JP2012113931A - Auxiliary device for fuel cell and fuel cell - Google Patents

Auxiliary device for fuel cell and fuel cell Download PDF

Info

Publication number
JP2012113931A
JP2012113931A JP2010261173A JP2010261173A JP2012113931A JP 2012113931 A JP2012113931 A JP 2012113931A JP 2010261173 A JP2010261173 A JP 2010261173A JP 2010261173 A JP2010261173 A JP 2010261173A JP 2012113931 A JP2012113931 A JP 2012113931A
Authority
JP
Japan
Prior art keywords
gas
section
fuel cell
mixing
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010261173A
Other languages
Japanese (ja)
Other versions
JP5659329B2 (en
Inventor
Yosuke Ito
洋介 伊藤
Yoshitaka Usui
淑隆 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2010261173A priority Critical patent/JP5659329B2/en
Publication of JP2012113931A publication Critical patent/JP2012113931A/en
Application granted granted Critical
Publication of JP5659329B2 publication Critical patent/JP5659329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an auxiliary device for a fuel cell and a fuel cell which are improved temperature uniformity.SOLUTION: An auxiliary device for a fuel cell includes: a first inflow section into which a first gas, which is one of a residual fuel gas and a residual oxidant gas after power generation by a fuel cell, flows; a second inflow section into which a second gas, which is the other of the residual fuel gas and the residual oxidant gas, flows; a dividing section for dividing the first gas, flowing from the first inflow section, into two or more; a first mixing section for mixing and burning a part of the first gas divided at the dividing section and the second gas flowing from the second inflow section; and a second mixing section for mixing and burning an exhaust gas after burned at the first mixing section and the other part of the divided first gas.

Description

本発明は,燃料電池用補助器および燃料電池に関する。   The present invention relates to a fuel cell auxiliary device and a fuel cell.

電解質に固体酸化物を用いた固体酸化物形燃料電池(以下SOFCとも記す)が知られている。SOFCは,例えば,板状の固体電解質体の各面に燃料極と空気極とを備えた燃料電池セルを多数積層したスタック(燃料電池スタック)を有する。燃料極および空気極それぞれに,燃料ガスおよび酸化剤ガス(例えば,空気中の酸素)を供給し,固体電解質体を介して化学反応させることで,電力を発生させる。   A solid oxide fuel cell (hereinafter also referred to as SOFC) using a solid oxide as an electrolyte is known. The SOFC has, for example, a stack (fuel cell stack) in which a large number of fuel cells each having a fuel electrode and an air electrode are stacked on each surface of a plate-shaped solid electrolyte body. Electric power is generated by supplying a fuel gas and an oxidant gas (for example, oxygen in the air) to the fuel electrode and the air electrode, respectively, and causing a chemical reaction through the solid electrolyte body.

SOFCは,600〜1000℃という高温で動作させるので,この運転温度を維持するための構造が必要になっている。このため,燃料電池スタックと燃焼器を一体化した固体酸化物形燃料電池モジュールが用いられる。   Since the SOFC operates at a high temperature of 600 to 1000 ° C., a structure for maintaining this operating temperature is required. For this reason, a solid oxide fuel cell module in which a fuel cell stack and a combustor are integrated is used.

燃焼器は,発電後の残余の燃料ガスおよび酸化剤ガスを混合して燃焼させるものであり,その内部での燃焼が均一であることが望ましい。
ここで,固体高分子形燃料電池(PEFC)向けの燃焼器について,燃焼温度を熱電対でモニタし,燃焼用空気ポンプを制御する技術が開示されている(特許文献1参照)。
しかしながら,この技術では,燃焼用空気ポンプが必要であり,低価格を狙うSOFCには不向きである。SOFCでは,燃焼コントロールと過昇温防止を別の手段で行う必要がある。
The combustor mixes and burns the remaining fuel gas and oxidant gas after power generation, and it is desirable that the combustion in the inside be uniform.
Here, regarding a combustor for a polymer electrolyte fuel cell (PEFC), a technique for monitoring a combustion temperature with a thermocouple and controlling a combustion air pump is disclosed (see Patent Document 1).
However, this technology requires a combustion air pump and is not suitable for a SOFC aimed at a low price. In SOFC, it is necessary to perform combustion control and prevention of overheating by different means.

特開平9−92311号公報JP-A-9-92311

本発明は,温度の均一性及び熱効率を向上した燃料電池用補助器および燃料電池を提供することを目的とする。   It is an object of the present invention to provide a fuel cell auxiliary device and a fuel cell with improved temperature uniformity and thermal efficiency.

本発明に係る燃料電池用補助器は,燃料電池での発電後の残余の燃料ガスおよび前記発電後の残余の酸化剤ガスの一方である第1のガスが流入する第1の流入部と,前記残余の燃料ガスおよび前記残余の酸化剤ガスの他方である第2のガスが流入する第2の流入部と,前記第1の流入部から流入する第1のガスを2以上に区分する区分部と,前記区分部で区分された一部の第1のガスおよび前記第2の流入部から流入する第2のガスを混合して燃焼する第1の混合部と,前記第1の混合部で燃焼後の排ガスおよび前記区分された他の一部の第1のガスを混合して燃焼する第2の混合部と,を具備する。   A fuel cell auxiliary device according to the present invention includes a first inflow portion into which a first gas that is one of a residual fuel gas after power generation in the fuel cell and a residual oxidant gas after power generation flows, A second inflow section into which a second gas, which is the other of the remaining fuel gas and the remaining oxidant gas, and a first gas flowing in from the first inflow section are divided into two or more. A first mixing section for mixing and burning a part of the first gas divided by the dividing section and the second gas flowing in from the second inflow section, and the first mixing section And a second mixing section for mixing and burning the exhaust gas after combustion and the other part of the first gas.

残余の燃料ガスおよび残余の酸化剤ガスの一方を2以上に区分し,第1,第2の混合部で混合することで,燃料ガスと酸化剤ガスの混合時の発熱を第1,第2の混合部に分散でき,温度の均一性を向上できる。   One of the remaining fuel gas and the remaining oxidant gas is divided into two or more and mixed in the first and second mixing sections, so that the heat generated when the fuel gas and the oxidant gas are mixed is changed to the first and second. The temperature uniformity can be improved.

(1)ここで,前記区分部から前記第1の混合部に流入する第1のガスの量が,前記区分部から前記第2の混合部に流入する第1のガスの量より,小さくしても良い。
第1,第2の混合部での発熱を段階的に大きくすることができる。即ち,燃焼の状態(発熱による熱量)をコントロールすることができる。
(1) Here, the amount of the first gas flowing into the first mixing portion from the partitioning portion is made smaller than the amount of the first gas flowing into the second mixing portion from the partitioning portion. May be.
The heat generation in the first and second mixing sections can be increased stepwise. That is, the state of combustion (the amount of heat generated by heat generation) can be controlled.

(2)(1)において,前記第2および第1の混合部それぞれに対応して配置され,かつ発電前の燃料ガスが順に流通する第1,第2の経路を有し,燃料ガスを改質する改質器をさらに具備しても良い。 (2) In (1), there are first and second paths arranged corresponding to each of the second and first mixing sections and through which fuel gas before power generation flows in order, and the fuel gas is modified. A reformer may be further provided.

改質器での改質反応(吸熱反応)は未改質の燃料ガスの量が多い上流の方が盛んである。このため,発熱量が段階的に大きくなる第1,第2の混合部を改質器での経路の下流,上流に対応して配置することで,発熱と吸熱をバランスさせ,温度の均一性及び熱効率を向上できる。   The reforming reaction (endothermic reaction) in the reformer is more popular upstream with a large amount of unreformed fuel gas. For this reason, by arranging the first and second mixing sections where the amount of generated heat increases stepwise corresponding to the downstream and upstream of the path in the reformer, heat generation and heat absorption are balanced, and temperature uniformity is achieved. In addition, thermal efficiency can be improved.

(3)前記区分部が,前記第1の流入部から流入する第1のガスを3つ以上に区分し,前記第2の混合部で燃焼後の排ガスおよび前記区分部で区分された更なる他の一部の第1のガスを混合して燃焼する第3の混合部,をさらに具備し,前記第3の混合部が,前記第2の混合部で燃焼後の排ガスおよび前記区分部で区分された更なる他の一部の第1のガスを混合して燃焼しても良い。 (3) The division part further divides the first gas flowing in from the first inflow part into three or more, and is further divided in the second mixing part by the exhaust gas after combustion and the division part. A third mixing section that mixes and burns another part of the first gas, and the third mixing section includes the exhaust gas after combustion in the second mixing section and the dividing section. Another part of the first gas that has been separated may be mixed and burned.

残余の燃料ガスおよび残余の酸化剤ガスの一方を3以上に区分し,第1〜第3の混合部で混合することで,燃料ガスと酸化剤ガスの混合時の発熱を第1〜第3の混合部に分散できる。よって,温度の均一性を更に向上できる。   One of the remaining fuel gas and the remaining oxidant gas is divided into three or more and mixed in the first to third mixing sections, so that the heat generated when the fuel gas and the oxidant gas are mixed is changed to the first to third. Can be dispersed in the mixing part. Therefore, the temperature uniformity can be further improved.

(4)(3)において,前記第3〜1の混合部それぞれに対応して配置され,かつ発電前の燃料ガスが順に流通する第1〜第3の経路を有し,燃料ガスを改質する改質器をさらに具備しても良い。 (4) In (3), the fuel gas is reformed by having first to third paths arranged corresponding to each of the third to first mixing sections and through which fuel gas before power generation flows in order. A reformer may be further provided.

改質器での改質反応(吸熱反応)は未改質の燃料ガスの量が多い上流の方が盛んである。このため,発熱量が段階的に大きくなる第1〜第3の混合部を改質器での経路の下流,中流,上流に対応して配置することで,発熱と吸熱をバランスさせ,温度の均一性及び熱効率を更に向上できる。   The reforming reaction (endothermic reaction) in the reformer is more popular upstream with a large amount of unreformed fuel gas. For this reason, by arranging the first to third mixing sections where the heat generation amount increases stepwise corresponding to the downstream, middle flow, and upstream of the path in the reformer, the heat generation and heat absorption are balanced, Uniformity and thermal efficiency can be further improved.

(5)前記第1のガスが,前記残余の酸化剤ガスであり,前記第2のガスが,前記残余の燃料ガスであっても良い。燃料ガスに比べて,酸化剤ガスの流量が大きくて制御し易いため,第1のガスを残余の酸化剤ガスとすることが特に良い。 (5) The first gas may be the remaining oxidant gas, and the second gas may be the remaining fuel gas. Since the flow rate of the oxidant gas is larger than that of the fuel gas and easy to control, it is particularly preferable that the first gas is the remaining oxidant gas.

(6)前記第1のガスが,前記残余の燃料であり,前記第2のガスが,前記残余の酸化剤ガスであっても良い。 (6) The first gas may be the remaining fuel, and the second gas may be the remaining oxidant gas.

