JP2012112710A - Temperature monitoring device and temperature monitoring system - Google Patents

Temperature monitoring device and temperature monitoring system Download PDF

Info

Publication number
JP2012112710A
JP2012112710A JP2010260218A JP2010260218A JP2012112710A JP 2012112710 A JP2012112710 A JP 2012112710A JP 2010260218 A JP2010260218 A JP 2010260218A JP 2010260218 A JP2010260218 A JP 2010260218A JP 2012112710 A JP2012112710 A JP 2012112710A
Authority
JP
Japan
Prior art keywords
temperature
monitoring
thermoelectric element
output
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010260218A
Other languages
Japanese (ja)
Other versions
JP5578047B2 (en
Inventor
Naoki Kamimura
直樹 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2010260218A priority Critical patent/JP5578047B2/en
Publication of JP2012112710A publication Critical patent/JP2012112710A/en
Application granted granted Critical
Publication of JP5578047B2 publication Critical patent/JP5578047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology allowing reduction of device size and efficient output of temperature condition of a monitored object.SOLUTION: A thermoelectric element is provided at a position where heat from a monitored object is transferred, and an output voltage of the thermoelectric element generated by the heat from the monitored object is raised by a booster circuit. A capacitor accumulates a charge according to the output voltage of the booster circuit, and the accumulated charge is provided to a control circuit by electric discharge. The control circuit starts when the output terminal voltage of the capacitor is capable of operating the control circuit, generates temperature information according to the electric power generated by the thermoelectric element, and outputs the generated temperature information to the outside via a cable or by radio.

Description

本発明は、温度監視装置及び温度監視システムに関する。   The present invention relates to a temperature monitoring device and a temperature monitoring system.

電池で駆動する無線端末を工場等の設備に設置し、各設備の運転状況を各無線端末から管理装置に送信する無線送受信システムが下記特許文献1に開示されている。この無線送受信システムにおける各無線端末は、設備の運転状況などを検出する各センサが設けられており、電池の電力を用いて各センサの検出結果を無線で送信する。無線端末は、無線端末に設けられた発電素子に発生された電力を電池に充電する。   A wireless transmission / reception system in which a wireless terminal driven by a battery is installed in equipment such as a factory and the operation status of each equipment is transmitted from each wireless terminal to a management apparatus is disclosed in Patent Document 1 below. Each wireless terminal in this wireless transmission / reception system is provided with each sensor for detecting the operation status of the equipment, and wirelessly transmits the detection result of each sensor using the power of the battery. The wireless terminal charges the battery with electric power generated in a power generation element provided in the wireless terminal.

特開2005−191986号公報Japanese Patent Laid-Open No. 2005-191986

上記の無線端末は発電素子によって発生された電力で電池を充電することができるが、各種センサの検出結果を送信するために十分な電力量が必要となる。また、別途センサを設けることで端末の回路構成が複雑になり、端末を小型化することができない。
本発明は、装置の小型化を図ると共に監視対象物の温度状態を効率的に出力することができる技術を提供する。
The wireless terminal can charge the battery with the power generated by the power generation element, but a sufficient amount of power is required to transmit the detection results of the various sensors. Also, providing a separate sensor complicates the terminal circuit configuration, and the terminal cannot be miniaturized.
The present invention provides a technique capable of downsizing the apparatus and efficiently outputting the temperature state of the monitoring object.

本発明の請求項1に係る温度監視装置は、監視対象物の熱が伝導される位置に設けられ、当該監視対象物の熱に応じた電力を発生させる熱電素子と、前記熱電素子の出力電圧を昇圧する昇圧手段と、前記昇圧手段から出力される電力を充電して放電する充放電手段と、前記充放電手段から放電される電力を駆動電力として用い、前記監視対象物の熱による前記熱電素子状態に応じた温度情報を生成する生成手段と、前記充放電手段から放電される電力を駆動電力として用い、前記生成手段で生成された前記温度情報を外部に出力する信号形式に変換して出力する出力手段とを備えることを備えることを特徴とする。   A temperature monitoring device according to claim 1 of the present invention is provided at a position where heat of a monitoring object is conducted, and generates a power corresponding to the heat of the monitoring object, and an output voltage of the thermoelectric element Boosting means for boosting power, charging / discharging means for charging and discharging electric power output from the boosting means, and using electric power discharged from the charging / discharging means as driving power, the thermoelectric power generated by the heat of the monitored object The generating means for generating temperature information according to the element state and the electric power discharged from the charging / discharging means are used as driving power, and the temperature information generated by the generating means is converted into a signal format to be output to the outside. And an output means for outputting.

また、本発明の請求項2に係る温度監視装置は、上記温度監視装置において、前記生成手段は、前記熱電素子の出力電圧に基づいて前記温度情報を生成することを特徴とする。   The temperature monitoring device according to claim 2 of the present invention is characterized in that, in the temperature monitoring device, the generating means generates the temperature information based on an output voltage of the thermoelectric element.

また、本発明の請求項3に係る温度監視装置は、上記温度監視装置において、前記充放電手段から放電される電力を駆動電力として用い、前記熱電素子の抵抗値を検出する検出手段を備え、前記生成手段は、前記検出手段で検出された抵抗値に基づいて前記温度情報を生成することを特徴とする。   Moreover, the temperature monitoring device according to claim 3 of the present invention includes a detection unit that detects the resistance value of the thermoelectric element using the electric power discharged from the charge / discharge unit as driving power in the temperature monitoring device, The generating means generates the temperature information based on the resistance value detected by the detecting means.

