JP2012114208A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2012114208A
JP2012114208A JP2010261252A JP2010261252A JP2012114208A JP 2012114208 A JP2012114208 A JP 2012114208A JP 2010261252 A JP2010261252 A JP 2010261252A JP 2010261252 A JP2010261252 A JP 2010261252A JP 2012114208 A JP2012114208 A JP 2012114208A
Authority
JP
Japan
Prior art keywords
film
polishing
copper
barrier metal
cleaning agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010261252A
Other languages
Japanese (ja)
Inventor
Takuro Maede
拓朗 前出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2010261252A priority Critical patent/JP2012114208A/en
Publication of JP2012114208A publication Critical patent/JP2012114208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent galvanic corrosion on the surface of a copper film due to exposure to water during conveyance of a wafer on which copper interconnections are formed after CMP polishing.SOLUTION: Surface of a copper film 3 is changed to cuprous oxide (CuO)5 insoluble to water by polishing the wafer surface by using a cleaning agent having pH adjusted to 7-12 immediately after a barrier metal film polishing process in the Cu-CMP process when copper interconnections are formed, and an antioxidation film 6 is formed by making an oxidation inhibitor adhere to the surface of CuO5.

Description

本発明は半導体装置の製造方法に関わり、詳しくは、CMP後の銅配線の腐食を防止するプロセスに関わる。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a process for preventing corrosion of copper wiring after CMP.

従来、大規模集積回路(LSI)等の半導体装置では、配線材料としてアルミニウムが用いられてきたが、より微細、より高速、より低消費電力の半導体装置を得るために、低抵抗の銅配線が使用されるようになってきている。   Conventionally, aluminum has been used as a wiring material in a semiconductor device such as a large-scale integrated circuit (LSI). However, in order to obtain a finer, faster, and lower power consumption semiconductor device, a low resistance copper wiring is used. It is becoming used.

しかしながら、銅はアルミニウムのようにドライエッチング加工することが困難であることから、ダマシン法と呼ばれる銅配線形成法が確立されている。ダマシン法では、層間絶縁膜に溝を形成し、銅の拡散を防止するバリアメタル膜、さらに銅(Cu)成膜し、化学機械研磨(CMP:Chemical Mechanical Polishing)法で層間絶縁膜上の余剰の銅及びバリアメタル膜を除去する方法が採用されている。   However, since copper is difficult to dry-etch like aluminum, a copper wiring forming method called a damascene method has been established. In the damascene method, a trench is formed in the interlayer insulating film, a barrier metal film for preventing copper diffusion, and further copper (Cu) is formed, and the surplus on the interlayer insulating film is formed by a chemical mechanical polishing (CMP) method. A method of removing the copper and barrier metal film is employed.

銅配線形成時のCMP(以下、Cu−CMPと記す)では、従来はベンゾトリアゾール(BTA)等の腐食防止剤を含有する研磨スラリーを用いて銅表面にCu−BTA膜を形成してCu配線表面の腐食を抑制し、バリアメタル膜研磨中に銅膜がエッチングされることによるディッシングを防止している。また、特許文献1に記載されるようなヒドロキシアルキル基含有ベンゾトリアゾール(HA−BTA)化合物のような易水溶性腐食防止剤を含有するスラリーは、低圧研磨における研磨速度が従来のBTAに比べて優れることが示されている。   In CMP at the time of copper wiring formation (hereinafter referred to as Cu-CMP), a Cu-BTA film is conventionally formed on a copper surface using a polishing slurry containing a corrosion inhibitor such as benzotriazole (BTA). Surface corrosion is suppressed, and dishing due to etching of the copper film during barrier metal film polishing is prevented. In addition, a slurry containing a readily water-soluble corrosion inhibitor such as a hydroxyalkyl group-containing benzotriazole (HA-BTA) compound described in Patent Document 1 has a polishing rate in low-pressure polishing as compared with conventional BTA. It has been shown to be excellent.