(7)前記第2の流入部から流入する第2のガスを2以上に区分する第2の区分部をさらに具備し,前記第1の混合部が,前記区分部で区分された一部の第1のガスおよび前記第2の区分部で区分された一部の第2のガスを混合して燃焼し,前記第2の混合部が,前記第1の混合部で燃焼後の排ガス,前記区分部で区分された他の一部の第1のガスおよび前記第2の区分部で区分された他の一部の第2のガスを混合して燃焼しても良い。 (7) The apparatus further includes a second dividing unit that divides the second gas flowing in from the second inflow unit into two or more, and the first mixing unit is a part of the portion divided by the dividing unit. The first gas and a part of the second gas divided by the second division part are mixed and burned, and the second mixing part is an exhaust gas after combustion in the first mixing part, The other part of the first gas divided by the dividing part and the other part of the second gas divided by the second dividing part may be mixed and burned.

残余の燃料ガスおよび残余の酸化剤ガスの双方を2以上に区分し,混合することで,燃料ガスと酸化剤ガスの混合時の発熱を更に分散できる。   By dividing and mixing both the remaining fuel gas and the remaining oxidant gas into two or more, the heat generated when the fuel gas and the oxidant gas are mixed can be further dispersed.

燃料電池が,上記に記載の燃料電池用補助器を備えても良い。燃料電池での温度の均一性の確保が可能となる。また,燃料電池の熱効率が向上できる。   The fuel cell may include the fuel cell auxiliary device described above. It is possible to ensure temperature uniformity in the fuel cell. In addition, the thermal efficiency of the fuel cell can be improved.

本発明によれば,温度の均一性及び熱効率を向上した燃料電池用補助器および燃料電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the auxiliary | assistant for fuel cells and fuel cell which improved the uniformity of temperature and thermal efficiency can be provided.

本発明の第1の実施形態に係る燃料電池システム10を表す斜視図である。1 is a perspective view showing a fuel cell system 10 according to a first embodiment of the present invention. 燃料電池スタック100,補助器200を表す分解斜視図である。2 is an exploded perspective view showing a fuel cell stack 100 and an auxiliary device 200. FIG. 燃料電池スタック100,補助器200を表す一部断面図である。2 is a partial cross-sectional view showing a fuel cell stack 100 and an auxiliary device 200. FIG. 燃料電池スタック100を表す分解斜視図である。2 is an exploded perspective view showing a fuel cell stack 100. FIG. 補助器200を表す上面図である。It is a top view showing the auxiliary device 200. 補助器200の第1層210を表す上面図である。3 is a top view illustrating a first layer 210 of the auxiliary device 200. FIG. 補助器200の第1層210を表す斜視図である。3 is a perspective view illustrating a first layer 210 of the auxiliary device 200. FIG. 補助器200の第2層220を表す斜視図である。3 is a perspective view illustrating a second layer 220 of the auxiliary device 200. FIG. 補助器200の第3層230を表す斜視図である。3 is a perspective view illustrating a third layer 230 of the auxiliary device 200. FIG. 変形例に係る第3層230aを表す斜視図である。It is a perspective view showing the 3rd layer 230a concerning a modification. 本発明の比較例に係る補助器200xの第1層210xを表す斜視図である。It is a perspective view showing the 1st layer 210x of auxiliary equipment 200x concerning a comparative example of the present invention. 本発明の第2の実施形態に係る補助器200aの第1層210aを表す斜視図である。It is a perspective view showing the 1st layer 210a of auxiliary equipment 200a concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る補助器200bの第1層210bを表す斜視図である。It is a perspective view showing the 1st layer 210b of auxiliary equipment 200b concerning a 2nd embodiment of the present invention. 本発明の第4の実施形態に係る補助器200cの第1層210cを表す斜視図である。It is a perspective view showing the 1st layer 210c of auxiliary equipment 200c concerning a 4th embodiment of the present invention.

(第1の実施形態)
以下,図面を参照して,本発明の実施の形態を詳細に説明する。
図1は,本発明の第1の実施形態に係る燃料電池システム10を表す斜視図である。図2,図3はそれぞれ,燃料電池スタック100,補助器200を表す分解斜視図および一部断面図である。図3では,後述の貫通孔112,114を結ぶ線に沿って,燃料電池スタック100を切断した状態を示している。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing a fuel cell system 10 according to the first embodiment of the present invention. 2 and 3 are an exploded perspective view and a partial sectional view showing the fuel cell stack 100 and the auxiliary device 200, respectively. FIG. 3 shows a state in which the fuel cell stack 100 is cut along a line connecting through holes 112 and 114 described later.

図1に示すように,燃料電池システム10は,固体酸化物形燃料電池20,制御部30を有する。固体酸化物形燃料電池20は,燃料ガスと酸化剤ガスの供給を受けて発電する装置であり,燃料電池スタック100,補助器200,発熱体300を有する。   As shown in FIG. 1, the fuel cell system 10 includes a solid oxide fuel cell 20 and a control unit 30. The solid oxide fuel cell 20 is a device that generates power upon receipt of fuel gas and oxidant gas, and includes a fuel cell stack 100, an auxiliary device 200, and a heating element 300.

燃料ガスとしては,水素,還元剤となる炭化水素,水素と炭化水素との混合ガス,及びこれらのガスを所定温度の水中を通過させ加湿した燃料ガス,これらのガスに水蒸気を混合させた燃料ガス等が挙げられる。炭化水素は特に限定されず,例えば,天然ガス,ナフサ,石炭ガス化ガス等が挙げられる。この燃料ガスとしては水素が好ましい。これらの燃料ガスは1種のみを用いてもよいし,2種以上を併用することもできる。また,50体積%以下の窒素及びアルゴン等の不活性ガスを含有していてもよい。   The fuel gas includes hydrogen, hydrocarbon as a reducing agent, mixed gas of hydrogen and hydrocarbon, fuel gas obtained by passing these gases through water at a predetermined temperature, and fuel obtained by mixing these gases with water vapor. Gas etc. are mentioned. The hydrocarbon is not particularly limited, and examples thereof include natural gas, naphtha, and coal gasification gas. The fuel gas is preferably hydrogen. These fuel gases may be used alone or in combination of two or more. Moreover, you may contain inert gas, such as nitrogen and argon of 50 volume% or less.

酸化剤ガスとしては,酸素と他の気体との混合ガス等が挙げられる。更に,この混合ガスには80体積%以下の窒素及びアルゴン等の不活性ガスが含有されていてもよい。これらの酸化剤ガスのうちでは安全であって,且つ安価であるため,空気(約80体積%の窒素が含まれている。)が好ましい。   Examples of the oxidant gas include a mixed gas of oxygen and another gas. Further, the mixed gas may contain 80% by volume or less of an inert gas such as nitrogen and argon. Of these oxidant gases, air (containing about 80% by volume of nitrogen) is preferred because it is safe and inexpensive.

制御部30は,固体酸化物形燃料電池20,特に,燃料電池スタック100での発電状態を制御する。例えば,温度センサ(熱電対等)により燃料電池スタック100の温度をモニタし,燃料電池スタック100への燃料ガス(または酸化剤ガス)の供給量を目標値になるように補正させる。   The control unit 30 controls the power generation state in the solid oxide fuel cell 20, in particular, the fuel cell stack 100. For example, the temperature of the fuel cell stack 100 is monitored by a temperature sensor (thermocouple or the like), and the supply amount of the fuel gas (or oxidant gas) to the fuel cell stack 100 is corrected to a target value.

燃料電池スタック100は,略直方体形状をなし,上面101,底面102,貫通孔111〜118を有し,部材120が接続される。貫通孔111〜114は,上面101,底面102の辺近傍(後述の枠部160の辺近傍)を貫通し,貫通孔115〜118は,上面101,底面102の頂点近傍(後述の枠部160の頂点近傍)を貫通する。貫通孔111〜118にはそれぞれ,連結部材(締結具であるボルト41〜48,ナット51〜58)が取り付けられる。なお,ナット53,57は,判りやすさのために,図1〜図3いずれにおいても図示を省略している。   The fuel cell stack 100 has a substantially rectangular parallelepiped shape, and has an upper surface 101, a bottom surface 102, and through holes 111 to 118, and the member 120 is connected thereto. The through holes 111 to 114 pass through the vicinity of the upper surface 101 and the side of the bottom surface 102 (near the side of the frame portion 160 described later), and the through holes 115 to 118 close to the apex of the upper surface 101 and the bottom surface 102 (the frame portion 160 described later). Through the apex of Connecting members (bolts 41 to 48, which are fasteners, and nuts 51 to 58) are attached to the through holes 111 to 118, respectively. The nuts 53 and 57 are not shown in any of FIGS. 1 to 3 for easy understanding.

上面101側および底面102側それぞれでの貫通孔111の開口に,部材120および後述の部材250が配置される。部材120(部材121)の貫通孔,貫通孔111,および部材250の貫通孔254にボルト41が挿通され,ナット51がねじ込まれる。この結果,ボルト41,ナット51によって,部材120,燃料電池スタック100,および補助器200(部材250)が接続される。   A member 120 and a member 250, which will be described later, are disposed in the opening of the through hole 111 on each of the top surface 101 side and the bottom surface 102 side. The bolt 41 is inserted into the through hole of the member 120 (member 121), the through hole 111, and the through hole 254 of the member 250, and the nut 51 is screwed. As a result, the member 120, the fuel cell stack 100, and the auxiliary device 200 (member 250) are connected by the bolt 41 and the nut 51.

部材120は,部材121,導入管122を有する。部材121は,略円筒形状をなし,略平面状の上面および底面,曲面状の側面,上面と底面間を貫通する貫通孔を有する。部材121の貫通孔と導入管122の内部とが連通する。   The member 120 includes a member 121 and an introduction pipe 122. The member 121 has a substantially cylindrical shape, and has a substantially flat top and bottom surfaces, a curved side surface, and a through-hole penetrating between the top and bottom surfaces. The through hole of the member 121 and the inside of the introduction pipe 122 communicate with each other.

部材121の貫通孔と貫通孔111の径は略同一である。これらの径より,ボルト41の軸の径が小さいことで,部材121の貫通孔とボルト41の軸間,および貫通孔111とボルト41の軸間を酸化剤ガス(空気)が通過する。即ち,酸化剤ガス(空気)が導入管122から流入し,部材121の貫通孔,および貫通孔111を経由して,燃料電池スタック100内に流入する。   The diameter of the through-hole of the member 121 and the through-hole 111 are substantially the same. Since the diameter of the shaft of the bolt 41 is smaller than these diameters, the oxidant gas (air) passes between the through hole of the member 121 and the shaft of the bolt 41 and between the through hole 111 and the shaft of the bolt 41. That is, the oxidant gas (air) flows from the introduction pipe 122 and flows into the fuel cell stack 100 through the through hole of the member 121 and the through hole 111.