また、本発明の請求項4に係る温度監視装置は、上記温度監視装置において、前記生成手段で生成された前記温度情報を、予め定められた前記監視対象物の温度監視条件に応じた補正情報に基づいて、補正する補正手段を備え、前記出力手段は、前記補正手段によって補正された前記温度情報を前記信号形式に変換して出力することを特徴とする。   According to a fourth aspect of the present invention, there is provided the temperature monitoring device according to claim 4, wherein the temperature information generated by the generating means is corrected information corresponding to a predetermined temperature monitoring condition of the monitored object. The temperature information corrected by the correction means is converted into the signal format and output.

また、本発明の請求項5に係る温度監視システムは、監視対象物の熱が伝導される位置に設けられ、当該監視対象物の熱に応じた電力を発生させる熱電素子と、前記熱電素子の出力電圧を昇圧する昇圧手段と、前記昇圧手段から出力される電力を充電して放電する充放電手段と、前記充放電手段から放電される電力を駆動電力として用い、前記監視対象物の熱により前記熱電素子から発生された電力に関する監視情報を生成する生成手段と、前記充放電手段から放電される電力を駆動電力として用い、前記生成手段で生成された前記監視情報を外部に出力する信号形式に変換して送信する送信手段とを有する送信装置と、前記送信装置から出力された前記監視情報を受信する受信手段と、前記監視対象物の温度と前記熱電素子から発生される電力との関係を予め定義した温度変換情報を記憶する記憶手段と、前記受信手段が受信した前記監視情報と前記補正情報とに基づいて、前記監視対象物の温度を特定する特定手段と、前記特定手段が特定した温度を出力する出力手段とを有する受信装置とを備えることを特徴とする。   The temperature monitoring system according to claim 5 of the present invention is provided at a position where the heat of the monitoring object is conducted, and generates a power corresponding to the heat of the monitoring object, and the thermoelectric element. Using the boosting means for boosting the output voltage, charging / discharging means for charging and discharging the power output from the boosting means, and using the power discharged from the charging / discharging means as driving power, the heat of the monitoring object A generating unit that generates monitoring information related to the power generated from the thermoelectric element, and a signal format that uses the power discharged from the charging / discharging unit as driving power and outputs the monitoring information generated by the generating unit to the outside Generated from the transmission device having the transmission means for converting to and transmitting, the reception means for receiving the monitoring information output from the transmission device, the temperature of the monitoring object and the thermoelectric element Storage means for storing temperature conversion information that defines a relationship with force in advance, identification means for specifying the temperature of the monitoring object based on the monitoring information and the correction information received by the receiving means, And a receiving device having output means for outputting the temperature specified by the specifying means.

請求項1に記載の構成によれば、監視対象物の温度を検出するためのセンサを別途設ける必要がなく、監視対象物の温度情報を効率的に出力することができる。   According to the configuration of the first aspect, it is not necessary to separately provide a sensor for detecting the temperature of the monitoring object, and the temperature information of the monitoring object can be output efficiently.

請求項2に記載の構成によれば、監視対象物の熱による熱電素子の出力電圧に基づいて監視対象物の温度情報を出力することができる。   According to the structure of Claim 2, based on the output voltage of the thermoelectric element by the heat | fever of the monitoring target object, the temperature information of the monitoring target object can be output.

請求項3に記載の構成によれば、監視対象物の熱による熱電素子の抵抗値に基づいて監視対象物の温度情報を出力することができる。   According to the structure of Claim 3, the temperature information of a monitoring target object can be output based on the resistance value of the thermoelectric element by the heat | fever of a monitoring target object.

請求項4に記載の構成によれば、補正情報が監視対象物や監視対象物の設置環境に応じて定義されたものであれば、監視対象物の適切な温度を出力することができる。   According to the structure of Claim 4, if correction | amendment information is defined according to the monitoring target object and the installation environment of the monitoring target object, the suitable temperature of the monitoring target object can be output.

請求項5に記載の構成によれば、監視対象物の温度を検出するためのセンサを別途設ける必要がなく、監視対象物の温度を効率よく検出して出力することが可能になる。   According to the configuration of the fifth aspect, it is not necessary to separately provide a sensor for detecting the temperature of the monitoring object, and the temperature of the monitoring object can be efficiently detected and output.

実施形態に係る温度監視装置の構成例を示す図である。It is a figure which shows the structural example of the temperature monitoring apparatus which concerns on embodiment. 実施形態に係る制御回路の構成例を示す図である。It is a figure which shows the structural example of the control circuit which concerns on embodiment. 実施形態の温度情報出力処理を説明する図である。It is a figure explaining the temperature information output process of embodiment.

(概要)
本実施形態に係る温度監視装置は、例えば、工場等に設置されたパイプ内を流れる液体の温度によってパイプに伝導された熱を電気に変換して充電すると共に、充電された電力を用いてパイプ等の温度を無線で外部へ出力するものである。以下、本実施形態に係る温度監視装置の詳細について説明する。
(Overview)
The temperature monitoring device according to the present embodiment converts, for example, the heat conducted to the pipe according to the temperature of the liquid flowing in the pipe installed in a factory or the like into electricity, and charges the pipe using the charged power. Etc. are output to the outside wirelessly. Hereinafter, details of the temperature monitoring apparatus according to the present embodiment will be described.

