JP2012114475A - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device Download PDF

Info

Publication number
JP2012114475A
JP2012114475A JP2012060561A JP2012060561A JP2012114475A JP 2012114475 A JP2012114475 A JP 2012114475A JP 2012060561 A JP2012060561 A JP 2012060561A JP 2012060561 A JP2012060561 A JP 2012060561A JP 2012114475 A JP2012114475 A JP 2012114475A
Authority
JP
Japan
Prior art keywords
insulating film
gate
semiconductor substrate
charge storage
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012060561A
Other languages
Japanese (ja)
Inventor
Kazuhiro Shimizu
水 和 裕 清
Hidehito Horii
井 秀 人 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012060561A priority Critical patent/JP2012114475A/en
Publication of JP2012114475A publication Critical patent/JP2012114475A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell structure capable of ensuring the breakdown voltage of a memory cell and capable of controlling accurate threshold distribution even in a microfabricated memory cell.SOLUTION: A nonvolatile semiconductor memory device comprises: a plurality of element isolation insulating films DI formed in a surface layer of a semiconductor substrate S; a plurality of element regions AA defined by the element isolation insulating films DI; a plurality of gate structures each including a charge storage layer FG formed on the semiconductor substrate S via a tunnel oxide film 10 and a control gate CG formed on the charge storage layer FG via a gate insulating film 20; a plurality of impurity diffusion layers IDL formed in the element regions AA so as to sandwich the surface layer of the semiconductor substrate S directly under the gate structures therebetween; insulating films 60 formed from oxide silicon so as to fill the gaps between the gate structures; and an insulating film 40 formed from nitride silicon so as to contact the side walls of the gate structures. The bottoms of the insulating film 40 are spaced apart from the surface of the semiconductor substrate S by at least a half or more of the height of the charge storage layers FG.

Description

本発明は不揮発性半導体記憶装置に関する。   The present invention relates to a nonvolatile semiconductor memory device.

不揮発性半導体記憶装置は、第1のゲート絶縁膜を介して基板上に形成された電荷蓄積層(浮遊ゲート)と、該電荷蓄積層上に第2のゲート絶縁膜を介して形成された制御ゲートと、を備え、データ書込み時に、例えば制御ゲートおよびドレイン領域に正の電圧を印加する一方で基板およびソース領域を接地することにより、電荷蓄積層に電子を注入して制御ゲートの閾値を変化させ、これにより、“0”または“1”の区分を行うものである。大容量・高密度不揮発性半導体メモリの代表として、最も高密度に集積可能な自己整合型STI(Shallow Trench Isolation)メモリ構造のNAND型EEPROMがある。   A nonvolatile semiconductor memory device includes a charge storage layer (floating gate) formed on a substrate via a first gate insulating film, and a control formed on the charge storage layer via a second gate insulating film. When writing data, for example, by applying a positive voltage to the control gate and drain region while grounding the substrate and source region, electrons are injected into the charge storage layer to change the threshold value of the control gate Thus, the division of “0” or “1” is performed. A representative example of a large-capacity, high-density nonvolatile semiconductor memory is a NAND-type EEPROM having a self-aligned STI (Shallow Trench Isolation) memory structure that can be integrated at the highest density.

しかしながら、従来の自己整合型STIセル構造では、高密度化・大容量化のために素子領域幅や素子分離幅、ゲート幅やゲート間スペースを縮小すると、隣接するゲート間で耐圧が劣化し、寄生容量が増大する(例えば特許文献1参照)他、n型拡散層表面の電荷トラップによるセルチャネル電流劣化等が生じることに起因してメモリセル特性が劣化し、しきい値分布が悪化するという問題があった。   However, in the conventional self-aligned STI cell structure, when the element region width, the element isolation width, the gate width, and the space between the gates are reduced in order to increase the density and capacity, the breakdown voltage deteriorates between adjacent gates. In addition to an increase in parasitic capacitance (see, for example, Patent Document 1), memory cell characteristics are degraded due to cell channel current degradation due to charge trapping on the surface of the n-type diffusion layer, and threshold distribution is degraded. There was a problem.

国際公開第2005/081318号International Publication No. 2005/081318

本発明の目的は、メモリセルを微細化した場合でもメモリセルの絶縁耐圧を確保し精密なしきい値分布を制御可能なセル構造を実現することにある。   An object of the present invention is to realize a cell structure capable of securing a dielectric breakdown voltage of a memory cell and controlling a precise threshold distribution even when the memory cell is miniaturized.

本発明の第1の態様によれば、
半導体基板上の第1の方向に延在して設けられる複数の素子領域と、前記半導体基板上で前記第1の方向に交差する第2の方向に延在して設けられ、第1ゲート絶縁膜を介して前記半導体基板上に形成された電荷蓄積層と、前記電荷蓄積層の上に形成された第2ゲート絶縁膜と、前記第2ゲート絶縁膜の上に形成された制御ゲートと、をそれぞれ含む複数のゲート構造と、 前記半導体基板の表面層に選択的に形成された絶縁膜で構成され、前記素子領域を画定するとともに前記素子領域を電気的に分離する素子分離絶縁膜と、前記ゲート構造直下の前記半導体基板の表面層を間に挟むように前記素子領域に形成された不純物拡散層と、前記ゲート構造の間に第1の絶縁材料で形成された第3ゲート絶縁膜と、前記ゲート構造の側壁と前記ゲート構造間の前記半導体基板とに接するように前記第1の絶縁材料の誘電率よりも低い誘電率を有する第2の絶縁材料で形成された第4ゲート絶縁膜と、を備える不揮発性半導体記憶装置が提供される。
According to a first aspect of the invention,
A plurality of element regions provided extending in a first direction on the semiconductor substrate; and a first gate insulation provided extending in a second direction intersecting the first direction on the semiconductor substrate. A charge storage layer formed on the semiconductor substrate through a film; a second gate insulating film formed on the charge storage layer; a control gate formed on the second gate insulating film; A plurality of gate structures each including an element isolation insulating film that is formed of an insulating film selectively formed on a surface layer of the semiconductor substrate, demarcates the element region and electrically isolates the element region; An impurity diffusion layer formed in the element region so as to sandwich a surface layer of the semiconductor substrate directly under the gate structure, and a third gate insulating film formed of a first insulating material between the gate structures; The sidewalls of the gate structure and the gate And a fourth gate insulating film formed of a second insulating material having a dielectric constant lower than that of the first insulating material so as to be in contact with the semiconductor substrate between the first and second structures. An apparatus is provided.

また、本発明の第2の態様によれば、
半導体基板上の第1の方向に延在して設けられる複数の素子領域と、前記半導体基板上で前記第1の方向に交差する第2の方向に延在して設けられ、第1ゲート絶縁膜を介して前記半導体基板上に形成された電荷蓄積層と、前記電荷蓄積層の上に形成された第2ゲート絶縁膜と、前記第2ゲート絶縁膜の上に形成された制御ゲートと、をそれぞれ含む複数のゲート構造と、 前記半導体基板の表面層に選択的に形成された絶縁膜で構成され、前記素子領域を画定するとともに前記素子領域を電気的に分離する素子分離絶縁膜と、前記ゲート構造直下の前記半導体基板の表面層を間に挟むように前記素子領域に形成された不純物拡散層と、前記ゲート構造の間を埋め込むように第1の絶縁材料で形成された第3ゲート絶縁膜と、前記ゲート構造の側壁に接するように前記第1の絶縁材料とは異なる第2の絶縁材料で形成された第4ゲート絶縁膜と、前記第3ゲート絶縁膜内に前記第1の絶縁材料とは異なる第3の絶縁材料で形成された第5ゲート絶縁膜と、を備え、前記第2および第3の絶縁材料の誘電率は、前記第1の絶縁材料の誘電率よりも高いことを特徴とする不揮発性半導体記憶装置が提供される。
According to the second aspect of the present invention,
A plurality of element regions provided extending in a first direction on the semiconductor substrate; and a first gate insulation provided extending in a second direction intersecting the first direction on the semiconductor substrate. A charge storage layer formed on the semiconductor substrate through a film; a second gate insulating film formed on the charge storage layer; a control gate formed on the second gate insulating film; A plurality of gate structures each including an element isolation insulating film that is formed of an insulating film selectively formed on a surface layer of the semiconductor substrate, demarcates the element region and electrically isolates the element region; An impurity diffusion layer formed in the element region so as to sandwich a surface layer of the semiconductor substrate immediately below the gate structure, and a third gate formed of a first insulating material so as to embed between the gate structure An insulating film and the gate structure; A fourth gate insulating film formed of a second insulating material different from the first insulating material so as to be in contact with the side wall, and a third gate insulating film different from the first insulating material in the third gate insulating film And a fifth gate insulating film formed of an insulating material, wherein a dielectric constant of the second and third insulating materials is higher than a dielectric constant of the first insulating material. A storage device is provided.

本発明によれば、メモリセルを微細化した場合でもメモリセルの絶縁耐圧を確保し精密なしきい値分布を制御可能なセル構造を実現することができる。   According to the present invention, even when a memory cell is miniaturized, it is possible to realize a cell structure that can secure a dielectric breakdown voltage of a memory cell and can control a precise threshold distribution.