特開2005−175218号公報JP 2005-175218 A

バリアメタル膜研磨直後の構造は図1(a)に示す通りである。上記のスラリーで研磨することによって層間絶縁膜(酸化膜)1、バリアメタル膜2、Cu膜3の構造となっており、Cu膜3の表面は防食膜4(実際にはCu−BTA錯体)で覆われている。しかしながら、上記のH−BTAのような易水溶性腐食防止剤では、ウエハ研磨後の搬送途中に水がかかることで防食膜4が溶解し、防食効果が低下する。その結果、バリアメタル膜2とCu膜3の間に電位差が生じ、界面の防食膜4が破れ、Cu膜3の表面からCu2+として溶出する。さらに、溶出が進み、図1(b)のようにCu膜3のガルバニック腐食が進んでしまうという問題がある。 The structure immediately after polishing the barrier metal film is as shown in FIG. By polishing with the above slurry, it has a structure of an interlayer insulating film (oxide film) 1, a barrier metal film 2, and a Cu film 3, and the surface of the Cu film 3 is an anticorrosive film 4 (actually a Cu-BTA complex). Covered with. However, with a water-soluble corrosion inhibitor such as H-BTA, the anticorrosion film 4 is dissolved when water is applied during the conveyance after wafer polishing, and the anticorrosion effect is reduced. As a result, a potential difference is generated between the barrier metal film 2 and the Cu film 3, the anticorrosion film 4 at the interface is broken, and is eluted from the surface of the Cu film 3 as Cu 2+ . Furthermore, elution progresses, and there is a problem that galvanic corrosion of the Cu film 3 proceeds as shown in FIG.

銅配線形成時のCu−CMP工程におけるバリアメタル膜研磨工程直後に、pHを7〜12に調整した洗浄剤を用いてウエハ表面を研磨することで、銅膜表面を水に不溶な酸化第一銅(CuO)に変化させると共に、CuO表面に前述の酸化防止剤を付着させることで、搬送中の水によるバリアメタル膜と銅膜界面の腐食を防ぐ手段を提供する。 Immediately after the barrier metal film polishing step in the Cu-CMP step during copper wiring formation, the surface of the copper film is polished with a cleaning agent having a pH adjusted to 7 to 12 so that the copper film surface is insoluble in water. By changing to copper (Cu 2 O) and attaching the above-mentioned antioxidant to the Cu 2 O surface, a means for preventing corrosion of the barrier metal film and the copper film interface due to water being conveyed is provided.

即ち、本発明の一実施形態によれば、
半導体基板上の層間絶縁膜に配線溝を形成する工程、
バリアメタル膜及び銅膜を成膜する工程、
化学機械研磨法により銅膜及びバリアメタル膜を研磨し、前記層間絶縁膜を露出させると共に、前記銅膜及びバリアメタル膜を前記配線溝に埋め込む工程、
半導体基板を洗浄し、乾燥する工程
を備える半導体装置の製造方法において、
前記バリアメタル膜研磨直後に、pHを7〜12に調整した洗浄剤を用いて前記半導体基板表面の研磨を行い、銅膜表面を酸化第一銅に変化させると共に、該酸化第一銅表面に前記酸化防止剤の膜を形成することを特徴とする半導体装置の製造方法が提供される。
That is, according to one embodiment of the present invention,
Forming a wiring trench in an interlayer insulating film on a semiconductor substrate;
Forming a barrier metal film and a copper film;
Polishing a copper film and a barrier metal film by a chemical mechanical polishing method to expose the interlayer insulating film and embedding the copper film and the barrier metal film in the wiring groove;
In a method for manufacturing a semiconductor device comprising steps of cleaning and drying a semiconductor substrate,
Immediately after polishing the barrier metal film, the surface of the semiconductor substrate is polished using a cleaning agent having a pH adjusted to 7 to 12 to change the copper film surface to cuprous oxide, and to the cuprous oxide surface. A method of manufacturing a semiconductor device is provided, wherein a film of the antioxidant is formed.