(構成)
図1は、本実施形態に係る温度監視装置の構成を表す図である。図1に示すように、温度監視装置1は、熱電素子10、昇圧回路11、キャパシタ12、及びアンテナ14を有する制御回路13を有する。
(Constitution)
FIG. 1 is a diagram illustrating a configuration of a temperature monitoring device according to the present embodiment. As shown in FIG. 1, the temperature monitoring device 1 includes a thermoelectric element 10, a booster circuit 11, a capacitor 12, and a control circuit 13 having an antenna 14.

熱電素子10は、異種の金属又は半導体の両端を接合し、接合点に温度差が生じると電力を発生するペルチェ素子やゼーベック素子などの熱電素子である。熱電素子10は、工場内のパイプなど、温度を監視すべき対象物(以下、監視対象物と言う)の熱が伝導されるように設けられる。例えば、パイプに熱電素子10を設置する場合、熱電素子10の吸熱側をパイプの表面と接触させ、放熱側はパイプに接触しないようパイプから離間して設置する。熱電素子10は、パイプ表面の温度とパイプが設置された空間の温度との温度差に応じた起電力を発生する。   The thermoelectric element 10 is a thermoelectric element such as a Peltier element or a Seebeck element that joins both ends of dissimilar metals or semiconductors and generates electric power when a temperature difference occurs at the junction. The thermoelectric element 10 is provided such that heat of an object whose temperature is to be monitored (hereinafter referred to as a monitoring object) such as a pipe in a factory is conducted. For example, when the thermoelectric element 10 is installed in a pipe, the heat absorption side of the thermoelectric element 10 is brought into contact with the surface of the pipe, and the heat radiation side is arranged away from the pipe so as not to contact the pipe. The thermoelectric element 10 generates an electromotive force according to the temperature difference between the temperature of the pipe surface and the temperature of the space where the pipe is installed.

昇圧回路11は、例えばチャージポンプ回路等で構成され、熱電素子10から出力された電圧を所定の電圧まで昇圧する。キャパシタ12(充放電手段)は、昇圧回路11で昇圧された出力電圧に応じた電荷を蓄積する。キャパシタ12で蓄積された電荷は放電によって制御回路13で利用される。   The booster circuit 11 is composed of a charge pump circuit, for example, and boosts the voltage output from the thermoelectric element 10 to a predetermined voltage. The capacitor 12 (charging / discharging means) accumulates electric charge according to the output voltage boosted by the booster circuit 11. The electric charge accumulated in the capacitor 12 is used in the control circuit 13 by discharging.

制御回路13は、キャパシタ12の出力端の電圧値が制御回路13が駆動可能な所定値以上となったときに起動し、所定値を下回ると停止する。制御回路13は、熱電素子10の状態、つまり、熱電素子10の出力電圧に応じた温度情報をアンテナ14から送信する。ここで、制御回路13の構成について図2を用いて説明する。なお、図2において昇圧回路11は省略する。   The control circuit 13 is started when the voltage value at the output terminal of the capacitor 12 becomes equal to or higher than a predetermined value that can be driven by the control circuit 13, and is stopped when the voltage value falls below the predetermined value. The control circuit 13 transmits temperature information corresponding to the state of the thermoelectric element 10, that is, the output voltage of the thermoelectric element 10 from the antenna 14. Here, the configuration of the control circuit 13 will be described with reference to FIG. In FIG. 2, the booster circuit 11 is omitted.

図2に示すように、制御回路13は、熱電素子10から発生される電圧信号を増幅する増幅回路131、電圧信号をA/D変換するA/D変換回路132、CPU(Central Processing Unit)133、送信回路134、及び、図示しないROM(Read Only Memory)やRAM(Random Access Memory)のメモリを含む。CPU133は、RAMをワーキングエリアとして、ROM(図示略)に記憶された制御プログラムを実行することにより、各部を制御して監視対象物の温度を外部へ出力する出力処理を行う。   As shown in FIG. 2, the control circuit 13 includes an amplification circuit 131 that amplifies the voltage signal generated from the thermoelectric element 10, an A / D conversion circuit 132 that A / D converts the voltage signal, and a CPU (Central Processing Unit) 133. , A transmission circuit 134, and a ROM (Read Only Memory) or RAM (Random Access Memory) memory (not shown). The CPU 133 uses the RAM as a working area and executes a control program stored in a ROM (not shown), thereby performing an output process of controlling each unit and outputting the temperature of the monitored object to the outside.

