JP2012112806A - Anechoic chamber - Google Patents

Anechoic chamber Download PDF

Info

Publication number
JP2012112806A
JP2012112806A JP2010262165A JP2010262165A JP2012112806A JP 2012112806 A JP2012112806 A JP 2012112806A JP 2010262165 A JP2010262165 A JP 2010262165A JP 2010262165 A JP2010262165 A JP 2010262165A JP 2012112806 A JP2012112806 A JP 2012112806A
Authority
JP
Japan
Prior art keywords
wall surface
anechoic chamber
measured
wave
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010262165A
Other languages
Japanese (ja)
Other versions
JP5606294B2 (en
Inventor
Yoshio Inasawa
良夫 稲沢
Yasuhiro Nishioka
泰弘 西岡
Izuru Naito
出 内藤
Kei Hayashi
圭 林
Masayuki Saito
雅之 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010262165A priority Critical patent/JP5606294B2/en
Publication of JP2012112806A publication Critical patent/JP2012112806A/en
Application granted granted Critical
Publication of JP5606294B2 publication Critical patent/JP5606294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an anechoic chamber capable of suppressing deterioration of a measuring accuracy by suppressing overlapping of an arrival time of unnecessary scattered wave with a time response of reflection wave from whole measuring object and removing the scattered wave from a gating in a time domain.SOLUTION: An anechoic chamber (10) applies an electric wave emitted from a transmission antenna (1) to a measuring object (3), receives the reflection wave reflected by the measuring object by a receiving antenna (2) and calculates a radar cross section from the intensity of the reflected waves. This anechoic chamber includes a wall surface that covers the measuring object, a transmission antenna, and the receiving antenna. The wall surface comprises; a tapered wall surface (12) configured to have an inclination, adjacent to the transmission antenna and the receiving antenna; and a cylindrical wall face (13) configured to have a cylindrical shape, at the periphery of the measuring object.

Description

本発明は、レーダ断面積を測定する電波暗室に関するものであり、不要散乱波による測定精度の劣化の抑制を図った電波暗室に関する。   The present invention relates to an anechoic chamber for measuring a cross-sectional area of a radar, and relates to an anechoic chamber in which deterioration of measurement accuracy due to unnecessary scattered waves is suppressed.

飛翔体などの目標物の反射強度を示す指標として、レーダ断面積(RCS:Radar Cross Section)が、一般に用いられる。目標物のレーダ断面積を正確に把握するためには、電波暗室などにおいて、レーダ断面積を測定する(例えば、非特許文献1参照)。そこで、非特許文献1に記載された電波暗室の構成を例にして、従来の電波暗室を用いたRCSの測定方法について、概略を説明する。   As an index indicating the reflection intensity of a target such as a flying object, a radar cross section (RCS: Radar Cross Section) is generally used. In order to accurately grasp the radar cross section of the target, the radar cross section is measured in an anechoic chamber or the like (see, for example, Non-Patent Document 1). Therefore, an outline of a conventional RCS measurement method using an anechoic chamber will be described by taking the configuration of the anechoic chamber described in Non-Patent Document 1 as an example.

図6は、非特許文献1の257ページに記載された従来の電波暗室内における被測定物のレーダ断面積を測定する方法の説明図である。図6において、電波暗室10は、略矩形形状をしており、表面に電波吸収体11を備えている。そして、この電波暗室10の内部には、送信アンテナ1、受信アンテナ2、および被測定物3が配置されている。また、被測定物3の周囲には、測定エリア4が示されている。   FIG. 6 is an explanatory diagram of a method for measuring the radar cross-sectional area of an object to be measured in a conventional anechoic chamber described on page 257 of Non-Patent Document 1. In FIG. 6, the anechoic chamber 10 has a substantially rectangular shape and includes a radio wave absorber 11 on the surface. In the anechoic chamber 10, a transmitting antenna 1, a receiving antenna 2, and a device under test 3 are arranged. A measurement area 4 is shown around the object to be measured 3.

送信アンテナ1から放射された電波が、被測定物3に照射され、被測定物3で反射された反射波21を受信アンテナ2で受信する。この被測定物3の反射波21の強度からレーダ断面積を算出することができる。この測定方法は、従来からよく実施されているものであり、被測定物3のレーダ断面積を測定することができる。しかしながら、図6に示すように、受信アンテナ2には、反射波21とともに、壁面からの不要散乱波22も同時に受信されている。   The radio wave radiated from the transmitting antenna 1 is irradiated to the device under test 3, and the reflected wave 21 reflected by the device under test 3 is received by the receiving antenna 2. The radar cross section can be calculated from the intensity of the reflected wave 21 of the object to be measured 3. This measurement method is well practiced conventionally, and can measure the radar cross-sectional area of the DUT 3. However, as shown in FIG. 6, the reception antenna 2 simultaneously receives the reflected wave 21 and the unwanted scattered wave 22 from the wall surface.