本発明の一実施形態によれば、CMP後に銅膜表面の防食膜に代えて、水不溶性のCuO膜を形成することで、搬送中の水によるバリアメタル膜と銅膜界面の腐食を防止することができ、製品歩留りを向上することができる。 According to one embodiment of the present invention, the corrosion of the barrier metal film and the copper film interface due to water being transported is formed by forming a water-insoluble Cu 2 O film instead of the anticorrosion film on the surface of the copper film after CMP. Product yield can be improved.

本発明の課題を説明するための概略図である。It is the schematic for demonstrating the subject of this invention. 本発明及び従来技術のCu−CMP工程を説明する工程フロー図である。It is a process flowchart explaining the Cu-CMP process of this invention and a prior art. 本発明に係るCu−CMPによるCu膜の表面状態変化を示す概略断面図である。It is a schematic sectional drawing which shows the surface state change of Cu film | membrane by Cu-CMP based on this invention. 銅及び銅化合物の電位図である。It is an electrogram of copper and a copper compound. CMP装置の構成を示す概略図である。It is the schematic which shows the structure of CMP apparatus.

以下、本発明について実施形態例を挙げて説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited thereto.

半導体装置に使用される微細な銅配線の形成は、銅のドライエッチングによるパターニングが困難であることから、ダマシン法で形成される。ダマシン法では、前述の通り、ダマシン法では、層間絶縁膜に配線溝を形成し、銅の拡散を防止するバリアメタル膜、続いて銅(Cu)成膜し、化学機械研磨(CMP:Chemical Mechanical Polishing)法で層間絶縁膜上の余剰の銅及びバリアメタル膜を除去する。   The formation of fine copper wirings used in semiconductor devices is formed by a damascene method because it is difficult to pattern by copper dry etching. In the damascene method, as described above, in the damascene method, a wiring trench is formed in an interlayer insulating film, a barrier metal film for preventing copper diffusion is formed, and then a copper (Cu) film is formed, and chemical mechanical polishing (CMP) is performed. The excess copper and barrier metal film on the interlayer insulating film are removed by a polishing method.

図2はCu−CMPの研磨プロセスフローである。通常は破線で囲んだように、a)Cu研磨、b)バリア研磨、c)洗浄、d)乾燥の順にウエハは流動する。本発明ではb)の直後にe)洗浄剤研磨を実施する。   FIG. 2 is a polishing process flow of Cu-CMP. Usually, as surrounded by a broken line, the wafer flows in the order of a) Cu polishing, b) barrier polishing, c) cleaning, and d) drying. In the present invention, e) cleaning is performed immediately after b).

a)Cu研磨、b)バリア研磨は、従来公知の方法で実施することができる。   The a) Cu polishing and b) barrier polishing can be performed by a conventionally known method.

図3は、本発明に係るCu−CMPによるCu膜の表面状態変化を示す概略断面図である。バリアメタル膜2研磨直後のCu膜3表面は図3(a)に示すように、層間絶縁膜(酸化膜)1、バリアメタル膜2、Cu膜3の構造において、Cu膜3表面は防食膜(Cu−BTA)4で被覆されており、これは従来と同様である。その後、研磨パッド上で本発明による洗浄剤を用いた研磨を行うと、図3(b)に示す通り、表面の防食膜4は除去され、その際にpHが7〜12のアルカリ性溶液中では図4に示す電位図の通りCuOで安定化するため、最表面にCuO膜5が形成される。図4において、横軸にpHを、縦軸に酸化還元電位(V vs. NHE:相対値)を示す。さらに洗浄剤中の酸化防止剤によって図3(c)に示す通り、酸化防止膜6でCu表面を覆うことができる。図4に示す電位図の通り、CuOはpH7〜12では安定(不溶)であるため、純水がかかることによるガルバニック腐食を防止することができる。 FIG. 3 is a schematic cross-sectional view showing changes in the surface state of the Cu film by Cu-CMP according to the present invention. As shown in FIG. 3A, the surface of the Cu film 3 immediately after the polishing of the barrier metal film 2 is the anti-corrosion film in the structure of the interlayer insulating film (oxide film) 1, the barrier metal film 2, and the Cu film 3. It is covered with (Cu-BTA) 4, which is the same as the conventional one. Thereafter, when polishing with the cleaning agent according to the present invention is performed on the polishing pad, the anticorrosion film 4 on the surface is removed as shown in FIG. 3B, and in this case, in an alkaline solution having a pH of 7 to 12 In order to stabilize with Cu 2 O as shown in the potential diagram of FIG. 4, a Cu 2 O film 5 is formed on the outermost surface. In FIG. 4, the horizontal axis represents pH, and the vertical axis represents oxidation-reduction potential (V vs. NHE: relative value). Furthermore, the Cu surface can be covered with the antioxidant film 6 as shown in FIG. As the potential diagram shown in FIG. 4, for Cu 2 O is stable in PH7~12 (insoluble), it is possible to prevent galvanic corrosion due to the pure water is applied.