貫通孔111は部材250の貫通孔254と連通するが,部材250の下面252は,ナット51によって封止される。この結果,底面102側の貫通孔111の開口からの酸化剤ガス(空気)の流入,流出が防止される。   The through hole 111 communicates with the through hole 254 of the member 250, but the lower surface 252 of the member 250 is sealed by the nut 51. As a result, inflow and outflow of the oxidant gas (air) from the opening of the through hole 111 on the bottom surface 102 side are prevented.

貫通孔112および後述する部材260の貫通孔264にボルト42が挿通され,ナット52がねじ込まれる。この結果,ボルト42,ナット52によって,燃料電池スタック100と補助器200(部材260)が接続される。ここで,貫通孔112の径より,ボルト42の軸の径が小さいことで,貫通孔112とボルト42の軸間を発電後の残余の燃料ガスが通過する。即ち,貫通孔112は,燃料電池スタック100から補助器200に発電後の残余の燃料ガスを供給する流路として機能する。   The bolt 42 is inserted into the through hole 112 and a through hole 264 of the member 260 described later, and the nut 52 is screwed. As a result, the fuel cell stack 100 and the auxiliary device 200 (member 260) are connected by the bolt 42 and the nut 52. Here, since the diameter of the shaft of the bolt 42 is smaller than the diameter of the through hole 112, the remaining fuel gas after power generation passes between the shafts of the through hole 112 and the bolt 42. That is, the through hole 112 functions as a flow path for supplying the remaining fuel gas after power generation from the fuel cell stack 100 to the auxiliary device 200.

貫通孔113および後述する部材270の貫通孔274にボルト43が挿通され,ナット53がねじ込まれる。この結果,ボルト43,ナット53によって,燃料電池スタック100と補助器200(部材270)が接続される。ここで,貫通孔113の径より,ボルト43の軸の径が小さいことで,貫通孔113とボルト43間を発電後の残余の酸化剤ガスが通過する。即ち,貫通孔113は,燃料電池スタック100から補助器200に発電後の残余の酸化剤ガスを供給する流路として機能する。   The bolt 43 is inserted into the through hole 113 and a through hole 274 of the member 270 described later, and the nut 53 is screwed. As a result, the fuel cell stack 100 and the auxiliary device 200 (member 270) are connected by the bolt 43 and the nut 53. Here, since the diameter of the shaft of the bolt 43 is smaller than the diameter of the through hole 113, the remaining oxidant gas after power generation passes between the through hole 113 and the bolt 43. That is, the through hole 113 functions as a flow path for supplying the remaining oxidant gas after power generation from the fuel cell stack 100 to the auxiliary device 200.

貫通孔114および後述の部材60の貫通孔64にボルト44が挿通され,ナット54がねじ込まれる。ここで,貫通孔114の径より,ボルト44の軸の径が小さいことで,貫通孔114とボルト44間を改質後の燃料ガスが通過する。即ち,貫通孔114は,補助器200から燃料電池スタック100に改質後の燃料ガスを供給する流路として機能する。   Bolts 44 are inserted into the through holes 114 and through holes 64 of the member 60 described later, and the nuts 54 are screwed. Here, since the diameter of the shaft of the bolt 44 is smaller than the diameter of the through hole 114, the reformed fuel gas passes between the through hole 114 and the bolt 44. That is, the through hole 114 functions as a flow path for supplying the reformed fuel gas from the auxiliary device 200 to the fuel cell stack 100.

燃料電池スタック100は,発電単位である平板形の燃料電池セル150が複数個積層されて構成される。複数個の燃料電池セル150が電気的に直列に接続される。   The fuel cell stack 100 is configured by laminating a plurality of flat plate fuel cells 150 that are power generation units. A plurality of fuel cells 150 are electrically connected in series.

図4に示すように,前記燃料電池セル150は,いわゆる燃料極支持膜形タイプの燃料電池セルであり,上下一対の金属製のインターコネクタ151,152の間に,セル本体153が配置される。セル本体153とインターコネクタ151,152の間に,空気流路154,燃料ガス流路155が配置される。
セル本体153は,固体電解質体156の上下に,空気極(カソード)157,燃料極(アノード)158が積層されて構成される。空気極157とインターコネクタ151との間に,その導通を確保するために集電体159が配置されている。
As shown in FIG. 4, the fuel cell 150 is a so-called fuel electrode support membrane type fuel cell, and a cell body 153 is disposed between a pair of upper and lower metal interconnectors 151 and 152. . An air flow path 154 and a fuel gas flow path 155 are disposed between the cell main body 153 and the interconnectors 151 and 152.
The cell body 153 is configured by laminating an air electrode (cathode) 157 and a fuel electrode (anode) 158 above and below the solid electrolyte body 156. A current collector 159 is disposed between the air electrode 157 and the interconnector 151 in order to ensure electrical connection.

固体電解質体156の材料としては,例えばZrO2系セラミック,LaGaO3系セラミック,BaCeO系セラミック,SrCeO系セラミック,SrZrO系セラミック,及びCaZrO系セラミック等が挙げられる。 Examples of the material of the solid electrolyte body 156 include ZrO 2 ceramic, LaGaO 3 ceramic, BaCeO 3 ceramic, SrCeO 3 ceramic, SrZrO 3 ceramic, and CaZrO 3 ceramic.

空気極157の材料としては,例えば,各種の金属,金属の酸化物,金属の複酸化物等を用いることができる。金属としては,Pt,Au,Ag,Pd,Ir,Ru及びRh等の金属又は2種以上の金属を含有する合金が挙げられる。更に,金属の酸化物としては,La,Sr,Ce,Co,Mn及びFe等の酸化物(La,SrO,Ce,Co,MnO及びFeO等)が挙げられる。また,複酸化物としては,少なくともLa,Pr,Sm,Sr,Ba,Co,Fe及びMn等を含有する複酸化物(La1−xSrCoO系複酸化物,La1−xSrFeO系複酸化物,La1−xSrCo1−yFe系複酸化物,La1−xSrMnO系複酸化物,Pr1−xBaCoO系複酸化物及びSm1−xSrCoO系複酸化物等)が挙げられる。 As a material of the air electrode 157, for example, various metals, metal oxides, metal double oxides, and the like can be used. Examples of the metal include metals such as Pt, Au, Ag, Pd, Ir, Ru, and Rh, or alloys containing two or more metals. Furthermore, examples of the metal oxide include oxides such as La, Sr, Ce, Co, Mn, and Fe (La 2 O 3 , SrO, Ce 2 O 3 , Co 2 O 3 , MnO 2, FeO, and the like). It is done. As the double oxide, a double oxide containing at least La, Pr, Sm, Sr, Ba, Co, Fe, Mn, etc. (La 1-x Sr x CoO 3 -based double oxide, La 1-x Sr x FeO 3 -based double oxide, La 1-x Sr x Co 1-y Fe y O 3 -based double oxide, La 1 -x Sr x MnO 3 -based double oxide, Pr 1-x Ba x CoO 3 -based double oxide And Sm 1-x Sr x CoO 3 -based double oxide).

燃料極158の材料としては,例えば,Ni及びFe等の金属と,Sc,Y等の希土類元素のうちの少なくとも1種により安定化されたジルコニア等のZrO系セラミック,CeO系セラミック等のセラミックのうちの少なくとも1種との混合物などが挙げられる。また,Pt,Au,Ag,Pd,Ir,Ru,Rh,Ni及びFe等の金属が挙げられる。これらの金属は1種のみでもよいし,2種以上の金属の合金でもよい。更に,これらの金属及び/又は合金と,上記セラミックの各々の少なくとも1種との混合物(サーメットを含む)が挙げられる。また,Ni及びFe等の金属の酸化物と,上記セラミックの各々の少なくとも1種との混合物などが挙げられる。 Examples of the material of the fuel electrode 158 include ZrO 2 ceramics such as zirconia stabilized by at least one of metals such as Ni and Fe and rare earth elements such as Sc and Y, CeO 2 ceramics, and the like. The mixture with at least 1 sort (s) of ceramics etc. are mentioned. Moreover, metals, such as Pt, Au, Ag, Pd, Ir, Ru, Rh, Ni, and Fe, are mentioned. These metals may be used alone or in an alloy of two or more metals. Further, a mixture (including cermet) of these metals and / or alloys and at least one of each of the above ceramics may be mentioned. Moreover, the mixture of the oxide of metals, such as Ni and Fe, and at least 1 type of each of the said ceramic etc. are mentioned.

燃料電池セル150は,その外周縁部に枠部160を有する。枠部160は,インターコネクタ151,152(の外周縁部),空気極フレーム161,絶縁フレーム162,セパレータ163(の外周縁部),燃料極フレーム164から構成される。空気極フレーム161,絶縁フレーム162,セパレータ163,燃料極フレーム164は,いずれも四角枠状であり,セラミックス製の絶縁フレーム162を除き,金属製である。なお,空気極フレーム161,燃料極フレーム164は,セラミックス製でもよい。セパレータ163は,セル本体153に接合され,空気流路154,燃料ガス流路155間でのガスの移動を遮断する。   The fuel cell 150 has a frame portion 160 at the outer peripheral edge thereof. The frame portion 160 includes interconnectors 151 and 152 (outer peripheral edge portions), an air electrode frame 161, an insulating frame 162, a separator 163 (outer peripheral edge portion), and a fuel electrode frame 164. The air electrode frame 161, the insulating frame 162, the separator 163, and the fuel electrode frame 164 are all rectangular, and are made of metal except for the ceramic insulating frame 162. The air electrode frame 161 and the fuel electrode frame 164 may be made of ceramics. The separator 163 is joined to the cell body 153 and blocks gas movement between the air flow path 154 and the fuel gas flow path 155.

枠部160に,前述の貫通孔111〜118に対応する貫通孔が形成される。図3では,貫通孔112,114の断面を図示している。貫通孔114を通じて,補助器200から燃料ガス流路155に改質された燃料ガスが流入する。貫通孔112を通じて,燃料ガス流路155から補助器200に発電後の燃料ガスが流出する。   Through holes corresponding to the aforementioned through holes 111 to 118 are formed in the frame portion 160. In FIG. 3, cross sections of the through holes 112 and 114 are illustrated. The reformed fuel gas flows from the auxiliary device 200 into the fuel gas passage 155 through the through hole 114. The fuel gas after power generation flows out from the fuel gas flow path 155 to the auxiliary device 200 through the through hole 112.

以下,補助器200の概略を説明する。
図3に示すように,補助器200は,混合器21,改質器22,燃焼器23(燃焼室23a,23b)を有し,第1層210〜第3層230に区分される。混合器21,改質器22はそれぞれ,第1層210および第2層220に配置される。燃焼器23中,燃焼室23aは第1層210〜第3層230に,燃焼室23bは第3層230に配置される。
Hereinafter, an outline of the auxiliary device 200 will be described.
As shown in FIG. 3, the auxiliary device 200 includes a mixer 21, a reformer 22, and a combustor 23 (combustion chambers 23 a and 23 b), and is divided into a first layer 210 to a third layer 230. The mixer 21 and the reformer 22 are disposed in the first layer 210 and the second layer 220, respectively. In the combustor 23, the combustion chamber 23 a is disposed in the first layer 210 to the third layer 230, and the combustion chamber 23 b is disposed in the third layer 230.