具体的には、CPU133は、制御プログラムを実行することにより、電圧値を温度に変換するための予め設定された第1演算式を用い、熱電素子10から出力された電圧信号をA/D変換した電圧値に対応する温度情報を生成する生成部133aとしての機能を有する。また、CPU133は、生成された温度情報を補正するための予め設定された第2演算式(補正情報)を用いて温度情報を補正する補正部133bとしての機能とを有する。この第2演算式は、例えば、熱電素子10が設けられる監視対象物の種類や材料、又は監視対象物や熱電素子10の設置環境など、監視対象物の温度監視条件に応じて定められ、本実施形態では、温度監視条件に応じて熱電素子10からの出力電圧と温度とを予め計測した結果に基づいて設定された演算式である。CPU133は、熱電素子10の出力電圧と温度情報の温度とを第2演算式に代入して温度情報を補正する。また、CPU133は、補正された温度情報を送信回路134から一定時間毎に出力する出力部133cとしての機能を有する。
送信回路134は、CPU133の制御の下、アンテナ14を介して、CPU133から出力された温度情報を送信する。
Specifically, the CPU 133 executes A / D conversion on the voltage signal output from the thermoelectric element 10 using a preset first arithmetic expression for converting the voltage value into temperature by executing a control program. It has the function as the production | generation part 133a which produces | generates the temperature information corresponding to the performed voltage value. In addition, the CPU 133 has a function as a correction unit 133b that corrects the temperature information using a preset second arithmetic expression (correction information) for correcting the generated temperature information. This second arithmetic expression is determined according to the temperature monitoring condition of the monitoring object, such as the type and material of the monitoring object on which the thermoelectric element 10 is provided, or the installation environment of the monitoring object or the thermoelectric element 10, for example. In the embodiment, the calculation formula is set based on the result of previously measuring the output voltage and temperature from the thermoelectric element 10 according to the temperature monitoring condition. The CPU 133 corrects the temperature information by substituting the output voltage of the thermoelectric element 10 and the temperature of the temperature information into the second arithmetic expression. In addition, the CPU 133 has a function as an output unit 133c that outputs the corrected temperature information from the transmission circuit 134 at regular intervals.
The transmission circuit 134 transmits the temperature information output from the CPU 133 via the antenna 14 under the control of the CPU 133.

(動作)
監視対象物の熱が熱電素子10に伝導すると、熱電素子10は熱に応じた電力を発生する。昇圧回路11は、熱電素子10の出力電圧を所定の電圧まで昇圧し、キャパシタ12は、昇圧回路11の出力電圧に応じた電荷を蓄積する。
(Operation)
When the heat of the monitoring object is conducted to the thermoelectric element 10, the thermoelectric element 10 generates electric power according to the heat. The booster circuit 11 boosts the output voltage of the thermoelectric element 10 to a predetermined voltage, and the capacitor 12 accumulates charges according to the output voltage of the booster circuit 11.

キャパシタ12の出力端電圧が制御回路13の駆動可能な電圧になると制御回路13は起動する。制御回路13は、熱電素子10から発生された電力の電圧信号を増幅回路131において増幅すると共に、A/D変換回路132において増幅された電圧信号をA/D変換する。   When the output terminal voltage of the capacitor 12 becomes a voltage that can be driven by the control circuit 13, the control circuit 13 is activated. The control circuit 13 amplifies the voltage signal of power generated from the thermoelectric element 10 in the amplifier circuit 131 and A / D converts the voltage signal amplified in the A / D conversion circuit 132.

制御回路13のCPU133は、A/D変換された電圧値を第1演算式に代入して当該電圧値を温度に変換して温度情報を生成すると共に、第2演算式に当該温度情報の温度と電圧値とを代入して温度情報を補正する。CPU133は、補正後の温度情報を無線で送信するための信号形式に変換して一定時間毎に送信回路134に出力し、送信回路134からアンテナ14を介して当該温度情報を送信する。   The CPU 133 of the control circuit 13 substitutes the A / D converted voltage value into the first arithmetic expression, converts the voltage value into a temperature to generate temperature information, and generates the temperature information in the second arithmetic expression. And the voltage value are substituted to correct the temperature information. The CPU 133 converts the corrected temperature information into a signal format for wireless transmission and outputs it to the transmission circuit 134 at regular intervals, and transmits the temperature information from the transmission circuit 134 via the antenna 14.

例えば、図3に示すようにキャパシタ12における出力端電圧が変化している場合、制御回路13は、キャパシタ12の出力端電圧が制御回路13が駆動可能な電圧値Vthとなるt1のタイミングで起動する。制御回路13は、t1〜t2までの間、熱電素子10から出力される電圧信号から温度情報を生成し、一定時間間隔(例えば、10秒間隔)で温度情報を送信する。
図3の例では、キャパシタ12の出力端電圧はタイミングt2の後、Vth未満となる。制御回路13は、電圧値がVth未満となるタイミングで停止する。そして、キャパシタ12の出力端電圧が再びVth以上となるt3のタイミングで制御回路13は起動する。制御回路13は、t3〜t4までの間、熱電素子10が発する電力の電圧から温度情報を生成し、一定時間間隔で温度情報を送信する。また、熱電素子10の状態として、熱電素子10の抵抗値を検出することにより温度情報を生成することもできる。その場合、制御回路13は微弱な定電流を印加して電圧値と電流値から抵抗値を検出し、検出した抵抗値を温度情報として出力してもよい。また、制御回路13は、検出した抵抗値を温度に変換する予め設定された演算式や変換テーブルを用いて抵抗値に対応する温度を特定し、特定した温度を温度情報として出力するようにしてもよい。
For example, when the output terminal voltage of the capacitor 12 is changing as shown in FIG. 3, the control circuit 13 starts at the timing t <b> 1 when the output terminal voltage of the capacitor 12 becomes the voltage value Vth that can be driven by the control circuit 13. To do. The control circuit 13 generates temperature information from the voltage signal output from the thermoelectric element 10 between t1 and t2, and transmits the temperature information at regular time intervals (for example, every 10 seconds).
In the example of FIG. 3, the output terminal voltage of the capacitor 12 becomes less than Vth after the timing t2. The control circuit 13 stops at the timing when the voltage value becomes less than Vth. Then, the control circuit 13 is activated at the timing t3 when the output terminal voltage of the capacitor 12 becomes equal to or higher than Vth again. The control circuit 13 generates temperature information from the voltage of the electric power generated by the thermoelectric element 10 from t3 to t4, and transmits the temperature information at regular time intervals. Moreover, temperature information can also be generated by detecting the resistance value of the thermoelectric element 10 as the state of the thermoelectric element 10. In that case, the control circuit 13 may apply a weak constant current to detect a resistance value from the voltage value and the current value, and output the detected resistance value as temperature information. In addition, the control circuit 13 specifies a temperature corresponding to the resistance value by using a preset arithmetic expression or conversion table for converting the detected resistance value into a temperature, and outputs the specified temperature as temperature information. Also good.