次に、図7は、非特許文献1の266ページに記載された従来の電波暗室内における被測定物のレーダ断面積を測定する方法の説明図であり、先の図6における電波暗室とは異なる暗室形状を備えている。なお、図7において、先の図6と同一の要素については、同一の符号を付している。   Next, FIG. 7 is an explanatory diagram of a method for measuring the radar cross-sectional area of the object to be measured in the conventional anechoic chamber described on page 266 of Non-Patent Document 1. What is the anechoic chamber in FIG. It has a different dark room shape. In FIG. 7, the same elements as those in FIG. 6 are given the same reference numerals.

先の図6の場合と同様に、送信アンテナ1から放射された電波が、被測定物3に照射され、被測定物3で反射された反射波21を受信アンテナ2で受信し、反射波21の強度からレーダ断面積を算出する。この図7に示す電波暗室では、送信アンテナ1および受信アンテナ2の近傍に、暗室壁面に傾斜をつけたテーパ壁面部12を設けており、壁面からの不要散乱波を低減している。しかしながら、図7に示すように、まだ不要散乱波22a、22bが、受信アンテナ2で受信されている。   As in the case of FIG. 6 above, the radio wave radiated from the transmitting antenna 1 is applied to the device under test 3, and the reflected wave 21 reflected by the device under test 3 is received by the receiving antenna 2. The radar cross section is calculated from the intensity of. In the anechoic chamber shown in FIG. 7, a tapered wall surface portion 12 having an inclined wall surface in the dark room is provided in the vicinity of the transmitting antenna 1 and the receiving antenna 2 to reduce unnecessary scattered waves from the wall surface. However, as shown in FIG. 7, unnecessary scattered waves 22 a and 22 b are still received by the receiving antenna 2.

図8は、先の図6、図7のような従来の電波暗室を用いた被測定物からの反射波の測定結果を示した説明図である。具体的には、被測定物3からの直接の反射波21と、壁面などによる不要散乱波22のそれぞれの時間応答を示している。図8に示すように、被測定物3の反射波成分(反射波21の成分)は、時間的に広がりを有している。そして、レーダ断面積の測定においては、ハードウエアゲーティングあるいはソフトウエアゲーティングにより、被測定物3からの反射波21に関する時間応答の範囲外の不要波は、除去することができる。   FIG. 8 is an explanatory view showing the measurement result of the reflected wave from the measurement object using the conventional anechoic chamber as shown in FIGS. Specifically, the time responses of the direct reflected wave 21 from the DUT 3 and the unnecessary scattered wave 22 due to the wall surface or the like are shown. As shown in FIG. 8, the reflected wave component of the object to be measured 3 (the component of the reflected wave 21) has a temporal spread. In the measurement of the radar cross-sectional area, unnecessary waves outside the time response range related to the reflected wave 21 from the object to be measured 3 can be removed by hardware gating or software gating.

Eugene F.Knott著、Scitech Publishing出版、Radar Cross Section Measurement、p.257、p.266Eugene F.M. By Knott, Scitech Publishing, Radar Cross Section Measurement, p. 257, p. 266

しかしながら、従来技術には、以下のような課題がある。
図8に示すように、被測定物3の反射波21の時間応答内に含まれてしまう不要波は、ハードウエアゲーティングあるいはソフトウエアゲーティングによっても除去することができず、測定精度の劣化を引き起こす。特に、先の図7に示したようなテーパ壁面部12を有する電波暗室10内の測定では、この不要散乱波22が残留し、被測定物3からの反射波21の時間応答内に重なりやすく、測定精度の劣化を引き起こす。
However, the prior art has the following problems.
As shown in FIG. 8, the unnecessary wave included in the time response of the reflected wave 21 of the DUT 3 cannot be removed even by hardware gating or software gating, and the measurement accuracy deteriorates. cause. In particular, in the measurement in the anechoic chamber 10 having the tapered wall surface portion 12 as shown in FIG. Cause degradation of measurement accuracy.

ここで、不要散乱波としては、送信アンテナ1から放射された電波が壁面で反射することで受信アンテナ2に到達する不要散乱波、送信アンテナ1から放射された電波が壁面で反射し、さらに被測定物3で散乱することで受信アンテナ2に到達する不要散乱波、あるいは、送信アンテナ1から放射された電波が被測定物3により散乱され、壁面で反射後に受信アンテナ2に到達する成分としての不要散乱波が考えられる。   Here, unnecessary scattered waves include unnecessary scattered waves that reach the receiving antenna 2 when the radio waves radiated from the transmitting antenna 1 are reflected on the wall surface, and radio waves radiated from the transmitting antenna 1 are reflected on the wall surface, An unnecessary scattered wave that reaches the receiving antenna 2 by being scattered by the measurement object 3 or a component that reaches the receiving antenna 2 after being reflected by the measurement object 3 after being scattered by the measurement object 3 and reflected from the wall surface Unnecessary scattered waves can be considered.

そして、従来の電波暗室内でのレーダ断面積の測定では、これら不要散乱波の到達時間が、被測定物全体からの反射波21の時間応答に重複する。このため、時間領域のゲーティングにより不要散乱波を除去することができず、測定精度の劣化を引き起こす問題があった。   In the conventional measurement of the radar cross section in the anechoic chamber, the arrival time of these unnecessary scattered waves overlaps the time response of the reflected wave 21 from the entire object to be measured. For this reason, there was a problem that unnecessary scattered waves could not be removed by gating in the time domain, resulting in deterioration in measurement accuracy.

本発明は、前記のような課題を解決するためになされたものであり、不要散乱波の到達時間が、被測定物全体からの反射波の時間応答に重複することを抑制し、時間領域のゲーティングにより散乱波を除去することで測定精度の劣化を抑制することのできる電波暗室を得ることを目的とする。   The present invention has been made to solve the above-described problems, and suppresses the arrival time of unnecessary scattered waves from overlapping the time response of reflected waves from the entire object to be measured. An object of the present invention is to obtain an anechoic chamber that can suppress degradation of measurement accuracy by removing scattered waves by gating.

本発明に係る電波暗室は、送信アンテナから放射された電波を被測定物に照射し、被測定物で反射された反射波を受信アンテナで受信し、反射波の強度からレーダ断面積を算出するために、被測定物、送信アンテナ、および受信アンテナを覆う壁面を備えた電波暗室において、壁面は、送信アンテナおよび受信アンテナの近傍に傾斜を有するように設けられたテーパ壁面部と、被測定物の周囲に円筒形状を有するように設けられた円筒壁面部とを備えて構成されているものである。   The anechoic chamber according to the present invention irradiates the object to be measured with the radio wave radiated from the transmitting antenna, receives the reflected wave reflected by the object to be measured by the receiving antenna, and calculates the radar cross section from the intensity of the reflected wave. Therefore, in an anechoic chamber provided with walls to cover the object to be measured, the transmitting antenna, and the receiving antenna, the wall surface is provided with a tapered wall surface provided to have an inclination in the vicinity of the transmitting antenna and the receiving antenna, and the object to be measured. And a cylindrical wall surface portion provided so as to have a cylindrical shape.

本発明に係る電波暗室によれば、不要散乱波の存在自体を低減するとともに、不要散乱波の伝搬時間を長くし、被測定物全体からの反射波の時間応答に対して不要散乱波が重複しないように、被測定物の周囲の壁面構造を円筒形状とすることにより、不要散乱波の到達時間が、被測定物全体からの反射波の時間応答に重複することを抑制し、時間領域のゲーティングにより散乱波を除去することで測定精度の劣化を抑制することのできる電波暗室を得ることができる。   According to the anechoic chamber of the present invention, the presence of unnecessary scattered waves is reduced, the propagation time of unnecessary scattered waves is lengthened, and unnecessary scattered waves overlap with the time response of reflected waves from the entire object to be measured. In order to prevent the arrival time of unnecessary scattered waves from overlapping the time response of the reflected wave from the entire object to be measured, the wall surface structure around the object to be measured is made cylindrical. By removing the scattered wave by gating, it is possible to obtain an anechoic chamber in which deterioration of measurement accuracy can be suppressed.

本発明の実施の形態1による電波暗室の形状を示した図である。It is the figure which showed the shape of the anechoic chamber by Embodiment 1 of this invention. 本発明の実施の形態1における電波暗室を用いた被測定物からの反射波の測定結果を示した説明図である。It is explanatory drawing which showed the measurement result of the reflected wave from the to-be-measured object using the anechoic chamber in Embodiment 1 of this invention. 本発明の実施の形態1による電波暗室の形状を示した上面図および側面図である。It is the top view and side view which showed the shape of the anechoic chamber by Embodiment 1 of this invention. 本発明の実施の形態2による電波暗室の形状を示した図である。It is the figure which showed the shape of the anechoic chamber by Embodiment 2 of this invention. 本発明の実施の形態3による電波暗室の形状を示した図である。It is the figure which showed the shape of the anechoic chamber by Embodiment 3 of this invention. 非特許文献1の257ページに記載された従来の電波暗室内における被測定物のレーダ断面積を測定する方法の説明図である。It is explanatory drawing of the method of measuring the radar cross section of the to-be-measured object in the conventional anechoic chamber described in page 257 of the nonpatent literature 1. 非特許文献1の266ページに記載された従来の電波暗室内における被測定物のレーダ断面積を測定する方法の説明図である。It is explanatory drawing of the method of measuring the radar cross-sectional area of the to-be-measured object described in the non-patent literature 1 page 266 in the conventional anechoic chamber. 先の図6、図7のような従来の電波暗室を用いた被測定物からの反射波の測定結果を示した説明図である。It is explanatory drawing which showed the measurement result of the reflected wave from the to-be-measured object using the conventional anechoic chamber like FIG. 6, FIG.

以下、本発明の電波暗室の好適な実施の形態につき図面を用いて説明する。なお、従来と同じ要素に関しては、同じ符号を付している。   Hereinafter, preferred embodiments of the anechoic chamber of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same element as the past.

実施の形態1.
図1は、本発明の実施の形態1による電波暗室の形状を示した図である。図1において、電波暗室10は、表面に電波吸収体11を備えているとともに、テーパ壁面部12と、円筒壁面部13とを備えて構成されている。そして、この電波暗室10の内部には、送信アンテナ1、受信アンテナ2、および被測定物3が配置されている。また、被測定物3の周囲には、測定エリア4が示されている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing the shape of an anechoic chamber according to Embodiment 1 of the present invention. In FIG. 1, the anechoic chamber 10 includes a radio wave absorber 11 on the surface, a tapered wall surface portion 12, and a cylindrical wall surface portion 13. In the anechoic chamber 10, a transmitting antenna 1, a receiving antenna 2, and a device under test 3 are arranged. A measurement area 4 is shown around the object to be measured 3.

テーパ壁面部12は、送信アンテナ1および受信アンテナ2の近傍に、傾斜を有するように設けられたテーパ形状を有する壁面部である。また、円筒壁面部13は、被測定物3の周囲に円筒形状を有するように設けられた壁面部である。本発明は、この図1に示すように、送信アンテナ1、受信アンテナ2の近傍にテーパ壁面部12を設けるとともに、被測定物3の周囲に円筒壁面部13を設けたことを技術的特徴としている。   The tapered wall surface portion 12 is a wall surface portion having a tapered shape provided in the vicinity of the transmission antenna 1 and the reception antenna 2 so as to have an inclination. Further, the cylindrical wall surface portion 13 is a wall surface portion provided so as to have a cylindrical shape around the object to be measured 3. As shown in FIG. 1, the present invention has a technical feature in that a tapered wall surface portion 12 is provided in the vicinity of the transmitting antenna 1 and the receiving antenna 2 and a cylindrical wall surface portion 13 is provided around the device under test 3. Yes.

次に、本実施の形態1における図1に示した電波暗室を用いたレーダ断面積の測定方法について説明する。送信アンテナ1から放射された電波が、被測定物3に照射され、被測定物3で反射された反射波21を受信アンテナ2で受信する。この被測定物3の反射波21の強度から、レーダ断面積を算出することができる。   Next, a method for measuring the radar cross section using the anechoic chamber shown in FIG. 1 in the first embodiment will be described. The radio wave radiated from the transmitting antenna 1 is irradiated to the device under test 3, and the reflected wave 21 reflected by the device under test 3 is received by the receiving antenna 2. The radar cross-sectional area can be calculated from the intensity of the reflected wave 21 of the device under test 3.

ここで、暗室壁面内に設けられたテーパ壁面部12は、テーパ部分からの反射波が被測定物3を直接照射しないように、テーパの傾き角が設定されている。また、本実施の形態1における電波暗室10は、円筒形状を備える円筒壁面部13の働きにより、送信アンテナ1から放射された電波が、円筒壁面部13で反射し、受信アンテナ2で受信される成分を、従来の電波暗室と比較して、非常に少なくすることができる。   Here, the taper wall surface portion 12 provided in the dark room wall surface is set with a taper inclination angle so that the reflected wave from the taper portion does not directly irradiate the DUT 3. In the anechoic chamber 10 according to the first embodiment, the radio wave radiated from the transmitting antenna 1 is reflected by the cylindrical wall surface portion 13 and received by the receiving antenna 2 by the action of the cylindrical wall surface portion 13 having a cylindrical shape. The component can be greatly reduced compared to a conventional anechoic chamber.

また、送信アンテナ1から放射され、円筒壁面部13に入射した電波は、被測定物3で反射後に、直接受信される反射波21、あるいは不要散乱波22として、受信アンテナ2で受信される。この不要散乱波22の一経路を図1に示している。円筒壁面部13が円筒形状を有している効果により、不要散乱波22は、暗室壁面および被測定物3で多重反射して、受信アンテナ2に到達しやすくなり、伝搬距離が長い特徴を有している。   The radio wave radiated from the transmitting antenna 1 and incident on the cylindrical wall surface 13 is received by the receiving antenna 2 as a reflected wave 21 or an unwanted scattered wave 22 that is directly received after being reflected by the device under test 3. One path of the unnecessary scattered wave 22 is shown in FIG. Due to the effect of the cylindrical wall surface 13 having a cylindrical shape, the unnecessary scattered wave 22 is reflected by the dark room wall surface and the DUT 3 and easily reaches the receiving antenna 2 and has a long propagation distance. is doing.

図2は、本発明の実施の形態1における電波暗室を用いた被測定物からの反射波の測定結果を示した説明図である。具体的には、被測定物3からの直接の反射波21と、壁面などによる不要散乱波22のそれぞれの時間応答を示している。図2に示すように、不要散乱波22の伝搬経路長を長くすることができるため、被測定物3の反射波21の時間応答の範囲外に、不要波(不要散乱波)を到達させることができる。このような不要波は、ハードウエアゲーティングあるいはソフトウエアゲーティングにより、除去することができ、被測定物3からの所望の反射波21のみを抽出することができる。   FIG. 2 is an explanatory diagram showing the measurement result of the reflected wave from the object to be measured using the anechoic chamber according to Embodiment 1 of the present invention. Specifically, the time responses of the direct reflected wave 21 from the DUT 3 and the unnecessary scattered wave 22 due to the wall surface or the like are shown. As shown in FIG. 2, since the propagation path length of the unnecessary scattered wave 22 can be increased, the unnecessary wave (unnecessary scattered wave) reaches outside the range of the time response of the reflected wave 21 of the object 3 to be measured. Can do. Such an unnecessary wave can be removed by hardware gating or software gating, and only a desired reflected wave 21 from the device under test 3 can be extracted.

図3は、本発明の実施の形態1による電波暗室の形状を示した上面図および側面図である。上面図は、先の図1と同様の図である。図3に示したテーパ壁面部12は、水平面内だけでなく、垂直方向にもテーパを付けている場合を例示したものである。しかしながら、水平面内のみのテーパ構造としても一定の効果があり、テーパ壁面部12は、水平面内のみのテーパ構造とすることもできる。   FIG. 3 is a top view and a side view showing the shape of the anechoic chamber according to Embodiment 1 of the present invention. The top view is the same as FIG. The taper wall surface portion 12 shown in FIG. 3 exemplifies a case where the taper wall portion 12 is tapered not only in the horizontal plane but also in the vertical direction. However, the taper structure only in the horizontal plane has a certain effect, and the tapered wall surface portion 12 can be a taper structure only in the horizontal plane.

以上のように、実施の形態1によれば、不要散乱波の存在自体を低減するとともに、不要散乱波の伝搬時間を長くし、被測定物全体からの反射波の時間応答に対して不要散乱波が重複しないように、被測定物の周囲の壁面構造を円筒形状とする構造を備えている。この結果、不要散乱波の到達時間が、被測定物全体からの反射波の時間応答に重複することを抑制し、時間領域のゲーティングにより散乱波を除去することを可能とし、測定精度の劣化を抑制することのできる電波暗室を実現できる。   As described above, according to the first embodiment, the presence of unnecessary scattered waves is reduced, the propagation time of unnecessary scattered waves is lengthened, and unnecessary scattering is performed with respect to the time response of reflected waves from the entire object to be measured. A structure in which the wall surface structure around the object to be measured is cylindrical is provided so that the waves do not overlap. As a result, it is possible to suppress the arrival time of unnecessary scattered waves from overlapping with the time response of reflected waves from the entire object to be measured, and it is possible to remove scattered waves by gating in the time domain, resulting in deterioration in measurement accuracy. It is possible to realize an anechoic chamber that can suppress noise.

実施の形態2.
本実施の形態2では、先の実施の形態1とは異なるテーパ壁面部の形状を備えた電波暗室について説明する。
Embodiment 2. FIG.
In the second embodiment, an anechoic chamber having a tapered wall surface shape different from that of the first embodiment will be described.

図4は、本発明の実施の形態2による電波暗室の形状を示した図である。図4において、電波暗室10は、表面に電波吸収体11を備えているとともに、テーパ壁面部12a、12bと、円筒壁面部13とを備えて構成されている。先の実施の形態1における図1の構成と比較すると、図4に示した本実施の形態2の構成は、テーパ壁面部12に2段階の傾斜を付け、2つのテーパ壁面部12a、12bとしている点を技術的特徴としている。   FIG. 4 is a diagram showing the shape of an anechoic chamber according to Embodiment 2 of the present invention. In FIG. 4, the anechoic chamber 10 includes a radio wave absorber 11 on the surface, and includes tapered wall surface portions 12 a and 12 b and a cylindrical wall surface portion 13. Compared with the configuration of FIG. 1 in the first embodiment, the configuration of the second embodiment shown in FIG. 4 has two tapered wall surface portions 12a and 12b with a two-step inclination on the tapered wall surface portion 12. This is a technical feature.

図4に示すように、2段階の傾斜を設けたテーパ壁面部12a、12bを用いることにより、テーパ壁面部12a、12bから被測定物3への不要散乱波を、より低減させる効果がある。   As shown in FIG. 4, by using the tapered wall surface portions 12a and 12b provided with two-step inclinations, there is an effect of further reducing unnecessary scattered waves from the tapered wall surface portions 12a and 12b to the object 3 to be measured.

以上のように、実施の形態2によれば、不要散乱波の存在自体を低減するとともに、不要散乱波の伝搬時間を長くし、被測定物全体からの反射波の時間応答に対して不要散乱波が重複しないように、被測定物の周囲の壁面構造を円筒形状とする構造を備えている。この結果、不要散乱波の到達時間が、被測定物全体からの反射波の時間応答に重複することを抑制し、時間領域のゲーティングにより散乱波を除去することを可能とし、測定精度の劣化を抑制することのできる電波暗室を実現できる。   As described above, according to the second embodiment, the presence of unnecessary scattered waves is reduced, the propagation time of unnecessary scattered waves is increased, and unnecessary scattering is performed with respect to the time response of reflected waves from the entire object to be measured. A structure in which the wall surface structure around the object to be measured is cylindrical is provided so that the waves do not overlap. As a result, it is possible to suppress the arrival time of unnecessary scattered waves from overlapping with the time response of reflected waves from the entire object to be measured, and it is possible to remove scattered waves by gating in the time domain, resulting in deterioration in measurement accuracy. It is possible to realize an anechoic chamber that can suppress noise.

さらに、テーパ壁面部に2段階の傾斜を設けることで、先の実施の形態1の構成と比較して、不要散乱波の発生をより低減させることができる。   Furthermore, by providing the tapered wall surface portion with two stages of inclination, it is possible to further reduce the generation of unnecessary scattered waves as compared with the configuration of the first embodiment.

実施の形態3.
先の実施の形態1、2では、電波吸収体11が、テーパ壁面部12(12a、12b)の表面および円筒壁面部13の表面の両方に設けられている場合について説明した。これに対して、本実施の形態3では、電波吸収体11が、円筒壁面部13の表面に設けられていない場合について説明する。
Embodiment 3 FIG.
In the first and second embodiments, the case where the radio wave absorber 11 is provided on both the surface of the tapered wall surface portion 12 (12a, 12b) and the surface of the cylindrical wall surface portion 13 has been described. On the other hand, in this Embodiment 3, the case where the electromagnetic wave absorber 11 is not provided in the surface of the cylindrical wall surface part 13 is demonstrated.

図5は、本発明の実施の形態3による電波暗室の形状を示した図である。図5において、電波暗室10は、テーパ壁面部12と、円筒壁面部13とを備えて構成されている。先の実施の形態1における図1の構成と比較すると、図5に示した本実施の形態3の構成は、円筒壁面部13の表面に電波吸収体11が設けられていない点が異なっている。   FIG. 5 is a diagram showing the shape of an anechoic chamber according to Embodiment 3 of the present invention. In FIG. 5, the anechoic chamber 10 includes a tapered wall surface portion 12 and a cylindrical wall surface portion 13. Compared with the configuration of FIG. 1 in the first embodiment, the configuration of the third embodiment shown in FIG. 5 is different in that the radio wave absorber 11 is not provided on the surface of the cylindrical wall surface portion 13. .

図5に示すように、円筒壁面部13に電波吸収体11を設けていないことで、先の実施の形態1に比べて、円筒壁面部13で散乱する不要散乱波22のレベルは強くなる。しかしながら、この不要散乱波22は、長い伝搬距離を有するようになるため、被測定物3からの反射波21の時間応答外に到来する結果となる。   As shown in FIG. 5, since the radio wave absorber 11 is not provided on the cylindrical wall surface portion 13, the level of the unnecessary scattered wave 22 scattered by the cylindrical wall surface portion 13 becomes stronger than in the first embodiment. However, since the unnecessary scattered wave 22 has a long propagation distance, this results in arrival outside the time response of the reflected wave 21 from the object 3 to be measured.

従って、この不要散乱波22は、ハードウエアゲーティングあるいはソフトウエアゲーティングにより、除去することができる。この結果、電波吸収体を除去することによるコスト低減を図った上で、先の実施の形態1と同程度の測定精度を実現することができる。   Therefore, the unnecessary scattered wave 22 can be removed by hardware gating or software gating. As a result, it is possible to achieve the same measurement accuracy as that of the first embodiment, while reducing the cost by removing the radio wave absorber.

以上のように、実施の形態3によれば、不要散乱波の存在自体を低減するとともに、不要散乱波の伝搬時間を長くし、被測定物全体からの反射波の時間応答に対して不要散乱波が重複しないように、被測定物の周囲の壁面構造を円筒形状とする構造を備えている。この結果、不要散乱波の到達時間が、被測定物全体からの反射波の時間応答に重複することを抑制し、時間領域のゲーティングにより散乱波を除去することを可能とし、測定精度の劣化を抑制することのできる電波暗室を実現できる。   As described above, according to the third embodiment, the presence of unnecessary scattered waves is reduced, the propagation time of unnecessary scattered waves is increased, and unnecessary scattering is performed with respect to the time response of reflected waves from the entire object to be measured. A structure in which the wall surface structure around the object to be measured is cylindrical is provided so that the waves do not overlap. As a result, it is possible to suppress the arrival time of unnecessary scattered waves from overlapping with the time response of reflected waves from the entire object to be measured, and it is possible to remove scattered waves by gating in the time domain, resulting in deterioration in measurement accuracy. It is possible to realize an anechoic chamber that can suppress noise.

さらに、円筒壁面部の表面の電波吸収体を除去することで、コスト低減を図った上で、測定精度の劣化を抑制することが可能となる。   Furthermore, by removing the radio wave absorber on the surface of the cylindrical wall surface portion, it is possible to reduce the measurement accuracy while reducing the cost.

なお、実施の形態3では、先の実施の形態1における図1の構成において、円筒壁面部の表面の電波吸収体を除去した場合について説明したが、先の実施の形態2における図4の構成において、円筒壁面部の表面の電波吸収体を除去した場合にも、同様の効果を得ることができる。   In the third embodiment, the case where the radio wave absorber on the surface of the cylindrical wall surface is removed in the configuration of FIG. 1 in the previous first embodiment, but the configuration of FIG. 4 in the previous second embodiment. The same effect can be obtained when the radio wave absorber on the surface of the cylindrical wall surface is removed.

また、実施の形態1〜3では、時間領域のゲーティングにより散乱波を除去することで、レーダ断面積を測定する場合について説明したが、本発明の電波暗室は、これに限定されるものではない。本発明の電波暗室は、遠方条件を満たさない近傍領域の測定データから、近傍界/遠方界変換技術を用いてレーダ断面積を測定する場合にも適用できる。   In the first to third embodiments, the case where the radar cross section is measured by removing scattered waves by gating in the time domain has been described. However, the anechoic chamber of the present invention is not limited to this. Absent. The anechoic chamber of the present invention can also be applied to the case where the radar cross-section is measured from the measurement data of the near region that does not satisfy the far condition using the near field / far field conversion technique.

1 送信アンテナ、2 受信アンテナ、3 被測定物、4 測定エリア、10 電波暗室、11 電波吸収体、12、12a、12b テーパ壁面部、13 円筒壁面部、21 反射波、22、22a、22b 不要散乱波。   1 transmitting antenna, 2 receiving antenna, 3 device under test, 4 measurement area, 10 anechoic chamber, 11 electromagnetic wave absorber, 12, 12a, 12b tapered wall surface portion, 13 cylindrical wall surface portion, 21 reflected wave, 22, 22a, 22b unnecessary Scattered waves.

Claims (3)

送信アンテナから放射された電波を被測定物に照射し、前記被測定物で反射された反射波を受信アンテナで受信し、前記反射波の強度からレーダ断面積を算出するために、前記被測定物、前記送信アンテナ、および前記受信アンテナを覆う壁面を備えた電波暗室において、
前記壁面は、
前記送信アンテナおよび前記受信アンテナの近傍に傾斜を有するように設けられたテーパ壁面部と、
前記被測定物の周囲に円筒形状を有するように設けられた円筒壁面部と
を備えて構成されていることを特徴とする電波暗室。
In order to irradiate the object to be measured with radio waves radiated from the transmitting antenna, receive the reflected wave reflected by the object to be measured by the receiving antenna, and calculate the radar cross section from the intensity of the reflected wave. In an anechoic chamber with a wall covering the object, the transmitting antenna, and the receiving antenna,
The wall surface is
A tapered wall surface provided to have an inclination in the vicinity of the transmitting antenna and the receiving antenna;
An anechoic chamber, comprising: a cylindrical wall surface provided so as to have a cylindrical shape around the object to be measured.
請求項1に記載の電波暗室において、
前記テーパ壁面部は、2段階の傾斜が設けられている
ことを特徴とする電波暗室。
In the anechoic chamber according to claim 1,
The anechoic chamber, wherein the tapered wall surface portion is provided with a two-step inclination.
請求項1または2に記載の電波暗室において、
前記円筒壁面部は、電波吸収体を有していない
ことを特徴とする電波暗室。
In the anechoic chamber according to claim 1 or 2,
The said cylindrical wall surface part does not have an electromagnetic wave absorber. The electromagnetic wave anechoic chamber characterized by the above-mentioned.
JP2010262165A 2010-11-25 2010-11-25 Anechoic chamber Active JP5606294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010262165A JP5606294B2 (en) 2010-11-25 2010-11-25 Anechoic chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010262165A JP5606294B2 (en) 2010-11-25 2010-11-25 Anechoic chamber

Publications (2)

Publication Number Publication Date
JP2012112806A true JP2012112806A (en) 2012-06-14
JP5606294B2 JP5606294B2 (en) 2014-10-15

Family

ID=46497172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010262165A Active JP5606294B2 (en) 2010-11-25 2010-11-25 Anechoic chamber

Country Status (1)

Country Link
JP (1) JP5606294B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390665A (en) * 2017-08-02 2019-02-26 安立股份有限公司 Wireless terminal measurement device and method, circularly polarized wave antenna device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806943A (en) * 1972-10-02 1974-04-23 A Holloway Anechoic chamber
JPH02145984A (en) * 1988-11-26 1990-06-05 Mitsubishi Electric Corp Radar
JP2001116784A (en) * 1999-10-22 2001-04-27 Advantest Corp Measuring case for radio wave equipment
US20040075443A1 (en) * 2002-10-18 2004-04-22 The Boeing Company Anechoic test chamber and method of determining a loss characteristic of a material specimen
JP2010019691A (en) * 2008-07-10 2010-01-28 Denso Corp Electromagnetic anechoic box

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806943A (en) * 1972-10-02 1974-04-23 A Holloway Anechoic chamber
JPH02145984A (en) * 1988-11-26 1990-06-05 Mitsubishi Electric Corp Radar
JP2001116784A (en) * 1999-10-22 2001-04-27 Advantest Corp Measuring case for radio wave equipment
US20040075443A1 (en) * 2002-10-18 2004-04-22 The Boeing Company Anechoic test chamber and method of determining a loss characteristic of a material specimen
JP2010019691A (en) * 2008-07-10 2010-01-28 Denso Corp Electromagnetic anechoic box

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390665A (en) * 2017-08-02 2019-02-26 安立股份有限公司 Wireless terminal measurement device and method, circularly polarized wave antenna device

Also Published As

Publication number Publication date
JP5606294B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP6337030B2 (en) Massive-MIMO antenna measuring apparatus and directivity measuring method thereof
JP5825995B2 (en) Radar cross section measuring device
CN107505603A (en) Method and apparatus for test carriage with the transmitting attribute and reflecting attribute of antenna cover body
US10746765B2 (en) Data processing method and the measurement device
JP6054435B2 (en) Enhanced imaging system
ES2794825T3 (en) Ultrasonic detection procedure for defects in a material
RU2011152402A (en) METHOD FOR MEASURING AN EFFECTIVE SURFACE OF SCATTERING OF LARGE-SIZED MASSIVE OBJECTS IN AN Anechoic chamber
JP2011116325A (en) Radar cross section (rcs) imaging system
CN102798778A (en) Modeling method for signal transmission step of internal field antenna measurement system
CN106841825B (en) Near-field antenna beam control system based on wave-absorbing cavity structure
JP5606294B2 (en) Anechoic chamber
Mirzaei et al. Investigating the partial discharge electromagnetic wave propagation in power transformers considering active part characteristics
US9810646B2 (en) Edge treatment system and method for evaluating a material
JP4545606B2 (en) Radar cross section measuring device
RU2326400C1 (en) Method of measurement of efficient scattering area of large dimension objects in polygon conditions
KR101494390B1 (en) Near-Field Measurement Data Compensation Method and Radar and Sensor Using thereof
JP4819663B2 (en) Complex permittivity measuring apparatus and complex permittivity measuring method
CN102768310B (en) Method for eliminating multipath interference in antenna test environment by adopting distance offset technology
JP6524490B2 (en) Method of calibrating received data in radar device and radar device
JP6849980B2 (en) Abnormal tissue detection device
JP2013160705A (en) Radar cross-sectional area measurement system
JP2001066336A (en) Reflected wave measuring instrument for radiated electromagnetic wave
JP6840655B2 (en) Electromagnetic wave imaging device
KR101644431B1 (en) Absorber for absorbing an electronic wave and an apparatus for measuring the electronic wave using the absorber
JP2017090305A (en) Emission measurement device, proximity device installation allowability evaluation device, emission measurement method, and proximity device installation allowability evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R150 Certificate of patent or registration of utility model

Ref document number: 5606294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250