本発明で用いる洗浄剤としては、pH7〜12の範囲のものを使用し、例えば、金属キレート剤及び酸化防止剤を含み、その他、溶媒として水又は水と水溶性有機溶媒(例えば、アルコール類等)との混合溶媒を含むものを使用する。   As the cleaning agent used in the present invention, one having a pH in the range of 7 to 12 is used, for example, including a metal chelating agent and an antioxidant, and water or water and a water-soluble organic solvent (for example, alcohols) as a solvent ) And a solvent containing a mixed solvent.

金属キレート剤としては、銅とキレートを形成できるものであれば、いずれも使用することができ、例えば、研磨剤に使用される各種有機酸塩などが挙げられる。   Any metal chelating agent can be used as long as it can form a chelate with copper. Examples thereof include various organic acid salts used in abrasives.

酸化防止剤としては、2級有機アミン又は3級有機アミンあるいは4級有機アンモニウム塩が挙げられる。2級有機アミンとしては、ジメチルアミン、ジエチルアミン等のジアルキルアミン類、ジエタノールアミン、2−(エチルアミノ)エタノール、2−(メチルアミノ)エタノール、N−メチルジエタノールアミン、ジメチルアミノエタノール等のアルカノールアミン類などが挙げられる。3級有機アミンとしては、トリメチルアミン、トリエチルアミン、ジメチルエチルアミン等のトリアルキルアミン、トリエタノールアミン等のアルカノールアミン類などが挙げられる。4級有機アンモニウム塩としては、テトラメチルアンモニウム((CH)やコリン((CHCHCHOH)などの塩などが挙げられる。 Examples of the antioxidant include secondary organic amines, tertiary organic amines, and quaternary organic ammonium salts. Secondary organic amines include dialkylamines such as dimethylamine and diethylamine, diethanolamine, 2- (ethylamino) ethanol, 2- (methylamino) ethanol, N-methyldiethanolamine, and alkanolamines such as dimethylaminoethanol. Can be mentioned. Examples of tertiary organic amines include trialkylamines such as trimethylamine, triethylamine, and dimethylethylamine, and alkanolamines such as triethanolamine. Examples of the quaternary organic ammonium salt include salts such as tetramethylammonium ((CH 3 ) 4 N + ) and choline ((CH 3 ) 3 N + CH 2 CH 2 OH).

さらに、洗浄剤には、pHを7〜12に調整するため、pH調整剤を含有する。酸化防止剤として使用する2級有機アミン又は3級有機アミンあるいは4級有機アンモニウム塩がアルカリ性を呈するため、pH調整剤としては、各種酸類を用いることができ、有機酸類、特に乳酸が好ましい。   Furthermore, in order to adjust pH to 7-12, a cleaning agent contains a pH adjuster. Since the secondary organic amine, tertiary organic amine or quaternary organic ammonium salt used as the antioxidant exhibits alkalinity, various acids can be used as the pH adjuster, and organic acids, particularly lactic acid is preferred.