上記実施形態では、監視対象物に熱電素子10を設置することにより、監視対象物の温度に応じて蓄電し、その電力を用いて監視対象物の温度を外部に送信することができる。そのため、監視対象物の温度を測定するためのセンサや電池等の交換が不要となり、温度を測定することが困難な場所に監視対象物が設けられている場合や、監視対象物が多数ある場合などにおいて、安全且つ効率的に監視対象物の温度を監視することができる。また、電圧値から変換した温度は、監視対象物や監視対象物の設置環境に応じた補正情報に基づいて補正されるので、監視対象物のより的確な温度を得ることができる。また、温度情報が一定時間毎に外部に送信されるので、温度情報を送信するための電力を節電することができる。なお、上記実施形態において、温度情報を送信する毎に制御回路13を停止し、送信後一定時間が経過したときに制御回路13を起動して温度情報を生成して送信してもよい。つまり、制御回路13を間欠的に駆動させるようにしてもよい。このようにすれば、キャパシタ12の電力をより節電することができる。この場合、制御回路13は一定時間を計測するためのタイマー回路を有し、動作停止中はタイマー回路だけが給電を受けて計時する。タイマー回路の消費電力は微小にすることができるので、消費電力の大幅な低減が得られる。   In the said embodiment, by installing the thermoelectric element 10 in the monitoring target object, it can accumulate | store according to the temperature of the monitoring target object, and can transmit the temperature of the monitoring target object outside using the electric power. Therefore, there is no need to replace the sensor or battery to measure the temperature of the monitored object, and there are many monitored objects in the place where it is difficult to measure the temperature. For example, the temperature of the monitoring object can be monitored safely and efficiently. Moreover, since the temperature converted from the voltage value is corrected based on the correction information corresponding to the monitoring object and the installation environment of the monitoring object, a more accurate temperature of the monitoring object can be obtained. In addition, since the temperature information is transmitted to the outside at regular intervals, it is possible to save power for transmitting the temperature information. In the above embodiment, the control circuit 13 may be stopped every time the temperature information is transmitted, and the control circuit 13 may be activated to generate and transmit the temperature information when a certain time has elapsed after transmission. That is, the control circuit 13 may be driven intermittently. In this way, the power of the capacitor 12 can be further saved. In this case, the control circuit 13 has a timer circuit for measuring a certain time, and only the timer circuit receives power and measures time while the operation is stopped. Since the power consumption of the timer circuit can be reduced, a significant reduction in power consumption can be obtained.

<変形例>
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限るものではなく、以下の変形例も含まれる。
<Modification>
As mentioned above, although embodiment of this invention was described, this invention is not restricted to embodiment mentioned above, The following modifications are also contained.

(1)上述した実施形態では温度監視装置1について説明したが、温度監視装置1(送信装置)と、温度監視装置1と有線又は無線により接続されたパソコン等の受信装置とを有する温度監視システムとして構成してもよい。この場合、温度監視装置1は、熱電素子10から出力された電圧値や抵抗値等を監視情報として生成し、受信装置に対して監視情報を送信する。受信装置は、温度監視装置1から送信された監視情報を受信し、受信した監視情報から監視対象物の温度を求める。受信装置は、例えば、熱電素子10から発せられた電力の電圧値を監視情報として受信した場合、上記第1演算式を用い、監視情報の電圧値に対応する温度を特定する。さらに、受信装置は、第1演算式で求めた温度と監視情報の電圧値とを、監視対象物の温度監視条件に応じた第2演算式に代入して当該温度を補正する。なお、温度監視装置1は、実施形態と同様に、上記第1演算式を用いて電圧値を温度に変換した温度情報を監視情報として受信装置に送信してもよい。この場合は、受信装置において、実施形態と同様に、第2演算式を用いて監視情報の温度を補正するようにしてもよい。 (1) Although the temperature monitoring device 1 has been described in the above-described embodiment, the temperature monitoring system includes the temperature monitoring device 1 (transmission device) and a receiving device such as a personal computer connected to the temperature monitoring device 1 by wire or wirelessly. You may comprise as. In this case, the temperature monitoring device 1 generates a voltage value, a resistance value, or the like output from the thermoelectric element 10 as monitoring information, and transmits the monitoring information to the receiving device. The receiving device receives the monitoring information transmitted from the temperature monitoring device 1, and obtains the temperature of the monitoring object from the received monitoring information. For example, when the voltage value of the electric power generated from the thermoelectric element 10 is received as monitoring information, the receiving device specifies the temperature corresponding to the voltage value of the monitoring information using the first arithmetic expression. Further, the receiving device corrects the temperature by substituting the temperature obtained by the first arithmetic expression and the voltage value of the monitoring information into the second arithmetic expression corresponding to the temperature monitoring condition of the monitoring target. Note that, similarly to the embodiment, the temperature monitoring device 1 may transmit, as monitoring information, temperature information obtained by converting a voltage value into a temperature using the first arithmetic expression to the receiving device. In this case, in the receiving apparatus, the temperature of the monitoring information may be corrected using the second arithmetic expression, as in the embodiment.