混合器21は,仕切板207の上に配置され,改質された燃料ガスによる発電後の残余の燃料ガスと,発電後の残余の酸化剤ガスと,を混合して混合ガスを生成する。但し,混合器21を仕切板207に直接接触させず,仕切板207に沿って配置しても良い。   The mixer 21 is disposed on the partition plate 207 and mixes the remaining fuel gas after power generation using the reformed fuel gas and the remaining oxidant gas after power generation to generate a mixed gas. However, the mixer 21 may be disposed along the partition plate 207 without directly contacting the partition plate 207.

混合器21内で混合されたガスは,発火点以上の温度であれば,混合器21(第1層210内)において燃焼する(いわゆる火焔燃焼)。   If the gas mixed in the mixer 21 is at a temperature equal to or higher than the ignition point, it is burned in the mixer 21 (in the first layer 210) (so-called flame combustion).

燃焼室23a,23bはそれぞれ,仕切板221および仕切板208上に(仕切板221,208に接触して)配置される。但し,燃焼室23a,23bをそれぞれ,仕切板221,208に直接接触させず,仕切板221,208に沿って配置しても良い。   The combustion chambers 23a and 23b are disposed on the partition plate 221 and the partition plate 208 (in contact with the partition plates 221 and 208), respectively. However, the combustion chambers 23a and 23b may be disposed along the partition plates 221 and 208 without directly contacting the partition plates 221 and 208, respectively.

燃料電池スタック100から発生する,残余の燃料ガス(アノード排ガス)G02,残余の酸化剤(カソード排ガス)G12は混合器21に流入し,混合される。残余の燃料ガスG02は,燃料電池スタック100の貫通孔112,後述の部材260の貫通孔264,連通孔265,および流入孔266を経由して,混合器21に流入する。残余の酸化剤ガスG12は,燃料電池スタック100の貫通孔113,後述の部材270の貫通孔274,連通孔275,および流入孔276を経由して,混合器21に流入する。   The remaining fuel gas (anode exhaust gas) G02 and the remaining oxidant (cathode exhaust gas) G12 generated from the fuel cell stack 100 flow into the mixer 21 and are mixed. The remaining fuel gas G02 flows into the mixer 21 via a through hole 112 of the fuel cell stack 100, a through hole 264, a communication hole 265, and an inflow hole 266 of a member 260 described later. The remaining oxidant gas G12 flows into the mixer 21 via a through hole 113 of the fuel cell stack 100, a through hole 274, a communication hole 275, and an inflow hole 276 of a member 270 described later.

混合器21で混合された残余の燃料ガスおよび残余の酸化剤(混合ガスG2)は,燃焼器23(燃焼室23a,23b)中の燃焼用触媒により燃焼する。燃焼した混合ガスは配管293から排ガスG3として排出される。なお,燃焼用触媒を,燃焼室23aに配置せず,燃焼室23bのみに配置してもよい。   The remaining fuel gas and the remaining oxidant (mixed gas G2) mixed in the mixer 21 are combusted by the combustion catalyst in the combustor 23 (combustion chambers 23a and 23b). The burned mixed gas is discharged from the pipe 293 as the exhaust gas G3. Note that the combustion catalyst may be disposed only in the combustion chamber 23b without being disposed in the combustion chamber 23a.

改質器22には,改質用の触媒が充填され,燃料ガスを改質する。燃料ガスG00は配管291から改質器22に流入し,改質された燃料ガスG01は配管292,部材60の配管66,貫通孔64,燃料電池スタック100の貫通孔114を経由して,燃料電池スタック100に流入し,発電に用いられる。   The reformer 22 is filled with a reforming catalyst to reform the fuel gas. The fuel gas G00 flows into the reformer 22 from the pipe 291, and the reformed fuel gas G01 passes through the pipe 292, the pipe 66 of the member 60, the through hole 64, and the through hole 114 of the fuel cell stack 100. It flows into the battery stack 100 and is used for power generation.

以下,図2,図5〜図9に基づき,補助器200の詳細を説明する。図5は,補助器200の上面図である。図6は,補助器200の第1層210を表す上面図である。補助器200の上板201を除外し,かつ拡大された図である。図7〜図9はそれぞれ,補助器200の上板201,仕切板207,208を除外して,補助器200の第1層210〜第3層230の内部を表した斜視図である。   Hereinafter, the auxiliary device 200 will be described in detail with reference to FIGS. 2 and 5 to 9. FIG. 5 is a top view of the auxiliary device 200. FIG. 6 is a top view illustrating the first layer 210 of the auxiliary device 200. It is the figure which excluded the upper board 201 of the auxiliary device 200, and was expanded. 7 to 9 are perspective views showing the inside of the first layer 210 to the third layer 230 of the auxiliary device 200, excluding the upper plate 201 and the partition plates 207 and 208 of the auxiliary device 200, respectively.

補助器200は,上板201,底板202,側板203〜206,仕切板207,208を有する。上板201,底板202,側板203〜206は,補助器200の内部と外部とを隔て,略直方体形状の空間を形成する。この空間は,仕切板207,208によって,上から順に,第1層210〜第3層230に仕切られる。   The auxiliary device 200 includes an upper plate 201, a bottom plate 202, side plates 203 to 206, and partition plates 207 and 208. The top plate 201, the bottom plate 202, and the side plates 203 to 206 form a substantially rectangular parallelepiped space with the inside and the outside of the auxiliary device 200 separated from each other. This space is partitioned into first layer 210 to third layer 230 in order from the top by partition plates 207 and 208.

補助器200の側板203〜205それぞれに部材(マニホールド)250〜270が接続される。部材250〜270はそれぞれ,平面状の上面251〜271,平面状の下面252〜272,曲面状の側面253〜273を有する。上面251〜271と下面252〜272の間に貫通孔254〜274が形成される。また,部材260,270は,貫通孔264〜274と第1層210の内部を連通する連通孔265,275および流入孔266,276を有する。   Members (manifolds) 250 to 270 are connected to the side plates 203 to 205 of the auxiliary device 200, respectively. The members 250 to 270 have planar upper surfaces 251 to 271, planar lower surfaces 252 to 272, and curved side surfaces 253 to 273, respectively. Through holes 254 to 274 are formed between the upper surfaces 251 to 271 and the lower surfaces 252 to 272. Further, the members 260 and 270 have communication holes 265 and 275 and inflow holes 266 and 276 that allow the through holes 264 to 274 to communicate with the inside of the first layer 210.

補助器200の側板206に沿って,貫通孔114の底面102側に,部材60が配置される。部材60は,略円筒形状であり,平面状の上面61,平面状の下面62,曲面状の側面63を有する。上面61と下面62の間に貫通孔64が形成され,側面63に貫通孔64と連通する配管66が接続される。   The member 60 is disposed along the side plate 206 of the auxiliary device 200 on the bottom surface 102 side of the through hole 114. The member 60 has a substantially cylindrical shape, and has a planar upper surface 61, a planar lower surface 62, and a curved side surface 63. A through hole 64 is formed between the upper surface 61 and the lower surface 62, and a pipe 66 communicating with the through hole 64 is connected to the side surface 63.

補助器200には配管291〜293が接続される。
配管292,部材60間に,部材70が接続され,補助器200から燃料電池スタック100への改質された燃料ガスの供給が可能となる。部材70は,部材71,72を有する。
部材71は,互いに連通する中空を有し,互いに直角に配置される継ぎ手73,74を有する。
部材72は,互いに連通する中空を有し,互いに直角に配置される配管75,継ぎ手76を有する。
Pipes 291 to 293 are connected to the auxiliary device 200.
A member 70 is connected between the pipe 292 and the member 60, and the reformed fuel gas can be supplied from the auxiliary device 200 to the fuel cell stack 100. The member 70 has members 71 and 72.
The member 71 has hollows communicating with each other, and has joints 73 and 74 arranged at right angles to each other.
The member 72 has a hollow communicating with each other, and has a pipe 75 and a joint 76 arranged at right angles to each other.

継ぎ手73,74,76は,配管292,75,66に締め込まれ,接続される。ここで,締め込みが完了するまで,部材71,72,60はそれぞれ,回転および移動が可能である。   The joints 73, 74, and 76 are tightened and connected to the pipes 292, 75, and 66. Here, the members 71, 72, and 60 can be rotated and moved until the tightening is completed.

図5〜図7に示すように,混合器21は仕切板211〜215,218で仕切られている。
仕切板211は,仕切板2111〜2114が連結されて構成される。
仕切板212は,仕切板2121〜2123が連結されて構成される。
仕切板213は,仕切板2131〜2133が連結されて構成される。
仕切板214は,仕切板2141〜2143が連結されて構成される。
仕切板218は,網が配置された開口219を有する。
As shown in FIGS. 5 to 7, the mixer 21 is partitioned by partition plates 211 to 215 and 218.
The partition plate 211 is configured by connecting partition plates 2111 to 2114.
The partition plate 212 is configured by connecting partition plates 2121 to 2123.
The partition plate 213 is configured by connecting partition plates 2131 to 2133.
The partition plate 214 is configured by connecting partition plates 2141 to 2143.
The partition plate 218 has an opening 219 in which a net is disposed.

残余の燃料ガスは,部材260から流入孔266を通じて,混合器21に流入する。即ち,部材260は,燃料電池での発電後の残余の燃料ガスおよび前記発電後の残余の酸化剤ガスの一方または他方である第1,第2のガスが流入する流入部として機能する。   The remaining fuel gas flows into the mixer 21 from the member 260 through the inflow hole 266. That is, the member 260 functions as an inflow portion into which the first and second gases, which are one or the other of the remaining fuel gas after power generation in the fuel cell and the remaining oxidant gas after power generation, flow.

一方,残余の酸化剤ガスは,部材270から流入孔276を通じて,混合器21に流入する。即ち,部材260は,燃料電池での発電後の残余の燃料ガスおよび前記発電後の残余の酸化剤ガスの一方または他方である第1,第2のガスが流入する流入部として機能する。   On the other hand, the remaining oxidant gas flows into the mixer 21 from the member 270 through the inflow hole 276. That is, the member 260 functions as an inflow portion into which the first and second gases, which are one or the other of the remaining fuel gas after power generation in the fuel cell and the remaining oxidant gas after power generation, flow.

流入する残余の酸化剤ガスは,仕切板212,213によって,3つに区分される。即ち,仕切板212,213は,流入部から流入する第1のガスを2以上に区分する区分部として機能する。   The remaining oxidant gas that flows in is divided into three by the partition plates 212 and 213. In other words, the partition plates 212 and 213 function as a section that separates the first gas flowing from the inflow section into two or more.