ゲート間電界を緩和して絶縁劣化を抑制する解決方法を模式的に示す図。The figure which shows typically the solution which relieves the electric field between gates and suppresses insulation degradation. ゲート構造に接するゲート間絶縁膜の絶縁材料の膜厚と、書込み時に制御ゲートに印加可能な電圧との関係の一例を示すグラフ。The graph which shows an example of the relationship between the film thickness of the insulating material of the insulating film between gates which touches a gate structure, and the voltage which can be applied to a control gate at the time of writing. 本発明の第1の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示平面図。1 is a schematic plan view showing a memory structure of a nonvolatile semiconductor memory device according to a first embodiment of the present invention. 本発明の第1の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。1 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a first embodiment of the present invention. 本発明の第1の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。1 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a first embodiment of the present invention. 本発明の第1の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。1 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a first embodiment of the present invention. 本発明の第1の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。1 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a first embodiment of the present invention. 第1の比較例による不揮発性半導体記憶装置の一例を示す断面図。Sectional drawing which shows an example of the non-volatile semiconductor memory device by a 1st comparative example. 第1の比較例による不揮発性半導体記憶装置の一例を示す断面図。Sectional drawing which shows an example of the non-volatile semiconductor memory device by a 1st comparative example. 第1の比較例による不揮発性半導体記憶装置の一例を示す断面図。Sectional drawing which shows an example of the non-volatile semiconductor memory device by a 1st comparative example. 第1の比較例による不揮発性半導体記憶装置の一例を示す断面図。Sectional drawing which shows an example of the non-volatile semiconductor memory device by a 1st comparative example. 第2の比較例による不揮発性半導体記憶装置の一例を示す断面図。Sectional drawing which shows an example of the non-volatile semiconductor memory device by a 2nd comparative example. 第2の比較例による不揮発性半導体記憶装置の一例を示す断面図。Sectional drawing which shows an example of the non-volatile semiconductor memory device by a 2nd comparative example. 第2の比較例による不揮発性半導体記憶装置の一例を示す断面図。Sectional drawing which shows an example of the non-volatile semiconductor memory device by a 2nd comparative example. 第2の比較例による不揮発性半導体記憶装置の一例を示す断面図。Sectional drawing which shows an example of the non-volatile semiconductor memory device by a 2nd comparative example. 本発明の第2の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。6 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a second embodiment of the present invention. FIG. 本発明の第2の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。6 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a second embodiment of the present invention. FIG. 本発明の第2の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。6 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a second embodiment of the present invention. FIG. 本発明の第2の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。6 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a second embodiment of the present invention. FIG. 本発明の第3の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 6 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a third embodiment of the invention. 本発明の第3の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 6 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a third embodiment of the invention. 本発明の第3の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 6 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a third embodiment of the invention. 本発明の第3の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 6 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a third embodiment of the invention. 本発明の第4の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。10 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a fourth embodiment of the invention. 本発明の第4の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。10 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a fourth embodiment of the invention. 本発明の第4の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。10 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a fourth embodiment of the invention. 本発明の第4の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。10 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a fourth embodiment of the invention. 本発明の第5の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 9 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a fifth embodiment of the invention. 本発明の第5の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 9 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a fifth embodiment of the invention. 本発明の第5の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 9 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a fifth embodiment of the invention. 本発明の第5の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 9 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a fifth embodiment of the invention. 本発明の第6の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 9 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a sixth embodiment of the present invention. 本発明の第6の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 9 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a sixth embodiment of the present invention. 本発明の第6の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 9 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a sixth embodiment of the present invention. 本発明の第6の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示断面図。FIG. 9 is a schematic cross-sectional view showing a memory structure of a nonvolatile semiconductor memory device according to a sixth embodiment of the present invention. 図11A乃至Dに示すメモリ構造でゲート間電界を緩和して絶縁劣化を抑制する解決方法を模式的に示す図。FIGS. 11A to 11D schematically show a solution method for suppressing insulation deterioration by relaxing an electric field between gates in the memory structure shown in FIGS.

以下、本発明の実施の形態のいくつかについて、図面を参照しながら詳細に説明する。図面において、同一の部分には同一の番号を付し、重複説明は必要な場合に限り行う。   Hereinafter, some embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same parts are denoted by the same reference numerals, and redundant description will be given only when necessary.

(1)絶縁劣化の抑制方法
図1は、ゲート間電界を緩和して絶縁劣化を抑制する解決方法を模式的に示す図である。同図は、自己整合型STIメモリ構造のNAND型EEPROMの一例のセル構造における電界関係を示す。同図の紙面の左右には平行平板の態様で形成された積層ゲート構造が配置される。電荷蓄積層上にそれぞれ形成された制御ゲートCG間には、例えば2種類の絶縁材料からなる3層構造のゲート間絶縁膜IF1a,IF2,IF1bが配置されている。図1のセル構造では、例えば紙面右側に書込み電圧(Vpgm)が印加される制御ゲートCGが示され、紙面左側に書込み防止用中間電圧(Vpass)が印加される制御ゲート直下の電荷蓄積層FGが示されている。制御ゲートCGおよびその直下の電荷蓄積層FGに接するゲート間絶縁膜IF1a,IF1bの絶縁材料(「第絶縁材料A」という)は、同一種類であり、その比誘電率をeps_1、膜厚をd_1、印加される電界強度をE_1とする。また、ゲート間絶縁膜IF1a,IF1bの間に挿入されたゲート間絶縁膜IF2は絶縁材料Aとは異なる絶縁材料Bで形成され、その比誘電率をeps_2、膜厚をd_2、印加される電界強度をE_2とする。
(1) Method for suppressing insulation deterioration FIG. 1 is a diagram schematically showing a solution method for suppressing insulation deterioration by relaxing an inter-gate electric field. This figure shows an electric field relationship in a cell structure of an example of a NAND type EEPROM having a self-aligned STI memory structure. Laminated gate structures formed in the form of parallel plates are arranged on the left and right sides of the drawing. Between the control gates CG respectively formed on the charge storage layer, for example, inter-gate insulating films IF1a, IF2 and IF1b having a three-layer structure made of two kinds of insulating materials are arranged. In the cell structure of FIG. 1, for example, the control gate CG to which the write voltage (Vpgm) is applied is shown on the right side of the paper, and the charge storage layer FG directly under the control gate to which the write prevention intermediate voltage (Vpass) is applied to the left side of the paper. It is shown. The insulating materials (referred to as “first insulating material A”) of the intergate insulating films IF1a and IF1b that are in contact with the control gate CG and the charge storage layer FG immediately below the control gate CG are the same type, and have a relative dielectric constant of eps_1 and a thickness of d_1. The applied electric field strength is E_1. The inter-gate insulating film IF2 inserted between the inter-gate insulating films IF1a and IF1b is formed of an insulating material B different from the insulating material A, and has a relative dielectric constant of eps_2 and a film thickness of d_2. The intensity is E_2.

それぞれの絶縁膜中での電界強度E_i(i=1、2)は
[式1]E_i = K * V / eps_i
と表せる。ここで、
[式2]K = 1/( 2 * d_1 / eps_1 + d_2 / eps_2 )
である。
The electric field strength E_i (i = 1, 2) in each insulating film is expressed by [Equation 1] E_i = K * V / eps_i
It can be expressed. here,
[Formula 2] K = 1 / (2 * d_1 / eps_1 + d_2 / eps_2)
It is.

一般的に、比較的厚い絶縁膜を流れる電流は、Fowler−Nordheim型やPoole−Frankel型で表されるため、絶縁膜に印加される電界を下げることが重要である。言い換えれば電子を放出する部分の電界を緩和すればリーク電流を抑制できると考えられるため、図1に示す構造では、E_1 < E_2にする必要がある。(式1)からE_1 < E_2とする条件としてeps_1 > eps_2であればよい。なお、隣接するセル間の電位関係は書込みとともに入れ替わるため、実際のメモリセル構造では対称構造となる。   In general, a current flowing through a relatively thick insulating film is expressed by a Fowler-Nordheim type or a Pool-Frankel type. Therefore, it is important to lower an electric field applied to the insulating film. In other words, since it is considered that the leakage current can be suppressed by relaxing the electric field in the portion that emits electrons, the structure shown in FIG. 1 needs to satisfy E_1 <E_2. As a condition for satisfying E_1 <E_2 from (Equation 1), eps_1> eps_2 may be satisfied. Note that since the potential relationship between adjacent cells is switched with writing, the actual memory cell structure has a symmetrical structure.

図2は絶縁材料Aの膜厚と、書込み時に制御ゲートに印加可能な電圧(Vpgm)との関係の一例を示すグラフである。隣接するセル間の距離を10nmとし、書込み防止用中間電圧Vpassが印加される制御ゲート直下の電荷蓄積層FGの電位VFGを4Vとした。また、絶縁耐圧を便宜的に10MV/cmと仮定している。 FIG. 2 is a graph showing an example of the relationship between the film thickness of the insulating material A and the voltage (Vpgm) that can be applied to the control gate during writing. The distance between adjacent cells was 10 nm, and the potential V FG of the charge storage layer FG immediately below the control gate to which the write preventing intermediate voltage Vpass was applied was 4V. In addition, the withstand voltage is assumed to be 10 MV / cm for convenience.

ここで、第1層の絶縁膜IF1aを、例えば窒化シリコン膜(eps_1=7.5、 d_1=2nm)とし、第2層の絶縁膜IF2を、例えば酸化シリコン膜(eps_2=3.9、 d_2=6nm)とした場合、第1層の窒化シリコン膜に印加可能な電圧は最大19.5Vとなる。この設定の下で第1層の窒化シリコン膜の膜厚を減らすと、電界緩和効果で印加可能な電圧が高くなることが判る。誘電率の高い第1層の窒化シリコン膜を厚くすると隣接するセルの電荷蓄積層の間の寄生容量が高くなるため、隣接セル間干渉によるしきい値分布の広がりが悪化して精密なしきい値制御が困難になるという弊害も生じる。そのため、第1層の窒化シリコン膜の膜厚を減らす工夫が必要となる。具体的には、メモリセルの制御ゲートと電荷蓄積層との間のゲート間絶縁膜の膜厚以下にすることが望ましい。   Here, the first-layer insulating film IF1a is, for example, a silicon nitride film (eps_1 = 7.5, d_1 = 2 nm), and the second-layer insulating film IF2 is, for example, a silicon oxide film (eps_2 = 2.3.9, d_2). = 6 nm), the maximum voltage that can be applied to the first silicon nitride film is 19.5V. It can be seen that when the film thickness of the silicon nitride film of the first layer is reduced under this setting, the voltage that can be applied increases due to the electric field relaxation effect. When the first silicon nitride film having a high dielectric constant is thickened, the parasitic capacitance between the charge storage layers of adjacent cells increases, so that the spread of the threshold distribution due to the interference between adjacent cells deteriorates and a precise threshold value is obtained. There is also an adverse effect that control becomes difficult. Therefore, a device for reducing the thickness of the first silicon nitride film is required. Specifically, it is desirable that the thickness be less than or equal to the thickness of the inter-gate insulating film between the control gate and the charge storage layer of the memory cell.

(2)第1の実施の形態
本発明の第1の実施の形態について図3乃至図6Dを参照しながら説明する。
(2) First Embodiment A first embodiment of the present invention will be described with reference to FIGS. 3 to 6D.

図3は、本実施形態の不揮発性半導体記憶装置のメモリ構造を示す略示平面図であり、図4A乃至図4Dはその略示断面図である。図3においては、メモリ構造のうち、素子分離絶縁膜DIの領域、素子領域AA、電荷蓄積層FGおよび制御ゲートCGのレイアウトのみを示す。また、図4A乃至4Dは、それぞれ図3のA−A切断線、B−B切断線、C−C切断線およびD−D切断線による断面図である。これらの各切断線と断面図との関係は、以下の図5A乃至11Dについても同様である。   FIG. 3 is a schematic plan view showing the memory structure of the nonvolatile semiconductor memory device of this embodiment, and FIGS. 4A to 4D are schematic cross-sectional views thereof. FIG. 3 shows only the layout of the element isolation insulating film DI region, element region AA, charge storage layer FG, and control gate CG in the memory structure. 4A to 4D are cross-sectional views taken along line AA, line BB, line CC, and line DD in FIG. 3, respectively. The relationship between these cutting lines and cross-sectional views is the same for the following FIGS. 5A to 11D.

まず、図3乃至図4Dを参照しながら、本実施形態の不揮発性半導体記憶装置のメモリ構造を説明する。   First, the memory structure of the nonvolatile semiconductor memory device of this embodiment will be described with reference to FIGS. 3 to 4D.

シリコン基板Sの表面の素子分離領域に素子分離用トレンチ(Shallow Trench)STが形成され、該トレンチSTの内部に素子分離用絶縁材料、例えば2酸化シリコン材が埋め込まれて素子分離絶縁膜DIが形成され、素子領域AAが画定されている。このような素子分離絶縁膜DIにより素子分離された素子領域AAの全面に、トンネル電流が流れ得る薄いトンネル絶縁膜10が形成されている。トンネル絶縁膜10上の素子領域AAでゲート構造と交差する領域に電荷蓄積層FGが形成されている。電荷蓄積層FGの側端部は素子分離領域の境界と揃っている。素子分離絶縁膜DIの一部は電荷蓄積層FGと接している(図4C参照)。電荷蓄積層FGの頂面はゲート間絶縁膜20を介して制御ゲートCGと対面しており、これにより、電荷蓄積層FGと制御ゲート間CG間の容量を高める工夫がなされている。制御ゲートCGの頂面には積層ゲートキャップ材30が形成されている。積層ゲートキャップ材30、制御ゲートCG、ゲート間絶縁膜20および電荷蓄積層FGで積層ゲート構造が構成される。制御ゲートCGおよび電荷蓄積層FGは各側壁が揃うように自己整合的に垂直加工されている。半導体基板Sの表面層には制御ゲートCG直下の表面層を間に挟むようにn型不純物拡散層IDLが形成され、制御ゲートCG直下の表面層をチャネル領域とするソース・ドレイン領域となっている。   An element isolation trench (Shallow Trench) ST is formed in an element isolation region on the surface of the silicon substrate S, and an element isolation insulating material, for example, a silicon dioxide material is embedded in the trench ST to form an element isolation insulating film DI. The device region AA is defined. A thin tunnel insulating film 10 through which a tunnel current can flow is formed on the entire surface of the element region AA that has been element-isolated by such an element isolation insulating film DI. A charge storage layer FG is formed in a region intersecting the gate structure in the element region AA on the tunnel insulating film 10. The side edge of the charge storage layer FG is aligned with the boundary of the element isolation region. A part of the element isolation insulating film DI is in contact with the charge storage layer FG (see FIG. 4C). The top surface of the charge storage layer FG faces the control gate CG via the inter-gate insulating film 20, and thereby, a device for increasing the capacitance between the charge storage layer FG and the control gate CG is devised. A laminated gate cap material 30 is formed on the top surface of the control gate CG. The stacked gate cap material 30, the control gate CG, the intergate insulating film 20, and the charge storage layer FG form a stacked gate structure. The control gate CG and the charge storage layer FG are vertically processed in a self-aligning manner so that the side walls are aligned. In the surface layer of the semiconductor substrate S, an n-type impurity diffusion layer IDL is formed so as to sandwich the surface layer immediately below the control gate CG, thereby forming source / drain regions having the surface layer immediately below the control gate CG as a channel region. Yes.

図4Aに示すように、個々の積層ゲート構造を覆うように、窒化シリコン系絶縁膜40が積層ゲート構造に接して形成されている。これにより、水素や金属元素等の外部からの不純物進入を防ぐことができる。さらに、隣接する制御ゲートCG間および電荷蓄積層FG間は、窒化シリコン系絶縁膜40を介して酸化シリコン系絶縁材が埋め込まれて酸化シリコン系絶縁膜60が形成され、これにより、隣接する制御ゲートCG間および電荷蓄積層FG間が他の素子から電気的に分離されている。   As shown in FIG. 4A, a silicon nitride insulating film 40 is formed in contact with the stacked gate structure so as to cover each stacked gate structure. As a result, impurities such as hydrogen and metal elements can be prevented from entering from the outside. Further, between the adjacent control gates CG and between the charge storage layers FG, a silicon oxide insulating material is embedded via a silicon nitride insulating film 40 to form a silicon oxide insulating film 60, whereby the adjacent control The gates CG and the charge storage layer FG are electrically isolated from other elements.

本実施形態において、図3に示すY方向は、例えば第1の方向に対応し、X方向は例えば第2の方向に対応する。また、トンネル絶縁膜10は、例えば第1ゲート絶縁膜に対応し、ゲート間絶縁膜20は、例えば第2ゲート絶縁膜に対応する。さらに、窒化シリコンおよび酸化シリコンは、それぞれ例えば第1および第2の絶縁材料に対応し、窒化シリコン系絶縁膜40および酸化シリコン系絶縁材60は、例えばそれぞれ第4ゲート絶縁膜および第3ゲート絶縁膜に対応する。   In the present embodiment, the Y direction shown in FIG. 3 corresponds to, for example, the first direction, and the X direction corresponds to, for example, the second direction. The tunnel insulating film 10 corresponds to, for example, a first gate insulating film, and the inter-gate insulating film 20 corresponds to, for example, a second gate insulating film. Further, silicon nitride and silicon oxide correspond to, for example, the first and second insulating materials, respectively. The silicon nitride insulating film 40 and the silicon oxide insulating material 60 include, for example, the fourth gate insulating film and the third gate insulating, respectively. Corresponds to the membrane.

ここで、本実施形態の特徴点の一つは、窒化シリコン系絶縁膜40が半導体基板Sと接触しておらず、少なくとも電荷蓄積層FGの高さの1/2までは離隔され、その高さまで酸化シリコン系絶縁材60が埋め込まれている点にある。また、窒化シリコン系絶縁膜40の膜厚はゲート間絶縁膜20の膜厚以下となっている。なお、本実施形態において酸化シリコン系絶縁膜60は積層ゲートFGの頂面を覆うように形成されている。   Here, one of the features of the present embodiment is that the silicon nitride insulating film 40 is not in contact with the semiconductor substrate S and is separated at least up to half the height of the charge storage layer FG. The silicon oxide insulating material 60 is embedded. The thickness of the silicon nitride insulating film 40 is equal to or less than the thickness of the inter-gate insulating film 20. In the present embodiment, the silicon oxide insulating film 60 is formed so as to cover the top surface of the stacked gate FG.

ここで、比較例を参照して本実施形態の半導体記憶装置の効果を説明する。図5A乃至5Dに示す半導体記憶装置は、第1の比較例による不揮発性半導体記憶装置の一例を示す。   Here, the effect of the semiconductor memory device of this embodiment will be described with reference to a comparative example. The semiconductor memory device illustrated in FIGS. 5A to 5D is an example of a nonvolatile semiconductor memory device according to a first comparative example.

図5A乃至5Dに示す半導体記憶装置において、個々の積層ゲート構造は、間に酸化シリコン系絶縁材が埋め込まれ、これにより各々の積層ゲートが電気的に分離されている。更に積層ゲート構造の上部には窒化シリコン系絶縁膜140が形成され、これにより、水素や金属元素等の外部からの不純物進入を防ぐ構造となっている。   In each of the semiconductor memory devices shown in FIGS. 5A to 5D, each stacked gate structure is embedded with a silicon oxide-based insulating material so that each stacked gate is electrically isolated. Further, a silicon nitride insulating film 140 is formed on the upper part of the laminated gate structure, thereby preventing impurities such as hydrogen and metal elements from entering from the outside.

しかしながら、図5A乃至5Dに示すセル構造は、更なる微細化のために素子領域AAおよび素子領域AA間の素子分離領域を縮小した場合に以下の問題が生じる。   However, the cell structure shown in FIGS. 5A to 5D has the following problems when the element region AA and the element isolation region between the element areas AA are reduced for further miniaturization.

まず、制御ゲートCG間のスペースを縮小した場合、電荷授受時に制御ゲートCGに高電圧(例えば20V)を印加すると、隣接する電荷蓄積層FGの電位が4V程度であるため、選択された制御ゲートCGと、これに隣接する電荷蓄積層FGとの間に高電界が印加される。両者の距離は数十ナノメートルとなるので電界は8MV/cmレベルに達する。制御ゲートCGとその直下の電荷蓄積層FGとの間にはゲート間絶縁膜20があるために高電界印加に対する絶縁劣化は抑制される。しかしながら、隣接する積層ゲート直下の電荷蓄積層FGとの間にはゲート間を絶縁する酸化シリコン系絶縁膜のみのため絶縁劣化に対して非常に弱く、制御ゲートに高電圧を印加できなくなる問題が生じる危険がある。   First, when the space between the control gates CG is reduced, if a high voltage (for example, 20V) is applied to the control gate CG during charge transfer, the potential of the adjacent charge storage layer FG is about 4V. A high electric field is applied between the CG and the charge storage layer FG adjacent thereto. Since the distance between them is several tens of nanometers, the electric field reaches the 8 MV / cm level. Since there is an inter-gate insulating film 20 between the control gate CG and the charge storage layer FG immediately below the control gate CG, insulation deterioration due to application of a high electric field is suppressed. However, since there is only a silicon oxide-based insulating film that insulates between the charge storage layers FG immediately below the adjacent stacked gates, it is very vulnerable to insulation deterioration, and a high voltage cannot be applied to the control gate. There is a danger that occurs.

また、昨今の大容量不揮発性メモリでは、一つのメモリセルに8値情報や16値情報を持たせることによりbit単位の実効データ量を増大させる超多値技術も使用されている。この場合、各データはメモリセルのしきい値電圧をその情報量分だけ別々に持たせる必要がある。このため、超多値化するほど制御ゲートCGには更に高い電圧(例えば24V)を印加して、高いしきい値電圧にまでセル書込みを行う必要が生じる。しかしながら、図5A乃至5Dに示すセル構造では、隣接する積層ゲート直下の電荷蓄積層FGの間に形成されているのは制御ゲートCG間を絶縁する酸化シリコン系絶縁膜140のみであるため、絶縁劣化が生じて、高電圧が印加できなくなるおそれがあるという問題がある。   Also, in recent large-capacity nonvolatile memories, super multi-value technology is used that increases the effective data amount in units of bits by providing 8-value information or 16-value information in one memory cell. In this case, each data needs to have the threshold voltage of the memory cell separately by the amount of information. For this reason, it is necessary to apply a higher voltage (for example, 24 V) to the control gate CG and to perform cell writing to a higher threshold voltage as the number of super multi-values increases. However, in the cell structure shown in FIGS. 5A to 5D, only the silicon oxide insulating film 140 that insulates between the control gates CG is formed between the charge storage layers FG immediately below the adjacent stacked gates. There is a problem that high voltage may not be applied due to deterioration.

これに対して、上述した第1の実施の形態によるセル構造では、積層ゲート構造に接する部分には酸化シリコン系絶縁材の誘電率よりも高い誘電率を有する窒化シリコンで形成された窒化シリコン系絶縁膜40が存在するので、制御ゲートCGに高電圧(例えば20V)を印加した際には窒化シリコン系絶縁膜40内の電界緩和効果により、隣接する制御ゲートCG直下の電荷蓄積層FGとの間で絶縁破壊を起こさない構造となっている。   On the other hand, in the cell structure according to the first embodiment described above, the silicon nitride system formed of silicon nitride having a dielectric constant higher than the dielectric constant of the silicon oxide-based insulating material is in contact with the stacked gate structure. Since the insulating film 40 exists, when a high voltage (for example, 20 V) is applied to the control gate CG, due to the electric field relaxation effect in the silicon nitride insulating film 40, the charge storage layer FG directly below the adjacent control gate CG It has a structure that does not cause dielectric breakdown.

図6A乃至図6Dは、第2の比較例による不揮発性半導体記憶装置の一例を示す。個々の積層ゲート構造の側面のみならず、これらの積層ゲート構造間の基板表面に接してこれらを覆うように窒化シリコン系絶縁膜150が形成され、これにより、水素や金属元素等の外部からの不純物進入を防いでいる。さらに、窒化シリコン系絶縁膜150を介して、隣接する制御ゲートCG間および電荷蓄積層FG間が酸化シリコン絶縁材で埋め込まれて素子分離されている。   6A to 6D show an example of a nonvolatile semiconductor memory device according to a second comparative example. A silicon nitride insulating film 150 is formed not only on the side surface of each stacked gate structure but also on the substrate surface between these stacked gate structures so as to cover them. Impurity entry is prevented. Further, between the adjacent control gates CG and between the charge storage layers FG are embedded with a silicon oxide insulating material through the silicon nitride insulating film 150 to isolate elements.

本例のセル構造の特徴は、積層ゲートの側壁に、電子を捕獲し易い窒化シリコン系絶縁膜150が挿入されているため、選択された制御ゲートCGと、これに隣接する制御ゲートCG直下の電荷蓄積層FGとの間に高電圧が印加され、酸化シリコン系絶縁膜60が絶縁劣化してリーク電流が生じても窒化シリコン系絶縁膜150がそれを抑制するため、高電圧を印加することができる点にある。   The cell structure of this example is characterized in that a silicon nitride insulating film 150 that easily captures electrons is inserted in the side wall of the stacked gate, so that the selected control gate CG and the control gate CG immediately below it are directly below. Even if a high voltage is applied between the charge storage layer FG and the silicon oxide insulating film 60 is insulated and deteriorates to cause a leakage current, the silicon nitride insulating film 150 suppresses it, so that a high voltage is applied. There is in point that can.

しかしながら、本例のセル構造では、電荷蓄積層FG間のスペース部の半導体基板直上に、電子を捕獲し易い窒化シリコン系絶縁膜150が接触している。このため、電荷蓄積層FGと半導体基板Sとの間で電荷授受が繰り返されると、積層ゲート端のn型不純物拡散層IDL上で一部の電荷が窒化シリコン系絶縁膜150の界面または膜中トラップ準位に捕獲され、これによりn型不純物拡散層IDL表面の電子密度が著しく低下し、結果的にセルチャネル電流を大幅に劣化させるという問題が生じる危険がある。また、メモリ高密度化、大容量化のためゲート幅およびゲートスペースを縮小した場合、隣接する電荷蓄積層FG間に比誘電率の高い窒化シリコン系絶縁膜150があるために、隣接する電荷蓄積層FG間で形成される寄生容量が無視出来なくなり、隣接セル間で干渉して精密なしきい値制御ができなくなるおそれがある。   However, in the cell structure of this example, the silicon nitride insulating film 150 that easily captures electrons is in contact with the space between the charge storage layers FG immediately above the semiconductor substrate. Therefore, when charge transfer is repeated between the charge storage layer FG and the semiconductor substrate S, a part of the charge is transferred to the interface of the silicon nitride insulating film 150 or in the film on the n-type impurity diffusion layer IDL at the stacked gate end. There is a risk that a trap level is trapped, whereby the electron density on the surface of the n-type impurity diffusion layer IDL is remarkably lowered, resulting in a problem that the cell channel current is greatly deteriorated. Further, when the gate width and the gate space are reduced in order to increase the memory density and capacity, there is a silicon nitride insulating film 150 having a high relative dielectric constant between the adjacent charge storage layers FG. The parasitic capacitance formed between the layers FG cannot be ignored, and there is a possibility that precise threshold control cannot be performed due to interference between adjacent cells.

これに対して、上述した第1の実施の形態によるセル構造において、窒化シリコン系絶縁膜40は電荷蓄積層FG間のスペース部の半導体基板の直上に存在するが、半導体基板Sと接触することなく十分に離隔している。このため、電荷蓄積層FGと半導体基板Sとの間で電荷授受を繰り返しても積層ゲート端のn型不純物拡散層IDL上で電荷が窒化シリコン系絶縁膜40の界面または膜中トラップ準位に捕獲されるという事態は発生しない。従って、n型不純物拡散層IDL表面の電子密度が低下してセルチャネル電流が劣化するという問題は生じない。また、窒化シリコン系絶縁膜40は電荷蓄積層FGの高さの半分にまでしか埋まっておらず、その厚さもゲート間絶縁膜20の膜厚以下と非常に薄いため、隣接する電荷蓄積層FG間の寄生容量も非常に小さくすることが可能である。この結果、隣接セル間干渉によるしきい値分布の広がりを十分に抑制できて精密なしきい値制御が可能となる。   On the other hand, in the cell structure according to the first embodiment described above, the silicon nitride insulating film 40 exists immediately above the semiconductor substrate in the space portion between the charge storage layers FG, but is in contact with the semiconductor substrate S. Well separated. For this reason, even if charge transfer is repeatedly performed between the charge storage layer FG and the semiconductor substrate S, the charge reaches the interface of the silicon nitride insulating film 40 or the trap level in the film on the n-type impurity diffusion layer IDL at the end of the stacked gate. The situation of being captured does not occur. Therefore, there is no problem that the electron channel density on the surface of the n-type impurity diffusion layer IDL is lowered and the cell channel current is deteriorated. Further, the silicon nitride insulating film 40 is buried only up to half of the height of the charge storage layer FG, and its thickness is very thin, less than or equal to the film thickness of the inter-gate insulating film 20, so that the adjacent charge storage layer FG The parasitic capacitance between them can also be made very small. As a result, the spread of the threshold distribution due to the interference between adjacent cells can be sufficiently suppressed, and precise threshold control is possible.

(3)第2の実施の形態
図7A乃至図7Dは、本発明の第2の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示平面図である。本実施形態は、前述した第1の実施の形態における窒化シリコン系絶縁膜の配置を変更してセル構造を変形したものである。より具体的には、図4A乃至図4Dとの対比により明らかなように、窒化シリコン系絶縁膜42の形状が、第1の実施の形態における窒化シリコン系絶縁膜40のうちの制御ゲートCGの上部を除去して制御ゲートCGの頂面を露出させたものに該当する。このような形状は、窒化シリコン系絶縁膜を成膜した後に制御ゲート上部を平坦化プロセス、例えばCMP(Chemical Mechanical Polishing)技術により平坦化すれば実現できる。本実施形態のその他のメモリ構造は上述した第1の実施の形態と実質的に同一である。本実施形態において窒化シリコン系絶縁膜42は、例えば第4ゲート絶縁膜に対応する。
(3) Second Embodiment FIGS. 7A to 7D are schematic plan views showing a memory structure of a nonvolatile semiconductor memory device according to a second embodiment of the present invention. In this embodiment, the cell structure is modified by changing the arrangement of the silicon nitride insulating film in the first embodiment described above. More specifically, as is clear from comparison with FIGS. 4A to 4D, the shape of the silicon nitride insulating film 42 is the same as that of the control gate CG in the silicon nitride insulating film 40 in the first embodiment. This corresponds to a structure in which the top surface is removed and the top surface of the control gate CG is exposed. Such a shape can be realized by forming a silicon nitride insulating film and then planarizing the upper portion of the control gate by a planarization process, for example, CMP (Chemical Mechanical Polishing) technique. The other memory structure of this embodiment is substantially the same as that of the first embodiment described above. In the present embodiment, the silicon nitride insulating film 42 corresponds to, for example, a fourth gate insulating film.

本実施形態のメモリ構造は、例えば制御ゲートCGの頂面にサリサイド材を形成する場合に好適である。   The memory structure of the present embodiment is suitable when, for example, a salicide material is formed on the top surface of the control gate CG.

(4)第3の実施の形態
図8A乃至図8Dは、本発明の第3の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示平面図である。本実施形態の特徴は、制御ゲートCGの表面にのみ窒化シリコン系絶縁膜44が形成されている点にある。このような形状は、制御ゲートCGの材料が例えば多結晶シリコンである場合は選択成長技術や熱窒化技術等により実現可能である。本実施形態のその他のメモリ構造は上述した第1の実施の形態と実質的に同一である。本実施形態において窒化シリコン系絶縁膜44は、例えば第4ゲート絶縁膜に対応する。
(4) Third Embodiment FIGS. 8A to 8D are schematic plan views showing a memory structure of a nonvolatile semiconductor memory device according to a third embodiment of the present invention. The feature of this embodiment is that a silicon nitride insulating film 44 is formed only on the surface of the control gate CG. Such a shape can be realized by a selective growth technique, a thermal nitriding technique, or the like when the material of the control gate CG is, for example, polycrystalline silicon. The other memory structure of this embodiment is substantially the same as that of the first embodiment described above. In the present embodiment, the silicon nitride insulating film 44 corresponds to, for example, a fourth gate insulating film.

制御ゲートCGの材料を問わず、窒化シリコン系絶縁膜の配置をこのように変形することにより、上述した第1の実施の形態と同様の効果を得ることができる。   Regardless of the material of the control gate CG, by modifying the arrangement of the silicon nitride insulating film in this way, the same effects as those of the first embodiment described above can be obtained.

(5)第4の実施の形態
図9A乃至図9Dは、本発明の第4の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示平面図である。本実施形態の第1の特徴は、窒化シリコン系絶縁膜46が制御ゲートCGの側壁にのみ形成されており、電荷蓄積層FG間に窒化シリコン系絶縁材料が埋め込まれてはいない点にある。従って、個々の積層ゲート構造は酸化シリコン系絶縁材料で埋め込まれている。さらに、本実施形態の第2の特徴点は、制御ゲートCG直下の電荷蓄積層FGの側壁が窒化シリコン系絶縁膜46の側壁と揃うように電荷蓄積層FGが自己整合的に垂直加工されている点にある。これらの2点と、窒化シリコン系絶縁膜46の膜厚に応じた分だけ積層ゲートキャップ材30および制御ゲートCGが細くなっている点とを除けば、本実施形態のその他のメモリ構造は前述した第3の実施の形態と実質的に同一である。本実施形態において窒化シリコン系絶縁膜46は、例えば第4ゲート絶縁膜に対応する。
(5) Fourth Embodiment FIGS. 9A to 9D are schematic plan views showing a memory structure of a nonvolatile semiconductor memory device according to a fourth embodiment of the present invention. The first feature of the present embodiment is that the silicon nitride insulating film 46 is formed only on the side wall of the control gate CG, and no silicon nitride insulating material is embedded between the charge storage layers FG. Therefore, each stacked gate structure is embedded with a silicon oxide insulating material. Further, the second feature of the present embodiment is that the charge storage layer FG is vertically processed in a self-aligned manner so that the side wall of the charge storage layer FG immediately below the control gate CG is aligned with the side wall of the silicon nitride insulating film 46. There is in point. Except for these two points and the point that the laminated gate cap material 30 and the control gate CG are thinned by an amount corresponding to the thickness of the silicon nitride insulating film 46, the other memory structure of this embodiment is the same as that described above. This is substantially the same as the third embodiment. In the present embodiment, the silicon nitride insulating film 46 corresponds to, for example, a fourth gate insulating film.

このような本実施形態の構造によれば、制御ゲートCGの側壁に窒化シリコン系絶縁膜46が存在するので、第1の実施の形態と同様の効果を得ることが可能であることに加え、以下に詳述する他の優れた効果をも奏することができる。   According to the structure of this embodiment, since the silicon nitride insulating film 46 exists on the side wall of the control gate CG, the same effect as that of the first embodiment can be obtained. Other excellent effects described in detail below can also be achieved.

即ち、一般的に、素子領域を縮小するとメモリセル自体のゲート容量が小さくなる一方で、素子間のスペースが縮小するために隣接する電荷蓄積層FG間の寄生容量が高まる。その結果、隣接するセル相互間の干渉が増大し、しきい値制御が非常に困難になる。これにより、データ書込み後のしきい値分布が広がるので、4値、8値、16値等の記憶bitの多値化および超多値化を阻むという問題が生じる。この問題を解決するためにはゲート容量を増大させる必要があり、そのために電荷蓄積層FGを厚く形成し、電荷蓄積層FGの側壁の高さを増やして電荷蓄積層FGと制御ゲートCG間のゲート容量を増やすことが重要になる。しかしながら、電荷蓄積層FGを厚くすると、ゲート幅およびゲートスペース縮小の際に、積層ゲート構造の加工マージンが著しく低下してしまう。このため、一般的には素子分離絶縁膜DIの高さを低くして、電荷蓄積層FGと制御ゲートCG間の対向面積を広げることが得策と言える。しかし、素子分離絶縁膜DIの高さを低くすると、素子分離絶縁膜DI上の制御ゲートCGと、その側端の素子領域とが近づくため、電荷授受時に制御ゲートCGに高電圧(例えば20V)が印加された場合に、両者の間に高電界が印加される。両者の距離は数十ナノメートルとなるので電界は10MV/cmレベルに達する。制御ゲートCG直下の素子分離領域端では制御ゲートCGと素子領域間にはゲート間絶縁膜20があるために高電界印加に対する絶縁劣化や界面での電荷捕獲は抑制される。この一方で、一般的なメモリセル構造の制御ゲートの脇において、素子領域上に形成されているのはゲート間を絶縁する酸化シリコン系絶縁膜のみであるため、絶縁劣化や電荷捕獲に対して非常に弱く、電荷授受を繰り返すとセル特性が劣化するおそれがあった。   That is, generally, when the element region is reduced, the gate capacitance of the memory cell itself is reduced, while the space between the elements is reduced, so that the parasitic capacitance between the adjacent charge storage layers FG is increased. As a result, interference between adjacent cells increases and threshold control becomes very difficult. As a result, the threshold distribution after data writing is widened, so that there arises a problem that the multi-value and super-multi-value storage bits such as 4-value, 8-value, and 16-value are prevented. In order to solve this problem, it is necessary to increase the gate capacitance. For this purpose, the charge storage layer FG is formed thick, the height of the side wall of the charge storage layer FG is increased, and the space between the charge storage layer FG and the control gate CG is increased. It is important to increase the gate capacity. However, if the charge storage layer FG is thickened, the processing margin of the stacked gate structure is significantly reduced when the gate width and gate space are reduced. For this reason, it can be said that it is generally a good idea to reduce the height of the element isolation insulating film DI and widen the facing area between the charge storage layer FG and the control gate CG. However, if the height of the element isolation insulating film DI is lowered, the control gate CG on the element isolation insulating film DI and the element region at the side end thereof approach each other, so that a high voltage (for example, 20 V) is applied to the control gate CG during charge transfer. Is applied, a high electric field is applied between them. Since the distance between them is several tens of nanometers, the electric field reaches the 10 MV / cm level. Since there is an inter-gate insulating film 20 between the control gate CG and the element region at the end of the element isolation region immediately below the control gate CG, insulation deterioration due to application of a high electric field and charge trapping at the interface are suppressed. On the other hand, on the side of the control gate of a general memory cell structure, only the silicon oxide insulating film that insulates between the gates is formed on the element region. It was very weak, and there was a risk that cell characteristics would deteriorate if charge transfer was repeated.

これに対して、本実施形態によるメモリセル構造によれば、制御ゲートCGの側壁に形成した窒化シリコン系絶縁膜46が制御ゲートCGと素子領域AA間の絶縁劣化を抑制するため、上記の問題を抑制することが可能になる。図9A乃至図9Dに示すメモリ構造は、垂直ゲート加工手順を一部変更することでも形成可能である。例えば、制御ゲートCGおよびゲート間絶縁膜20を垂直加工した後に、ゲート間絶縁膜20の膜厚以下の窒化シリコン系絶縁膜を形成し、ドライエッチング(Dry Etching)技術にて窒化シリコン系絶縁膜を制御ゲートCGの頂面から除去し、制御ゲートCGの側壁にのみ窒化シリコン系絶縁膜46を形成する。その後に、窒化シリコン材との間で高い選択比を有するガスを用いて、直下の電荷蓄積層FG、例えば多結晶シリコン材を垂直加工することにより、所望の積層ゲート構造を形成することができる。   On the other hand, according to the memory cell structure according to the present embodiment, the silicon nitride insulating film 46 formed on the side wall of the control gate CG suppresses the insulation deterioration between the control gate CG and the element region AA. Can be suppressed. The memory structure shown in FIGS. 9A to 9D can also be formed by partially changing the vertical gate processing procedure. For example, after the control gate CG and the intergate insulating film 20 are vertically processed, a silicon nitride insulating film having a thickness equal to or less than the thickness of the intergate insulating film 20 is formed, and the silicon nitride insulating film is formed by dry etching technology. Are removed from the top surface of the control gate CG, and a silicon nitride insulating film 46 is formed only on the side wall of the control gate CG. Thereafter, a desired stacked gate structure can be formed by vertically processing the charge storage layer FG directly below, for example, a polycrystalline silicon material, using a gas having a high selectivity with respect to the silicon nitride material. .

(6)第5の実施の形態
図10A乃至図10Dは、本発明の第5の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示平面図である。本実施形態の特徴は、窒化シリコン系絶縁膜48を、制御ゲートCGに接するのではなく、隣接する制御ゲートCG間のスペースの中央近くに配置した点にある。このような本構造は、例えば積層ゲートを先ず酸化シリコン系絶縁材料で埋めて酸化シリコン系絶縁膜60とし、その隙間に窒化シリコン系絶縁材料を埋め込むことにより実現可能である。なお、図10A乃至図10Dに示す構造においても、前述した第2の実施の形態と同様に、平坦化プロセスで窒化シリコン系絶縁膜を制御ゲートCGの上部から除去することが可能である。本実施形態において、窒化シリコンおよび酸化シリコンは、それぞれ例えば第1および第2の絶縁材料に対応し、窒化シリコン系絶縁膜48および酸化シリコン系絶縁材60は、例えばそれぞれ第3ゲート絶縁膜および第4ゲート絶縁膜に対応する。
(6) Fifth Embodiment FIGS. 10A to 10D are schematic plan views showing a memory structure of a nonvolatile semiconductor memory device according to a fifth embodiment of the present invention. The feature of this embodiment is that the silicon nitride insulating film 48 is not in contact with the control gate CG but is arranged near the center of the space between the adjacent control gates CG. Such a structure can be realized, for example, by first filling the stacked gate with a silicon oxide insulating material to form the silicon oxide insulating film 60 and then filling the gap with a silicon nitride insulating material. In the structures shown in FIGS. 10A to 10D, the silicon nitride insulating film can be removed from the upper portion of the control gate CG by a planarization process, as in the second embodiment described above. In the present embodiment, silicon nitride and silicon oxide correspond to, for example, the first and second insulating materials, respectively. The silicon nitride insulating film 48 and the silicon oxide insulating material 60 include, for example, the third gate insulating film and the second insulating material, respectively. Corresponds to 4 gate insulating film.

本実施形態では、窒化シリコン系絶縁膜48をゲート構造側ではなく、ゲート間スペースの中間部に挿入しているため、上述した実施の形態による電界緩和効果は期待できない。他方で、窒化シリコン系絶縁膜は膜中に電子を捕獲し易い特徴をも有するため、制御ゲートCGから注入されたリーク電流を緩和して絶縁劣化を抑制するという効果が期待できる。なお、図1を参照しながら前述した、ゲート間電界を緩和して絶縁劣化を抑制する方法と、本実施形態の方法とのどちらが有効かどうかは、積層ゲート構造や絶縁膜種等により決まるため、両者の効果を一概に比較することはできない点に留意されたい。   In this embodiment, since the silicon nitride insulating film 48 is inserted not in the gate structure side but in the middle portion of the space between the gates, the electric field relaxation effect according to the above-described embodiment cannot be expected. On the other hand, since the silicon nitride insulating film also has a characteristic that electrons are easily trapped in the film, an effect of relaxing the leakage current injected from the control gate CG and suppressing insulation deterioration can be expected. Note that the effectiveness of either the method described above with reference to FIG. 1 to suppress insulation degradation by relaxing the inter-gate electric field or the method of this embodiment depends on the laminated gate structure, the type of insulating film, and the like. Note that it is not possible to compare the effects of both.

(7)第6の実施の形態
図11A乃至図11Dは、本発明の第6の実施の形態による不揮発性半導体記憶装置のメモリ構造を示す略示平面図である。本実施形態の特徴は、第1乃至第4の実施の形態による電界緩和効果と、前述した第5の実施の形態による電子捕獲効果との両方を同時に得られる点にある。図11A中の切断線F−Fに着目すると、本実施形態のメモリ構造は、5層からなるゲート間絶縁膜構造となっておりことが分かる。より具体的には、隣接する制御ゲートCGにそれぞれ接する窒化シリコン系絶縁膜40と、制御ゲートCG間の中間部に窒化シリコン系絶縁材48とを配置し、さらにこれらの間に、酸化シリコン系絶縁膜60を挿入している。これにより、ゲート構造側の電界緩和効果とゲート間中間部のリーク電流緩和効果の両方を同時に得ることが期待できる。本実施形態において、窒化シリコンは、例えば第1および第3の絶縁材料に対応し、酸化シリコンは、例えば第2の絶縁材料に対応する。また、酸化シリコン系絶縁材60は、例えば第3ゲート絶縁膜に対応し、窒化シリコン系絶縁膜40および48は、例えばそれぞれ第4ゲート絶縁膜および第5ゲート絶縁膜に対応する。
(7) Sixth Embodiment FIGS. 11A to 11D are schematic plan views showing a memory structure of a nonvolatile semiconductor memory device according to a sixth embodiment of the present invention. The feature of this embodiment is that both the electric field relaxation effect according to the first to fourth embodiments and the electron trapping effect according to the fifth embodiment described above can be obtained simultaneously. When attention is paid to the cutting line FF in FIG. 11A, it can be seen that the memory structure of this embodiment has an inter-gate insulating film structure composed of five layers. More specifically, a silicon nitride insulating film 40 that is in contact with adjacent control gates CG, and a silicon nitride insulating material 48 are disposed in the middle between the control gates CG, and a silicon oxide-based insulating material is interposed between them. An insulating film 60 is inserted. Accordingly, it can be expected that both the electric field relaxation effect on the gate structure side and the leakage current relaxation effect on the intermediate portion between the gates can be obtained simultaneously. In the present embodiment, silicon nitride corresponds to, for example, the first and third insulating materials, and silicon oxide corresponds to, for example, the second insulating material. The silicon oxide insulating material 60 corresponds to, for example, a third gate insulating film, and the silicon nitride insulating films 40 and 48 correspond to, for example, a fourth gate insulating film and a fifth gate insulating film, respectively.

図12は、図11A乃至図11D示したメモリ構造でゲート間電界を緩和して絶縁劣化を抑制する解決方法を模式的に示す。より具体的には、紙面の右側と左側には互いに隣接する積層ゲート構造が配置されており、ゲート間に、例えば3種類の絶縁材料からなる5層構造のゲート間絶縁膜が配置されている構造における、各々の膜中の電界関係を、隣接する制御ゲートCGが平行平板であるという仮定の下に示したものである。図12においては、紙面右側に書込み電圧(Vpgm)が印加される制御ゲートCGが示され、紙面左側に書込み防止用中間電圧(Vpass)が印加される制御ゲートCG直下の電荷蓄積層FGが示されている。制御ゲートCGおよび電荷蓄積層FGに接するゲート間絶縁膜IF1a,IF1bの絶縁材料Aは同一種類であり、その比誘電率をeps_1、膜厚をd_1、印加される各電界強度をそれぞれE_5、E_1とする。また、ゲート間絶縁膜IF1a,IF1の間に絶縁材料Bでなるゲート間絶縁膜IF2a,IF2bが挿入されており、その比誘電率をeps_2とし、膜厚をd_2、印加される各電界強度をそれぞれE_4、E_2とする。更に、ゲート間絶縁膜IF2a,IF2bの間に絶縁材料Cでなるゲート間絶縁膜IF3が挿入されており、その比誘電率をeps_3、膜厚をd_3、印加される電界強度をE_3とする。真空の誘電率をeps_0とする。ゲート間絶縁膜IF3中にはxの位置に体積密度rの負電荷が捕獲されているものとする。   FIG. 12 schematically shows a solution for suppressing insulation degradation by relaxing the inter-gate electric field in the memory structure shown in FIGS. 11A to 11D. More specifically, stacked gate structures adjacent to each other are arranged on the right side and the left side of the drawing, and a five-layer intergate insulating film made of, for example, three kinds of insulating materials is arranged between the gates. The electric field relationship in each film in the structure is shown under the assumption that adjacent control gates CG are parallel plates. In FIG. 12, the control gate CG to which the write voltage (Vpgm) is applied is shown on the right side of the paper surface, and the charge storage layer FG just below the control gate CG to which the write prevention intermediate voltage (Vpass) is applied is shown on the left side of the paper surface. Has been. The insulating materials A of the intergate insulating films IF1a and IF1b in contact with the control gate CG and the charge storage layer FG are of the same type, the relative dielectric constant is eps_1, the film thickness is d_1, and the applied electric field strengths are E_5 and E_1, respectively. And Further, inter-gate insulating films IF2a and IF2b made of an insulating material B are inserted between the inter-gate insulating films IF1a and IF1, the relative dielectric constant is eps_2, the film thickness is d_2, and the applied electric field strength is Let them be E_4 and E_2, respectively. Further, an inter-gate insulating film IF3 made of an insulating material C is inserted between the inter-gate insulating films IF2a and IF2b. The relative dielectric constant is eps_3, the film thickness is d_3, and the applied electric field strength is E_3. Let the dielectric constant of the vacuum be eps_0. It is assumed that a negative charge having a volume density r is captured at the position x in the inter-gate insulating film IF3.

それぞれの膜中での電界強度E_i(i=1、5)は
[式3]E_1 = s / eps_1
[式4]E_2 = s / eps_2
[式5]E_3 = s / eps_3 + ( (ρ / eps_0) / (ρ / eps_3) ( x − d_1 − d_2 )
[式6]E_4 = ( s + (ρ / eps_0) * d_3 ) / eps_2
[式7]E_5 = ( s + (ρ / eps_0) * d_3 ) / eps_1
と表せる。ここで、
[式8]s = K * [ V − ( r / eps_0) * d_3 * ( 0.5 * d_3 / eps_3 + d_2 / eps_2 + d_1 / eps_1 )]
[式9]K = 1 / ( 2 * d_1/eps_1 + 2 * d_2/eps_2 + d_3/eps_3 )
である。ゲート間絶縁膜IF3に負電荷が捕獲されると、ゲート間絶縁膜IF3と書込み防止用中間電圧Vpassが印加される制御ゲートCG直下の電荷蓄積層FGとの間の電界を緩和することができる。隣接するゲート構造間にリーク電流が流れた場合でも、リーク電流の電子がゲート間絶縁膜IF3に捕獲されて電界がより緩和されるので、結果的にリーク電流を抑制する負帰還がかかり、これにより絶縁劣化を抑制することが可能となる。ここで、第1層のゲート間絶縁膜IF1a,IF1bを、例えば窒化シリコン膜(eps_1=7.5、 d_1=2nm)とし、第2層のゲート間絶縁膜IF2a,IF2bを、例えば酸化シリコン膜(eps_2=3.9、 d_2=2nm)とし、第3層のゲート間絶縁膜IF3を、例えば窒化シリコン膜(eps_3=7.5、 d_1=2nm)とし、書込み防止用中間電圧Vpassが印加される制御ゲートCG直下の電荷蓄積層FGの電位VFGを4V、絶縁耐圧を便宜的に10MV/cmと仮定すると、隣接するゲート構造間に印加可能な電圧は最大17.7Vとなるが、第3層に負電荷を1×1020cm−3配置すると、印加可能な電圧は20.0Vに向上する。
The electric field strength E_i (i = 1, 5) in each film is expressed by [Equation 3] E_1 = s / eps_1.
[Formula 4] E_2 = s / eps_2
[Formula 5] E_3 = s / eps_3 + ((ρ / eps_0) / (ρ / eps_3) (x−d_1−d_2)
[Expression 6] E_4 = (s + (ρ / eps_0) * d_3) / eps_2
[Expression 7] E_5 = (s + (ρ / eps_0) * d_3) / eps_1
It can be expressed. here,
[Equation 8] s = K * [V- (r / eps_0) * d_3 * (0.5 * d_3 / eps_3 + d_2 / eps_2 + d_1 / eps_1)]
[Expression 9] K = 1 / (2 * d_1 / eps_1 + 1 + 2 * d_2 / eps_2 + d_3 / eps_3)
It is. When negative charges are trapped in the inter-gate insulating film IF3, the electric field between the inter-gate insulating film IF3 and the charge storage layer FG immediately below the control gate CG to which the write preventing intermediate voltage Vpass is applied can be relaxed. . Even when a leakage current flows between adjacent gate structures, the electrons of the leakage current are captured by the inter-gate insulating film IF3 and the electric field is further relaxed. As a result, negative feedback that suppresses the leakage current is applied. This makes it possible to suppress insulation deterioration. Here, the first-layer intergate insulating films IF1a and IF1b are, for example, silicon nitride films (eps_1 = 7.5, d_1 = 2 nm), and the second-layer intergate insulating films IF2a, IF2b are, for example, silicon oxide films (Eps_2 = 2.3.9, d_2 = 2 nm), the third-layer intergate insulating film IF3 is, for example, a silicon nitride film (eps_3 = 7.5, d_1 = 2 nm), and an intermediate voltage Vpass for write prevention is applied. Assuming that the potential V FG of the charge storage layer FG immediately below the control gate CG is 4 V and the withstand voltage is 10 MV / cm for convenience, the maximum voltage that can be applied between adjacent gate structures is 17.7 V. When a negative charge of 1 × 10 20 cm −3 is arranged in the three layers, the voltage that can be applied is improved to 20.0V.

(8)その他
以上、本発明の実施の形態のいくつかについて説明したが、本発明は上記形態に限るものでは決して無く、その技術的範囲内で種々変形して適用できることは勿論である。例えば、上述した実施の形態では、ゲート構造に接するように形成された第4ゲート絶縁膜として、窒化シリコン膜40,42,44,46の単層のみの場合を取り上げたが、これに限ることなく、窒化シリコン膜以外の絶縁膜をも含む多層絶縁膜で第4ゲート絶縁膜を構成してもよい。
(8) Others While some of the embodiments of the present invention have been described above, the present invention is by no means limited to the above embodiments, and it goes without saying that various modifications can be applied within the technical scope thereof. For example, in the above-described embodiment, the case where only the single layer of the silicon nitride films 40, 42, 44, and 46 is taken up as the fourth gate insulating film formed so as to be in contact with the gate structure is limited. Alternatively, the fourth gate insulating film may be formed of a multilayer insulating film including an insulating film other than the silicon nitride film.

10:トンネル酸化膜(第1ゲート絶縁膜)
20:ゲート間絶縁膜(第2ゲート絶縁膜)
40,42,44,46:第4ゲート絶縁膜
48:第5ゲート絶縁膜
60:第3ゲート絶縁膜
AA:素子領域
CG:制御ゲート
DI:素子分離絶縁膜
FG:電荷蓄積層
IDL:n型不純物拡散層
S:半導体基板
10: Tunnel oxide film (first gate insulating film)
20: Inter-gate insulating film (second gate insulating film)
40, 42, 44, 46: fourth gate insulating film 48: fifth gate insulating film 60: third gate insulating film AA: element region CG: control gate DI: element isolation insulating film FG: charge storage layer IDL: n-type Impurity diffusion layer S: Semiconductor substrate

Claims (4)

半導体基板上の第1の方向に延在して設けられる複数の素子領域と、
前記半導体基板上で前記第1の方向に交差する第2の方向に延在して設けられ、第1ゲート絶縁膜を介して前記半導体基板上に形成された電荷蓄積層と、前記電荷蓄積層の上に形成された第2ゲート絶縁膜と、前記第2ゲート絶縁膜の上に形成された制御ゲートと、をそれぞれ含む複数のゲート構造と、
前記半導体基板の表面層に選択的に形成された絶縁膜で構成され、前記素子領域を画定するとともに前記素子領域を電気的に分離する素子分離絶縁膜と、
前記ゲート構造直下の前記半導体基板の表面層を間に挟むように前記素子領域に形成された不純物拡散層と、
前記ゲート構造の間に第1の絶縁材料で形成された第3ゲート絶縁膜と、
前記ゲート構造の側壁と前記ゲート構造間の前記半導体基板とに接するように前記第1の絶縁材料の誘電率よりも低い誘電率を有する第2の絶縁材料で形成された第4ゲート絶縁膜と、
を備える不揮発性半導体記憶装置。
A plurality of element regions provided extending in a first direction on the semiconductor substrate;
A charge storage layer provided on the semiconductor substrate so as to extend in a second direction intersecting the first direction and formed on the semiconductor substrate via a first gate insulating film; and the charge storage layer A plurality of gate structures each including a second gate insulating film formed on the first gate insulating film and a control gate formed on the second gate insulating film;
An insulating film formed selectively on a surface layer of the semiconductor substrate, defining an element region and electrically isolating the element region; and
An impurity diffusion layer formed in the element region so as to sandwich a surface layer of the semiconductor substrate directly under the gate structure;
A third gate insulating film formed of a first insulating material between the gate structures;
A fourth gate insulating film formed of a second insulating material having a dielectric constant lower than that of the first insulating material so as to contact a sidewall of the gate structure and the semiconductor substrate between the gate structures; ,
A non-volatile semiconductor memory device.
前記第1の絶縁材料は窒化シリコンであり、前記第2の絶縁材料は酸化シリコンであることを特徴とする請求項1に記載の不揮発性半導体記憶装置。   The nonvolatile semiconductor memory device according to claim 1, wherein the first insulating material is silicon nitride, and the second insulating material is silicon oxide. 半導体基板上の第1の方向に延在して設けられる複数の素子領域と、
前記半導体基板上で前記第1の方向に交差する第2の方向に延在して設けられ、第1ゲート絶縁膜を介して前記半導体基板上に形成された電荷蓄積層と、前記電荷蓄積層の上に形成された第2ゲート絶縁膜と、前記第2ゲート絶縁膜の上に形成された制御ゲートと、をそれぞれ含む複数のゲート構造と、
前記半導体基板の表面層に選択的に形成された絶縁膜で構成され、前記素子領域を画定するとともに前記素子領域を電気的に分離する素子分離絶縁膜と、
前記ゲート構造直下の前記半導体基板の表面層を間に挟むように前記素子領域に形成された不純物拡散層と、
前記ゲート構造の間を埋め込むように第1の絶縁材料で形成された第3ゲート絶縁膜と、
前記ゲート構造の側壁に接するように前記第1の絶縁材料とは異なる第2の絶縁材料で形成された第4ゲート絶縁膜と、
前記第3ゲート絶縁膜内に前記第1の絶縁材料とは異なる第3の絶縁材料で形成された第5ゲート絶縁膜と、
を備え、
前記第2および第3の絶縁材料の誘電率は、前記第1の絶縁材料の誘電率よりも高いことを特徴とする不揮発性半導体記憶装置。
A plurality of element regions provided extending in a first direction on the semiconductor substrate;
A charge storage layer provided on the semiconductor substrate so as to extend in a second direction intersecting the first direction and formed on the semiconductor substrate via a first gate insulating film; and the charge storage layer A plurality of gate structures each including a second gate insulating film formed on the first gate insulating film and a control gate formed on the second gate insulating film;
An insulating film formed selectively on a surface layer of the semiconductor substrate, defining an element region and electrically isolating the element region; and
An impurity diffusion layer formed in the element region so as to sandwich a surface layer of the semiconductor substrate directly under the gate structure;
A third gate insulating film formed of a first insulating material so as to be embedded between the gate structures;
A fourth gate insulating film formed of a second insulating material different from the first insulating material so as to be in contact with the side wall of the gate structure;
A fifth gate insulating film formed of a third insulating material different from the first insulating material in the third gate insulating film;
With
The nonvolatile semiconductor memory device, wherein the second and third insulating materials have a dielectric constant higher than that of the first insulating material.
前記第5ゲート絶縁膜の両側面は前記第3ゲート絶縁膜に接し、前記第2および第3の絶縁材料は窒化シリコンであり、前記第1の絶縁材料は酸化シリコンであることを特徴とする請求項3に記載の不揮発性半導体記憶装置。   Both sides of the fifth gate insulating film are in contact with the third gate insulating film, the second and third insulating materials are silicon nitride, and the first insulating material is silicon oxide. The nonvolatile semiconductor memory device according to claim 3.
JP2012060561A 2012-03-16 2012-03-16 Nonvolatile semiconductor memory device Pending JP2012114475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060561A JP2012114475A (en) 2012-03-16 2012-03-16 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060561A JP2012114475A (en) 2012-03-16 2012-03-16 Nonvolatile semiconductor memory device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009221281A Division JP2011071332A (en) 2009-09-25 2009-09-25 Nonvolatile semiconductor memory device

Publications (1)

Publication Number Publication Date
JP2012114475A true JP2012114475A (en) 2012-06-14

Family

ID=46498272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060561A Pending JP2012114475A (en) 2012-03-16 2012-03-16 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JP2012114475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384060A (en) * 2018-12-27 2020-07-07 爱思开海力士有限公司 Nonvolatile memory device and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350093A (en) * 1993-06-04 1994-12-22 Toshiba Corp Manufacture of nonvolatile semiconductor memory
JP2003068898A (en) * 2001-07-10 2003-03-07 Samsung Electronics Co Ltd Laminated gate structure for nonvolatile memory device, nonvolatile memory cell, nonvolatile memory device and nor type nonvolatile memory cell
JP2004158626A (en) * 2002-11-06 2004-06-03 Toshiba Corp Non-volatile semiconductor storage device and manufacturing method therefor
JP2009004802A (en) * 2008-08-29 2009-01-08 Toshiba Corp Semiconductor storage device and method of manufacturing it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350093A (en) * 1993-06-04 1994-12-22 Toshiba Corp Manufacture of nonvolatile semiconductor memory
JP2003068898A (en) * 2001-07-10 2003-03-07 Samsung Electronics Co Ltd Laminated gate structure for nonvolatile memory device, nonvolatile memory cell, nonvolatile memory device and nor type nonvolatile memory cell
JP2004158626A (en) * 2002-11-06 2004-06-03 Toshiba Corp Non-volatile semiconductor storage device and manufacturing method therefor
JP2009004802A (en) * 2008-08-29 2009-01-08 Toshiba Corp Semiconductor storage device and method of manufacturing it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384060A (en) * 2018-12-27 2020-07-07 爱思开海力士有限公司 Nonvolatile memory device and method of manufacturing the same
CN111384060B (en) * 2018-12-27 2023-11-03 爱思开海力士有限公司 Nonvolatile memory device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US8916921B2 (en) Non-volatile semiconductor storage device including a dielectric with low permittivity in memory cells arranged in a three dimensional manner
US9245900B2 (en) Semiconductor device and manufacturing method of semiconductor device
US10553729B2 (en) Nonvolatile semiconductor storage device and method for manufacturing the same
JP5376122B2 (en) Semiconductor device
JP5389074B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
KR20090068171A (en) A nonvolatile semiconductor memory
JP4250616B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
US20140061759A1 (en) Nonvolatile memory device and method for fabricating the same
US9515174B2 (en) Method of manufacturing a semiconductor storage device
KR100761373B1 (en) Method for manufacturing a flash memory device
USRE44630E1 (en) Semiconductor device and method for manufacturing the same
US20110024824A1 (en) Nonvolatile semiconductor memory device and method for manufacturing same
JP2011071332A (en) Nonvolatile semiconductor memory device
JP2012114475A (en) Nonvolatile semiconductor memory device
US8921923B2 (en) Method for manufacturing semiconductor memory device and semiconductor memory device
US20070221984A1 (en) Nonvolatile semiconductor memory device and method for manufacturing same
KR20120021157A (en) Semiconductor memory device and manufacturing method thereof
US20150249158A1 (en) Semiconductor structure and method for manufacturing the same
US8502298B2 (en) Semiconductor device and method of manufacturing the same
US20120104482A1 (en) Semiconductor devices having a control gate electrode including a metal layer filling a gap between adjacent floating gates and methods of fabricating the same
US8779500B2 (en) Memory device
JP2009283852A (en) Nonvolatile semiconductor storage device
US20150255554A1 (en) Semiconductor device and method of manufacturing the same
JP2009283865A (en) Method of manufacturing nonvolatile semiconductor memory device
JP2010103178A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140121