(2)上述した実施形態及び変形例(1)では、第1演算式を用いて電圧値を温度に変換し、第1演算式で求めた温度を第2演算式を用いて補正する例を説明したが、熱電素子10が発生させた電力の電圧値から監視対象物の温度を求める方法はこれに限らない。例えば、第1演算式と第2演算式とを組合わせた演算式、つまり、監視対象物の温度監視条件に応じて定めた熱電素子10から発生した電力を温度に変換するための演算式を用いて温度を求めるようにしてもよい。また、演算式ではなく、電力と温度との対応関係を定義したテーブルを予め温度監視装置1又は受信装置において記憶し、温度監視装置1又は受信装置は、テーブルに基づいて温度を特定するようにしてもよい。 (2) In the embodiment and the modification example (1) described above, an example in which a voltage value is converted to a temperature using the first arithmetic expression, and a temperature obtained by the first arithmetic expression is corrected using the second arithmetic expression. Although demonstrated, the method of calculating | requiring the temperature of the monitoring target object from the voltage value of the electric power which the thermoelectric element 10 generated is not restricted to this. For example, an arithmetic expression that combines the first arithmetic expression and the second arithmetic expression, that is, an arithmetic expression for converting the electric power generated from the thermoelectric element 10 determined according to the temperature monitoring condition of the monitoring object into the temperature. It may be used to obtain the temperature. In addition, a table that defines the correspondence between power and temperature, not an arithmetic expression, is stored in advance in the temperature monitoring device 1 or the receiving device, and the temperature monitoring device 1 or the receiving device specifies the temperature based on the table. May be.

(3)上述した実施形態では、予め一つの補正情報が設定されている例であるが、例えば、監視対象物の材質や使用環境に応じた複数の補正情報のいずれかを温度監視装置1においてユーザが選択できるように構成してもよい。この場合、例えば、温度監視装置1に複数の補正情報を記憶させておくと共に、補正情報を選択するための操作部を設ける。ユーザは、温度監視装置1を監視対象物に設定する前に、監視対象物に応じた補正情報を選択する。制御回路13は、起動した際に選択されている補正情報を読み出し、当該補正情報に基づいて熱電素子10から出力した電圧信号に基づく温度を補正する。また、変形例(1)の場合には、受信装置に複数の補正情報を記憶させておき、温度監視装置1が設置されている環境や温度監視装置1が監視する監視対象物に応じて、ユーザが補正情報を選択する。受信装置は、選択された補正情報を用いて、温度監視装置1から受信した温度情報を補正する。 (3) The embodiment described above is an example in which one piece of correction information is set in advance. For example, any one of a plurality of pieces of correction information according to the material of the monitoring object and the usage environment is stored in the temperature monitoring device 1. You may comprise so that a user can select. In this case, for example, a plurality of correction information is stored in the temperature monitoring device 1 and an operation unit for selecting the correction information is provided. The user selects correction information corresponding to the monitoring object before setting the temperature monitoring device 1 as the monitoring object. The control circuit 13 reads the correction information selected at the time of activation, and corrects the temperature based on the voltage signal output from the thermoelectric element 10 based on the correction information. Further, in the case of the modification (1), a plurality of correction information is stored in the receiving device, and depending on the environment where the temperature monitoring device 1 is installed and the monitoring object monitored by the temperature monitoring device 1, The user selects correction information. The receiving device corrects the temperature information received from the temperature monitoring device 1 using the selected correction information.

(4)上述した実施形態では、熱電素子10を用いて、監視対象物の温度情報を出力する例を説明したが、例えば、監視対象物の位置、姿勢、圧力、湿度、ひずみなどの温度以外の情報を検出するセンサを設け、各センサの出力値を温度情報と共に外部に送信するようにしてもよい。 (4) In the above-described embodiment, the example in which the thermoelectric element 10 is used to output the temperature information of the monitoring target has been described. A sensor for detecting the information may be provided, and the output value of each sensor may be transmitted to the outside together with the temperature information.

(5)上述した実施形態では、温度情報を一定時間毎に外部に送信する例を説明したが、温度情報の送信は一定時間毎でなくてもよいし、温度情報の送信を行っていない間に、熱電素子10の温度情報を生成して送信するようにしてもよい。 (5) In the above-described embodiment, the example in which the temperature information is transmitted to the outside at regular intervals has been described. However, the temperature information may not be transmitted at regular intervals, or while the temperature information is not transmitted. In addition, the temperature information of the thermoelectric element 10 may be generated and transmitted.

