一方で、流動性、耐衝撃性、および難燃性の観点からは、ポリジオルガノシロキサンドメインがある程度大きい方が有利であることから、上記の如く好ましい重合度の範囲が存在する。   Here, p + q (degree of diorganosiloxane polymerization) is preferably 2 to 290, more preferably 5 to 100. Above the lower limit of the preferred range, the impact resistance and flame retardancy are excellent, and below the upper limit of the suitable range, the surface appearance of the molded product is excellent. A copolymer having the above lower limit or more has a high effect of modifying rheological properties due to the introduction of a polydiorganosiloxane moiety having a low cohesive force, and tends to increase the structural viscosity index. As a result, it is possible to obtain a highly flame-retardant resin molded article in which drip during combustion is suppressed while maintaining high fluidity during shear flow. Such a copolymer below the upper limit tends to reduce the average size and normalized dispersion of the polydiorganosiloxane domain. As a result, a resin molded product having an excellent surface appearance can be obtained. The number of moles per unit weight of the polydiorganosiloxane unit below the upper limit is increased, and the unit is easily incorporated into the polycarbonate evenly. When the degree of polymerization of the diorganosiloxane is large, the incorporation of polydiorganosiloxane units into the polycarbonate becomes uneven and the proportion of polydiorganosiloxane units in the polymer molecule increases. Polycarbonate is likely to occur, and the compatibility with each other tends to decrease. As a result, large polydiorganosiloxane domains are likely to occur. On the other hand, from the viewpoint of fluidity, impact resistance, and flame retardancy, it is advantageous that the polydiorganosiloxane domain is somewhat large, and therefore there is a preferred range of polymerization degree as described above.

本発明のA−1成分として使用されるポリカーボネート−ポリジオルガノシロキサン共重合体全重量に占めるポリジオルガノシロキサン成分含有量は0.1〜40重量%が好ましい。かかるポリジオルガノシロキサン成分含有量はより好ましくは0.5〜20重量%、さらに好ましくは1〜15重量%、最も好ましくは2〜10重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい優れた表面外観が得られやすい。なお、かかるジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、H−NMR測定により算出することが可能である。 The polydiorganosiloxane component content in the total weight of the polycarbonate-polydiorganosiloxane copolymer used as the component A-1 of the present invention is preferably 0.1 to 40% by weight. The polydiorganosiloxane component content is more preferably 0.5 to 20% by weight, further preferably 1 to 15% by weight, and most preferably 2 to 10% by weight. Above the lower limit of the preferable range, the impact resistance and flame retardancy are excellent, and when it is lower than the upper limit of the preferable range, an excellent surface appearance that is hardly affected by the molding conditions is easily obtained. Such diorganosiloxane polymerization degree and polydiorganosiloxane content can be calculated by 1 H-NMR measurement.

本発明において、上記一般式〔3〕で表されるカーボネート構成単位を誘導するジヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。また、本発明の妨げにならない範囲で、上記一般式〔1〕及び〔3〕以外のカーボネート構成単位をA−1成分の全重量に対して10重量%以下の範囲で併用することもできる。   In the present invention, the dihydroxyaryl-terminated polydiorganosiloxane (II) for deriving the carbonate constituent unit represented by the general formula [3] may be used alone or in combination of two or more. Moreover, the carbonate structural unit other than the general formulas [1] and [3] can be used in combination within a range of 10% by weight or less with respect to the total weight of the component A-1 within the range not hindering the present invention.

次にポリカーボネート−ポリジオルガノシロキサン共重合体の製造方法について以下に説明する。
あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中において、二価フェノール(I)と、ホスゲンや二価フェノール(I)のクロロホルメート等のクロロホルメート形成性化合物との反応により、二価フェノール(I)のクロロホルメートおよび/または末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーを含むクロロホルメート化合物の混合溶液を調製する。クロロホルメート形成性化合物としてはホスゲンが好適である。
Next, a method for producing a polycarbonate-polydiorganosiloxane copolymer will be described below.
By reaction of dihydric phenol (I) with a chloroformate-forming compound such as chloroformate of phosgene or dihydric phenol (I) in a mixture of an organic solvent insoluble in water and an aqueous alkali solution in advance. A mixed solution of a chloroformate compound of divalent phenol (I) and / or a carbonate oligomer of dihydric phenol (I) having a terminal chloroformate group is prepared. As the chloroformate-forming compound, phosgene is preferred.

二価フェノール(I)からのクロロホルメート化合物を生成するにあたり、上記一般式〔1〕で表されるカーボネート構成単位を誘導する二価フェノール(I)の全量を一度にクロロホルメート化合物としてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。   In producing the chloroformate compound from the dihydric phenol (I), all the dihydric phenol (I) derived from the carbonate structural unit represented by the general formula [1] can be converted to the chloroformate compound at once. Alternatively, a part thereof may be added as a reaction raw material to a subsequent interfacial polycondensation reaction as a post-added monomer. The post-added monomer is added to allow the subsequent polycondensation reaction to proceed rapidly, and it is not necessary to add it when it is not necessary.

このクロロホルメート化合物生成反応の方法は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。更に、所望に応じ、亜硫酸ナトリウム、およびハイドロサルファイドなどの酸化防止剤を少量添加してもよく、添加することが好ましい。   The method for this chloroformate compound formation reaction is not particularly limited, but usually a method of carrying out in a solvent in the presence of an acid binder is preferred. Furthermore, if desired, a small amount of an antioxidant such as sodium sulfite and hydrosulfide may be added, and it is preferable to add them.

クロロホルメート形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、好適なクロロホルメート形成性化合物であるホスゲンを使用する場合、ガス化したホスゲンを反応系に吹き込む方法が好適に採用できる。   The use ratio of the chloroformate-forming compound may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction. Moreover, when using the phosgene which is a suitable chloroformate formation compound, the method of blowing gasified phosgene into a reaction system can be employ | adopted suitably.

前記酸結合剤としては、例えば、水酸化ナトリウム、および水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、および炭酸カリウム等のアルカリ金属炭酸塩、並びにピリジンの如き有機塩基、あるいはこれらの混合物などが用いられる。   Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. Is used.

酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、二価フェノール(I)のクロロホルメート化合物の形成に使用する二価フェノール(I)1モルあたり(通常1モルは2当量に相当)、2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。   The use ratio of the acid binder may be appropriately determined in consideration of the stoichiometric ratio (equivalent) of the reaction as described above. Specifically, 2 equivalents or slightly more than 2 equivalents per mole of dihydric phenol (I) used for forming the chloroformate compound of dihydric phenol (I) (usually 1 mole corresponds to 2 equivalents). It is preferable to use an acid binder.

前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレンの如き炭化水素溶媒、並びに、塩化メチレンおよびクロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレンの如きハロゲン化炭化水素溶媒が好適に用いられる。   As said solvent, what is necessary is just to use a solvent inert to various reaction, such as what is used for manufacture of a well-known polycarbonate, individually or as a mixed solvent. Representative examples include hydrocarbon solvents such as xylene, and halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene. In particular, a halogenated hydrocarbon solvent such as methylene chloride is preferably used.

クロロホルメート化合物の生成反応における圧力は特に制限はなく、常圧、加圧、もしくは減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、反応に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2〜10時間で行われる。
クロロホルメート化合物の生成反応におけるpH範囲は、公知の界面反応条件が利用でき、pHは通常10以上に調製される。
The pressure in the formation reaction of the chloroformate compound is not particularly limited and may be any of normal pressure, pressurization, or reduced pressure, but it is usually advantageous to carry out the reaction under normal pressure. The reaction temperature is selected from the range of -20 to 50 ° C, and in many cases, heat is generated with the reaction, so it is desirable to cool with water or ice. Although the reaction time depends on other conditions and cannot be defined unconditionally, it is usually carried out in 0.2 to 10 hours.
As the pH range in the formation reaction of the chloroformate compound, known interfacial reaction conditions can be used, and the pH is usually adjusted to 10 or more.

本発明のA−1成分として使用されるポリカーボネート共重合体の製造においては、このようにして二価フェノール(I)のクロロホルメートおよび末端クロロホルメート基を有する二価フェノール(I)のカーボネートオリゴマーを含むクロロホルメート化合物の混合溶液を調整した後、該混合溶液を攪拌しながら一般式〔3〕で表わされるカーボネート構成単位を誘導するジヒドロキシアリール末端ポリジオルガノシロキサン(II)を、該混合溶液の調整にあたり仕込まれた二価フェノール(I)の量1モルあたり、0.01モル/min以下の速度で加え、該ジヒドロキシアリール末端ポリジオルガノシロキサン(II)と該クロロホーメート化合物とを界面重縮合させることにより、ポリカーボネート−ポリジオルガノシロキサン共重合体を得る。   In the production of the polycarbonate copolymer used as the component A-1 of the present invention, the dihydric phenol (I) chloroformate and the dihydric phenol (I) carbonate having terminal chloroformate groups are thus obtained. After preparing the mixed solution of the chloroformate compound containing the oligomer, the dihydroxyaryl-terminated polydiorganosiloxane (II) for deriving the carbonate constituent unit represented by the general formula [3] while stirring the mixed solution is mixed with the mixed solution. Is added at a rate of 0.01 mol / min or less per 1 mol of the dihydric phenol (I) charged for the preparation of the dihydroxyaryl-terminated polydiorganosiloxane (II) and the chloroformate compound. Polycarbonate-polydiorganosiloxane by condensation To obtain a polymer.

本発明のA−1成分として用いられるポリカーボネート共重合体は、分岐化剤を二価フェノール系化合物と併用して分岐化ポリカーボネート共重合体とすることができる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。   The polycarbonate copolymer used as the component A-1 of the present invention can be made into a branched polycarbonate copolymer by using a branching agent in combination with a dihydric phenol compound. Examples of the trifunctional or higher polyfunctional aromatic compound used in the branched polycarbonate resin include phloroglucin, phloroglucid, or 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2, 2 , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ Trisphenol such as 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol, tetra (4-hydride) Loxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acids Among them, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable. 1-Tris (4-hydroxyphenyl) ethane is preferred.

かかる分岐化ポリカーボネート共重合体の製造方法は、クロロホルメート化合物の生成反応時にその混合溶液中に分岐化剤が含まれる方法であっても、該生成反応終了後の界面重縮合反応時に分岐化剤が添加される方法であってもよい。分岐化剤由来のカーボネート構成単位の割合は、該共重合体を構成するカーボネート構成単位全量中、好ましくは0.005〜1.5モル%、より好ましくは0.01〜1.2モル%、特に好ましくは0.05〜1.0モル%である。なお、かかる分岐構造量についてはH−NMR測定により算出することが可能である。 Even if the branched polycarbonate copolymer is produced by the interfacial polycondensation reaction after the completion of the production reaction, the branched solution may contain a branching agent in the mixed solution during the production reaction of the chloroformate compound. It may be a method in which an agent is added. The proportion of the carbonate constituent unit derived from the branching agent is preferably 0.005 to 1.5 mol%, more preferably 0.01 to 1.2 mol% in the total amount of carbonate constituent units constituting the copolymer. Especially preferably, it is 0.05-1.0 mol%. Such a branched structure amount can be calculated by 1 H-NMR measurement.

重縮合反応における系内の圧力は、減圧、常圧、もしくは加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5〜10時間で行われる。   The pressure in the system in the polycondensation reaction can be any of reduced pressure, normal pressure, or increased pressure, but can usually be suitably performed at normal pressure or about the pressure of the reaction system. The reaction temperature is selected from the range of −20 to 50 ° C., and in many cases, heat is generated with the polymerization, so it is desirable to cool with water or ice. Since the reaction time varies depending on other conditions such as the reaction temperature, it cannot be generally specified, but it is usually performed in 0.5 to 10 hours.

場合により、得られたポリカーボネート共重合体に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート共重合体として取得することもできる。
得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート−ポリジオルガノシロキサン共重合体として回収することができる。
In some cases, the obtained polycarbonate copolymer is appropriately subjected to physical treatment (mixing, fractionation, etc.) and / or chemical treatment (polymer reaction, crosslinking treatment, partial decomposition treatment, etc.) to obtain a desired reduced viscosity [η SP / C] can also be obtained as a polycarbonate copolymer.
The obtained reaction product (crude product) can be recovered as a polycarbonate-polydiorganosiloxane copolymer having a desired purity (purity) by performing various post-treatments such as a known separation and purification method.

ポリカーボネート樹脂の溶融流動特性を特徴付ける指標として構造粘性指数が用いられ、下記式(1)で表される。

Figure 2012116915
The structural viscosity index is used as an index characterizing the melt flow characteristics of the polycarbonate resin, and is represented by the following formula (1).
Figure 2012116915

上式(1)において、Dは剪断速度(1/sec)、aは定数、σは剪断応力(Pa)、Nは構造粘性指数である。この構造粘性指数は、ISO11443に準拠して測定される。構造粘性指数は成形加工における樹脂の流動性の指標となるとともに、燃焼時の滴下防止能の指標となりうる。N=1のときはニュートン流動性を示し、Nが大きくなるほど非ニュートン流動性が大きくなる。この構造粘性指数が高い場合、樹脂は溶融状態における粘度が高いため燃焼時に滴下しにくくなり、剪断速度が高くなると粘度が低下するため成形加工性に優れる。本発明のA−1成分として用いられるポリカーボネート共重合体はNが1.60〜2.50の値を示すものが好ましく、より好ましくは1.60〜2.30であり、さらに好ましくは1.65〜2.30である。Nが1.60以上の共重合体は燃焼時の火種の滴下が抑制され優れた難燃性を発現し、Nが2.50以下の共重合体は剪断粘度が低く成形加工性に優れるため好ましい。   In the above formula (1), D is a shear rate (1 / sec), a is a constant, σ is a shear stress (Pa), and N is a structural viscosity index. This structural viscosity index is measured according to ISO11443. The structural viscosity index can be an index of resin fluidity in molding and can be an index of anti-drip ability during combustion. When N = 1, Newtonian fluidity is exhibited, and as N increases, non-Newtonian fluidity increases. When this structural viscosity index is high, the resin has a high viscosity in a molten state, so that the resin is difficult to dripping during combustion, and when the shear rate is high, the viscosity is lowered, and thus the molding processability is excellent. The polycarbonate copolymer used as the component A-1 of the present invention preferably has a value of N of 1.60 to 2.50, more preferably 1.60 to 2.30, and even more preferably 1. 65 to 2.30. Copolymers with N of 1.60 or more exhibit excellent flame retardancy by suppressing dripping of fire types during combustion, and copolymers with N of 2.50 or less have low shear viscosity and excellent moldability. preferable.