このように,残余の燃料ガスは区分されず,残余の酸化剤ガスは,区分ガスF1〜F3の3つに区分される(図7参照)。残余の酸化剤ガスを区分して,残余の燃料ガスと混合させることで,混合器21内での燃焼の均一化が図られる。   In this way, the remaining fuel gas is not divided, and the remaining oxidant gas is divided into three divided gases F1 to F3 (see FIG. 7). By classifying the remaining oxidant gas and mixing it with the remaining fuel gas, the combustion in the mixer 21 is made uniform.

流入孔266からの残余の燃料ガスは,仕切板211と側板204,205で形成される空間内に流入する。
一方,流入孔276からの残余の酸化剤ガスは,区分ガスF1〜F3の3つに区分され,(1)仕切板212と側板205で形成される空間内,(2)仕切板212,213で形成される空間内,(3)仕切板213,214で形成される空間内のそれぞれに流入する。
The remaining fuel gas from the inflow hole 266 flows into the space formed by the partition plate 211 and the side plates 204 and 205.
On the other hand, the remaining oxidant gas from the inflow hole 276 is divided into three gas segments F1 to F3, (1) in the space formed by the partition plate 212 and the side plate 205, and (2) the partition plates 212 and 213. And (3) the space formed by the partition plates 213 and 214, respectively.

この結果,残余の燃料ガスと残余の酸化剤ガスは,次のように,合流点P1〜P3で合流(混合)する。即ち,合流点P1〜P3は,区分部で区分された一部の第1のガスおよび前記第2の流入部から流入する第2のガスを混合して燃焼する混合部として機能する。   As a result, the remaining fuel gas and the remaining oxidant gas are merged (mixed) at the merge points P1 to P3 as follows. That is, the merging points P1 to P3 function as a mixing unit that mixes and burns a part of the first gas divided by the dividing unit and the second gas flowing in from the second inflowing unit.

残余の燃料ガスは,仕切板211に沿ってY方向,およびX方向に進み,合流点P1において,区分ガスF1と混合される。
合流点P1において混合されたガスは,仕切板212に沿って,―Y方向,−X方向に進み,その後,仕切板211,214に沿って,−Y方向,X方向に進み,合流点P2において,区分ガスF2と混合される。
合流点P2において混合されたガスは,仕切板213に沿って,―Y方向,−X方向に進み,その後,側板204,203に沿って,−Y方向,X方向に進み,合流点P3において,区分ガスF3と混合される。
合流点P3において混合されたガスは,側板203,206に沿って,X方向,Y方向に進み,その後,開口219から燃焼室23aに流入する。
The remaining fuel gas travels in the Y direction and the X direction along the partition plate 211, and is mixed with the segment gas F1 at the junction P1.
The gas mixed at the merging point P1 proceeds along the partition plate 212 in the −Y direction and the −X direction, and then proceeds along the partition plates 211 and 214 in the −Y direction and the X direction. The merging point P2 , Mixed with the division gas F2.
The gas mixed at the junction P2 proceeds in the −Y direction and the −X direction along the partition plate 213, and then proceeds in the −Y direction and the X direction along the side plates 204 and 203, at the junction P3. , Mixed with the division gas F3.
The gas mixed at the junction P3 proceeds in the X direction and the Y direction along the side plates 203 and 206, and then flows into the combustion chamber 23a from the opening 219.

このように,流入孔276からの残余の酸化剤ガスは区分ガスF1〜F3に区分され,合流点P1〜P3で,流入孔266からの残余の燃料ガスと合流し,残余の燃料ガスおよび残余の酸化剤ガスが混合した混合ガスが生成される。
合流点P1〜P3に分散してガスの混合がなされることから,燃焼時に混合器21内での燃焼の均一性が図られる。
In this way, the remaining oxidant gas from the inflow hole 276 is divided into the division gases F1 to F3, and merges with the remaining fuel gas from the inflow hole 266 at the merge points P1 to P3. A mixed gas in which the oxidant gas is mixed is generated.
Since gas is mixed by being dispersed at the junction points P1 to P3, uniformity of combustion in the mixer 21 is achieved at the time of combustion.

ここで,区分ガスF1〜F3の流量の比率を適正な値とすることで,混合器21内の発熱量の均一化を促進することができる。例えば,図6に幅d1〜d3から求められた各区分ガス(F1〜F3)流路の断面積比を1:1:1〜1:2:3の範囲に調整し,かつ区分ガスF1〜F3の流量を段階的に大きくすることが考えられる。
このとき,後述のように,合流点P1〜P3を改質器22の流路(経路点Q3〜Q1)と対応させることで,合流点P1〜P3での温度の均一性の向上が図られる。
Here, by making the ratio of the flow rates of the division gases F1 to F3 to an appropriate value, it is possible to promote the uniform heat generation amount in the mixer 21. For example, in FIG. 6, the sectional area ratio of each segment gas (F1 to F3) flow path obtained from the widths d1 to d3 is adjusted to a range of 1: 1: 1 to 1: 2: 3, and the segment gas F1 to It is conceivable to increase the flow rate of F3 step by step.
At this time, as will be described later, the uniformity of temperature at the junctions P1 to P3 can be improved by making the junctions P1 to P3 correspond to the flow paths (path points Q3 to Q1) of the reformer 22. .

図8に示すように,第2層220は仕切板221〜224で仕切られている。仕切板221には,配管291,292と連通する開口226,227を有する。開口226,227に対向して網228,229が配置される。   As shown in FIG. 8, the second layer 220 is partitioned by partition plates 221 to 224. The partition plate 221 has openings 226 and 227 communicating with the pipes 291 and 292. Nets 228 and 229 are arranged to face the openings 226 and 227.

第2層220に,燃焼器23の一部(燃焼室23aの一部)および改質器22が配置される。
改質器22は,燃料ガスを改質して改質ガスを生成するものであり,側板203〜205,仕切板207,208,221,およびこの空間内に充填される改質用の触媒から構成される。
In the second layer 220, a part of the combustor 23 (a part of the combustion chamber 23a) and the reformer 22 are disposed.
The reformer 22 reforms the fuel gas to generate a reformed gas. The reformer 22 includes side plates 203 to 205, partition plates 207, 208, and 221 and a reforming catalyst filled in the space. Composed.

改質用の触媒は,燃料ガスの改質,即ち燃料ガスを水素リッチの燃料ガスに改質するためのものであり,例えば微粒の金属ニッケルとセラミックス粉末のプレス体や,アルミナなどの耐熱性の高い多孔体上に金属ニッケルを担持した触媒である。なお,改質用の触媒として金属ニッケルの他に,例えばルテニウムを採用してもよい。   The reforming catalyst is for reforming the fuel gas, that is, for reforming the fuel gas into a hydrogen-rich fuel gas. For example, a heat-resistant material such as a pressed body of fine metal nickel and ceramic powder or alumina. It is a catalyst in which metallic nickel is supported on a high porous body. For example, ruthenium may be employed as the reforming catalyst in addition to metallic nickel.

配管291,開口226から改質器22内に燃料ガスが流入する。燃料ガスは,改質器22内で仕切板222〜224により蛇行して進み,触媒によって改質される。改質された燃料ガスは,開口227,配管292,部材70,60を経て,燃料電池スタック100に流入する。   Fuel gas flows into the reformer 22 from the pipe 291 and the opening 226. The fuel gas advances meandering by the partition plates 222 to 224 in the reformer 22 and is reformed by the catalyst. The reformed fuel gas flows into the fuel cell stack 100 through the opening 227, the pipe 292, the members 70 and 60.

ここで,燃料ガスの流路上の点(経路点,発電前の燃料ガスが順に流通する第1〜第2の経路)Q3〜Q1は,既述の合流点P1〜P3と対応して配置される。言い換えれば,合流点P1〜P3は改質器22の流路の下流から上流にかけて配置される。これは合流点P1〜P3での発熱反応と,経路点Q3〜Q1での吸熱反応とを対応させるためである。燃料ガスの流路での吸熱反応は,未反応のガス成分が多い上流ほど大きく,下流に行くに従って小さくなる。このため,発熱量が順に大きくなる合流点P1〜P3を経路点Q3〜Q1に対応して配置することで,合流点P1〜P3での発熱反応をキャンセルし,温度の均一化が図れる。   Here, points on the flow path of the fuel gas (path points, first to second paths through which the fuel gas before power generation circulates in order) Q3 to Q1 are arranged corresponding to the above-described merge points P1 to P3. The In other words, the merge points P <b> 1 to P <b> 3 are arranged from the downstream to the upstream of the flow path of the reformer 22. This is to make the exothermic reaction at the junction points P1 to P3 correspond to the endothermic reaction at the path points Q3 to Q1. The endothermic reaction in the flow path of the fuel gas is larger in the upstream with more unreacted gas components, and becomes smaller as it goes downstream. For this reason, by arranging the junction points P1 to P3 where the heat generation amount increases in order corresponding to the path points Q3 to Q1, the exothermic reaction at the junction points P1 to P3 can be canceled and the temperature can be made uniform.

図9に示すように,第3層230は仕切板231〜235で仕切られている。第3層230において側板205に,突出部240の内部と連通し,網を有する開口236が配置される。   As shown in FIG. 9, the third layer 230 is partitioned by partition plates 231 to 235. In the third layer 230, the side plate 205 is provided with an opening 236 that communicates with the inside of the protrusion 240 and has a net.

第3層230に,燃焼器23の一部(燃焼室23b)が配置される。
燃焼器23は,混合ガスを燃焼するものであり,燃焼室23a,23bに区分される。
燃焼室23aは,第1層210〜第2層220に配置され,上板201,側板203,205,206,仕切板216,221で構成される。燃焼室23bは,第3層230に配置され,底板202,側板203〜205,仕切板208で構成され,仕切板231〜235で仕切られる。
A part of the combustor 23 (combustion chamber 23b) is disposed in the third layer 230.
The combustor 23 burns a mixed gas and is divided into combustion chambers 23a and 23b.
The combustion chamber 23 a is disposed in the first layer 210 to the second layer 220 and includes an upper plate 201, side plates 203, 205 and 206, and partition plates 216 and 221. The combustion chamber 23 b is disposed in the third layer 230, and includes a bottom plate 202, side plates 203 to 205, and a partition plate 208, and is partitioned by partition plates 231 to 235.

第3層230において,側板205に突出部240が接続される。突出部240は,上板,底板,3つの側板を有し,配管293と接続される。既述のように,突出部240は,開口236によって,燃焼室23bと連通する。   In the third layer 230, the protrusion 240 is connected to the side plate 205. The protrusion 240 has an upper plate, a bottom plate, and three side plates, and is connected to the pipe 293. As described above, the protrusion 240 communicates with the combustion chamber 23b through the opening 236.

開口219から燃焼室23a,23bに順に混合ガスが流入する。混合ガスは,燃焼室23a内で−Z方向に進み,燃焼室23bに流入する。燃焼室23b内で仕切板231〜235により蛇行して進む。燃焼室23a,23b内の燃焼用触媒によって混合ガスが燃焼,発熱する。燃焼した混合ガスは開口236,配管293を経て,外部に排出される。   The mixed gas sequentially flows from the opening 219 into the combustion chambers 23a and 23b. The mixed gas advances in the −Z direction in the combustion chamber 23a and flows into the combustion chamber 23b. In the combustion chamber 23b, it advances meandering with the partition plates 231-235. The mixed gas burns and generates heat by the combustion catalyst in the combustion chambers 23a and 23b. The burned mixed gas is discharged to the outside through the opening 236 and the pipe 293.

燃焼用触媒としては,白金,ロジウム,パラジウムなどの貴金属触媒を採用できるが,ペロブスカイト酸化物などを用いると,耐熱性や長期耐久性が向上するので好ましい。燃焼用触媒の担体としては,一般的なコージエライトのハニカム担体や,自動車用の排ガス処理触媒の担体として用いられるフェライト系ステンレスも使用可能である。特に起動性を重視する場合には,金属担体の方が,熱伝導性や耐熱衝撃性に優れている。但し,高温での耐久性という点では,セラミックス担体が有利であり,要求により使い分けることが望ましい。   As a combustion catalyst, a noble metal catalyst such as platinum, rhodium or palladium can be used. However, it is preferable to use a perovskite oxide because it improves heat resistance and long-term durability. As a carrier for the combustion catalyst, a general cordierite honeycomb carrier or a ferritic stainless steel used as a carrier for an exhaust gas treatment catalyst for automobiles can be used. In particular, when emphasizing startability, the metal carrier is superior in thermal conductivity and thermal shock resistance. However, ceramic carriers are advantageous in terms of durability at high temperatures, and it is desirable to use them properly according to requirements.

発熱体300は,起動時に補助器200を加熱するためのたとえば平面燃焼型ガスバーナーである。起動時において,補助器200内の触媒の速やかな活性化を可能とする。   The heating element 300 is, for example, a planar combustion type gas burner for heating the auxiliary device 200 at startup. At startup, the catalyst in the auxiliary device 200 can be activated quickly.

図10は,変形例に係る第3層230aを表す斜視図である。第3層230aの燃焼室23b内に,ガイドG1,G2を有する仕切板238が配置され,その両側にハニカム触媒Ca,Cbが配置される。   FIG. 10 is a perspective view showing a third layer 230a according to a modification. A partition plate 238 having guides G1, G2 is disposed in the combustion chamber 23b of the third layer 230a, and honeycomb catalysts Ca, Cb are disposed on both sides thereof.

ハニカム触媒Ca,Cbは,混合ガスの流入側(この例では,X軸方向プラス側)の面と流出側(この例では,X軸方向マイナス側)の面それぞれに開口し,互いに隔壁で区分される多数のセルを有する(ハニカム構造)。セルの形状は例えば,六角柱形状である。このセルの内面(隔壁)に触媒が固定配置される。混合ガスがハニカム触媒Ca,Cbのセル内を通過するときに,触媒により燃焼が促進される。
この場合,開口236aへの網の配置を省略できる。ハニカム触媒Ca,Cbでは,燃焼用触媒はセル内に固定されるため,ペレットタイプの触媒のようにガス流に流されないからである。
ここでは,第3層230aに2つのハニカム触媒Ca,Cbを配置しているが,この個数を1,あるいは3以上と適宜に変更できる。
The honeycomb catalysts Ca and Cb are opened on the mixed gas inflow side (in this example, the X axis direction plus side) and outflow side (in this example, the X axis direction minus side) surfaces, and are separated from each other by partition walls. Having a large number of cells (honeycomb structure). The shape of the cell is, for example, a hexagonal prism shape. A catalyst is fixedly disposed on the inner surface (partition wall) of the cell. When the mixed gas passes through the cells of the honeycomb catalysts Ca and Cb, combustion is promoted by the catalyst.
In this case, the arrangement of the net in the opening 236a can be omitted. This is because, in the honeycomb catalysts Ca and Cb, the combustion catalyst is fixed in the cell, so that it does not flow in the gas flow unlike the pellet type catalyst.
Here, two honeycomb catalysts Ca and Cb are arranged in the third layer 230a, but the number can be appropriately changed to 1, or 3 or more.

仕切板238,ガイドG1,G2は,ハニカム触媒Ca,Cbの位置決めに用いられる。但し,仕切板238,ガイドG1,G2を用いず,ハニカム触媒Ca,Cbを配置しても良い。   The partition plate 238 and the guides G1 and G2 are used for positioning the honeycomb catalysts Ca and Cb. However, the honeycomb catalysts Ca and Cb may be disposed without using the partition plate 238 and the guides G1 and G2.

本実施形態では,混合器21への残余の酸化剤ガス(カソード排ガスや空気)の導入口(流入孔276)を2つ以上(ここでは,3つ)に分割し,各導入口の幅(幅d1〜d3),および導入経路を調整することにより,混合器21内の残余の燃料ガス(アノード排ガス)と残余の酸化剤ガスの混合部位(合流点P1〜P3)及び混合比率を制御し,混合ガスの燃焼状態を制御する。   In the present embodiment, the inlet (inflow hole 276) of the remaining oxidant gas (cathode exhaust gas and air) to the mixer 21 is divided into two or more (here, three), and the width of each inlet ( By adjusting the widths d1 to d3) and the introduction path, the remaining fuel gas (anode exhaust gas) in the mixer 21 and the remaining oxidant gas mixing sites (merging points P1 to P3) and the mixing ratio are controlled. , Control the combustion state of the mixed gas.

混合部位を複数に分散することで,激しく局部的な燃焼を軽減し,混合器21の劣化が防止される。即ち,残余の酸化剤ガスを分割し,段階的に残余の燃料ガスと混合することにより,残余の燃料ガスが少ない場合に初期の段階で燃焼が完了し,あとは酸化剤ガスにより希釈が行われるだけとなる。一方,残余の燃料ガスが多い場合においては酸化剤ガスが段階的に分割して送り込まれるため,分割された酸化剤ガスの分だけ燃焼する。更に2回目3回目でも投入された酸化剤ガスの分量だけ燃焼が進行する。つまり酸化剤ガス律則で燃焼が進み,燃焼が分散され燃焼熱が分散して発生するのでピーク温度が低下する。   Dispersing the mixing parts into a plurality reduces the local combustion violently and prevents the mixer 21 from deteriorating. That is, the remaining oxidant gas is divided and mixed with the remaining fuel gas in stages, so that the combustion is completed at the initial stage when the remaining fuel gas is low, and then the dilution is performed with the oxidant gas. It will only be On the other hand, when there is a large amount of remaining fuel gas, the oxidant gas is divided and sent in stages, and thus burns as much as the divided oxidant gas. Further, the combustion proceeds by the amount of the oxidant gas introduced in the second and third times. In other words, combustion proceeds according to the oxidant gas rule, combustion is dispersed, and combustion heat is dispersed and generated, so that the peak temperature is lowered.

そしてこの酸化剤ガスの分割数と割合により燃焼をコントロールする,これにより運転領域でも最適な燃焼状態を得ることが出来る。即ち,酸化剤ガスを,例えば2分割にし,初回混合と2回目混合の割合を空気量の割合で1:2とすると,初回混合時には少ない空気と混合するため酸欠状態となり燃焼が制限され,2回目混合時に残り空気を使って燃焼を完了する。このようにすることで燃焼部位の分散と燃焼コントロールが可能となる。   Combustion is controlled by the number and ratio of the oxidant gas divisions, so that an optimal combustion state can be obtained even in the operation region. That is, if the oxidant gas is divided into two parts, for example, and the ratio of the first mixing and the second mixing is set to 1: 2, the amount of air mixes with less air at the first mixing, so that the state of oxygen deficiency is limited and combustion is limited. Combustion is completed using the remaining air during the second mixing. By doing so, it is possible to disperse combustion sites and control combustion.

また,燃焼ガスと酸化剤ガスの混合部位を制御できるため,燃焼による熱を有効に隣接する吸熱器に伝熱することができる。即ち,酸化剤ガスを最後に投入するポイントを改質器22の上流側に配置してやることで,燃焼のピーク温度を効率的に改質に利用できるようになる。   Moreover, since the mixing part of combustion gas and oxidant gas can be controlled, the heat by combustion can be effectively transferred to the adjacent heat absorber. That is, the point at which the oxidant gas is finally added is arranged on the upstream side of the reformer 22, so that the combustion peak temperature can be efficiently used for reforming.

なお,この実施形態において,残余の燃焼ガスではなく,酸化剤ガスを分割したのは,制御の容易性を考慮したためである。仮に酸化剤ガスがカソード排ガスであった場合,圧倒的に流量が大きくハード的にコントロールし易い。(燃料電池投入流量比にしてカソード空気はアノード燃料の10〜20倍流れる)   In this embodiment, the reason why the oxidant gas is divided instead of the remaining combustion gas is that the ease of control is taken into consideration. If the oxidant gas is cathode exhaust gas, the flow rate is overwhelmingly large and easy to control hardware. (Cathode air flows 10 to 20 times the anode fuel in terms of fuel cell input flow rate ratio)

(比較例)
本発明の比較例を説明する。図11は,比較例に係る燃料電池の補助器200xの第1層210xの内部を表した斜視図であり,図7と対応する。
(Comparative example)
A comparative example of the present invention will be described. FIG. 11 is a perspective view showing the inside of the first layer 210x of the auxiliary device 200x of the fuel cell according to the comparative example, and corresponds to FIG.

第1層210xには,混合器21xが配置される。混合器21xは,仕切板211x〜214x,218xで仕切られる。仕切板218xには,網を有する開口219xが設置される。
混合器21xでは,流入孔266からの残余の燃料ガスおよび流入孔276からの残余の酸化剤ガスは,区分されず,合流点P0で合流する。即ち,流入孔276からの残余の酸化剤ガスは,仕切板211xに沿って進み,流入孔276のすぐ前の合流点P0で残余の燃料ガスと混合される。混合されたガスは,仕切板212x〜214xによって蛇行して進み,開口219xから燃焼器23aに排出される。
The mixer 21x is disposed in the first layer 210x. The mixer 21x is partitioned by partition plates 211x to 214x and 218x. An opening 219x having a net is installed in the partition plate 218x.
In the mixer 21x, the remaining fuel gas from the inflow hole 266 and the remaining oxidant gas from the inflow hole 276 are not separated and merge at the junction P0. That is, the remaining oxidant gas from the inflow hole 276 travels along the partition plate 211x and is mixed with the remaining fuel gas at the junction P0 immediately before the inflow hole 276. The mixed gas advances meandering by the partition plates 212x to 214x, and is discharged from the opening 219x to the combustor 23a.

既述のように,第1の実施形態では,残余の酸化剤ガスを区分ガスF1〜F3の3つに区分し,合流点P1〜P3で残余の燃料ガスと混合している。これに対して,混合器21xでは,1つの合流点P0で,残余の酸化剤ガスと残余の燃料ガスが混合される。このため,合流点P0での燃焼量(発熱量)が混合器21xの他の領域での燃焼量(発熱量)より,過大となり,燃焼の均一性の確保が困難となる。   As described above, in the first embodiment, the remaining oxidant gas is divided into three divided gases F1 to F3 and mixed with the remaining fuel gas at the junctions P1 to P3. On the other hand, in the mixer 21x, the remaining oxidant gas and the remaining fuel gas are mixed at one junction point P0. For this reason, the combustion amount (heat generation amount) at the junction point P0 becomes larger than the combustion amount (heat generation amount) in the other region of the mixer 21x, and it becomes difficult to ensure the uniformity of combustion.

(第2の実施形態)
本発明の第2の実施形態を説明する。図12は,第2の実施形態に係る燃料電池の補助器200aの第1層210aの内部を表した斜視図であり,図7と対応する。
(Second Embodiment)
A second embodiment of the present invention will be described. FIG. 12 is a perspective view showing the inside of the first layer 210a of the auxiliary device 200a of the fuel cell according to the second embodiment, and corresponds to FIG.

第1層210aには,混合器21aが配置される。混合器21aは,仕切板211a〜213a,218で仕切られる。仕切板218には網を有する開口219が設置される。   A mixer 21a is disposed in the first layer 210a. The mixer 21a is partitioned by partition plates 211a to 213a and 218. The partition plate 218 is provided with an opening 219 having a net.

混合器21aでは,流入孔276からの残余の酸化剤ガスが,仕切板212aによって,区分ガスF1,F2に区分され,合流点P11,P12で残余の燃料ガスと合流する。即ち,流入孔276からの残余の酸化剤ガスは,仕切板211aに沿って進み,流入孔276のすぐ前の合流点P11で区分ガスF1と混合される。合流点P11で混合されたガスは,仕切板211a,212aの間を進み,合流点P12で,区分ガスF2と混合される。合流点P12で混合されたガスは,仕切板213aと側板203の間を進み,開口219から燃焼器23aに排出される。   In the mixer 21a, the remaining oxidant gas from the inflow hole 276 is divided into the division gases F1 and F2 by the partition plate 212a, and merges with the remaining fuel gas at the merge points P11 and P12. That is, the remaining oxidant gas from the inflow hole 276 travels along the partition plate 211a and is mixed with the segment gas F1 at the junction P11 immediately before the inflow hole 276. The gas mixed at the junction P11 travels between the partition plates 211a and 212a, and is mixed with the segment gas F2 at the junction P12. The gas mixed at the junction P12 travels between the partition plate 213a and the side plate 203 and is discharged from the opening 219 to the combustor 23a.

第2の実施形態では,残余の酸化剤ガスが2つに区分されて,合流点P11,P12で,残余の燃料ガスと混合される。第1の実施形態と同様に,混合部位を複数に分散することで,局部的な燃焼を軽減し,混合器21の劣化が防止される。   In the second embodiment, the remaining oxidant gas is divided into two and mixed with the remaining fuel gas at the junctions P11 and P12. Similar to the first embodiment, by dispersing a plurality of mixing sites, local combustion is reduced and deterioration of the mixer 21 is prevented.

ここで,区分ガスF1,F2の流量を段階的に大きくすることができる。
このとき,合流点P11,P12を改質器22の流路の下流,上流と対応させることで,合流点P11,P12での温度の均一性の向上が図られる。
Here, the flow rates of the division gases F1 and F2 can be increased stepwise.
At this time, the uniformity of temperature at the junctions P11 and P12 can be improved by making the junctions P11 and P12 correspond to the downstream and upstream of the flow path of the reformer 22, respectively.

(第3の実施形態)
本発明の第3の実施形態を説明する。図13は,第3の実施形態に係る燃料電池の補助器200bの第1層210bの内部を表した斜視図であり,図7と対応する。
(Third embodiment)
A third embodiment of the present invention will be described. FIG. 13 is a perspective view showing the inside of the first layer 210b of the auxiliary device 200b of the fuel cell according to the third embodiment, and corresponds to FIG.

第1層210bには,混合器21bが配置される。混合器21bは,仕切板211b〜215b,218で仕切られる。仕切板218には網を有する開口219が設置される。   A mixer 21b is disposed in the first layer 210b. The mixer 21b is partitioned by partition plates 211b to 215b and 218. The partition plate 218 is provided with an opening 219 having a net.

混合器21bでは,仕切板211bの3つの開口211ba〜211bcにより,流入孔266からの残余の燃料ガスが,区分ガスO1〜O3の3つに区分され,合流点P21〜P23で合流する。即ち,流入孔276からの残余の酸化剤ガスは,仕切板213bに沿って進み,開口211baのすぐ前の合流点P21で区分ガスO1と混合される。合流点P21で混合されたガスは,仕切板213b,214b,215bによって蛇行し,開口211bbのすぐ前の合流点P22で区分ガスO2と混合される。合流点P22で混合されたガスは,仕切板211b,215bの間を進み,開口211bcのすぐ前の合流点P23で区分ガスO3と混合される。合流点P23で混合されたガスは,仕切板215aと側板203の間を進み,開口219から燃焼器23aに排出される。   In the mixer 21b, the remaining fuel gas from the inflow hole 266 is divided into three divided gases O1 to O3 by the three openings 211ba to 211bc of the partition plate 211b, and merges at the merge points P21 to P23. That is, the remaining oxidant gas from the inflow hole 276 travels along the partition plate 213b and is mixed with the segment gas O1 at the junction P21 immediately before the opening 211ba. The gas mixed at the junction P21 meanders by the partition plates 213b, 214b, and 215b, and is mixed with the segment gas O2 at the junction P22 just before the opening 211bb. The gas mixed at the junction P22 travels between the partition plates 211b and 215b, and is mixed with the segment gas O3 at the junction P23 just before the opening 211bc. The gas mixed at the junction P23 travels between the partition plate 215a and the side plate 203 and is discharged from the opening 219 to the combustor 23a.

第3の実施形態では,残余の燃料ガスが3つに区分されて,合流点P21〜P23で,残余の酸化剤ガスと混合される。第1の実施形態と同様に,混合部位を複数に分散することで,激しく局部的な燃焼を軽減し,混合器21の劣化が防止される。即ち,残余の酸化剤ガスに替えて,残余の燃料ガスを区分することでも,局部的な燃焼を軽減し,混合器21の劣化が防止される。   In the third embodiment, the remaining fuel gas is divided into three and mixed with the remaining oxidant gas at the junctions P21 to P23. Similar to the first embodiment, by dispersing the mixing sites in a plurality, the local combustion is drastically reduced and deterioration of the mixer 21 is prevented. In other words, even if the remaining fuel gas is divided in place of the remaining oxidant gas, local combustion is reduced and deterioration of the mixer 21 is prevented.

ここで,区分ガスO1〜O3の流量を段階的に大きくすることができる。
このとき,合流点P21〜P23を改質器22の流路の下流,中流,上流と対応させることで,合流点P21〜P23での温度の均一性の向上が図られる。
Here, the flow rates of the division gases O1 to O3 can be increased stepwise.
At this time, the uniformity of temperature at the junctions P21 to P23 can be improved by making the junctions P21 to P23 correspond to the downstream, middle, and upstream of the flow path of the reformer 22.

(第4の実施形態)
本発明の第4の実施形態を説明する。図14は,第4の実施形態に係る燃料電池の補助器200cの第1層210cの内部を表した斜視図であり,図7と対応する。
(Fourth embodiment)
A fourth embodiment of the present invention will be described. FIG. 14 is a perspective view showing the inside of the first layer 210c of the auxiliary device 200c of the fuel cell according to the fourth embodiment, and corresponds to FIG.

第1層210cには,混合器21cが配置される。混合器21cは,仕切板211c〜217c,218で仕切られる。仕切板218には開口219が設置される。
混合器21cでは,仕切板212c,213cにより,流入孔276からの残余の酸化剤ガスが,区分ガスF1〜F3の3つに区分される。また,仕切板211cの3つの開口211ca〜211ccにより,流入孔266からの残余の燃料ガスが,区分ガスO1〜O3の3つに区分される。
A mixer 21c is disposed in the first layer 210c. The mixer 21c is partitioned by partition plates 211c to 217c and 218. An opening 219 is provided in the partition plate 218.
In the mixer 21c, the remaining oxidant gas from the inflow hole 276 is divided into three gas segments F1 to F3 by the partition plates 212c and 213c. Further, the remaining fuel gas from the inflow hole 266 is divided into three gas segments O1 to O3 by the three openings 211ca to 211cc of the partition plate 211c.

区分ガスF1〜F3,O1〜O3が,合流点P31〜P35で合流する。即ち,区分ガスF1は,仕切板212cに沿って進み,開口211caのすぐ前の合流点P31で区分ガスO1と混合される。合流点P31で混合されたガスは,仕切板212c,215cの間を進み,合流点P32で区分ガスF2と混合される。合流点P32で混合されたガスは仕切板213c,215cの間を進み,開口211cbのすぐ前の合流点P33で区分ガスO2と混合される。合流点P33で混合されたガスは,仕切板213c,216cの間を進み,合流点P34で区分ガスF3と混合される。合流点P34で混合されたガスは,仕切板216c,217cの間を進み,開口211ccのすぐ前の合流点P35で区分ガスO3と混合される。合流点P35で混合されたガスは,仕切板217cと側板203の間を進み,開口219から燃焼器23aに排出される。   The division gases F1 to F3 and O1 to O3 merge at the merge points P31 to P35. That is, the section gas F1 travels along the partition plate 212c and is mixed with the section gas O1 at the junction P31 immediately before the opening 211ca. The gas mixed at the junction P31 travels between the partition plates 212c and 215c, and is mixed with the segment gas F2 at the junction P32. The gas mixed at the junction P32 travels between the partition plates 213c and 215c, and is mixed with the segment gas O2 at the junction P33 just before the opening 211cb. The gas mixed at the junction P33 travels between the partition plates 213c and 216c, and is mixed with the segment gas F3 at the junction P34. The gas mixed at the junction P34 travels between the partition plates 216c and 217c, and is mixed with the segment gas O3 at the junction P35 just before the opening 211cc. The gas mixed at the junction P35 travels between the partition plate 217c and the side plate 203 and is discharged from the opening 219 to the combustor 23a.

第4の実施形態では,残余の酸化剤ガスと燃料ガスの双方が3つに区分されて,合流点P31〜P35で,混合される。混合部位を複数に分散することで,激しく局部的な燃焼を軽減し,混合器21の劣化が防止される。酸化剤ガスと燃料ガスの双方を区分することで,より効果的に局部的な燃焼を軽減し,混合器21の劣化が防止される。   In the fourth embodiment, the remaining oxidant gas and fuel gas are both divided into three and mixed at the junctions P31 to P35. Dispersing the mixing parts into a plurality reduces the local combustion violently and prevents the mixer 21 from deteriorating. By separating both the oxidant gas and the fuel gas, the local combustion is more effectively reduced, and the deterioration of the mixer 21 is prevented.

ここで,区分ガスF1〜F3,区分ガスO1〜O3それぞれの流量を段階的に大きくすることができる。
このとき,合流点P31〜P35を改質器22の流路の下流から上流と対応させることで,合流点P31〜P35での温度の均一性の向上が図られる。
Here, the flow rates of the segment gases F1 to F3 and the segment gases O1 to O3 can be increased stepwise.
At this time, the uniformity of temperature at the junction points P31 to P35 can be improved by making the junction points P31 to P35 correspond to the upstream side to the upstream side of the flow path of the reformer 22.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

上記の第1〜第4の実施形態では,(1)酸化剤ガスを3つに,(2)酸化剤ガスを2つに,(3)燃料ガスを3つに,(4)酸化剤ガスおよび酸化剤ガスの双方を3つに,区分し,混合している。即ち,酸化剤ガスと酸化剤ガスの一方または双方を複数に区分し,混合することで,混合器21での温度の均一性を確保できることが判る。   In the first to fourth embodiments, (1) three oxidant gases, (2) two oxidant gases, (3) three fuel gases, and (4) oxidant gas. Both oxidant gas and oxidant gas are divided into three and mixed. That is, it can be seen that the uniformity of the temperature in the mixer 21 can be secured by dividing one or both of the oxidant gas and the oxidant gas into a plurality and mixing them.

10 燃料電池システム
20 固体酸化物形燃料電池
21 混合器
22 改質器
23 燃焼器
23a,23b 燃焼室
30 制御部
100 燃料電池スタック
150 燃料電池セル
200 補助器
300 発熱体
DESCRIPTION OF SYMBOLS 10 Fuel cell system 20 Solid oxide fuel cell 21 Mixer 22 Reformer 23 Combustor 23a, 23b Combustion chamber 30 Control part 100 Fuel cell stack 150 Fuel cell 200 Auxiliary device 300 Heating body

Claims (9)

燃料電池での発電後の残余の燃料ガスおよび前記発電後の残余の酸化剤ガスの一方である第1のガスが流入する第1の流入部と,
前記残余の燃料ガスおよび前記残余の酸化剤ガスの他方である第2のガスが流入する第2の流入部と,
前記第1の流入部から流入する第1のガスを2以上に区分する区分部と,
前記区分部で区分された一部の第1のガスおよび前記第2の流入部から流入する第2のガスを混合して燃焼する第1の混合部と,
前記第1の混合部で燃焼後の排ガスおよび前記区分された他の一部の第1のガスを混合して燃焼する第2の混合部と,
を具備することを特徴とする燃料電池用補助器。
A first inflow section into which a first gas that is one of the remaining fuel gas after power generation in the fuel cell and the remaining oxidant gas after power generation flows;
A second inflow portion into which a second gas that is the other of the remaining fuel gas and the remaining oxidant gas flows;
A dividing section for dividing the first gas flowing in from the first inflow section into two or more;
A first mixing section that mixes and burns a part of the first gas sectioned by the section section and the second gas flowing in from the second inflow section;
A second mixing section for mixing and burning the exhaust gas after combustion in the first mixing section and the other part of the divided first gas;
A fuel cell auxiliary device comprising:
前記区分部から前記第1の混合部に流入する第1のガスの量が,前記区分部から前記第2の混合部に流入する第1のガスの量より,小さい
ことを特徴とする請求項1記載の燃料電池用補助器。
The amount of the first gas flowing into the first mixing unit from the dividing unit is smaller than the amount of the first gas flowing into the second mixing unit from the dividing unit. 1. The fuel cell auxiliary device according to 1.
前記第2および第1の混合部それぞれに対応して配置され,かつ発電前の燃料ガスが順に流通する第1,第2の経路を有し,燃料ガスを改質する改質器をさらに具備する
ことを特徴とする請求項2記載の燃料電池用補助器。
The fuel cell further includes a reformer that is disposed corresponding to each of the second and first mixing sections and has first and second paths through which fuel gas before power generation sequentially flows, and reforms the fuel gas. The fuel cell auxiliary device according to claim 2.
前記区分部が,前記第1の流入部から流入する第1のガスを3つ以上に区分し,
前記第2の混合部で燃焼後の排ガスおよび前記区分部で区分された更なる他の一部の第1のガスを混合して燃焼する第3の混合部,をさらに具備し,
前記第3の混合部が,前記第2の混合部で燃焼後の排ガスおよび前記区分部で区分された更なる他の一部の第1のガスを混合して燃焼する
ことを特徴とする請求項1または2のいずれか1項に記載の燃料電池用補助器。
The dividing section divides the first gas flowing in from the first inflow section into three or more;
A third mixing section for mixing and burning the exhaust gas after combustion in the second mixing section and a further part of the first gas sectioned in the section section;
The third mixing unit mixes and combusts the exhaust gas after combustion in the second mixing unit and another part of the first gas sectioned in the section section. Item 3. The fuel cell auxiliary device according to any one of Items 1 or 2.
前記第3〜1の混合部それぞれに対応して配置され,かつ発電前の燃料ガスが順に流通する第1〜第3の経路を有し,燃料ガスを改質する改質器をさらに具備する
ことを特徴とする請求項4記載の燃料電池用補助器。
The fuel cell system further includes a reformer disposed corresponding to each of the third to first mixing sections and having first to third paths through which fuel gas before power generation flows in order, and reforming the fuel gas. The fuel cell auxiliary device according to claim 4.
前記第1のガスが,前記残余の酸化剤ガスであり,前記第2のガスが,前記残余の燃料ガスである,
ことを特徴とする請求項1乃至5のいずれか1項に記載の燃料電池用補助器。
The first gas is the residual oxidant gas and the second gas is the residual fuel gas;
The fuel cell auxiliary device according to any one of claims 1 to 5, wherein the auxiliary device is a fuel cell.
前記第1のガスが,前記残余の燃料であり,前記第2のガスが,前記残余の酸化剤ガスである,
ことを特徴とする請求項1乃至5のいずれか1項に記載の燃料電池用補助器。
The first gas is the residual fuel and the second gas is the residual oxidant gas;
The fuel cell auxiliary device according to any one of claims 1 to 5, wherein the auxiliary device is a fuel cell.
前記第2の流入部から流入する第2のガスを2以上に区分する第2の区分部をさらに具備し,
前記第1の混合部が,前記区分部で区分された一部の第1のガスおよび前記第2の区分部で区分された一部の第2のガスを混合して燃焼し,
前記第2の混合部が,前記第1の混合部で燃焼後の排ガス,前記区分部で区分された他の一部の第1のガスおよび前記第2の区分部で区分された他の一部の第2のガスを混合して燃焼する,
ことを特徴とする請求項1乃至3のいずれか1項に記載の燃料電池用補助器。
A second section that separates the second gas flowing in from the second inflow section into two or more;
The first mixing part mixes and burns a part of the first gas divided by the dividing part and a part of the second gas divided by the second dividing part;
The second mixing section includes exhaust gas after combustion in the first mixing section, another part of the first gas sectioned in the section section, and another section sectioned in the second section section. Part of the second gas is mixed and burned,
The fuel cell auxiliary device according to any one of claims 1 to 3.
請求項1〜8のいずれか1項に記載の燃料電池用補助器を備えたことを特徴とする燃料電池。   A fuel cell comprising the fuel cell auxiliary device according to claim 1.
JP2010261173A 2010-11-24 2010-11-24 Auxiliary fuel cell and fuel cell Active JP5659329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261173A JP5659329B2 (en) 2010-11-24 2010-11-24 Auxiliary fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261173A JP5659329B2 (en) 2010-11-24 2010-11-24 Auxiliary fuel cell and fuel cell

Publications (2)

Publication Number Publication Date
JP2012113931A true JP2012113931A (en) 2012-06-14
JP5659329B2 JP5659329B2 (en) 2015-01-28

Family

ID=46497920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261173A Active JP5659329B2 (en) 2010-11-24 2010-11-24 Auxiliary fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP5659329B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050192A (en) * 2015-09-03 2017-03-09 本田技研工業株式会社 Fuel cell module
JP2021061114A (en) * 2019-10-03 2021-04-15 株式会社Soken Combustor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248230A (en) * 1984-05-25 1985-12-07 Babcock Hitachi Kk Catalytic combustion type reactor
JPH05105404A (en) * 1991-10-21 1993-04-27 Ishikawajima Harima Heavy Ind Co Ltd Plate type reformer
JPH0729589A (en) * 1993-07-09 1995-01-31 Ishikawajima Harima Heavy Ind Co Ltd Differential pressure control method of plate type reformer in fuel cell power generating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248230A (en) * 1984-05-25 1985-12-07 Babcock Hitachi Kk Catalytic combustion type reactor
JPH05105404A (en) * 1991-10-21 1993-04-27 Ishikawajima Harima Heavy Ind Co Ltd Plate type reformer
JPH0729589A (en) * 1993-07-09 1995-01-31 Ishikawajima Harima Heavy Ind Co Ltd Differential pressure control method of plate type reformer in fuel cell power generating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050192A (en) * 2015-09-03 2017-03-09 本田技研工業株式会社 Fuel cell module
JP2021061114A (en) * 2019-10-03 2021-04-15 株式会社Soken Combustor
JP7310519B2 (en) 2019-10-03 2023-07-19 株式会社Soken combustor

Also Published As

Publication number Publication date
JP5659329B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
US7695841B2 (en) Solid oxide fuel cell tube with internal fuel processing
EP1852930B1 (en) Solid oxide type fuel cell and operation method thereof
US7025903B2 (en) Reformer system process
JP5296361B2 (en) Solid oxide fuel cell module
EP2556552B1 (en) System having high-temperature fuel cells
US8986405B2 (en) Gas generator and processes for the conversion of a fuel into an oxygen-depleted gas and/or hydrogen-enriched gas
US20100086824A1 (en) Assemblies of hollow electrode electrochemical devices
JP2003132933A (en) Fuel cell
EP2255872A2 (en) Catalytic combustor and fuel reformer having the same
JP5580644B2 (en) Solid oxide fuel cell and solid oxide fuel cell system
JP5175456B2 (en) Solid electrolyte fuel cell module
JP5254588B2 (en) Solid oxide fuel cell module
JP5659329B2 (en) Auxiliary fuel cell and fuel cell
US8080346B2 (en) Current collector for solid oxide fuel cell tube with internal fuel processing
JP2012003941A (en) Fuel cell
US20200168935A1 (en) Solid oxide fuel cell system configured for higher hydrocarbon fuels
JP5448985B2 (en) Auxiliary device for solid oxide fuel cell, solid oxide fuel cell, and solid oxide fuel cell system
JP2008021596A (en) Solid-oxide fuel cell module
JP6498884B2 (en) Fuel cell
JP6909897B2 (en) Fuel cell system
JP5627942B2 (en) Solid oxide fuel cell device and combustor for solid oxide fuel cell stack
US8841037B2 (en) Fuel cell system with burner
JP2018129127A (en) Fuel battery cell stack
JP6635853B2 (en) Fuel cell system
JP2017216071A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5659329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250