(6)上述した実施形態では、昇圧回路11は、熱電素子10とキャパシタ12の間に設ける例を説明したが、熱電素子10から発生された電力をキャパシタ12に充電し、キャパシタ12の出力電圧を昇圧回路11で昇圧して制御回路13に出力するようにしてもよい。 (6) In the above-described embodiment, an example in which the booster circuit 11 is provided between the thermoelectric element 10 and the capacitor 12 has been described. However, the power generated from the thermoelectric element 10 is charged in the capacitor 12, and the output voltage of the capacitor 12 is output. May be boosted by the booster circuit 11 and output to the control circuit 13.

1…温度監視装置、10…熱電素子、11…昇圧回路、12…キャパシタ、13…制御回路、14…アンテナ、131…増幅回路、132…A/D変換回路、133…CPU、133a…生成部、133b…補正部、133c…出力部、134…送信回路   DESCRIPTION OF SYMBOLS 1 ... Temperature monitoring apparatus, 10 ... Thermoelectric element, 11 ... Boost circuit, 12 ... Capacitor, 13 ... Control circuit, 14 ... Antenna, 131 ... Amplifier circuit, 132 ... A / D conversion circuit, 133 ... CPU, 133a ... Generation part 133b: Correction unit, 133c: Output unit, 134: Transmission circuit

Claims (5)

監視対象物の熱が伝導される位置に設けられ、当該監視対象物の熱に応じた電力を発生させる熱電素子と、
前記熱電素子の出力電圧を昇圧する昇圧手段と、
前記昇圧手段から出力される電力を充電して放電する充放電手段と、
前記充放電手段から放電される電力を駆動電力として用い、前記監視対象物の熱による前記熱電素子の状態に応じた温度情報を生成する生成手段と、
前記充放電手段から放電される電力を駆動電力として用い、前記生成手段で生成された前記温度情報を外部に出力する信号形式に変換して出力する出力手段と
を備えることを特徴とする温度監視装置。
A thermoelectric element that is provided at a position where the heat of the monitoring object is conducted and generates electric power according to the heat of the monitoring object;
Boosting means for boosting the output voltage of the thermoelectric element;
Charging / discharging means for charging and discharging electric power output from the boosting means;
Using the power discharged from the charging / discharging means as driving power, generating means for generating temperature information according to the state of the thermoelectric element due to the heat of the monitoring object;
Output temperature means comprising: an output means for converting the temperature information generated by the generating means into a signal format to be output to the outside using the electric power discharged from the charging / discharging means as driving power; apparatus.
前記生成手段は、前記熱電素子の出力電圧に基づいて前記温度情報を生成することを特徴とする請求項1に記載の温度監視装置。   The temperature monitoring apparatus according to claim 1, wherein the generation unit generates the temperature information based on an output voltage of the thermoelectric element. 前記充放電手段から放電される電力を駆動電力として用い、前記熱電素子の抵抗値を検出する検出手段を備え、
前記生成手段は、前記検出手段で検出された抵抗値に基づいて前記温度情報を生成することを特徴とする請求項1に記載の温度監視装置。
Using electric power discharged from the charging / discharging means as driving electric power, comprising detecting means for detecting a resistance value of the thermoelectric element;
The temperature monitoring apparatus according to claim 1, wherein the generation unit generates the temperature information based on a resistance value detected by the detection unit.
前記生成手段で生成された前記温度情報を、予め定められた前記監視対象物の温度監視条件に応じた補正情報に基づいて補正する補正手段を備え、
前記出力手段は、前記補正手段によって補正された前記温度情報を前記信号形式に変換して出力することを特徴とする請求項1から3のいずれか一項に記載の温度監視装置。
A correction unit that corrects the temperature information generated by the generation unit based on correction information corresponding to a predetermined temperature monitoring condition of the monitoring object;
4. The temperature monitoring apparatus according to claim 1, wherein the output unit converts the temperature information corrected by the correction unit into the signal format and outputs the signal format. 5.
監視対象物の熱が伝導される位置に設けられ、当該監視対象物の熱に応じた電力を発生させる熱電素子と、
前記熱電素子の出力電圧を昇圧する昇圧手段と、
前記昇圧手段から出力される電力を充電して放電する充放電手段と、
前記充放電手段から放電される電力を駆動電力として用い、前記監視対象物の熱により前記熱電素子から発生された電力に関する監視情報を生成する生成手段と、
前記充放電手段から放電される電力を駆動電力として用い、前記生成手段で生成された前記監視情報を外部に出力する信号形式に変換して送信する送信手段とを有する送信装置と、
前記送信装置から出力された前記監視情報を受信する受信手段と、
前記監視対象物の温度と前記熱電素子から発生される電力との関係を予め定義した温度変換情報を記憶する記憶手段と、
前記受信手段が受信した前記監視情報と前記補正情報とに基づいて、前記監視対象物の温度を特定する特定手段と、
前記特定手段が特定した温度を出力する出力手段とを有する受信装置と
を備えることを特徴とする温度監視システム。
A thermoelectric element that is provided at a position where the heat of the monitoring object is conducted and generates electric power according to the heat of the monitoring object;
Boosting means for boosting the output voltage of the thermoelectric element;
Charging / discharging means for charging and discharging electric power output from the boosting means;
Using the power discharged from the charging / discharging means as driving power, generating means for generating monitoring information relating to the power generated from the thermoelectric element by the heat of the monitoring object;
A transmission device having transmission means that uses electric power discharged from the charge / discharge means as drive power, converts the monitoring information generated by the generation means into a signal format to be output to the outside, and transmits the signal information;
Receiving means for receiving the monitoring information output from the transmitting device;
Storage means for storing temperature conversion information that predefines the relationship between the temperature of the monitoring object and the electric power generated from the thermoelectric element;
Based on the monitoring information and the correction information received by the receiving means, specifying means for specifying the temperature of the monitoring object;
A temperature monitoring system comprising: a receiving device having an output unit that outputs the temperature specified by the specifying unit.
JP2010260218A 2010-11-22 2010-11-22 Temperature monitoring device and temperature monitoring system Expired - Fee Related JP5578047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010260218A JP5578047B2 (en) 2010-11-22 2010-11-22 Temperature monitoring device and temperature monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260218A JP5578047B2 (en) 2010-11-22 2010-11-22 Temperature monitoring device and temperature monitoring system