通常、樹脂の粘度平均分子量(Mv)が高いほど構造粘性指数が高くなるが、芳香族ポリカーボネート樹脂は粘度平均分子量が高くなるにしたがい流動性が低下するため好ましくない。本発明のA−1成分として用いられるポリカーボネート共重合体の粘度平均分子量は好ましくは1.6×10〜3.0×10であり、より好ましくは1.6×10〜2.5×10、更に好ましくは1.7×10〜2.4×10である。かかる好適な範囲の下限以上であれば、多くの分野において実用上の機械的強度が得られ、かかる上限以下であれば高剪断速度における剪断粘度が低く、各種成形法、特に射出成形において好適である。 Usually, the higher the viscosity average molecular weight (Mv) of the resin, the higher the structural viscosity index, but the aromatic polycarbonate resin is not preferable because the fluidity decreases as the viscosity average molecular weight increases. The viscosity average molecular weight of the polycarbonate copolymer used as the A-1 component of the present invention is preferably 1.6 × 10 4 to 3.0 × 10 4 , more preferably 1.6 × 10 4 to 2.5. × 10 4, more preferably from 1.7 × 10 4 ~2.4 × 10 4 . If it is above the lower limit of this preferred range, practical mechanical strength can be obtained in many fields, and if it is below this upper limit, the shear viscosity at a high shear rate is low, which is suitable for various molding methods, particularly injection molding. is there.

尚、本発明のA−1成分として用いられるポリカーボネート共重合体の粘度平均分子量の算出は次の要領で行なわれる。まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート共重合体0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出する。
ηSP/c=[η]+0.45×[η]2 c (但し[η]は極限粘度)
[η]=1.23×10−4 Mv0.83
c=0.7
In addition, calculation of the viscosity average molecular weight of the polycarbonate copolymer used as A-1 component of this invention is performed in the following way. First, the specific viscosity (η SP ) calculated by the following formula was determined using an Ostwald viscometer from a solution in which 0.7 g of a polycarbonate copolymer was dissolved in 100 ml of methylene chloride at 20 ° C.,
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
From the obtained specific viscosity (η SP ), the viscosity average molecular weight Mv is calculated by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 Mv 0.83
c = 0.7

本発明のA−1成分として用いられるポリカーボネート−ポリオルガノシロキサン共重合体は、良好な剪断流動性を維持しながら優れた難燃性を有しており、良好な成形加工性と溶融粘度の増大による滴下防止効果という両立し難い特性を両立するものである点において特徴的である。この驚くべき特徴は、ポリカーボネート−ポリオルガノシロキサン共重合体の構造粘性指数が高く、同等粘度平均分子量のポリカーボネートホモポリマーと比較して、高剪断速度における粘度が同等であるのに対して低剪断速度における粘度が著しく高い現象に起因していると考えられる。この溶融粘度の剪断速度依存性はポリカーボネート−ポリオルガノシロキサン共重合体を構成するポリジオルガノシロキサン成分の重合度や含有量、さらには共重合体の製造方法により大きく異なり、本発明は良好な成形加工性と溶融粘度の増大による滴下防止効果を両立する範囲を特定した点において極めて有用である。   The polycarbonate-polyorganosiloxane copolymer used as the A-1 component of the present invention has excellent flame retardancy while maintaining good shear fluidity, and good moldability and increased melt viscosity. It is characteristic in that it is compatible with the characteristics that are difficult to achieve, such as the anti-dripping effect. This surprising feature is that the polycarbonate-polyorganosiloxane copolymer has a high structural viscosity index, which is comparable in viscosity at high shear rates to low shear rates compared to polycarbonate homopolymers of equivalent viscosity average molecular weight. It is thought that this is due to a phenomenon in which the viscosity at is extremely high. The shear rate dependence of the melt viscosity varies greatly depending on the polymerization degree and content of the polydiorganosiloxane component constituting the polycarbonate-polyorganosiloxane copolymer, and further the method for producing the copolymer. It is extremely useful in that it has specified a range that achieves both the anti-drip effect due to the increase in melt viscosity and melt viscosity.

(A−2成分:ポリカーボネート樹脂)
本発明のA−2成分として使用されるポリカーボネート樹脂は、上記一般式〔1〕で表されるカーボネート構成単位からなるポリカーボネート樹脂である。
上記一般式〔1〕で表されるカーボネート構成単位を誘導する二価フェノール(I)としては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、および1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、および1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’−スルホニルジフェノール、および9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。
(A-2 component: polycarbonate resin)
The polycarbonate resin used as the component A-2 of the present invention is a polycarbonate resin composed of a carbonate constituent unit represented by the above general formula [1].
Examples of the dihydric phenol (I) for deriving the carbonate structural unit represented by the general formula [1] include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis ( 4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methyl) Phenyl) propane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3′-biphenyl) propane, 2,2-bis ( 4-hydroxy-3-isopropylphenyl) propane, 2,2-bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (4- Droxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-) Hydroxyphenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxy) Phenyl) cyclopentane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydride Xy-3,3'-dimethyldiphenyl ether, 4,4'-sulfonyldiphenol, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfide, 2,2'-dimethyl-4,4 '-Sulfonyldiphenol, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 2,2'-diphenyl-4,4'- Sulfonyldiphenol, 4,4′-dihydroxy-3,3′-diphenyldiphenyl sulfoxide, 4,4′-dihydroxy-3,3′-diphenyldiphenyl sulfide, 1,3-bis {2- (4-hydroxyphenyl) Propyl} benzene, 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis (4 Hydroxyphenyl) cyclohexane, 1,3-bis (4-hydroxyphenyl) cyclohexane, 4,8-bis (4-hydroxyphenyl) tricyclo [5.2.1.02,6] decane, 4,4 ′-(1 , 3-adamantanediyl) diphenol, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, and the like. Among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4′-sulfonyldiphenol, 2,2′-dimethyl- 4,4′-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, and 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene is preferred, especially 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis ( - hydroxyphenyl) cyclohexane (BPZ), 4,4'-sulfonyl diphenol, and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is preferred. Among them, 2,2-bis (4-hydroxyphenyl) propane having excellent strength and good durability is most preferable. Moreover, you may use these individually or in combination of 2 or more types.

A−2成分であるポリカーボネート樹脂の分子量は特定されないが、粘度平均分子量が10,000未満であると高温特性等が低下し、50,000を超えると成形加工性が低下するようになるので、粘度平均分子量が10,000〜50,000のものが好ましく、16,000〜30,000のものがより好ましく、さらに好ましくは18,000〜28,000、最も好ましくは19,000〜26、000である。また、ポリカーボネート樹脂の2種以上を混合しても差し支えない。この場合2種以上を混合した混合物の粘度平均分子量が好ましい範囲であれば粘度平均分子量が上記範囲外であるポリカーボネート樹脂とを混合することも当然に可能である。
本発明のA−2成分であるポリカーボネート樹脂は、実質的にハロゲン原子を含まないものであることが好ましい。実質的にハロゲン原子を含まないとは、分子中にハロゲン置換二価フェノールなどを含まないことを示し、ポリカーボネート樹脂の製造方法において残留する微量の塩素系溶媒、カーボネート前駆体他までも対象とするものではない。
Although the molecular weight of the polycarbonate resin as the component A-2 is not specified, if the viscosity average molecular weight is less than 10,000, the high temperature characteristics and the like are lowered, and if it exceeds 50,000, the moldability is lowered. The viscosity average molecular weight is preferably 10,000 to 50,000, more preferably 16,000 to 30,000, still more preferably 18,000 to 28,000, most preferably 19,000 to 26,000. It is. Further, two or more kinds of polycarbonate resins may be mixed. In this case, as long as the viscosity average molecular weight of the mixture obtained by mixing two or more kinds is in a preferable range, it is naturally possible to mix with a polycarbonate resin having a viscosity average molecular weight outside the above range.
The polycarbonate resin which is the component A-2 of the present invention is preferably substantially free of halogen atoms. The phrase “substantially free of halogen atoms” means that the molecule does not contain halogen-substituted dihydric phenols, etc., and also covers trace amounts of chlorinated solvents, carbonate precursors, etc. that remain in the polycarbonate resin production method. It is not a thing.

本発明の樹脂成分(A成分)である、上記一般式〔1〕で表されるカーボネート構成単位および上記一般式〔3〕で表されるカーボネート構成単位からなるポリカーボネート−ポリオルガノシロキサン共重合体(A−1成分)と上記一般式〔1〕で表されるカーボネート構成単位からなるポリカーボネート樹脂(A−2成分)の重量比は10/90〜100/0であり、好ましくは20/80〜100/0、より好ましくは50/50〜100/0であり、さらに好ましくは70/30〜100/0である。A−1成分の含有量が10重量%未満である場合、衝撃特性および難燃性が低下する。   A polycarbonate-polyorganosiloxane copolymer comprising a carbonate constituent unit represented by the general formula [1] and a carbonate constituent unit represented by the general formula [3], which is the resin component (component A) of the present invention ( (A-1 component) and the polycarbonate resin (A-2 component) which consists of a carbonate structural unit represented by the general formula [1] is 10/90 to 100/0, preferably 20/80 to 100. / 0, more preferably 50/50 to 100/0, still more preferably 70/30 to 100/0. When the content of the A-1 component is less than 10% by weight, impact characteristics and flame retardancy are deteriorated.

(B成分:強化充填材)
(B−1成分:扁平断面ガラス繊維)
本発明のB−1成分として使用されるガラス繊維は、扁平断面ガラス繊維である。本発明の扁平断面ガラス繊維としては、繊維断面の長径の平均値が10〜50μm、好ましくは15〜40μm、より好ましくは20〜35μmで、長径と短径の比(長径/短径)の平均値が1.5〜8.0、好ましくは2.0〜6.0、更に好ましくは2.5〜5.0であるガラス繊維である。長径と短径の比の平均値がこの範囲の扁平断面ガラス繊維を使用した場合、1.5未満の非円形断面繊維を使用した場合に比べ、異方性及び外観が大きく改良され、また、難燃剤と併用した場合、難燃性を大きく向上させることができる。さらに、本願発明のA−1成分であるポリカーボネート−ポリオルガノシロキサン共重合体と共に使用した場合、他のポリカーボネート樹脂との併用に比べ機械的強度に優れ、成形収縮率の異方性が小さく、かつ高い衝撃特性を有する樹脂組成物を提供することができる。この難燃性の向上は成形品表面において、扁平断面ガラス繊維の長辺面が成形品表面と平行に配向することにより、燃焼時の樹脂炭化皮膜による酸素遮断効果に加え扁平断面ガラス繊維による酸素遮断効果が円形断面繊維に比べ、より有効に作用するためと考えられる。また扁平断面形状としては扁平の他、楕円状、まゆ状、および三つ葉状、あるいはこれに類する形状の非円形断面形状が含まれる。なかでも機械的強度、低異方性の改良の点から扁平形状が好ましい。また、扁平断面ガラス繊維の平均繊維長と平均繊維径の比(アスペクト比)は好ましく2〜120、より好ましくは2.5〜70、更に好ましくは3〜50であり、繊維長と平均繊維径の比が2未満であると機械的強度の向上効果が小さく、繊維長と平均繊維径の比が120を超えると異方性が大きくなる他、成形品外観も悪化する場合があり、好ましくない。かかる扁平断面ガラス繊維の平均繊維径とは、扁平断面形状を同一面積の真円形に換算したときの数平均繊維径をいう。また平均繊維長とは、本発明のガラス繊維強化樹脂組成物中における数平均繊維長をいう。尚、かかる数平均繊維長は、成形品の高温灰化、溶剤による溶解、並びに薬品による分解等の処理で採取される充填材の残さを光学顕微鏡観察した画像から画像解析装置により算出される値である。また、かかる値の算出に際しては繊維径を目安にそれ以下の長さのものはカウントしない方法による値である。
(B component: reinforcing filler)
(B-1 component: flat cross-section glass fiber)
The glass fiber used as B-1 component of this invention is a flat cross-section glass fiber. The flat cross-section glass fiber of the present invention has an average value of the major axis of the fiber cross section of 10 to 50 μm, preferably 15 to 40 μm, more preferably 20 to 35 μm, and an average ratio of major axis to minor axis (major axis / minor axis). A glass fiber having a value of 1.5 to 8.0, preferably 2.0 to 6.0, and more preferably 2.5 to 5.0. When using a flat cross-section glass fiber having an average ratio of the major axis to the minor axis within this range, the anisotropy and appearance are greatly improved compared to the case of using a non-circular cross-section fiber of less than 1.5. When used in combination with a flame retardant, flame retardancy can be greatly improved. Furthermore, when used together with the polycarbonate-polyorganosiloxane copolymer which is the component A-1 of the present invention, it has excellent mechanical strength compared to the combined use with other polycarbonate resins, and has a small anisotropy of molding shrinkage, and A resin composition having high impact characteristics can be provided. This improvement in flame retardancy is achieved by aligning the long side surface of the flat cross-section glass fiber parallel to the surface of the molded product on the surface of the molded product. It is considered that the blocking effect works more effectively than the circular cross-section fiber. In addition to the flat shape, the flat cross-sectional shape includes an elliptical shape, an eyebrow shape, a trefoil shape, or a similar non-circular cross-sectional shape. Of these, a flat shape is preferable from the viewpoint of improving mechanical strength and low anisotropy. The ratio of the average fiber length to the average fiber diameter (aspect ratio) of the flat cross-section glass fiber is preferably 2 to 120, more preferably 2.5 to 70, still more preferably 3 to 50, and the fiber length and the average fiber diameter. If the ratio is less than 2, the effect of improving the mechanical strength is small, and if the ratio between the fiber length and the average fiber diameter exceeds 120, the anisotropy increases and the appearance of the molded product may be deteriorated. . The average fiber diameter of such flat cross-section glass fibers refers to the number average fiber diameter when the flat cross-sectional shape is converted to a true circle of the same area. The average fiber length refers to the number average fiber length in the glass fiber reinforced resin composition of the present invention. The number-average fiber length is a value calculated by an image analyzer from an image obtained by observing the residue of the filler collected by processing such as high-temperature ashing of a molded product, dissolution with a solvent, and decomposition with a chemical, using an optical microscope. It is. Further, when calculating such a value, the fiber diameter is used as a guide and the length is less than that.

上記の扁平断面ガラス繊維のガラス組成は、Aガラス、Cガラス、およびEガラス等に代表される各種のガラス組成が適用され、特に限定されない。かかるガラス充填材は、必要に応じてTiO2、SO3、およびP2O5等の成分を含有するものであってもよい。これらの中でもEガラス(無アルカリガラス)がより好ましい。かかる扁平断面ガラス繊維は、周知の表面処理剤、例えばシランカップリング剤、チタネートカップリング剤、またはアルミネートカップリング剤等で表面処理が施されたものが機械的強度の向上の点から好ましい。また、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましく、エポキシ系樹脂、ウレタン系樹脂が機械的強度の点から特に好ましい。集束処理された扁平断面ガラス繊維の集束剤付着量は、扁平断面ガラス繊維100重量%中好ましくは0.1〜3重量%、より好ましくは0.2〜2重量%である。   Various glass compositions represented by A glass, C glass, E glass, etc. are applied to the glass composition of said flat cross-section glass fiber, and it is not specifically limited. Such a glass filler may contain components such as TiO2, SO3, and P2O5 as necessary. Among these, E glass (non-alkali glass) is more preferable. Such flat cross-section glass fibers are preferably subjected to a surface treatment with a known surface treatment agent such as a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent from the viewpoint of improving mechanical strength. In addition, those that have been subjected to bundling treatment with olefin resin, styrene resin, acrylic resin, polyester resin, epoxy resin, urethane resin, etc. are preferable. From the viewpoint of mechanical strength, epoxy resin and urethane resin are preferred. Particularly preferred. The amount of the sizing agent attached to the flat cross-section glass fiber subjected to the bundling treatment is preferably 0.1 to 3 wt%, more preferably 0.2 to 2 wt% in 100 wt% of the flat cross-section glass fiber.

(B−2成分:B−1成分以外の充填材)
本発明の組成物においてB−2成分として用いるB−1成分以外の充填材としては、板状充填材および/またはB−1成分以外の繊維状充填材を配合することができる。かかる板状充填材としてはガラスフレーク、マイカ、グラファイトおよびタルクが好適に例示される。かかる繊維状充填材としては、B−1成分以外のガラス繊維、ガラスミルドファイバー、ワラストナイト、炭素系フィラーが好適に例示される。かかる繊維状充填材は、これらの表面に酸化チタン、酸化亜鉛、酸化セリウム、および酸化ケイ素などの金属酸化物コートされたフィラーも利用できる。炭素系フィラーとしては、例えばカーボンファイバー、金属コートカーボンファイバー、カーボンミルドファイバー、気相成長カーボンファイバー、およびカーボンナノチューブ、カーボンブラック等が挙げられる。カーボンナノチューブは繊維径0.003〜0.1μm、単層、2層、および多層のいずれであってもよく、多層(いわゆるMWCNT)が好ましい。これらの中でも機械的強度に優れる点、並びに良好な導電性を付与できる点において、カーボンファイバー、および金属コートカーボンファイバーが好ましい。
(B-2 component: Filler other than B-1 component)
As the filler other than the B-1 component used as the B-2 component in the composition of the present invention, a plate-like filler and / or a fibrous filler other than the B-1 component can be blended. As such a plate-like filler, glass flakes, mica, graphite and talc are preferably exemplified. As such a fibrous filler, glass fibers other than the B-1 component, glass milled fiber, wollastonite, and carbon-based filler are preferably exemplified. As such a fibrous filler, a filler whose surface is coated with a metal oxide such as titanium oxide, zinc oxide, cerium oxide, and silicon oxide can also be used. Examples of the carbon-based filler include carbon fiber, metal-coated carbon fiber, carbon milled fiber, vapor-grown carbon fiber, carbon nanotube, and carbon black. The carbon nanotube may be any one of a fiber diameter of 0.003 to 0.1 μm, a single layer, a double layer, and a multilayer, and a multilayer (so-called MWCNT) is preferable. Among these, carbon fiber and metal-coated carbon fiber are preferable in that they are excellent in mechanical strength and can impart good electrical conductivity.

上記繊維状充填材は、予め各種の表面処理剤で表面処理されていてもよい。かかる表面処理剤としては、シランカップリング剤(アルキルアルコキシシランやポリオルガノハイドロジェンシロキサンなどを含む)、高級脂肪酸エステル、酸化合物(例えば、亜リン酸、リン酸、カルボン酸、およびカルボン酸無水物など)並びにワックスなどの各種表面処理剤で表面処理されていてもよい。さらに各種樹脂、高級脂肪酸エステル、およびワックスなどの集束剤で造粒し顆粒状とされていてもよい。   The fibrous filler may be surface-treated with various surface treatment agents in advance. Such surface treatment agents include silane coupling agents (including alkylalkoxysilanes and polyorganohydrogensiloxanes), higher fatty acid esters, acid compounds (for example, phosphorous acid, phosphoric acid, carboxylic acid, and carboxylic acid anhydrides). Etc.) and various surface treatment agents such as wax. Furthermore, it may be granulated with a sizing agent such as various resins, higher fatty acid esters, and waxes.

本発明の強化充填材(B成分)は、樹脂成分(A成分)と強化充填材(B成分)の合計100重量部中、1〜60重量部であり、好ましくは3〜60重量部、より好ましくは5〜50重量部である。B成分が1重量部未満では、機械的強度が不足し、60重量部を超えると成形流動性や成形品外観、難燃性が低下する。   The reinforcing filler (component B) of the present invention is 1 to 60 parts by weight, preferably 3 to 60 parts by weight, in a total of 100 parts by weight of the resin component (component A) and the reinforcing filler (component B). Preferably it is 5-50 weight part. If the B component is less than 1 part by weight, the mechanical strength is insufficient, and if it exceeds 60 parts by weight, the molding fluidity, the appearance of the molded product, and the flame retardancy are deteriorated.

本発明の強化充填材(B成分)である扁平断面ガラス繊維(B−1成分)とB−1成分以外の充填材(B−2成分)の重量比は5/95〜100/0であり、好ましくは40/60〜100/0、より好ましくは50/50〜100/0である。扁平断面ガラス繊維の重量比が5重量%以上であれば良好な曲げ弾性率、成形収縮率の異方性が得られる。   The weight ratio of the flat cross-section glass fiber (B-1 component) which is the reinforcing filler (B component) of the present invention to the filler (B-2 component) other than the B-1 component is 5/95 to 100/0. , Preferably 40/60 to 100/0, more preferably 50/50 to 100/0. If the weight ratio of the flat cross-section glass fibers is 5% by weight or more, good bending elastic modulus and molding shrinkage anisotropy can be obtained.

(その他の添加剤について)
本発明のガラス繊維強化樹脂組成物には、成形加工時の分子量や色相を安定化させるために各種安定剤、離型剤や色材を使用することができる。
(Other additives)
In the glass fiber reinforced resin composition of the present invention, various stabilizers, release agents and coloring materials can be used to stabilize the molecular weight and hue at the time of molding.

(i)安定剤
本発明のガラス繊維強化樹脂組成物には公知の各種安定剤を配合することができる。安定剤としては、リン系安定剤、ヒンダードフェノール系酸化防止剤、紫外線吸収剤および光安定剤などが挙げられる。
(I) Stabilizer Various known stabilizers can be blended in the glass fiber reinforced resin composition of the present invention. Examples of the stabilizer include phosphorus stabilizers, hindered phenol antioxidants, ultraviolet absorbers, and light stabilizers.

(i−1)リン系安定剤
リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。これらの中でも特に、亜リン酸、リン酸、亜ホスホン酸、およびホスホン酸、トリオルガノホスフェート化合物、およびアシッドホスフェート化合物が好ましい。尚、アシッドホスフェート化合物における有機基は、一置換、二置換、およびこれらの混合物のいずれも含む。該化合物に対応する下記の例示化合物においても同様にいずれをも含むものとする。
(I-1) Phosphorus stabilizer Examples of the phosphorous stabilizer include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof, and tertiary phosphine. Among these, phosphorous acid, phosphoric acid, phosphonous acid, and phosphonic acid, triorganophosphate compounds, and acid phosphate compounds are particularly preferable. The organic group in the acid phosphate compound includes any of mono-substituted, di-substituted, and mixtures thereof. Any of the following exemplified compounds corresponding to the compound is similarly included.

トリオルガノホスフェート化合物としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリデシルホスフェート、トリドデシルホスフェート、トリラウリルホスフェート、トリステアリルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、およびトリブトキシエチルホスフェートなどが例示される。これらの中でもトリアルキルホスフェートが好ましい。かかるトリアルキルホスフェートの炭素数は、好ましくは1〜22、より好ましくは1〜4である。特に好ましいトリアルキルホスフェートはトリメチルホスフェートである。   Triorganophosphate compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tridecyl phosphate, tridodecyl phosphate, trilauryl phosphate, tristearyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, diphenyl Examples include cresyl phosphate, diphenyl monoorthoxenyl phosphate, and tributoxyethyl phosphate. Among these, trialkyl phosphate is preferable. The carbon number of the trialkyl phosphate is preferably 1 to 22, more preferably 1 to 4. A particularly preferred trialkyl phosphate is trimethyl phosphate.

アシッドホスフェート化合物としては、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ブトキシエチルアシッドホスフェート、オクチルアシッドホスフェート、デシルアシッドホスフェート、ラウリルアシッドホスフェート、ステアリルアシッドホスフェート、オレイルアシッドホスフェート、ベヘニルアシッドホスフェート、フェニルアシッドホスフェート、ノニルフェニルアシッドホスフェート、シクロヘキシルアシッドホスフェート、フェノキシエチルアシッドホスフェート、アルコキシポリエチレングリコールアシッドホスフェート、およびビスフェノールAアシッドホスフェートなどが例示される。これらの中でも炭素数10以上の長鎖ジアルキルアシッドホスフェートが熱安定性の向上に有効であり、該アシッドホスフェート自体の安定性が高いことから好ましい。   Examples of the acid phosphate compound include methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, butoxyethyl acid phosphate, octyl acid phosphate, decyl acid phosphate, lauryl acid phosphate, stearyl acid phosphate, oleyl acid phosphate, behenyl acid phosphate, behenyl acid phosphate Nonylphenyl acid phosphate, cyclohexyl acid phosphate, phenoxyethyl acid phosphate, alkoxy polyethylene glycol acid phosphate, bisphenol A acid phosphate, and the like. Among these, long-chain dialkyl acid phosphates having 10 or more carbon atoms are effective for improving thermal stability, and the acid phosphate itself is preferable because of high stability.

ホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。   Examples of the phosphite compound include triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl Monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, tris (di-n-butyl) Phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, distearyl Taerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis ( 2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite, phenylbisphenol A penta Examples include erythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite, and dicyclohexylpentaerythritol diphosphite.

更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイトなどが例示される。   Further, as other phosphite compounds, those which react with dihydric phenols and have a cyclic structure can be used. For example, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert- Examples include butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite and 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite.

ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等があげられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。   Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenedi. Phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite Tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylene diphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4-di tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl)- 4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, and the like, and tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite, bis (Di-tert-butylphenyl) -phenyl-phenylphosphonite is preferred, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl)- More preferred is phenyl-phenylphosphonite. Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.

ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。   Examples of the phosphonate compound include dimethyl benzenephosphonate, diethyl benzenephosphonate, and dipropyl benzenephosphonate.

第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。   Tertiary phosphine includes triethylphosphine, tripropylphosphine, tributylphosphine, trioctylphosphine, triamylphosphine, dimethylphenylphosphine, dibutylphenylphosphine, diphenylmethylphosphine, diphenyloctylphosphine, triphenylphosphine, tri-p-tolyl. Examples include phosphine, trinaphthylphosphine, and diphenylbenzylphosphine. A particularly preferred tertiary phosphine is triphenylphosphine.

好適なリン系安定剤は、トリオルガノホスフェート化合物、アシッドホスフェート化合物、および下記一般式(4)で表されるホスファイト化合物である。殊にトリオルガノホスフェート化合物を配合することが好ましい。   Suitable phosphorus stabilizers are a triorganophosphate compound, an acid phosphate compound, and a phosphite compound represented by the following general formula (4). It is particularly preferable to add a triorganophosphate compound.

Figure 2012116915
(式(4)中、RおよびR’は炭素数6〜30のアルキル基または炭素数6〜30のアリール基を表し、互いに同一であっても異なっていてもよい。)
Figure 2012116915
(In Formula (4), R and R ′ represent an alkyl group having 6 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms, and may be the same as or different from each other.)

上記の如く、ホスホナイト化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。   As described above, tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite is preferable as the phosphonite compound, and the stabilizer containing phosphonite as a main component is Sandostab P-EPQ (trademark, manufactured by Clariant). ) And Irgafos P-EPQ (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and both can be used.

また上記式(4)の中でもより好適なホスファイト化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。   Among the above formulas (4), more preferred phosphite compounds are distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di). -Tert-butyl-4-methylphenyl) pentaerythritol diphosphite, and bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite.

(i−2)ヒンダードフェノール系酸化防止剤
ヒンダードフェノール化合物としては、通常樹脂に配合される各種の化合物が使用できる。かかるヒンダードフェノール化合物としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセテート、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセチルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、1,3,5−トリメチル−2,4,6−トリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)ベンゼン、およびトリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)イソシアヌレートなどが例示される。
(I-2) Hindered phenolic antioxidant As the hindered phenolic compound, various compounds that are usually blended in resins can be used. Examples of such hindered phenol compounds include α-tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-tert -Butyl-6- (3'-tert-butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethylamino) Methyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl) -6-tert-butylphenol), 4,4'-methylenebis (2,6 Di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexylphenol), 2,2′-dimethylene-bis (6-α-methyl-benzyl-p-cresol), 2,2 ′ -Ethylidene-bis (4,6-di-tert-butylphenol), 2,2'-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert) -Butylphenol), triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediol bis [3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionate], bis [2-tert-butyl-4-methyl 6- (3-tert-butyl) Ru-5-methyl-2-hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1, -Dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4'-thiobis (6-tert-butyl-m-cresol), 4,4'-thiobis (3- Methyl-6-tert-butylphenol), 2,2′-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4,4 ′ -Di-thiobis (2,6-di-tert-butylphenol), 4,4'-tri-thiobis (2,6-di-tert-butylphenol), 2,2-thiodie Renbis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy-3,5-di-tert- Butylanilino) -1,3,5-triazine, N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N, N′-bis [3- (3 , 5-Di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl -2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl-4-hydroxyphenyl) iso Cyanurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 1,3,5-tris2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate, tetrakis [methylene-3- (3,5-di-tert-butyl- 4-hydroxyphenyl) propionate] methane, triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, triethylene glycol-N-bis-3- (3- tert-butyl-4-hydroxy-5-methylphenyl) acetate, 3,9-bis [2 {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) acetyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, tetrakis [Methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, 1,3,5-trimethyl-2,4,6-tris (3-tert-butyl-4-hydroxy Examples include -5-methylbenzyl) benzene and tris (3-tert-butyl-4-hydroxy-5-methylbenzyl) isocyanurate.

上記化合物の中でも、本発明においてはテトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、および3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましく利用される。特に3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましい。上記ヒンダードフェノール系酸化防止剤は、単独でまたは2種以上を組合せて使用することができる。   Among the above compounds, tetrakis [methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, octadecyl-3- (3,5-di-tert-butyl-) is used in the present invention. 4-hydroxyphenyl) propionate, and 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4 , 8,10-Tetraoxaspiro [5,5] undecane is preferably used. In particular, 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxa Spiro [5,5] undecane is preferred. The said hindered phenolic antioxidant can be used individually or in combination of 2 or more types.

リン系安定剤およびヒンダードフェノール系酸化防止剤はいずれかが配合されることが好ましい。殊にリン系安定剤が配合されることが好ましく、トリオルガノホスフェート化合物が配合されることがより好ましい。リン系安定剤およびヒンダードフェノール系酸化防止剤の配合量は、それぞれA成分100重量部を基準として、好ましくは0.005〜1重量部、より好ましくは0.01〜0.3重量部である。   It is preferable that either a phosphorus stabilizer or a hindered phenol antioxidant is blended. In particular, a phosphorus stabilizer is preferably blended, and a triorganophosphate compound is more blended. The blending amount of the phosphorus stabilizer and the hindered phenol antioxidant is preferably 0.005 to 1 part by weight, more preferably 0.01 to 0.3 part by weight, based on 100 parts by weight of component A, respectively. is there.

(i−3)紫外線吸収剤
本発明のガラス繊維強化樹脂組成物は紫外線吸収剤を含有することができる。本発明の樹脂組成物は良好な色相をも有することから、紫外線吸収剤の配合により屋外の使用においてもかかる色相を長期間維持することができる。
(I-3) Ultraviolet Absorber The glass fiber reinforced resin composition of the present invention can contain an ultraviolet absorber. Since the resin composition of the present invention also has a good hue, such a hue can be maintained for a long time even when used outdoors by blending an ultraviolet absorber.

本発明の紫外線吸収剤としては、具体的にはベンゾフェノン系では、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。   Specific examples of the ultraviolet absorber of the present invention include, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4 in the benzophenone series. -Benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydridolate benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2, 2 ′, 4,4′-tetrahydroxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4-hydro Shi-2-methoxyphenyl) methane, 2-hydroxy -4-n-dodecyloxy benzoin phenone, and 2-hydroxy-4-methoxy-2'-carboxy benzophenone may be exemplified.

紫外線吸収剤としては、具体的に、ベンゾトリアゾール系では、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル、並びに2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。   Specific examples of the ultraviolet absorber include, for example, 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole in the benzotriazole series. 2- (2-hydroxy-3,5-dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′- Methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) ) Benzotriazole, 2- (2-hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazol 2- (2-hydroxy-3,5-di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-5- tert-butylphenyl) benzotriazole, 2- (2-hydroxy-4-octoxyphenyl) benzotriazole, 2,2'-methylenebis (4-cumyl-6-benzotriazolephenyl), 2,2'-p -Phenylenebis (1,3-benzoxazin-4-one), and 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole, and 2- (2'-Hydroxy-5-methacryloxyethylphenyl) -2H-benzotriazole and co-polymerized with the monomer 2 such as a copolymer with a possible vinyl monomer and a copolymer of 2- (2′-hydroxy-5-acryloxyethylphenyl) -2H-benzotriazole with a vinyl monomer copolymerizable with the monomer Examples include polymers having a -hydroxyphenyl-2H-benzotriazole skeleton.

紫外線吸収剤としては、具体的に、ヒドロキシフェニルトリアジン系では、例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。   Specific examples of the ultraviolet absorber include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-hexyloxyphenol and 2- (4) in hydroxyphenyltriazine series. , 6-Diphenyl-1,3,5-triazin-2-yl) -5-methyloxyphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethyloxy Phenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-propyloxyphenol, and 2- (4,6-diphenyl-1,3,5-triazine-2- Yl) -5-butyloxyphenol and the like. Furthermore, the phenyl group of the above exemplary compounds such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-hexyloxyphenol is 2,4-dimethyl. Examples of the compound are phenyl groups.

紫外線吸収剤としては、具体的に環状イミノエステル系では、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)などが例示される。   As the ultraviolet absorber, specifically, in the cyclic imino ester type, for example, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) ) Bis (3,1-benzoxazin-4-one), 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one) and the like.

また紫外線吸収剤としては、具体的にシアノアクリレート系では、例えば1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。   Further, as the ultraviolet absorber, specifically, for cyanoacrylate, for example, 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2- Examples include cyano-3,3-diphenylacryloyl) oxy] methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.

さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。   Further, the ultraviolet absorber has a structure of a monomer compound capable of radical polymerization, whereby the ultraviolet-absorbing monomer and / or the light-stable monomer having a hindered amine structure, and an alkyl (meth) acrylate. A polymer type ultraviolet absorber obtained by copolymerization with a monomer such as may be used. Preferred examples of the UV-absorbing monomer include compounds containing a benzotriazole skeleton, a benzophenone skeleton, a triazine skeleton, a cyclic imino ester skeleton, and a cyanoacrylate skeleton in the ester substituent of (meth) acrylate. The

上記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。上記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。   Among them, benzotriazole and hydroxyphenyltriazine are preferable from the viewpoint of ultraviolet absorption ability, and cyclic imino ester and cyanoacrylate are preferable from the viewpoint of heat resistance and hue. You may use the said ultraviolet absorber individually or in mixture of 2 or more types.

紫外線吸収剤の含有量は、A成分100重量部を基準として好ましくは0.01〜2重量部、より好ましくは0.02〜2重量部、更に好ましくは0.03〜1重量部、最も好ましくは0.05〜0.5重量部である。   The content of the ultraviolet absorber is preferably 0.01 to 2 parts by weight, more preferably 0.02 to 2 parts by weight, still more preferably 0.03 to 1 part by weight, most preferably based on 100 parts by weight of component A. Is 0.05 to 0.5 parts by weight.

(i−4)その他の熱安定剤
本発明のガラス繊維強化樹脂組成物には、上記のリン系安定剤およびヒンダードフェノール系酸化防止剤以外の他の熱安定剤を配合することもできる。かかるその他の熱安定剤は、これらの安定剤および酸化防止剤のいずれかと併用されることが好ましく、特に両者と併用されることが好ましい。かかる他の熱安定剤としては、例えば3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物に代表されるラクトン系安定剤(かかる安定剤の詳細は特開平7−233160号公報に記載されている)が好適に例示される。かかる化合物はIrganox HP−136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば上記社製のIrganox HP−2921が好適に例示される。本発明においてもかかる予め混合された安定剤を利用することもできる。ラクトン系安定剤の配合量は、A成分100重量部を基準として、好ましくは0.0005〜0.05重量部、より好ましくは0.001〜0.03重量部である。
(I-4) Other Heat Stabilizers The glass fiber reinforced resin composition of the present invention may contain other heat stabilizers other than the phosphorus stabilizers and hindered phenol antioxidants. Such other heat stabilizers are preferably used in combination with any of these stabilizers and antioxidants, and particularly preferably used in combination with both. Examples of such other heat stabilizers include lactone stabilizers represented by the reaction product of 3-hydroxy-5,7-di-tert-butyl-furan-2-one and o-xylene (such stabilizers). Is described in detail in JP-A-7-233160). Such a compound is commercially available as Irganox HP-136 (trademark, manufactured by CIBA SPECIALTY CHEMICALS) and can be used. Furthermore, a stabilizer obtained by mixing the compound with various phosphite compounds and hindered phenol compounds is commercially available. For example, Irganox HP-2921 manufactured by the above company is preferably exemplified. In the present invention, such a premixed stabilizer can also be used. The blending amount of the lactone stabilizer is preferably 0.0005 to 0.05 parts by weight, more preferably 0.001 to 0.03 parts by weight, based on 100 parts by weight of component A.

またその他の安定剤としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかる安定剤は、樹脂組成物が回転成形に適用される場合に特に有効である。かかるイオウ含有安定剤の配合量は、A成分100重量部を基準として好ましくは0.001〜0.1重量部、より好ましくは0.01〜0.08重量部である。   Other stabilizers include sulfur-containing stabilizers such as pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), and glycerol-3-stearylthiopropionate. Illustrated. Such a stabilizer is particularly effective when the resin composition is applied to rotational molding. The amount of the sulfur-containing stabilizer is preferably 0.001 to 0.1 parts by weight, more preferably 0.01 to 0.08 parts by weight, based on 100 parts by weight of component A.

(ii)離型剤
本発明のガラス繊維強化樹脂組成物は、その成形時の生産性向上や成形品の寸法精度の向上を目的として、摺動性付与剤に加え更に、脂肪酸エステル、パラフィンワックス、蜜蝋などの公知の離型剤を配合することもできる。本発明のガラス繊維強化樹脂組成物は、良好な流動性を有することから圧力伝播が良好で、歪の均一化された成形品が得られる。一方でその成形収縮率が低いことから離型抵抗が大きくなりやすく、その結果離型時における成形品の変形を招きやすい。上記特定の成分の配合は、かかる問題をガラス繊維強化樹脂組成物の特性を損なうことなく解決するものである。
(Ii) Mold Release Agent The glass fiber reinforced resin composition of the present invention is a fatty acid ester, paraffin wax in addition to a slidability imparting agent for the purpose of improving productivity during molding and improving dimensional accuracy of a molded product. In addition, a known release agent such as beeswax can be blended. Since the glass fiber reinforced resin composition of the present invention has good fluidity, a pressure propagation is good and a molded article with uniform strain can be obtained. On the other hand, since the molding shrinkage rate is low, the mold release resistance tends to increase, and as a result, the molded product tends to be deformed at the time of mold release. The compounding of the specific component solves such a problem without impairing the properties of the glass fiber reinforced resin composition.

かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数は、好ましくは3〜32、より好ましくは5〜30である。一方、脂肪族カルボン酸は好ましくは炭素数3〜32、より好ましくは炭素数10〜30の脂肪族カルボン酸である。その中でも飽和脂肪族カルボン酸が好ましい。本発明の脂肪酸エステルは、全エステル(フルエステル)が高温時の熱安定性に優れる点で好ましい。本発明の脂肪酸エステルにおける酸価は、20以下(実質的に0を取り得る)であることが好ましい。また脂肪酸エステルの水酸基価は、0.1〜30の範囲がより好ましい。更に脂肪酸エステルのヨウ素価は、10以下(実質的に0を取り得る)が好ましい。これらの特性はJIS K 0070に規定された方法により求めることができる。
上記の離型剤の含有量は、A成分100重量部を基準として好ましくは0.005〜5重量部、より好ましくは0.01〜4重量部、更に好ましくは0.02〜3重量部である。
Such fatty acid esters are esters of aliphatic alcohols and aliphatic carboxylic acids. Such an aliphatic alcohol may be a monohydric alcohol or a dihydric or higher polyhydric alcohol. Moreover, carbon number of this alcohol becomes like this. Preferably it is 3-32, More preferably, it is 5-30. On the other hand, the aliphatic carboxylic acid is preferably an aliphatic carboxylic acid having 3 to 32 carbon atoms, more preferably 10 to 30 carbon atoms. Of these, saturated aliphatic carboxylic acids are preferred. The fatty acid ester of the present invention is preferable in that all esters (full esters) are excellent in thermal stability at high temperatures. The acid value in the fatty acid ester of the present invention is preferably 20 or less (can take substantially 0). The hydroxyl value of the fatty acid ester is more preferably in the range of 0.1-30. Further, the iodine value of the fatty acid ester is preferably 10 or less (can take substantially 0). These characteristics can be obtained by a method defined in JIS K 0070.
The content of the release agent is preferably 0.005 to 5 parts by weight, more preferably 0.01 to 4 parts by weight, and still more preferably 0.02 to 3 parts by weight based on 100 parts by weight of component A. is there.

(iii)染顔料
本発明のガラス繊維強化樹脂組成物は更に各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。本発明で使用する染顔料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、およびフタロシアニン系染料などを挙げることができる。更に本発明の樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、アルミ粉が好適である。また、蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。
(Iii) Dye / pigment The glass fiber reinforced resin composition of the present invention can further provide a molded product containing various dyes / pigments and exhibiting various design properties. Examples of dyes used in the present invention include perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as bitumen, perinone dyes, quinoline dyes, quinacridone dyes, Examples thereof include dioxazine dyes, isoindolinone dyes, and phthalocyanine dyes. Furthermore, the resin composition of this invention can mix | blend a metallic pigment, and can also obtain a better metallic color. As the metallic pigment, aluminum powder is suitable. In addition, by blending a fluorescent brightening agent or other fluorescent dyes that emit light, a better design effect utilizing the luminescent color can be imparted.

本発明で使用する蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好でポリカーボネート樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。
上記の染顔料の含有量は、A成分100重量部を基準として、0.00001〜1重量部が好ましく、0.00005〜0.5重量部がより好ましい。
Examples of the fluorescent dye (including a fluorescent brightening agent) used in the present invention include a coumarin fluorescent dye, a benzopyran fluorescent dye, a perylene fluorescent dye, an anthraquinone fluorescent dye, a thioindigo fluorescent dye, and a xanthene fluorescent dye. And xanthone fluorescent dyes, thioxanthene fluorescent dyes, thioxanthone fluorescent dyes, thiazine fluorescent dyes, and diaminostilbene fluorescent dyes. Among these, coumarin fluorescent dyes, benzopyran fluorescent dyes, and perylene fluorescent dyes are preferable because they have good heat resistance and little deterioration during molding of the polycarbonate resin.
The content of the dye / pigment is preferably 0.00001 to 1 part by weight, more preferably 0.00005 to 0.5 part by weight, based on 100 parts by weight of component A.

(iv)熱線吸収能を有する化合物
本発明のガラス繊維強化樹脂組成物は熱線吸収能を有する化合物を含有することができる。かかる化合物としてはフタロシアニン系近赤外線吸収剤、ATO、ITO、酸化イリジウムおよび酸化ルテニウムなどの金属酸化物系近赤外線吸収剤、ホウ化ランタン、ホウ化セリウムおよびホウ化タングステンなどの金属ホウ化物系近赤外線吸収剤などの近赤外吸収能に優れた各種の金属化合物、ならびに炭素フィラーが好適に例示される。かかるフタロシアニン系近赤外線吸収剤としてはたとえば三井化学(株)製MIR−362が市販され容易に入手可能である。炭素フィラーとしてはカーボンブラック、グラファイト(天然、および人工のいずれも含む)およびフラーレンなどが例示され、好ましくはカーボンブラックおよびグラファイトである。これらは単体または2種以上を併用して使用することができる。フタロシアニン系近赤外線吸収剤の含有量は、A成分100重量部を基準として0.0005〜0.2重量部が好ましく、0.0008〜0.1重量部がより好ましく、0.001〜0.07重量部がさらに好ましい。金属酸化物系近赤外線吸収剤、金属ホウ化物系近赤外線吸収剤および炭素フィラーの含有量は、本発明の樹脂組成物中、0.1〜200ppm(重量割合)の範囲が好ましく、0.5〜100ppmの範囲がより好ましい。
(Iv) Compound having heat absorption ability The glass fiber reinforced resin composition of the present invention may contain a compound having heat absorption ability. Such compounds include phthalocyanine-based near-infrared absorbers, metal oxide-based near-infrared absorbers such as ATO, ITO, iridium oxide and ruthenium oxide, and metal boride-based near infrared rays such as lanthanum boride, cerium boride and tungsten boride. Preferred examples include various metal compounds having excellent near-infrared absorption ability such as an absorber, and carbon filler. As such a phthalocyanine-based near infrared absorber, for example, MIR-362 manufactured by Mitsui Chemicals, Inc. is commercially available and easily available. Examples of the carbon filler include carbon black, graphite (including both natural and artificial) and fullerene, and carbon black and graphite are preferable. These can be used alone or in combination of two or more. The content of the phthalocyanine-based near-infrared absorber is preferably 0.0005 to 0.2 parts by weight, more preferably 0.0008 to 0.1 parts by weight, based on 100 parts by weight of component A, and 0.001 to 0.0. More preferred is 07 parts by weight. The content of the metal oxide near-infrared absorber, the metal boride-based near infrared absorber, and the carbon filler is preferably in the range of 0.1 to 200 ppm (weight ratio) in the resin composition of the present invention. A range of ˜100 ppm is more preferable.

(v)光拡散剤
本発明のガラス繊維強化樹脂組成物には、光拡散剤を配合して光拡散効果を付与することができる。かかる光拡散剤としては高分子微粒子、炭酸カルシウムの如き低屈折率の無機微粒子、およびこれらの複合物等が例示される。かかる高分子微粒子は、既にポリカーボネート樹脂の光拡散剤として公知の微粒子である。より好適には粒径数μmのアクリル架橋粒子およびポリオルガノシルセスキオキサンに代表されるシリコーン架橋粒子などが例示される。光拡散剤の形状は球形、円盤形、柱形、および不定形などが例示される。かかる球形は、完全球である必要はなく変形しているものを含み、かかる柱形は立方体を含む。好ましい光拡散剤は球形であり、その粒径は均一であるほど好ましい。光拡散剤の含有量は、A成分100重量部を基準として好ましくは0.005〜20重量部、より好ましくは0.01〜10重量部、更に好ましくは0.01〜3重量部である。尚、光拡散剤は2種以上を併用することができる。
(V) Light diffusing agent The glass fiber reinforced resin composition of the present invention can be provided with a light diffusing effect by blending a light diffusing agent. Examples of such light diffusing agents include polymer fine particles, inorganic fine particles having a low refractive index such as calcium carbonate, and composites thereof. Such polymer fine particles are fine particles that are already known as light diffusing agents for polycarbonate resins. More preferably, acrylic crosslinked particles having a particle size of several μm, silicone crosslinked particles represented by polyorganosilsesquioxane, and the like are exemplified. Examples of the shape of the light diffusing agent include a spherical shape, a disk shape, a column shape, and an indefinite shape. Such spheres need not be perfect spheres, but include deformed ones, and such columnar shapes include cubes. A preferred light diffusing agent is spherical, and the more uniform the particle size is. The content of the light diffusing agent is preferably 0.005 to 20 parts by weight, more preferably 0.01 to 10 parts by weight, still more preferably 0.01 to 3 parts by weight, based on 100 parts by weight of component A. Two or more light diffusing agents can be used in combination.

(vi)光高反射用白色顔料
本発明のガラス繊維強化樹脂組成物には、光高反射用白色顔料を配合して光反射効果を付与することができる。かかる白色顔料としては二酸化チタン(特にシリコーンなど有機表面処理剤により処理された二酸化チタン)顔料が特に好ましい。かかる光高反射用白色顔料の含有量は、A成分合計100重量部を基準として3〜30重量部が好ましく、8〜25重量部がより好ましい。尚、光高反射用白色顔料は2種以上を併用することができる。
(Vi) White pigment for light high reflection The glass fiber reinforced resin composition of the present invention can be provided with a light reflection effect by blending a white pigment for light high reflection. As such a white pigment, a titanium dioxide (particularly titanium dioxide treated with an organic surface treating agent such as silicone) pigment is particularly preferred. The content of the white pigment for high light reflection is preferably 3 to 30 parts by weight, more preferably 8 to 25 parts by weight based on 100 parts by weight of the total component A. Two or more kinds of white pigments for high light reflection can be used in combination.

(vii)帯電防止剤
本発明のガラス繊維強化樹脂組成物には、帯電防止性能が求められる場合があり、かかる場合帯電防止剤を含むことが好ましい。かかる帯電防止剤としては、例えば(1)ドデシルベンゼンスルホン酸ホスホニウム塩に代表されるアリールスルホン酸ホスホニウム塩、およびアルキルスルホン酸ホスホニウム塩などの有機スルホン酸ホスホニウム塩、並びにテトラフルオロホウ酸ホスホニウム塩の如きホウ酸ホスホニウム塩が挙げられる。該ホスホニウム塩の含有量はA成分100重量部を基準として、5重量部以下が適切であり、好ましくは0.05〜5重量部、より好ましくは1〜3.5重量部、更に好ましくは1.5〜3重量部の範囲である。
(Vii) Antistatic agent The glass fiber reinforced resin composition of the present invention may require antistatic performance, and in such a case, an antistatic agent is preferably included. Examples of the antistatic agent include (1) aryl sulfonic acid phosphonium salts represented by dodecylbenzenesulfonic acid phosphonium salts, organic sulfonic acid phosphonium salts such as alkyl sulfonic acid phosphonium salts, and tetrafluoroboric acid phosphonium salts. Examples thereof include phosphonium borate salts. The content of the phosphonium salt is suitably 5 parts by weight or less based on 100 parts by weight of component A, preferably 0.05 to 5 parts by weight, more preferably 1 to 3.5 parts by weight, and still more preferably 1 part. The range is from 5 to 3 parts by weight.

帯電防止剤としては例えば、(2)有機スルホン酸リチウム、有機スルホン酸ナトリウム、有機スルホン酸カリウム、有機スルホン酸セシウム、有機スルホン酸ルビジウム、有機スルホン酸カルシウム、有機スルホン酸マグネシウム、および有機スルホン酸バリウムなどの有機スルホン酸アルカリ(土類)金属塩が挙げられる。かかる金属塩は前述のとおり、難燃剤としても使用される。かかる金属塩は、より具体的には例えばドデシルベンゼンスルホン酸の金属塩やパーフルオロアルカンスルホン酸の金属塩などが例示される。有機スルホン酸アルカリ(土類)金属塩の含有量はA成分合計100重量部を基準として、0.5重量部以下が適切であり、好ましくは0.001〜0.3重量部、より好ましくは0.005〜0.2重量部である。特にカリウム、セシウム、およびルビジウムなどのアルカリ金属塩が好適である。   Examples of the antistatic agent include: (2) lithium organic sulfonate, organic sodium sulfonate, organic potassium sulfonate, cesium organic sulfonate, rubidium organic sulfonate, calcium organic sulfonate, magnesium organic sulfonate, and barium organic sulfonate. And organic sulfonate alkali (earth) metal salts. Such metal salts are also used as flame retardants as described above. More specific examples of such metal salts include metal salts of dodecylbenzene sulfonic acid and metal salts of perfluoroalkane sulfonic acid. The content of the organic sulfonate alkali (earth) metal salt is suitably 0.5 parts by weight or less, preferably 0.001 to 0.3 parts by weight, more preferably based on 100 parts by weight of the total component A 0.005 to 0.2 part by weight. In particular, alkali metal salts such as potassium, cesium, and rubidium are preferable.

帯電防止剤としては、例えば(3)アルキルスルホン酸アンモニウム塩、およびアリールスルホン酸アンモニウム塩などの有機スルホン酸アンモニウム塩が挙げられる。該アンモニウム塩はA成分100重量部を基準として、0.05重量部以下が適切である。帯電防止剤としては、例えば(4)ポリエーテルエステルアミドの如きポリ(オキシアルキレン)グリコール成分をその構成成分として含有するポリマーが挙げられる。該ポリマーはA成分100重量部を基準として5重量部以下が適切である。   Examples of the antistatic agent include (3) organic sulfonic acid ammonium salts such as alkyl sulfonic acid ammonium salt and aryl sulfonic acid ammonium salt. The ammonium salt is suitably 0.05 parts by weight or less based on 100 parts by weight of component A. Examples of the antistatic agent include (4) a polymer containing a poly (oxyalkylene) glycol component such as polyether ester amide as a constituent component. The polymer is suitably 5 parts by weight or less based on 100 parts by weight of component A.

(viii)その他の添加剤
本発明のガラス繊維強化樹脂組成物には、A成分以外の熱可塑性樹脂、ゴム質重合体、その他の流動改質剤、抗菌剤、流動パラフィンの如き分散剤、光触媒系防汚剤およびフォトクロミック剤などを配合することができる。
(Viii) Other additives The glass fiber reinforced resin composition of the present invention includes a thermoplastic resin other than the component A, a rubbery polymer, other flow modifiers, an antibacterial agent, a dispersant such as liquid paraffin, a photocatalyst. A system antifouling agent and a photochromic agent can be blended.

A成分以外の熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアルキルメタクリレート樹脂などに代表される汎用プラスチックス、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、ポリアミド樹脂、環状ポリオレフィン樹脂、ポリアリレート樹脂(非晶性ポリアリレート、液晶性ポリアリレート)等に代表されるエンジニアリングプラスチックス、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイドなどのいわゆるスーパーエンジニアリングプラスチックスと呼ばれるものを挙げることができる。さらにオレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマーも使用することができる。   As thermoplastic resins other than the component A, general-purpose plastics represented by polyethylene resin, polypropylene resin, polyalkyl methacrylate resin, polyphenylene ether resin, polyacetal resin, polyamide resin, cyclic polyolefin resin, polyarylate resin (non-crystalline) And so-called super engineering plastics such as engineering plastics typified by polyarylate and liquid crystalline polyarylate), polyetheretherketone, polyetherimide, polysulfone, polyethersulfone, and polyphenylene sulfide. . Furthermore, thermoplastic elastomers such as olefin-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and polyurethane-based thermoplastic elastomers can also be used.

(ガラス繊維強化樹脂組成物の製造)
本発明のガラス繊維強化樹脂組成物を製造するには、任意の方法が採用される。例えばA成分、B成分および任意に他の添加剤を、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどによりかかる予備混合物の造粒を行い、その後ベント式二軸押出機に代表される溶融混練機で溶融混練し、その後ペレタイザーによりペレット化する方法が挙げられる。
(Manufacture of glass fiber reinforced resin composition)
Arbitrary methods are employ | adopted in order to manufacture the glass fiber reinforced resin composition of this invention. For example, component A, component B and optionally other additives are thoroughly mixed using premixing means such as a V-type blender, Henschel mixer, mechanochemical apparatus, extrusion mixer, etc., and then extruded granulated as necessary. There is a method of granulating such a premixed mixture using a vessel or a briquetting machine, then melt-kneading with a melt-kneader represented by a vent type twin screw extruder, and then pelletizing with a pelletizer.

他に、各成分をそれぞれ独立にベント式二軸押出機に代表される溶融混練機に供給する方法や、各成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。各成分の一部を予備混合する方法としては例えば、A成分以外の成分を予め予備混合した後、A成分に混合または押出機に直接供給する方法が挙げられる。   In addition, a method of supplying each component independently to a melt kneader represented by a vent type twin screw extruder, or a part of each component is premixed and then supplied to the melt kneader independently of the remaining components. The method of doing is also mentioned. Examples of the method of premixing a part of each component include a method in which components other than the component A are premixed in advance and then mixed with the component A or directly supplied to the extruder.

予備混合する方法としては例えば、A成分としてパウダーの形態を有するものを含む場合、かかるパウダーの一部と配合する添加剤とをブレンドしてパウダーで希釈した添加剤のマスターバッチを製造し、かかるマスターバッチを利用する方法が挙げられる。更に一成分を独立に溶融押出機の途中から供給する方法なども挙げられる。尚、配合する成分に液状のものがある場合には、溶融押出機への供給にいわゆる液注装置、または液添装置を使用することができる。   As a premixing method, for example, when a component having a powder form is included as the component A, a part of the powder and an additive to be blended are mixed to produce a master batch of the additive diluted with the powder. A method using a master batch can be mentioned. Furthermore, the method etc. which supply one component independently from the middle of a melt extruder are mentioned. In addition, when there exists a liquid thing in the component to mix | blend, what is called a liquid injection apparatus or a liquid addition apparatus can be used for supply to a melt extruder.

押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。
溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。
As the extruder, one having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used. From the vent, a vacuum pump is preferably installed for efficiently discharging generated moisture and volatile gas to the outside of the extruder. It is also possible to remove a foreign substance from the resin composition by installing a screen for removing the foreign substance mixed in the extrusion raw material in the zone in front of the extruder die. Examples of such a screen include a wire mesh, a screen changer, a sintered metal plate (such as a disk filter), and the like.
Examples of the melt kneader include a banbury mixer, a kneading roll, a single screw extruder, a multi-screw extruder having three or more axes, in addition to a twin screw extruder.

上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。   The resin extruded as described above is directly cut into pellets, or after forming strands, the strands are cut with a pelletizer to be pelletized. When it is necessary to reduce the influence of external dust during pelletization, it is preferable to clean the atmosphere around the extruder. Furthermore, in the manufacture of such pellets, various methods already proposed for polycarbonate resin for optical discs are used to narrow the shape distribution of pellets, reduce miscuts, and reduce fine powder generated during transportation or transportation. In addition, it is possible to appropriately reduce bubbles (vacuum bubbles) generated inside the strands and pellets. By these prescriptions, it is possible to increase the molding cycle and reduce the occurrence rate of defects such as silver. Moreover, although the shape of a pellet can take common shapes, such as a cylinder, a prism, and a spherical shape, it is a cylinder more suitably. The diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and still more preferably 2 to 3.3 mm. On the other hand, the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 mm, and still more preferably 2.5 to 3.5 mm.

本発明のガラス繊維強化樹脂組成物は通常上記の如く製造されたペレットを射出成形して成形品を得ることができる。かかる射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などを挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。これにより機械的強度に優れ、成形収縮率の異方性が小さく、良好な摺動性を有するガラス繊維強化樹脂組成物よりなる成形品が提供される。即ち、本発明によれば、(A)上記一般式〔1〕で表されるカーボネート構成単位および上記一般式〔3〕で表されるカーボネート構成単位からなるポリカーボネート−ポリオルガノシロキサン共重合体(A−1成分)、並びに上記一般式〔1〕で表されるカーボネート構成単位からなるポリカーボネート樹脂(A−2成分)よりなり、A−1成分とA−2成分の重量比(A−1成分/A−2成分)が10/90〜100/0である樹脂成分(A成分)40〜99重量部、並びに(B)繊維断面の長径の平均値が10〜50μm、長径と短径の比(長径/短径)の平均値が1.5〜8.0である扁平断面ガラス繊維(B−1成分)およびB−1成分以外の充填材(B−2成分)よりなり、B−1成分とB−2成分の重量比(B−1成分/B−2成分)が5/95〜100/0である強化充填材(B成分)1〜60重量部を含有するガラス繊維強化樹脂組成物を溶融成形した成形品、特に通信機器に用いられる部品が提供される。更に本発明の樹脂組成物からなる成形品には、各種の表面処理を行うことが可能である。ここでいう表面処理とは、蒸着(物理蒸着、化学蒸着など)、メッキ(電気メッキ、無電解メッキ、溶融メッキなど)、塗装、コーティング、印刷などの樹脂成形品の表層上に新たな層を形成させるものであり、通常のポリカーボネート樹脂に用いられる方法が適用できる。表面処理としては、具体的には、ハードコート、撥水・撥油コート、紫外線吸収コート、赤外線吸収コート、並びにメタライジング(蒸着など)などの各種の表面処理が例示される。   The glass fiber reinforced resin composition of the present invention can be obtained by injection molding the pellets produced as described above. In such injection molding, not only ordinary molding methods but also injection compression molding, injection press molding, gas assist injection molding, foam molding (including a method of injecting a supercritical fluid), insert molding, in-mold coating molding, heat insulation Examples thereof include mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding. In addition, either a cold runner method or a hot runner method can be selected for molding. As a result, a molded article made of a glass fiber reinforced resin composition having excellent mechanical strength, small anisotropy of molding shrinkage, and good sliding properties is provided. That is, according to the present invention, (A) a polycarbonate-polyorganosiloxane copolymer (A) comprising a carbonate structural unit represented by the general formula [1] and a carbonate structural unit represented by the general formula [3] -1 component), and a polycarbonate resin (A-2 component) composed of the carbonate structural unit represented by the above general formula [1], the weight ratio of the A-1 component and the A-2 component (A-1 component / A component (A-2) is 10/90 to 100/0 resin component (component A) 40 to 99 parts by weight, and (B) the average value of the major axis of the fiber cross section is 10 to 50 μm, the ratio of major axis to minor axis ( It consists of a flat cross-section glass fiber (B-1 component) whose average value of major axis / minor axis is 1.5 to 8.0 and a filler (B-2 component) other than the B-1 component, and the B-1 component And B-2 component weight ratio (B-1 component / B- A component obtained by melt-molding a glass fiber reinforced resin composition containing 1 to 60 parts by weight of a reinforcing filler (component B) having a component (5/95 to 100/0), particularly a component used in communication equipment, is provided. The Furthermore, various surface treatments can be performed on the molded article made of the resin composition of the present invention. Surface treatment here refers to a new layer on the surface of resin molded products such as vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot dipping, etc.), painting, coating, printing, etc. A method used for ordinary polycarbonate resin is applicable. Specific examples of the surface treatment include various surface treatments such as hard coat, water / oil repellent coat, ultraviolet absorption coat, infrared absorption coat, and metalizing (evaporation).

本発明によれば、本発明のガラス繊維強化樹脂組成物よりなる成形品は機械的強度に優れ、成形収縮率の異方性が小さく、高い難燃特性を併せ持つことから、機械部品、自動車部品、電気・電子部品、事務機器部品、通信機器などの各種用途に有功であり産業上の効果は極めて大である。   According to the present invention, a molded article comprising the glass fiber reinforced resin composition of the present invention has excellent mechanical strength, a small anisotropy in molding shrinkage, and high flame retardancy. It is effective for various uses such as electrical / electronic parts, office equipment parts, communication equipment, etc., and its industrial effect is extremely large.

本発明者が現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。   The form of the present invention considered to be the best by the present inventor is a collection of the preferable ranges of the above requirements. For example, typical examples are described in the following examples. Of course, the present invention is not limited to these forms.

本発明について実施例および比較例を示してより具体的に説明する。特記しない限り、実施例中の部は重量部であり、%は重量%である。なお、評価は下記の方法に従った。   The present invention will be described more specifically with reference to examples and comparative examples. Unless otherwise specified, parts in the examples are parts by weight, and% is% by weight. The evaluation was performed according to the following method.

1.ポリカーボネート−ポリオルガノシロキサン共重合体の評価
(1)粘度平均分子量(Mv)
次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート−ポリジオルガノシロキサン共重合体を溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出した。
ηSP/c=[η]+0.45×[η]c (但し[η]は極限粘度)
[η]=1.23×10−4 Mv0.83
c=0.7
1. Evaluation of polycarbonate-polyorganosiloxane copolymer (1) Viscosity average molecular weight (Mv)
Using a Ostwald viscometer, a specific viscosity (η SP ) calculated by the following formula was determined from a solution obtained by dissolving a polycarbonate-polydiorganosiloxane copolymer in 100 ml of methylene chloride at 20 ° C.,
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
The viscosity average molecular weight Mv was calculated from the obtained specific viscosity (η SP ) by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 Mv 0.83
c = 0.7

(2)ポリジオルガノシロキサン成分含有量
日本電子(株)製 JNM−AL400を用い、ポリカーボネート−ポリジオルガノシロキサン共重合体の1H−NMRスペクトルを測定し、二価フェノール(I)由来のピークの積分比とジヒドロキシアリール末端ポリジオルガノシロキサン(II)由来のピークの積分比を求め、下記式より算出した。
ポリオルガノシロキサン成分含有量(重量%)=[A/(A+B)]×100
A:〔ジヒドロキシアリール末端ポリジオルガノシロキサン(II)のH一つ分のピークの積分比〕×〔ポリジオルガノシロキサン部分の分子量〕
B:〔二価フェノール(I)のH一つ分のピークの積分比〕×〔二価フェノールの分子量〕
(2) Polydiorganosiloxane component content Using JNM-AL400 manufactured by JEOL Ltd., the 1 H-NMR spectrum of the polycarbonate-polydiorganosiloxane copolymer was measured, and the integration of the peak derived from dihydric phenol (I) was performed. Ratio and the integral ratio of the peak derived from dihydroxyaryl-terminated polydiorganosiloxane (II) were calculated and calculated from the following formula.
Polyorganosiloxane component content (% by weight) = [A / (A + B)] × 100
A: [Integral ratio of 1 H peak of dihydroxyaryl-terminated polydiorganosiloxane (II)] × [Molecular weight of polydiorganosiloxane moiety]
B: [Integral ratio of 1 H peak of dihydric phenol (I)] × [Molecular weight of dihydric phenol]

2.樹脂組成物の評価
(1)難燃性
実施例の各組成から得られたペレットを120℃で5時間、熱風乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]によりシリンダー温度320℃、金型温度80℃で難燃性評価用の試験片を成形した。該試験片を用いて、UL規格94の垂直燃焼試験を、厚み2.0mmで行いその等級を評価した。なお、判定がV−0、V−1、V−2のいずれの基準も満たすことが出来なかった場合「notV」と示すこととする。
2. Evaluation of Resin Composition (1) Flame Retardancy Pellets obtained from each composition of the examples were dried with a hot air dryer at 120 ° C. for 5 hours, and then injection molding machine [Toshiba Machine Co., Ltd. IS150EN-5Y]. A test piece for flame retardancy evaluation was molded at a cylinder temperature of 320 ° C. and a mold temperature of 80 ° C. Using this test piece, a vertical combustion test of UL standard 94 was performed at a thickness of 2.0 mm, and the grade was evaluated. When the determination fails to satisfy any of the criteria of V-0, V-1, and V-2, “notV” is indicated.

(2)衝撃特性
実施例の各組成から得られたペレットを120℃で5時間、熱風乾燥機にて乾燥し、乾燥した後、射出成形機[東芝機械(株)IS150EN−5Y]によりシリンダー温度320℃、金型温度80℃にてシャルピー衝撃評価用の試験片を成形した。該試験片を用いて、ノッチ付シャルピー衝撃試験をISO179に従って行った。ノッチ付シャルピー衝撃値は8MPa以上が必要である。
(2) Impact characteristics The pellets obtained from each composition of the examples were dried in a hot air dryer at 120 ° C for 5 hours, dried, and then cylinder temperature was measured by an injection molding machine [Toshiba Machine Co., Ltd. IS150EN-5Y]. Test pieces for Charpy impact evaluation were molded at 320 ° C. and a mold temperature of 80 ° C. Using the test piece, a notched Charpy impact test was performed according to ISO179. The notched Charpy impact value needs to be 8 MPa or more.

(3)異方性
実施例の各組成から得られたペレットを120℃で5時間、熱風乾燥機にて乾燥し、乾燥した後、射出成形機[東芝機械(株)IS150EN−5Y]によりシリンダー温度320℃、金型温度80℃にて、一方の短辺側に厚み1.5mmのフィルムゲートを有する短辺50mm、長辺100mm、厚み4mmの平板を成形した。23℃、50%RH、24時間状態調節したのち、平板の流動の流れ方向および直角方向の寸法を三次元測定機(三豊製作所(株)製 MICROPAK 550)を使用し測定し、流れ方向および直角方向の成形収縮率を求め、成形収縮率の流れ方向と直角方向の比を異方性として求めた。異方性の値は1に近いほど好ましい。異方性は0.25以上が必要である。
(3) Anisotropy Pellets obtained from the compositions of the examples were dried in a hot air dryer at 120 ° C. for 5 hours, dried, and then cylindered by an injection molding machine [Toshiba Machine Co., Ltd. IS150EN-5Y]. At a temperature of 320 ° C. and a mold temperature of 80 ° C., a flat plate having a short side of 50 mm, a long side of 100 mm, and a thickness of 4 mm having a film gate having a thickness of 1.5 mm on one short side was formed. After conditioning at 23 ° C., 50% RH for 24 hours, the flow direction and the perpendicular direction of the flow of the flat plate were measured using a three-dimensional measuring machine (MICROPAK 550, manufactured by Mitoyo Seisakusho Co., Ltd.). The molding shrinkage ratio in the direction was determined, and the ratio of the molding shrinkage ratio in the direction perpendicular to the flow direction was determined as anisotropy. The anisotropy value is preferably closer to 1. The anisotropy needs to be 0.25 or more.

[実施例1〜18、および比較例1〜7]
ポリカーボネート樹脂、表1〜表3記載の各種添加剤を各配合量で、ブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練してペレットを得た。使用する各種添加剤は、それぞれ配合量の10〜100倍の濃度を目安に予めポリカーボネート樹脂との予備混合物を作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機は(株)日本製鋼所製:TEX−30XSST(完全かみ合い、同方向回転、2条ネジスクリュー)を使用した。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第一供給口から第二供給口まで270℃、第二供給口からダイス部分まで280℃とした。なお、強化充填材は上記押出機のサイドフィーダーを使用し第二供給口から供給し、残りのポリカーボネート樹脂および添加剤は第一供給口から押出機に供給した。ここでいう第一供給口とはダイスから最も離れた供給口であり、第二供給口とは押出機のダイスと第一供給口の間に位置する供給口である。得られたペレットを120℃で5時間、熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、評価用の試験片を成形した。各評価結果を表1〜表3に示した。
[Examples 1 to 18 and Comparative Examples 1 to 7]
After mixing the polycarbonate resin and various additives shown in Tables 1 to 3 in respective blending amounts in a blender, the mixture was melt-kneaded using a vent type twin screw extruder to obtain pellets. Various additives to be used were prepared in advance by premixing with a polycarbonate resin with a concentration of 10 to 100 times the blending amount as a guide, and then the whole was mixed by a blender. The vent type twin-screw extruder used was TEX-30XSST (completely meshing, rotating in the same direction, two-thread screw) manufactured by Nippon Steel Works. The extrusion conditions are a discharge rate of 20 kg / h, a screw rotation speed of 150 rpm, a vent vacuum of 3 kPa, and an extrusion temperature of 270 ° C. from the first supply port to the second supply port and 280 ° C. from the second supply port to the die part. did. The reinforcing filler was supplied from the second supply port using the side feeder of the extruder, and the remaining polycarbonate resin and additives were supplied to the extruder from the first supply port. The first supply port here is a supply port farthest from the die, and the second supply port is a supply port located between the die of the extruder and the first supply port. The obtained pellets were dried with a hot air circulation dryer at 120 ° C. for 5 hours, and then a test piece for evaluation was molded using an injection molding machine. The evaluation results are shown in Tables 1 to 3.

Figure 2012116915
Figure 2012116915

Figure 2012116915
Figure 2012116915

Figure 2012116915
Figure 2012116915

なお、使用した各成分の詳細は以下の通りである。
(A成分)
(A−1成分)
PC−1:製造例1で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
PC−2:製造例2で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
PC−3:製造例3で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
PC−4:製造例4で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
PC−5:製造例5で製造されたポリカーボネートーポリジオルガノシロキサン共重合体。
In addition, the detail of each used component is as follows.
(A component)
(A-1 component)
PC-1: Polycarbonate-polydiorganosiloxane copolymer produced in Production Example 1.
PC-2: Polycarbonate-polydiorganosiloxane copolymer produced in Production Example 2.
PC-3: Polycarbonate-polydiorganosiloxane copolymer produced in Production Example 3.
PC-4: Polycarbonate-polydiorganosiloxane copolymer produced in Production Example 4.
PC-5: Polycarbonate-polydiorganosiloxane copolymer produced in Production Example 5.

製造例1:PC−1の製造方法
温度計、撹拌機、還流冷却器付き反応器にイオン交換水21591部、48.5%水酸化ナトリウム水溶液3674部を入れ、上記式〔1〕で表されるカーボネート構成単位を構成するジヒドロキシ化合物(I)として2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)3880部、およびハイドロサルファイト7.6部を溶解した後、塩化メチレン14565部(ジヒドロキシ化合物(I)1モルに対して14モル)を加え、撹拌下22〜30℃でホスゲン1900部を60分要して吹き込んだ。次に、48.5%水酸化ナトリウム水溶液1131部、p−tert−ブチルフェノール108部を塩化メチレン800部に溶解した溶液を加え、攪拌しながら上記式〔3〕で表わされるカーボネート構成単位を構成するジメチルシロキサン単位の平均繰返し数が40であるジヒドロキシアリール末端ポリジオルガノシロキサン(II)として下記式〔5〕で表されるポリジオルガノシロキサン化合物204部を塩化メチレン1600部に溶解した溶液を、ジヒドロキシアリール末端ポリジオルガノシロキサン(II)が二価フェノール(I)の量1モルあたり0.0008モル/minとなる速度で加えて乳化状態とした後、再度激しく撹拌した。かかる攪拌下、反応液が26℃の状態でトリエチルアミン4.3部を加えて温度26〜31℃において1時間撹拌を続けて反応を終了した。反応終了後、有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネート−ポリジオルガノシロキサン共重合のパウダーを得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥した。
Production Example 1: Method for producing PC-1 In a reactor equipped with a thermometer, a stirrer, and a reflux condenser, 21915 parts of ion-exchanged water and 3675 parts of a 48.5% aqueous sodium hydroxide solution are placed and expressed by the above formula [1]. After dissolving 3880 parts of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and 7.6 parts of hydrosulfite as the dihydroxy compound (I) constituting the carbonate structural unit, 14565 parts of methylene chloride ( 14 mol) was added to 1 mol of the dihydroxy compound (I), and 1900 parts of phosgene was blown in for 60 minutes at 22-30 ° C. with stirring. Next, a solution obtained by dissolving 1131 parts of 48.5% aqueous sodium hydroxide and 108 parts of p-tert-butylphenol in 800 parts of methylene chloride is added, and the carbonate constituent unit represented by the above formula [3] is formed with stirring. As a dihydroxyaryl-terminated polydiorganosiloxane (II) having an average number of dimethylsiloxane units of 40, a solution obtained by dissolving 204 parts of a polydiorganosiloxane compound represented by the following formula [5] in 1600 parts of methylene chloride, Polydiorganosiloxane (II) was added at a rate of 0.0008 mol / min per 1 mol of dihydric phenol (I) to obtain an emulsified state, and then vigorously stirred again. Under such stirring, 4.3 parts of triethylamine was added while the reaction solution was at 26 ° C., and stirring was continued for 1 hour at a temperature of 26 to 31 ° C. to complete the reaction. After completion of the reaction, the organic phase is separated, diluted with methylene chloride, washed with water, acidified with hydrochloric acid, washed with water, and poured into a kneader filled with warm water when the conductivity of the aqueous phase is almost the same as that of ion-exchanged water. Then, methylene chloride was evaporated while stirring to obtain a polycarbonate-polydiorganosiloxane copolymer powder. After dehydration, it was dried at 120 ° C. for 12 hours using a hot air circulating dryer.

Figure 2012116915
Figure 2012116915

製造例2:PC−2の製造方法
ジメチルシロキサン単位の繰返し数が40であるジヒドロキシアリール末端ポリジオルガノシロキサン430部を用いた以外は実施例1同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合のパウダーを得た。
Production Example 2: PC-2 Production Method A polycarbonate-polydiorganosiloxane copolymer powder was produced in the same manner as in Example 1 except that 430 parts of a dihydroxyaryl-terminated polydiorganosiloxane having a dimethylsiloxane unit repeating number of 40 was used. Got.

製造例3:PC−3の製造方法
ジメチルシロキサン単位の繰返し数が90であるジヒドロキシアリール末端ポリジオルガノシロキサン204部を用いた以外は実施例1同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合のパウダーを得た。
Production Example 3: Production method of PC-3 A polycarbonate-polydiorganosiloxane copolymer powder was produced in the same manner as in Example 1 except that 204 parts of dihydroxyaryl-terminated polydiorganosiloxane having a dimethylsiloxane unit repeating number of 90 was used. Got.

製造例4:PC−4の製造方法
ジメチルシロキサン単位の繰返し数が150であるジヒドロキシアリール末端ポリジオルガノシロキサン204部を用いた以外は実施例1同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合のパウダーを得た。
Production Example 4: Production method of PC-4 Powder of polycarbonate-polydiorganosiloxane copolymerization was carried out in the same manner as in Example 1 except that 204 parts of dihydroxyaryl-terminated polydiorganosiloxane having a dimethylsiloxane unit repeating number of 150 was used. Got.

製造例5:PC−5の製造方法
ジメチルシロキサン単位の繰返し数が400であるジヒドロキシアリール末端ポリジオルガノシロキサン204部を用いた以外は実施例1同様に実施し、ポリカーボネート−ポリジオルガノシロキサン共重合のパウダーを得た。
上記の製造方法で得られた各ポリカーボネート−ポリジオルガノシロキサン共重合体の粘度平均分子量、ポリジオルガノシロキサン成分含有量を表4に示す。
Production Example 5: Production method of PC-5 A polycarbonate-polydiorganosiloxane copolymer powder was prepared in the same manner as in Example 1 except that 204 parts of a dihydroxyaryl-terminated polydiorganosiloxane having 400 repeating dimethylsiloxane units was used. Got.
Table 4 shows the viscosity average molecular weight and polydiorganosiloxane component content of each polycarbonate-polydiorganosiloxane copolymer obtained by the above production method.

Figure 2012116915
Figure 2012116915

(A−2成分)
PC−6:PC:粘度平均分子量19700の直鎖状ポリカーボネート樹脂パウダー(帝人化成(株)製:パンライトL−1225WX)
(B成分)
(B−1成分)
B−1:扁平断面チョップドガラス繊維(日東紡績(株)製:CSG 3PA−830、長径27μm、短径4μm、カット長3mm、エポキシ系集束剤)
(B−2成分)
B−2−1:円形断面チョップドガラス繊維(日本電気硝子(株)製;ECS―03T−511、直径13μm、カット長3mm、アミノシラン処理およびウレタン系集束剤)
B−2−2:ガラスミルドファイバー(日東紡績(株)製PFE−301、繊維径9μm、平均繊維長30μm、シランカップリング剤処理)
(その他の成分)
F114P:パーフルオロブタンスルホン酸カリウム塩(大日本インキ化学(株)製 メガファックF−114P)
PTFE:フィブリル形成能を有するポリテトラフルオロエチレン(ダイキン工業(株)
製「ポリフロンMPA FA500」(商品名))
TMP:トリメチルホスフェート(大八化学工業(株)製TMP)
CB:30重量部のカーボンブラック(三菱化学(株)製 カーボンブラックMA−10
0)、3重量部のホワイトミネラルオイル(エクソンモービル製Crystol N35
2)、0.2重量部のモンタン酸エステルワックス(クラリアントジャパン(株)製リコ
ルブWE−1パウダー)、および66.8重量部のビスフェノールA型ポリカーボネート
樹脂(帝人化成(株)製CM−1000、粘度平均分子量16,000)の4成分の合計
100重量部を二軸押出機を用いて溶融混合して製造された、カーボンブラックマスター
ペレット
(A-2 component)
PC-6: PC: Linear polycarbonate resin powder having a viscosity average molecular weight of 19700 (manufactured by Teijin Chemicals Ltd .: Panlite L-1225WX)
(B component)
(B-1 component)
B-1: Flat section chopped glass fiber (manufactured by Nitto Boseki Co., Ltd .: CSG 3PA-830, major axis 27 μm, minor axis 4 μm, cut length 3 mm, epoxy sizing agent)
(B-2 component)
B-2-1: Circular cross-section chopped glass fiber (manufactured by Nippon Electric Glass Co., Ltd .; ECS-03T-511, diameter 13 μm, cut length 3 mm, aminosilane treatment and urethane sizing agent)
B-2-2: Glass milled fiber (PFE-301 manufactured by Nitto Boseki Co., Ltd., fiber diameter 9 μm, average fiber length 30 μm, silane coupling agent treatment)
(Other ingredients)
F114P: perfluorobutanesulfonic acid potassium salt (manufactured by Dainippon Ink and Chemicals, Inc., MegaFuck F-114P)
PTFE: Polytetrafluoroethylene having fibril forming ability (Daikin Industries, Ltd.)
"Polyflon MPA FA500" (trade name))
TMP: Trimethyl phosphate (TMP manufactured by Daihachi Chemical Industry Co., Ltd.)
CB: 30 parts by weight of carbon black (carbon black MA-10 manufactured by Mitsubishi Chemical Corporation)
0) 3 parts by weight of white mineral oil (Crystol N35 manufactured by ExxonMobil)
2), 0.2 parts by weight of a montanic acid ester wax (Ricorb WE-1 powder manufactured by Clariant Japan Co., Ltd.), and 66.8 parts by weight of a bisphenol A type polycarbonate resin (CM-1000 manufactured by Teijin Chemicals Ltd.) Carbon black master pellets produced by melt-mixing 100 parts by weight of 4 components with a viscosity average molecular weight of 16,000) using a twin screw extruder

Claims (7)

(A)下記一般式〔1〕で表されるカーボネート構成単位および下記一般式〔3〕で表されるカーボネート構成単位からなるポリカーボネート−ポリオルガノシロキサン共重合体(A−1成分)、並びに下記一般式〔1〕で表されるカーボネート構成単位からなるポリカーボネート樹脂(A−2成分)よりなり、A−1成分とA−2成分の重量比(A−1成分/A−2成分)が10/90〜100/0である樹脂成分(A成分)40〜99重量部、並びに(B)繊維断面の長径の平均値が10〜50μm、長径と短径の比(長径/短径)の平均値が1.5〜8.0である扁平断面ガラス繊維(B−1成分)およびB−1成分以外の充填材(B−2成分)よりなり、B−1成分とB−2成分の重量比(B−1成分/B−2成分)が5/95〜100/0である強化充填材(B成分)1〜60重量部を含有するガラス繊維強化樹脂組成物。
Figure 2012116915
[上記一般式〔1〕において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式〔2〕で表される基からなる群より選ばれる少なくとも一つの基である。]
Figure 2012116915
[上記一般式〔2〕においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。]
Figure 2012116915
[上記一般式〔3〕において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは300未満の自然数である。Xは炭素原子数2〜8の二価脂肪族基である。]
(A) A polycarbonate-polyorganosiloxane copolymer (component A-1) composed of a carbonate structural unit represented by the following general formula [1] and a carbonate structural unit represented by the following general formula [3], and the following general It consists of polycarbonate resin (A-2 component) which consists of a carbonate structural unit represented by Formula [1], and the weight ratio (A-1 component / A-2 component) of A-1 component and A-2 component is 10 /. 40 to 99 parts by weight of resin component (component A) of 90 to 100/0, and (B) the average value of the major axis of the fiber cross section is 10 to 50 μm, the average value of the ratio of major axis to minor axis (major axis / minor axis) It consists of a flat cross-section glass fiber (B-1 component) and 1.5 to 8.0 fillers (B-2 component) other than the B-1 component, and the weight ratio of the B-1 component to the B-2 component (B-1 component / B-2 component) is 5/95 to 1 0/0 at a reinforcing filler (B component) glass fiber reinforced resin composition containing 1 to 60 parts by weight.
Figure 2012116915
[In General Formula [1], R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or 6 to 6 carbon atoms. 20 cycloalkyl groups, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, aryl groups having 3 to 14 carbon atoms, aryloxy groups having 3 to 14 carbon atoms, carbon atoms Represents a group selected from the group consisting of an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group, and a carboxyl group. E and f are each an integer of 1 to 4, and W is a single bond or at least one group selected from the group consisting of groups represented by the following general formula [2]. . ]
Figure 2012116915
[In the above general formula [2], R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, carbon Represents a group selected from the group consisting of an aryl group having 3 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, and R 19 and R 20 each independently represent a hydrogen atom, a halogen atom, or a carbon atom having 1 to 18 carbon atoms. Alkyl groups, alkoxy groups having 1 to 10 carbon atoms, cycloalkyl groups having 6 to 20 carbon atoms, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, and 3 carbon atoms. -14 aryl group, aryloxy group having 6 to 10 carbon atoms, aralkyl group having 7 to 20 carbon atoms, aralkyloxy group having 7 to 20 carbon atoms, nitro group, aldehyde group, cyano group and It represents a group selected from the group consisting of carboxyl groups, and when there are a plurality thereof, they may be the same or different, g is an integer of 1 to 10, and h is an integer of 4 to 7. ]
Figure 2012116915
[In the above general formula [3], R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a substitution having 6 to 12 carbon atoms. Or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number Q is 0 or a natural number, and p + q is a natural number less than 300. X is a divalent aliphatic group having 2 to 8 carbon atoms. ]
A−1成分が、ポリカーボネート−ポリジオルガノシロキサン共重合体全重量に占めるポリジオルガノシロキサン成分含有量が0.1〜40重量%であるポリカーボネート−ポリオルガノシロキサン共重合体である請求項1に記載のガラス繊維強化樹脂組成物。   The A-1 component is a polycarbonate-polyorganosiloxane copolymer having a polydiorganosiloxane component content of 0.1 to 40% by weight based on the total weight of the polycarbonate-polydiorganosiloxane copolymer. Glass fiber reinforced resin composition. B−2成分が板状充填材および/またはB−1成分以外の繊維状充填材である請求項1または2に記載のガラス繊維強化樹脂組成物。   The glass fiber reinforced resin composition according to claim 1 or 2, wherein the B-2 component is a plate-like filler and / or a fibrous filler other than the B-1 component. B−2成分の板状充填材がガラスフレーク、マイカ、グラファイトおよびタルクからなる群より選ばれる少なくとも1種の充填材であり、繊維状充填材がB成分以外のガラス繊維、ガラスミルドファイバー、ワラストナイト、および炭素系フィラーからなる群より選ばれる少なくとも1種の充填材である請求項3に記載のガラス繊維強化樹脂組成物。   The B-2 component plate-like filler is at least one filler selected from the group consisting of glass flakes, mica, graphite and talc, and the fibrous filler is a glass fiber other than the B component, glass milled fiber, wax The glass fiber reinforced resin composition according to claim 3, wherein the glass fiber reinforced resin composition is at least one filler selected from the group consisting of rustonite and carbon-based fillers. B−1成分の長径と短径の比(長径/短径)の平均値が2.5〜5.0である請求項1〜4のいずれかに記載のガラス繊維強化樹脂組成物。   The glass fiber reinforced resin composition according to any one of claims 1 to 4, wherein an average value of a ratio of major axis to minor axis (major axis / minor axis) of component B-1 is 2.5 to 5.0. 請求項1〜5のいずれかに記載のガラス繊維強化樹脂組成物を成形してなる樹脂成形品。   The resin molded product formed by shape | molding the glass fiber reinforced resin composition in any one of Claims 1-5. 請求項1〜5のいずれかに記載のガラス繊維強化樹脂組成物を成形してなる通信機器に用いられる部品。   The component used for the communication apparatus formed by shape | molding the glass fiber reinforced resin composition in any one of Claims 1-5.
JP2010266545A 2010-11-30 2010-11-30 Glass fiber reinforced resin composition Active JP5684548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010266545A JP5684548B2 (en) 2010-11-30 2010-11-30 Glass fiber reinforced resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010266545A JP5684548B2 (en) 2010-11-30 2010-11-30 Glass fiber reinforced resin composition

Publications (2)

Publication Number Publication Date
JP2012116915A true JP2012116915A (en) 2012-06-21
JP5684548B2 JP5684548B2 (en) 2015-03-11

Family

ID=46500154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010266545A Active JP5684548B2 (en) 2010-11-30 2010-11-30 Glass fiber reinforced resin composition

Country Status (1)

Country Link
JP (1) JP5684548B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129489A (en) * 2012-12-28 2014-07-10 Idemitsu Kosan Co Ltd Polycarbonate resin composition and molded product thereof
WO2014148641A1 (en) * 2013-03-21 2014-09-25 帝人株式会社 Glass-fiber-reinforced polycarbonate resin composition
JP2014231561A (en) * 2013-05-29 2014-12-11 帝人株式会社 Resin composition for use in decorative molding
JP2015218282A (en) * 2014-05-19 2015-12-07 テクノポリマー株式会社 Thermoplastic resin composition and molding
WO2016089170A1 (en) * 2014-12-04 2016-06-09 주식회사 엘지화학 Flame retardant polycarbonate-based resin composition and moulded article from same
WO2016089172A1 (en) * 2014-12-04 2016-06-09 주식회사 엘지화학 Polycarbonate composition and article comprising same
WO2016089171A1 (en) * 2014-12-04 2016-06-09 주식회사 엘지화학 Copolycarbonate and composition comprising same
KR20160067731A (en) * 2014-12-04 2016-06-14 주식회사 엘지화학 Copolycarbonate and composition comprising the same
CN105899608A (en) * 2014-12-04 2016-08-24 Lg化学株式会社 Polycarbonate composition and article comprising same
WO2016089134A3 (en) * 2014-12-04 2016-09-29 주식회사 엘지화학 Copolycarbonate and composition containing same
US9732186B2 (en) 2014-09-05 2017-08-15 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
JP2021193172A (en) * 2020-05-13 2021-12-23 エスエイチピーピー グローバル テクノロジーズ べスローテン フェンノートシャップ Polycarbonate copolymer and related film extrusion composition, extrusion film and capacitor
US11866571B2 (en) 2020-05-13 2024-01-09 Shpp Global Technologies B.V. Polycarbonate copolymer and associated film extrusion composition, extruded film, and capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186675A (en) * 1991-07-01 1993-07-27 General Electric Co <Ge> Polymer blend comprising polycarbonate/ polysiloxane block copolymer, polycarbonate and polyester-carbonate copolymer
JP2002012755A (en) * 2000-06-28 2002-01-15 Idemitsu Petrochem Co Ltd Polycarbonate resin composition and molded article
JP2007186571A (en) * 2006-01-12 2007-07-26 Teijin Chem Ltd Glass fiber-reinforced aromatic polycarbonate resin composition
WO2007132596A1 (en) * 2006-05-15 2007-11-22 Idemitsu Kosan Co., Ltd. Aromatic polycarbonate resin composition
JP2009270006A (en) * 2008-05-07 2009-11-19 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition and molded article of the same
JP2009280636A (en) * 2008-05-19 2009-12-03 Idemitsu Kosan Co Ltd Glass-fiber-reinforced flame-retardant polycarbonate resin composition and molded article using the resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186675A (en) * 1991-07-01 1993-07-27 General Electric Co <Ge> Polymer blend comprising polycarbonate/ polysiloxane block copolymer, polycarbonate and polyester-carbonate copolymer
JP2002012755A (en) * 2000-06-28 2002-01-15 Idemitsu Petrochem Co Ltd Polycarbonate resin composition and molded article
JP2007186571A (en) * 2006-01-12 2007-07-26 Teijin Chem Ltd Glass fiber-reinforced aromatic polycarbonate resin composition
WO2007132596A1 (en) * 2006-05-15 2007-11-22 Idemitsu Kosan Co., Ltd. Aromatic polycarbonate resin composition
JP2009270006A (en) * 2008-05-07 2009-11-19 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition and molded article of the same
JP2009280636A (en) * 2008-05-19 2009-12-03 Idemitsu Kosan Co Ltd Glass-fiber-reinforced flame-retardant polycarbonate resin composition and molded article using the resin composition

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129489A (en) * 2012-12-28 2014-07-10 Idemitsu Kosan Co Ltd Polycarbonate resin composition and molded product thereof
EP2977409A4 (en) * 2013-03-21 2016-03-30 Teijin Ltd Glass-fiber-reinforced polycarbonate resin composition
CN105051110A (en) * 2013-03-21 2015-11-11 帝人株式会社 Glass-fiber-reinforced polycarbonate resin composition
KR20150132087A (en) * 2013-03-21 2015-11-25 데이진 가부시키가이샤 Glass-fiber-reinforced polycarbonate resin composition
JPWO2014148641A1 (en) * 2013-03-21 2017-02-16 帝人株式会社 Glass fiber reinforced polycarbonate resin composition
KR102141725B1 (en) * 2013-03-21 2020-09-14 데이진 가부시키가이샤 Glass-fiber-reinforced polycarbonate resin composition
EP2977409B1 (en) 2013-03-21 2019-12-25 Teijin Limited Glass-fiber-reinforced polycarbonate resin composition
US10196515B2 (en) 2013-03-21 2019-02-05 Teijin Limited Glass-fiber-reinforced polycarbonate resin composition
CN105051110B (en) * 2013-03-21 2018-05-25 帝人株式会社 Glass fiber-reinforced poly carbonate resin composition
WO2014148641A1 (en) * 2013-03-21 2014-09-25 帝人株式会社 Glass-fiber-reinforced polycarbonate resin composition
JP2014231561A (en) * 2013-05-29 2014-12-11 帝人株式会社 Resin composition for use in decorative molding
JP2015218282A (en) * 2014-05-19 2015-12-07 テクノポリマー株式会社 Thermoplastic resin composition and molding
US9745418B2 (en) 2014-09-05 2017-08-29 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
US9732186B2 (en) 2014-09-05 2017-08-15 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
US9745417B2 (en) 2014-12-04 2017-08-29 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
TWI609048B (en) * 2014-12-04 2017-12-21 Lg化學股份有限公司 Flame resistant polycarbate based resin composition and molded articles thereof
US9580597B2 (en) 2014-12-04 2017-02-28 Lg Chem, Ltd. Polycarbonate composition and article comprising the same
CN106574044A (en) * 2014-12-04 2017-04-19 株式会社Lg化学 Copolycarbonate and composition containing same
TWI582164B (en) * 2014-12-04 2017-05-11 Lg化學股份有限公司 Polycarbonate composition and article comprising the same
CN107001778A (en) * 2014-12-04 2017-08-01 株式会社Lg化学 Polycarbonate resin composition and its mechanograph
US9718958B2 (en) 2014-12-04 2017-08-01 Lg Chem, Ltd. Copolycarbonate and composition containing the same
WO2016089134A3 (en) * 2014-12-04 2016-09-29 주식회사 엘지화학 Copolycarbonate and composition containing same
US9745466B2 (en) 2014-12-04 2017-08-29 Lg Chem, Ltd. Copolycarbonate and composition containing the same
CN105980446A (en) * 2014-12-04 2016-09-28 Lg化学株式会社 Polycarbonate composition and article comprising same
CN105899608A (en) * 2014-12-04 2016-08-24 Lg化学株式会社 Polycarbonate composition and article comprising same
US9751979B2 (en) 2014-12-04 2017-09-05 Lg Chem, Ltd. Copolycarbonate and composition containing the same
US9777112B2 (en) 2014-12-04 2017-10-03 Lg Chem, Ltd. Copolycarbonate resin composition
US9809677B2 (en) 2014-12-04 2017-11-07 Lg Chem, Ltd. Polycarbonate composition and article comprising the same
KR101804439B1 (en) 2014-12-04 2017-12-04 주식회사 엘지화학 Polycarbonate based resin composition and molded articles thereof
KR101804428B1 (en) 2014-12-04 2017-12-04 주식회사 엘지화학 Polycarbonate based resin composition and molded articles thereof
US9840585B2 (en) 2014-12-04 2017-12-12 Lg Chem, Ltd. Polycarbonate resin composition
KR101685665B1 (en) 2014-12-04 2016-12-12 주식회사 엘지화학 Copolycarbonate and composition comprising the same
KR101817680B1 (en) 2014-12-04 2018-01-11 주식회사 엘지화학 Polycarbonate based resin composition with flame resistance and molded articles thereof
US9868818B2 (en) 2014-12-04 2018-01-16 Lg Chem, Ltd. Copolycarbonate and composition containing the same
US9902853B2 (en) 2014-12-04 2018-02-27 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
US9969841B2 (en) 2014-12-04 2018-05-15 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
KR20160067731A (en) * 2014-12-04 2016-06-14 주식회사 엘지화학 Copolycarbonate and composition comprising the same
US10011716B2 (en) 2014-12-04 2018-07-03 Lg Chem, Ltd. Copolycarbonate composition and article containing the same
US10081730B2 (en) 2014-12-04 2018-09-25 Lg Chem, Ltd. Polycarbonate-based resin composition and molded article thereof
US10174194B2 (en) 2014-12-04 2019-01-08 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
CN105899608B (en) * 2014-12-04 2019-01-18 Lg化学株式会社 Polycarbonate compositions and product containing the composition
WO2016089171A1 (en) * 2014-12-04 2016-06-09 주식회사 엘지화학 Copolycarbonate and composition comprising same
US10196516B2 (en) 2014-12-04 2019-02-05 Lg Chem, Ltd. Copolycarbonate resin composition and article including the same
US10240037B2 (en) 2014-12-04 2019-03-26 Lg Chem, Ltd. Polycarbonate-based resin composition and molded article thereof
US10240038B2 (en) 2014-12-04 2019-03-26 Lg Chem, Ltd. Flame resistant polycarbate based resin composition and molded articles thereof
US10294365B2 (en) 2014-12-04 2019-05-21 Lg Chem, Ltd. Polycarbonate-based resin composition and molded article thereof
WO2016089172A1 (en) * 2014-12-04 2016-06-09 주식회사 엘지화학 Polycarbonate composition and article comprising same
WO2016089170A1 (en) * 2014-12-04 2016-06-09 주식회사 엘지화학 Flame retardant polycarbonate-based resin composition and moulded article from same
JP2021193172A (en) * 2020-05-13 2021-12-23 エスエイチピーピー グローバル テクノロジーズ べスローテン フェンノートシャップ Polycarbonate copolymer and related film extrusion composition, extrusion film and capacitor
US11866571B2 (en) 2020-05-13 2024-01-09 Shpp Global Technologies B.V. Polycarbonate copolymer and associated film extrusion composition, extruded film, and capacitor

Also Published As

Publication number Publication date
JP5684548B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5684548B2 (en) Glass fiber reinforced resin composition
JP5602997B2 (en) Glass fiber reinforced aromatic polycarbonate resin composition
JP5684470B2 (en) Thermoplastic resin composition
JP5524463B2 (en) A lens barrel made of a glass fiber reinforced flame retardant resin composition
EP3730534B1 (en) Polycarbonate-polydiorganosiloxane copolymer, resin composition of polycarbonate-polydiorganosiloxane copolymer, and production method for resin composition of polycarbonate-polydiorganosiloxane copolymer
JP5048948B2 (en) Glass fiber reinforced aromatic polycarbonate resin composition
JP5805927B2 (en) Polycarbonate-polydiorganosiloxane copolymer, molded article and method for producing the same
KR20170089884A (en) Polycarbonate resin composition and molded article comprising same
JP6181394B2 (en) Thermoplastic resin composition and molded article thereof
JP6224331B2 (en) Thermoplastic resin composition and molded article thereof
JP6513897B2 (en) Flame retardant polycarbonate resin composition
JP2008297424A (en) Flame-resistant polycarbonate resin composition
JP5932552B2 (en) Heat-shielding polycarbonate resin housing for outdoor installation
JP6577162B2 (en) Transparent flame retardant thermoplastic resin composition and molded article thereof
JP2013221072A (en) Glass fiber-reinforced polycarbonate resin composition
JP6110197B2 (en) Conductive polycarbonate resin composition
JP2008231441A (en) Glass fiber-reinforced aromatic polycarbonate resin composition
EP3647369B1 (en) Reinforced polycarbonate resin composition
JP2011144219A (en) Polycarbonate-polydiorganosiloxane copolymer and sheet
JP6991003B2 (en) Reinforced polycarbonate resin composition
JP7477658B2 (en) Polycarbonate resin composition and molded article
JP6956538B2 (en) Reinforced polycarbonate resin composition
JP2020122073A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150115

R150 Certificate of patent or registration of utility model

Ref document number: 5684548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150