洗浄剤中の各成分は、pH7〜12の範囲で、所望の膜厚にCuO膜5を形成できるものであればいずれの組成比であっても良い。また、pHの範囲が上記の範囲であれば、通常市販されているCMP用洗浄剤を用いることもできる。 Each component in the cleaning agent may have any composition ratio as long as the Cu 2 O film 5 can be formed in a desired film thickness in the range of pH 7-12. Moreover, if the range of pH is said range, the commercially available cleaning agent for CMP can also be used.

洗浄剤による研磨は、通常のCMPバリアメタル膜研磨工程直後に行う。この時、洗浄剤による研磨は、ガルバニック腐食が発生しない限り、別のCMP装置で行っても良いが、同じCMP装置を用いて、CMPバリアメタル膜研磨工程に継続して行うことが好ましい。図5は、一般的なCMP装置の概略を示す図であり、研磨定盤であるプラテン10上に研磨パッド11が設置されており、研磨する半導体基板12は、加圧ヘッド13に研磨面が研磨パッド11に対向するように設置されている。プラテン10と加圧ヘッド13は、同方向に回転され、CMP工程では研磨剤ノズル14より研磨スラリーが研磨パッド11に付与されて研磨を行う。また、洗浄剤による研磨工程では、洗浄剤ノズル15より洗浄剤が研磨パッド11に付与されて、Cu膜表面に形成されていた防食膜を除去すると同時にCuO膜を形成することができる。 Polishing with a cleaning agent is performed immediately after the normal CMP barrier metal film polishing step. At this time, the polishing with the cleaning agent may be performed by another CMP apparatus as long as galvanic corrosion does not occur. However, it is preferable to continue the CMP barrier metal film polishing process using the same CMP apparatus. FIG. 5 is a view showing an outline of a general CMP apparatus. A polishing pad 11 is installed on a platen 10 which is a polishing surface plate. A semiconductor substrate 12 to be polished has a polishing surface on a pressure head 13. It is installed so as to face the polishing pad 11. The platen 10 and the pressure head 13 are rotated in the same direction, and in the CMP process, polishing slurry is applied to the polishing pad 11 from the abrasive nozzle 14 to perform polishing. Further, in the polishing step using the cleaning agent, the cleaning agent is applied to the polishing pad 11 from the cleaning agent nozzle 15 to remove the anticorrosion film formed on the surface of the Cu film and simultaneously form the Cu 2 O film.

洗浄剤を用いた研磨では、Cu膜3のガルバニック腐食を防止するに十分な膜厚のCuO膜5が形成されれば良い。 In polishing using a cleaning agent, the Cu 2 O film 5 having a thickness sufficient to prevent galvanic corrosion of the Cu film 3 may be formed.

その後、従来と同様に、純水洗浄及び乾燥を行い、処理された基板は次の工程に供される。例えば、多層配線を形成する場合には、銅配線上にさらに層間絶縁膜を形成し、同様に、第2の銅配線を形成することができる。Cu膜3上のCuO膜5は除去することなくそのままその上に層間絶縁膜等を形成することができ、コンタクトを形成する場合などに必要に応じて除去すればよい。 Thereafter, as in the conventional case, pure water cleaning and drying are performed, and the processed substrate is subjected to the next step. For example, in the case of forming a multilayer wiring, an interlayer insulating film can be further formed on the copper wiring, and similarly, a second copper wiring can be formed. The Cu 2 O film 5 on the Cu film 3 can be formed on the Cu 2 O film 5 as it is without being removed, and may be removed as necessary when a contact is formed.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited only to these Examples.

実施例
ダマシン法によりTaNバリア膜及び銅膜を形成した後、銅膜研磨、バリア膜研磨を常法により実施した後、市販の洗浄剤を用いた研磨を実施した。なお、バリア膜研磨時の研磨剤には、易水溶性腐食防止剤を含む研磨スラリーを用いて実施した。なお、研磨スラリーは、洗浄剤を用いた研磨処理前に水にて洗い流した。洗浄剤を用いた研磨条件を以下に示す。
研磨装置:荏原製作所製 FREX300S2
研磨時間 : 5〜15 sec
圧力 : 100 hpa
回転数: 100 rpm
洗浄剤:pH=8
洗浄剤による研磨処理直後、装置内搬送中にウエハを10分間停滞させ、ウエハ1枚当りのデフェクト数を観察した。結果を以下に示す。また、比較例として洗浄剤を用いた研磨を行わなかった場合を示す。
Example After forming the TaN barrier film and the copper film by the damascene method, the copper film polishing and the barrier film polishing were performed by a conventional method, and then polishing using a commercially available cleaning agent was performed. The polishing slurry used for polishing the barrier film was a polishing slurry containing a readily water-soluble corrosion inhibitor. The polishing slurry was washed away with water before the polishing treatment using a cleaning agent. The polishing conditions using the cleaning agent are shown below.
Polishing device: FREX300S2 manufactured by EBARA
Polishing time: 5-15 sec
Pressure: 100 hpa
Rotation speed: 100 rpm
Cleaning agent: pH = 8
Immediately after the polishing treatment with the cleaning agent, the wafer was held for 10 minutes during the transfer in the apparatus, and the number of defects per wafer was observed. The results are shown below. Moreover, the case where grinding | polishing using a cleaning agent was not performed as a comparative example is shown.

以上の結果から明らかな通り、本発明による洗浄剤研磨を実施することで、デフェクトの発生を抑制することが可能となる。   As is clear from the above results, it is possible to suppress the occurrence of defects by carrying out the cleaning agent polishing according to the present invention.

1 層間絶縁膜
2 バリアメタル膜
3 Cu膜
4 防食膜(Cu−BTA)
5 CuO膜
6 酸化防止膜
DESCRIPTION OF SYMBOLS 1 Interlayer insulating film 2 Barrier metal film 3 Cu film 4 Anticorrosion film (Cu-BTA)
5 Cu 2 O film 6 Antioxidation film

Claims (5)

半導体基板上の層間絶縁膜に配線溝を形成する工程、
バリアメタル膜及び銅膜を成膜する工程、
化学機械研磨法により銅膜及びバリアメタル膜を研磨し、前記層間絶縁膜を露出させると共に、前記銅膜及びバリアメタル膜を前記配線溝に埋め込む工程、
半導体基板を洗浄し、乾燥する工程
を備える半導体装置の製造方法において、
前記バリアメタル膜研磨直後に、pHを7〜12に調整した洗浄剤を用いて前記半導体基板表面の研磨を行い、銅膜表面を酸化第一銅に変化させると共に、該酸化第一銅表面に前記酸化防止剤の膜を形成することを特徴とする半導体装置の製造方法。
Forming a wiring trench in an interlayer insulating film on a semiconductor substrate;
Forming a barrier metal film and a copper film;
Polishing a copper film and a barrier metal film by a chemical mechanical polishing method to expose the interlayer insulating film and embedding the copper film and the barrier metal film in the wiring groove;
In a method for manufacturing a semiconductor device comprising steps of cleaning and drying a semiconductor substrate,
Immediately after polishing the barrier metal film, the surface of the semiconductor substrate is polished using a cleaning agent having a pH adjusted to 7 to 12 to change the copper film surface to cuprous oxide, and to the cuprous oxide surface. A method of manufacturing a semiconductor device, comprising forming a film of the antioxidant.
前記銅膜及びバリアメタル膜の研磨は、易水溶性腐食防止剤を含有する研磨スラリーを用いて実施され、前記洗浄剤を用いた研磨により銅膜表面の腐食防止剤による膜を除去する請求項1に記載の半導体装置の製造方法。   The polishing of the copper film and the barrier metal film is performed using a polishing slurry containing a readily water-soluble corrosion inhibitor, and the film of the corrosion inhibitor on the surface of the copper film is removed by polishing using the cleaning agent. 2. A method for manufacturing a semiconductor device according to 1. 前記洗浄剤は、金属キレート剤、酸化防止剤、残部を溶媒及び洗浄剤をpH7〜12に調整するに必要なpH調整剤を含む請求項1又は2に記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 1, wherein the cleaning agent includes a metal chelating agent, an antioxidant, a remaining solvent and a pH adjusting agent necessary for adjusting the cleaning agent to pH 7 to 12. 4. 前記洗浄剤は、金属キレート剤として有機酸塩を含み、酸化防止剤として2級又は3級有機アミン或いは4級有機アンモニウム塩を含み、pH調整剤として有機酸を含む請求項3に記載の半導体装置の製造方法。   The semiconductor according to claim 3, wherein the cleaning agent contains an organic acid salt as a metal chelating agent, a secondary or tertiary organic amine or a quaternary organic ammonium salt as an antioxidant, and an organic acid as a pH adjuster. Device manufacturing method. 前記洗浄剤を用いた研磨は、前記銅膜及びバリアメタル膜の研磨を行う研磨装置にて連続して行う請求項1乃至4のいずれか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the polishing using the cleaning agent is continuously performed by a polishing apparatus that polishes the copper film and the barrier metal film.
JP2010261252A 2010-11-24 2010-11-24 Method of manufacturing semiconductor device Pending JP2012114208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261252A JP2012114208A (en) 2010-11-24 2010-11-24 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261252A JP2012114208A (en) 2010-11-24 2010-11-24 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2012114208A true JP2012114208A (en) 2012-06-14

Family

ID=46498105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261252A Pending JP2012114208A (en) 2010-11-24 2010-11-24 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2012114208A (en)

Similar Documents

Publication Publication Date Title
TW487985B (en) Polishing method, wire forming method, method for manufacturing semiconductor device and semiconductor integrated circuit device
EP3245668B1 (en) Cleaning composition and method for cleaning semiconductor wafers after cmp
US6562719B2 (en) Methods of polishing, interconnect-fabrication, and producing semiconductor devices
US8222145B2 (en) Method and composition for chemical mechanical planarization of a metal-containing substrate
US6679929B2 (en) Polishing composition and polishing method employing it
EP1104020A1 (en) Methods of treating substrates surfaces comprising copper or copper alloy
US9920287B2 (en) Cleaning composition and cleaning method
JP2002075927A (en) Composition for polishing and polishing method using it
JP2007150341A (en) Chemical mechanical polishing slurry useful for copper substrate
US8841216B2 (en) Method and composition for chemical mechanical planarization of a metal
CN101240147A (en) Compositions for chemical mechanical planarization of copper
TWI546353B (en) Alkaline chemical mechanical polishing liquid
CN101352833B (en) Method for polishing copper by chemical and mechanical methods
KR20120036822A (en) Surface treatment composition, surface treatment method, and method for manufacturing semiconductor device
JP2012114208A (en) Method of manufacturing semiconductor device
US7422700B1 (en) Compositions and methods of electrochemical removal of material from a barrier layer of a wafer
CN113774391A (en) Application of post-chemical mechanical polishing cleaning solution
TWI829623B (en) Chemical mechanical polishing slurry for the planarization of the barrier film
JP2005056879A (en) Solution and method for polishing cooper-based metal
WO2020255581A1 (en) Polishing fluid and chemical mechanical polishing method
JP7276343B2 (en) Cleaning liquid, cleaning method, and semiconductor wafer manufacturing method
TW424002B (en) A cleaning method after finishing polishing process of Cu interconnection
JP2000299320A (en) Method of forming wiring
JP2001257188A (en) Method of manufacturing semiconductor integrated circuit device
CN113774390A (en) Cleaning solution used after chemical mechanical polishing and preparation method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130730