Publications (2)

Publication Number Publication Date
JP2012112710A true JP2012112710A (en) 2012-06-14
JP5578047B2 JP5578047B2 (en) 2014-08-27

Family

ID=46497095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010260218A Expired - Fee Related JP5578047B2 (en) 2010-11-22 2010-11-22 Temperature monitoring device and temperature monitoring system

Country Status (1)

Country Link
JP (1) JP5578047B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150139275A1 (en) * 2013-11-18 2015-05-21 Lsis Co., Ltd. Main circuit part of vacuum circuit breaker with self-powered temperature sensor assembly
US10006814B2 (en) 2013-07-01 2018-06-26 Murata Manufacturing Co., Ltd. Temperature detecting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931318A (en) * 2018-08-01 2018-12-04 深圳供电局有限公司 Temperature monitoring system at a kind of power distribution network cable connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639167A (en) * 1986-06-30 1988-01-14 Yamatake Honeywell Co Ltd Method for detecting temperature of thin-film cooling element
JP2000517421A (en) * 1996-08-23 2000-12-26 アキュートル インターナショナル コーポレーション Self-verifying temperature sensor
JP2002083389A (en) * 2000-09-08 2002-03-22 Mitsubishi Electric Corp Temperature rise monitoring sensor device and facility monitoring system
JP2005201858A (en) * 2004-01-19 2005-07-28 Toyohisa Okada Equipment with electromotive force alarm function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639167A (en) * 1986-06-30 1988-01-14 Yamatake Honeywell Co Ltd Method for detecting temperature of thin-film cooling element
JP2000517421A (en) * 1996-08-23 2000-12-26 アキュートル インターナショナル コーポレーション Self-verifying temperature sensor
JP2002083389A (en) * 2000-09-08 2002-03-22 Mitsubishi Electric Corp Temperature rise monitoring sensor device and facility monitoring system
JP2005201858A (en) * 2004-01-19 2005-07-28 Toyohisa Okada Equipment with electromotive force alarm function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10006814B2 (en) 2013-07-01 2018-06-26 Murata Manufacturing Co., Ltd. Temperature detecting device
US20150139275A1 (en) * 2013-11-18 2015-05-21 Lsis Co., Ltd. Main circuit part of vacuum circuit breaker with self-powered temperature sensor assembly
US9766137B2 (en) * 2013-11-18 2017-09-19 Lsis Co., Ltd. Main circuit part of vacuum circuit breaker with self-powered temperature sensor assembly

Also Published As

Publication number Publication date
JP5578047B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5981817B2 (en) Vibration monitoring system and environmental monitoring system
US10447053B2 (en) Terminal
AU2019202198A1 (en) Power tool battery pack with wireless communication
JP5697233B2 (en) Environmental information measuring apparatus, environmental information measuring system, and environmental information measuring method
US20120091968A1 (en) Method and apparatus for tracking maximum power point
JP2008136330A (en) Charging system, charger, and battery pack
JP2009148126A5 (en)
US20140128118A1 (en) Terminal device, communication system and method of activating terminal device
JP2013188019A (en) Energy harvesting device and environmental energy supply method
JP5578047B2 (en) Temperature monitoring device and temperature monitoring system
WO2014162786A1 (en) Sensor device and monitoring system
JP2006172748A (en) Battery pack
EP1705794A3 (en) Power generation control system for vehicle generator
KR101904986B1 (en) Wireless sensor node with power management function
JP2008513904A (en) Monitor device activity time
US11957054B2 (en) Thermoelectric generator
US20170294795A1 (en) Wireless charging device with dynamic power adjustment
US20170279304A1 (en) Wireless transmitting device and wireless transmitting system
US20220103669A1 (en) Wireless communication device and wireless communication method
JP6334457B2 (en) Current measurement system
JP5099436B2 (en) Hearing aid and processing program for the hearing aid
JP7081349B2 (en) Control system, control method by control system, and program
JP2005253166A (en) Power unit
JP2015026099A (en) Radio sensor terminal
WO2015045687A1 (en) Power supply device, device incorporating this power supply device, and environmental energy evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R150 Certificate of patent or registration of utility model

Ref document number: 5578047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees