JP2012112657A - Laser beam measuring method and measurement device thereof - Google Patents

Laser beam measuring method and measurement device thereof Download PDF

Info

Publication number
JP2012112657A
JP2012112657A JP2010259156A JP2010259156A JP2012112657A JP 2012112657 A JP2012112657 A JP 2012112657A JP 2010259156 A JP2010259156 A JP 2010259156A JP 2010259156 A JP2010259156 A JP 2010259156A JP 2012112657 A JP2012112657 A JP 2012112657A
Authority
JP
Japan
Prior art keywords
laser beam
coherence
delay
function
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010259156A
Other languages
Japanese (ja)
Other versions
JP5371933B2 (en
Inventor
Masaaki Inoue
雅晶 井上
Fumihiko Ito
文彦 伊藤
Yusuke Koshikiya
優介 古敷谷
Shinyuu Fan
ファン・シンユウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010259156A priority Critical patent/JP5371933B2/en
Publication of JP2012112657A publication Critical patent/JP2012112657A/en
Application granted granted Critical
Publication of JP5371933B2 publication Critical patent/JP5371933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To accurately measure a coherence time of laser beam having a narrow spectral line width (long coherence time).SOLUTION: When a coherence function γ(τ) of the laser beam to be measured, which is the function of a delay time τ, is measured, an optical frequency of the laser beam (11) to be measured is linearly swept (12), the swept laser beam is branched (131), one side of the branched laser beam is incident to a fiber optic (15) by a circulator (14) to generate a Rayleigh scattered light, the Rayleigh scattered light generated in the fiber optic (15) and branched laser beam of another side are combined (132), the combined beams are received to detect a light current (16), the detected light current is digitized and subjected to Fourier transformation (17, 18), a standard deviation of an amplitude on the delay 0 and a standard deviation of an amplitude on delay τ are calculated, and an absolute value of the coherence function on the delay τ is obtained by a ratio of both deviations (19).

Description

本発明は、レーザ光のコヒーレンス時間を正確に測定するレーザ光測定方法及びその測定装置に関する。   The present invention relates to a laser beam measurement method and a measurement apparatus for accurately measuring a coherence time of a laser beam.

従来、比較的スペクトル線幅が狭い(コヒーレンス時間が長い)レーザ光のコヒーレンス時間を正確に測定するために、レーザ光のコヒーレンス時間を関数として測定する方法が提案されている。
このレーザ光のコヒーレンス関数の測定に関わる方法としては、非特許文献1に記載のレーザ光のスペクトル測定方法が知られている。この測定方法は、被測定レーザ光を2分岐し、一方を十分な長さの光ファイバに入射し、もう一方を音響光学素子などによりその光周波数を一定量だけシフトする。その後、両者を合波し、受光素子によりビートスペクトルを測定する。
Conventionally, a method for measuring the coherence time of a laser beam as a function has been proposed in order to accurately measure the coherence time of a laser beam having a relatively narrow spectral line width (long coherence time).
As a method related to the measurement of the coherence function of the laser beam, a laser beam spectrum measurement method described in Non-Patent Document 1 is known. In this measurement method, the laser beam to be measured is split into two, one is incident on a sufficiently long optical fiber, and the other is shifted in optical frequency by a certain amount by an acoustooptic device or the like. Then, both are combined and a beat spectrum is measured with a light receiving element.

上記ビートスペクトル幅の1/√2が、レーザ光の発振スペクトル幅であることが知られていることから、上記ビートスペクトル幅からレーザ光のスペクトル線幅を測定することができる。また、このレーザ光のスペクトル線幅をΔνとすると、レーザ光のコヒーレンス時間は1/Δνであるので、これよりレーザ光のコヒーレンス時間を求めることができる。また、これに光速を乗算すればコヒーレンス長が得られる。   Since it is known that 1 / √2 of the beat spectrum width is the oscillation spectrum width of the laser beam, the spectral line width of the laser beam can be measured from the beat spectrum width. If the spectral line width of the laser beam is Δν, the coherence time of the laser beam is 1 / Δν, and from this, the coherence time of the laser beam can be obtained. If this is multiplied by the speed of light, the coherence length can be obtained.

但し、上記の測定方法には以下のような問題点が知られている。すなわち、上記説明の中で、分岐されたレーザ光の一方は十分に長い光ファイバにより、十分な時間遅延を与えてからもう一方と合波する必要があり、被測定レーザ光のコヒーレンス長よりも十分に長い遅延が要求される。即ち、従来の測定方法は、まさに被測定量であり、よって現段階では不明のレーザ光のコヒーレンス長よりも長い遅延が得られていることを前提に有効となる。したがって、従来の測定方法による測定結果は、レーザ光スペクトル幅の一定の推測を可能にするものの、不確実性を含んだものにならざるを得なかった。   However, the following problems are known in the above measurement method. That is, in the above description, one of the branched laser beams needs to be combined with the other one after giving a sufficient time delay by using a sufficiently long optical fiber, which is longer than the coherence length of the laser beam to be measured. A sufficiently long delay is required. In other words, the conventional measurement method is just an amount to be measured, and thus is effective on the assumption that a delay longer than the coherence length of the unknown laser beam is obtained at this stage. Therefore, although the measurement result obtained by the conventional measurement method enables a certain estimation of the laser beam spectrum width, it has to be uncertain.

上記の懸念は、特にスペクトル線幅が狭い(コヒーレンス時間が長い)レーザ光を測定する場合に顕著であり、近年においてファイバレーザなどの数kHz程度のスペクトル線幅を有するレーザが商用化されている状況では、その測定のあいまいさが問題となっていた。   The above-mentioned concerns are particularly noticeable when measuring laser light with a narrow spectral line width (long coherence time), and in recent years, lasers having a spectral line width of about several kHz such as fiber lasers have been commercialized. In the situation, the ambiguity of the measurement was a problem.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electronics Letters, Vol. 16, No. 16, pp. 630-631, 1980T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electronics Letters, Vol. 16, No. 16, pp. 630-631, 1980 Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectmetry with SSB-SC modulator and narrow linewidth fiber laser”, IEEE/OSA J. Lightwave Technol. Vol. 26, No. 18, pp. 3287-3294, 2008Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectmetry with SSB-SC modulator and narrow linewidth fiber laser”, IEEE / OSA J. Lightwave Technol. Vol 26, No. 18, pp. 3287-3294, 2008

しかしながら、上記のような従来の測定法では、分岐されたレーザ光の一方を十分に長い光ファイバを伝送させ、被測定レーザ光のコヒーレンス長よりも十分に長い遅延を生じさせた後、もう一方と合波し測定を行うが、ここでの測定量は、遅延を生じさせるために用意された光ファイバによって生じるコヒーレンス長であり、測定時には不明であるレーザ光のコヒーレンス長よりも長い遅延が得られていることが前提条件となっている。したがって、測定結果は、レーザ光スペクトル幅の推測は可能であるものの、その測定結果は不確実性を含んでいるという問題点があった。   However, in the conventional measurement method as described above, one of the branched laser beams is transmitted through a sufficiently long optical fiber, and a delay sufficiently longer than the coherence length of the laser beam to be measured is generated. The measurement amount here is the coherence length generated by the optical fiber prepared to cause the delay, and a delay longer than the coherence length of the laser light that is unknown at the time of measurement is obtained. This is a prerequisite. Therefore, although it is possible to estimate the spectrum width of the laser beam, there is a problem that the measurement result includes uncertainty.

本発明は、上記の事情に着目してなされたもので、その目的とするところは、スペクトル線幅が狭い(コヒーレンス時間が長い)レーザ光のコヒーレンス時間を正確に測定することのできるレーザ光測定方法及びその測定装置を提供することにある。   The present invention has been made by paying attention to the above-described circumstances, and its object is to perform laser beam measurement capable of accurately measuring the coherence time of a laser beam having a narrow spectral line width (long coherence time). It is to provide a method and a measuring device thereof.

本発明に係るレーザ光測定方法は以下のような態様の構成とする。
(1)遅延時間τの関数である被測定レーザ光のコヒーレンス関数γ(τ)を測定する方法であって、前記被測定レーザ光の光周波数を線形に掃引し、前記光周波数が掃引されたレーザ光を分岐し、前記分岐された一方のレーザ光を光ファイバに入射してレイリー散乱光を生じさせ、前記光ファイバで生じたレイリー散乱光と前記分岐されたもう一方のレーザ光とを合波し、前記合波された光を受光して光電流を検出し、前記検出された光電流を数値化してフーリエ変換し、フーリエ変換された光電流値より、遅延0における振幅の標準偏差と遅延τにおける振幅の標準偏差とを算出し、両者の比により遅延τにおけるコヒーレンス関数の絶対値を求める態様とする。
The laser beam measurement method according to the present invention has the following configuration.
(1) A method of measuring a coherence function γ (τ) of a laser beam to be measured that is a function of a delay time τ, wherein the optical frequency of the laser beam to be measured is swept linearly, and the optical frequency is swept A laser beam is split, and the branched one laser beam is incident on an optical fiber to generate Rayleigh scattered light. The Rayleigh scattered light generated in the optical fiber is combined with the other branched laser beam. And detecting the photocurrent by receiving the combined light, digitizing and Fourier transforming the detected photocurrent, and calculating the standard deviation of the amplitude at delay 0 from the Fourier-transformed photocurrent value. The standard deviation of the amplitude at the delay τ is calculated, and the absolute value of the coherence function at the delay τ is obtained by the ratio between the two.

(2)(1)の構成において、さらに、前記コヒーレンス関数の絶対値が1/eになるτをもってコヒーレンス時間を求める態様とする。
本発明に係るレーザ光測定装置は以下のような態様の構成とする。
(3)遅延時間τの関数であるレーザ光のコヒーレンス関数γ(τ)を測定する装置であって、被測定レーザ光の光周波数を線形に掃引する光周波数掃引手段と、前記光周波数掃引がされたレーザ光を分岐する分岐手段と、前記分岐された一方のレーザ光を入射してレイリー散乱光を生じさせる光ファイバと、前記光ファイバで生じたレイリー散乱光と前記分岐されたもう一方のレーザ光とを合波する合波手段と、前記合波された光を受光して光電流を検出する検出手段と、前記検出された光電流を数値化してフーリエ変換し、フーリエ変換された光電流値より、遅延0における振幅の標準偏差と遅延τにおける振幅の標準偏差とを算出し、両者の比により遅延τにおけるコヒーレンス関数の絶対値を求める演算手段とを具備する態様とする。
(2) In the configuration of (1), the coherence time is further determined by τ where the absolute value of the coherence function is 1 / e.
The laser beam measurement apparatus according to the present invention has the following configuration.
(3) An apparatus for measuring a coherence function γ (τ) of a laser beam that is a function of the delay time τ, an optical frequency sweeping means for linearly sweeping the optical frequency of the laser beam to be measured, and the optical frequency sweep A branching means for branching the laser beam, an optical fiber that causes one of the branched laser beams to enter to generate Rayleigh scattered light, a Rayleigh scattered light generated in the optical fiber, and the other branched one. Light that is combined with laser light, detection means that receives the combined light and detects photocurrent, and digitizes the detected photocurrent and performs Fourier transform, and light subjected to Fourier transform An arithmetic means is provided that calculates the standard deviation of the amplitude at the delay 0 and the standard deviation of the amplitude at the delay τ from the current value, and obtains the absolute value of the coherence function at the delay τ by the ratio of the two.

(4)(3)の構成において、さらに、前記コヒーレンス関数の絶対値が1/eになるτをもってコヒーレンス時間を求める態様とする。   (4) In the configuration of (3), the coherence time is further determined by τ at which the absolute value of the coherence function is 1 / e.

以上のように、本発明は、測定値に対し統計処理を行うことにより、従来よりも信頼性を向上させることを特徴としている。具体的には、周波数掃引された被測定レーザ光をC-OFDRを応用しレイリー散乱強度を測定し得られたレイリー散乱強度の絶対値の標準偏差を算出し、τ(コヒーレンス時間)におけるコヒーレンス関数の絶対値を求めるものである。   As described above, the present invention is characterized in that the reliability is improved as compared with the prior art by performing statistical processing on the measured value. Specifically, the standard deviation of the absolute value of the Rayleigh scattering intensity obtained by measuring the Rayleigh scattering intensity by applying C-OFDR to the laser light to be measured that has been swept in frequency is calculated, and the coherence function at τ (coherence time) The absolute value of is obtained.

本発明によれば、用意した光ファイバの全長の光の往復時間よりもτが小さい場合であっても、コヒーレンス関数の絶対値を求めることが可能となる。さらに、その値が1/eに減ずるτを求めることにより、レーザ光のコヒーレンス時間を求めることも可能となる。   According to the present invention, the absolute value of the coherence function can be obtained even when τ is smaller than the round-trip time of the full length of the prepared optical fiber. Further, by obtaining τ whose value is reduced to 1 / e, it is possible to obtain the coherence time of the laser beam.

要するに本発明の構成によれば、スペクトル線幅が狭い(コヒーレンス時間が長い)レーザ光のコヒーレンス時間を正確に測定することのできるレーザ光測定方法及びその測定装置を提供することができる。   In short, according to the configuration of the present invention, it is possible to provide a laser beam measurement method and a measurement apparatus capable of accurately measuring the coherence time of a laser beam having a narrow spectral line width (long coherence time).

本発明に係るレーザ光測定装置の一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment of the laser beam measuring apparatus which concerns on this invention. 図1に示す実施形態の周波数掃引によって与えられる光周波数の変化を示す特性図。The characteristic view which shows the change of the optical frequency given by the frequency sweep of embodiment shown in FIG.

以下、図面を参照して本発明の実施形態を説明する。
図1は本発明に係るレーザ光測定装置の一実施形態の構成を示すブロック図である。図1において、11は被測定レーザ光源、12は被測定レーザ光源11で発生されるレーザ光を入射して光周波数を掃引する機能を有する光周波数掃引装置である。この光周波数掃引装置12で光周波数が掃引されたレーザ光は、光伝送路に送出され、光分岐器131により2分岐される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of an embodiment of a laser beam measuring apparatus according to the present invention. In FIG. 1, reference numeral 11 denotes a laser light source to be measured, and reference numeral 12 denotes an optical frequency sweeping device having a function of making the laser light generated by the laser light source 11 to be measured incident and sweeping the optical frequency. The laser light whose optical frequency has been swept by the optical frequency sweeping device 12 is sent to the optical transmission path and branched into two by the optical branching device 131.

ここで分岐された一方のレーザ光は光サーキュレータ14を介して光ファイバ15に入射される。この光ファイバ15内ではレイリー散乱と呼ばれる光散乱が生じる。この散乱光は光ファイバ15を逆行し、光サーキュレータ14によって光合波器132に向けて送出される。光分岐器131で分岐された他方のレーザ光はそのまま光合波器132に送られ、光サーキュレータ14からのレーザ光と合波された後、再度2系統に分配されてバランス型受光素子14の受光面に照射される。   One of the branched laser beams is incident on the optical fiber 15 via the optical circulator 14. Light scattering called Rayleigh scattering occurs in the optical fiber 15. The scattered light travels backward through the optical fiber 15 and is transmitted toward the optical multiplexer 132 by the optical circulator 14. The other laser beam branched by the optical splitter 131 is sent to the optical multiplexer 132 as it is, and after being combined with the laser beam from the optical circulator 14, it is again distributed to two systems and received by the balanced light receiving element 14. The surface is irradiated.

上記バランス型受光素子14では、2つの光合波出力それぞれを個別に受光し、それぞれの受光量に応じた光電流を発生する。このバランス型受光素子14で得られた2つの光電流出力はデータ取得部17に送られる。
このデータ取得部17は、例えばA/Dコンバータ等による数値化処理部と数値化されたデータを格納するメモリによって構成され、バランス型受光素子16に生じた光電流を数値化し、メモリに記録しておく。
The balanced light receiving element 14 individually receives the two optical combined outputs and generates a photocurrent corresponding to the amount of received light. Two photocurrent outputs obtained by the balanced light receiving element 14 are sent to the data acquisition unit 17.
The data acquisition unit 17 includes a digitization processing unit such as an A / D converter and a memory for storing the digitized data. The data acquisition unit 17 digitizes the photocurrent generated in the balanced light receiving element 16 and records it in the memory. Keep it.

一方、フーリエ変換部18及びコヒーレンス関数解析部19は、パーソナルコンピュータ等の数値演算部で実現されるものであり、上記光電流をフーリエ変換してコヒーレンス関数解析を行う。
上記構成において、以下に処理動作を説明する。
まず、被測定レーザ光源11が発するレーザ光の電界振幅E(t)を(1)式のように表すこととする。
On the other hand, the Fourier transform unit 18 and the coherence function analysis unit 19 are realized by a numerical computation unit such as a personal computer, and perform a coherence function analysis by Fourier transforming the photocurrent.
In the above configuration, the processing operation will be described below.
First, the electric field amplitude E (t) of the laser light emitted from the laser light source 11 to be measured is expressed as shown in equation (1).

Figure 2012112657
ここでθ(t)は、レーザ光の位相雑音を表す確率変数である。
レーザ光のコヒーレンス関数γ(τ)は、(2)式で与えられる。
Figure 2012112657
Here, θ (t) is a random variable representing the phase noise of the laser beam.
The coherence function γ (τ) of the laser beam is given by equation (2).

Figure 2012112657
ここで、かっこ記号の<>は統計平均を意味するが、通常のレーザ光においてはこれを時間平均で置き換えることができる。その場合、コヒーレンス関数は(3)式により定義される。
Figure 2012112657
Here, <> of the parenthesis sign means a statistical average, but this can be replaced with a time average in a normal laser beam. In that case, the coherence function is defined by equation (3).

Figure 2012112657
Figure 2012112657

Figure 2012112657
Figure 2012112657

Figure 2012112657
で表される。また、*は位相共役を意味する。
被測定レーザ光源11が発した被測定レーザ光は、光周波数掃引装置12によって、図2に示すようにその光周波数が時間に対してT秒間線形に掃引される。光周波数掃引装置12としては、例えば非特許文献2に記載の単一側波帯変調器を用いることにより実現できる。
Figure 2012112657
It is represented by * Means phase conjugation.
The measured laser light emitted from the measured laser light source 11 is swept linearly for T seconds with respect to time by the optical frequency sweep device 12 as shown in FIG. The optical frequency sweeping device 12 can be realized by using, for example, a single sideband modulator described in Non-Patent Document 2.

光周波数掃引装置12により光周波数が掃引された光波の電界振幅ESW(t)は、(4)式で表される。 The electric field amplitude E SW (t) of the light wave whose optical frequency has been swept by the optical frequency sweeping device 12 is expressed by equation (4).

Figure 2012112657
ここでgは光周波数の掃引速度(Hz/s)である。
周波数掃引されたレーザ光は、光分岐器131により2分岐され、一方は光サーキュレータ14を介して光ファイバ15に入射される。光ファイバ15内ではレイリー散乱と呼ばれる光散乱が生じ、その散乱光は光ファイバ15を逆方向に伝搬して光サーキュレータ14に戻り、このサーキュレータ14の機能によって光合波器15に送り出される。分岐されたもう一方のレーザ光は、そのまま光合波器132に向かって進行する。光合波器132ではこれらのレーザ光が合波される。
Figure 2012112657
Here, g is the sweep speed (Hz / s) of the optical frequency.
The frequency-swept laser light is branched into two by the optical branching device 131, and one of the laser light is incident on the optical fiber 15 through the optical circulator 14. Light scattering called Rayleigh scattering occurs in the optical fiber 15, and the scattered light propagates in the reverse direction through the optical fiber 15, returns to the optical circulator 14, and is sent out to the optical multiplexer 15 by the function of this circulator 14. The other branched laser beam travels toward the optical multiplexer 132 as it is. In the optical multiplexer 132, these laser beams are multiplexed.

本構成は、同じく非特許文献2に説明されているコヒーレント光周波数領域反射計(Coherent Optical Frequency Domain Reflectometry:C-OFDR)と呼ばれる反射分布測定装置の構成を応用したものであり、光ファイバ15内の1つの反射点Zmまでの光の往復時間をτm とすると、この反射点からの散乱光によってバランス受光素子16に生じる光電流im(t)は、(5)式により表される。 This configuration is an application of the configuration of a reflection distribution measuring device called a coherent optical frequency domain reflectometer (C-OFDR), which is also described in Non-Patent Document 2, one When round trip time tau m of light to the reflection point Z m of photocurrent i m generated in balanced light-receiving element 16 by the scattered light from the reflection point (t) is expressed by equation (5) .

Figure 2012112657
ここで複素数rm は反射点zm のレイリー反射係数であり、ランダムな値をとる確率変数である。
(5)式のフーリエ変換を(6)式に変換すると、
Figure 2012112657
Here, the complex number r m is the Rayleigh reflection coefficient of the reflection point z m and is a random variable that takes a random value.
When the Fourier transform of equation (5) is converted into equation (6),

Figure 2012112657
(6)式に(5)式を代入してf=gτm と置くことにより(7)式を得る。
Figure 2012112657
By substituting equation (5) into equation (6) and setting f = gτ m , equation (7) is obtained.

Figure 2012112657
ここでTが十分に大きく、
Figure 2012112657
Where T is large enough,

Figure 2012112657
が成立すると、(7)式は(8)式に示すようになる。
Figure 2012112657
(7) becomes as shown in (8).

Figure 2012112657
一般に、光ファイバにコヒーレントなレーザ光を入射すると、そのレイリー散乱光はランダムな強度揺らぎを持つことが知られているが、上記の装置構成においてもそれは同様である。このことから、(8)式は光ファイバの微小体積からのコヒーレントな散乱量を表し、コヒーレントな散乱の全散乱強度Ω(gτm )はそれらの無数の和で決まる。すなわち(9)式に示すようになる。
Figure 2012112657
In general, when coherent laser light is incident on an optical fiber, the Rayleigh scattered light is known to have random intensity fluctuations, but the same applies to the above apparatus configuration. From this, the equation (8) represents the amount of coherent scattering from a minute volume of the optical fiber, and the total scattering intensity Ω (gτ m ) of the coherent scattering is determined by their innumerable sum. That is, as shown in equation (9).

Figure 2012112657
尚、バランス型受光素子16に生じる全電流(あらゆる反射点からの電流の和)をi(t)とすれば、
Figure 2012112657
If the total current (sum of currents from all reflection points) generated in the balanced light receiving element 16 is i (t),

Figure 2012112657
であるので、Ω(gτm )は全電流i(t)のフーリエ変換によって以下のように求められることは明らかである。
Figure 2012112657
Therefore, it is clear that Ω (gτ m ) can be obtained as follows by Fourier transform of the total current i (t).

Figure 2012112657
(8)式によれば、遅延時間がτm の場合には、微小体積からのコヒーレントな散乱の大きさがγ(τm )倍に小さくなる(コヒーレンス関数γ(τ)は複素数であるが、その絶対値は0以上1以下である)ので、その近傍でのレイリー散乱強度の揺らぎの大きさもγ(τm )倍に小さくなることになる。
Figure 2012112657
According to the equation (8), when the delay time is τ m , the magnitude of coherent scattering from a small volume is reduced by γ (τ m ) times (although the coherence function γ (τ) is a complex number). Therefore, the magnitude of the fluctuation of the Rayleigh scattering intensity in the vicinity thereof is also reduced by γ (τ m ) times.

これを利用して、上記観測からコヒーレンス関数を算出するためには、観測可能量であるレイリー散乱強度の絶対値|Ω(gτm )|の統計量を計算する。まずτ=0においては、γ(τ)=γ(0)=1であり、τm 近傍ではγ(τm )はほぼ一定と考えられるので、散乱強度Ω(0)の絶対値の標準偏差は、 Using this, in order to calculate the coherence function from the above observation, the statistic of the absolute value | Ω (gτ m ) | of the Rayleigh scattering intensity, which is an observable amount, is calculated. First, at τ = 0, γ (τ) = γ (0) = 1, and γ (τ m ) is considered to be almost constant near τ m , so the standard deviation of the absolute value of the scattering intensity Ω (0) Is

Figure 2012112657
の標準偏差σ|γ|に等しい。すなわち(10)式に示すようになる。
Figure 2012112657
Is equal to the standard deviation σ | γ |. That is, as shown in equation (10).

Figure 2012112657
(9)式において、rm とγ(τm )はいずれも複素数であり、かつrm はランダムな確率複素変数であって、その偏角は0〜2πまで均一に分布する。よって、γ(τm )の偏角をrm に組み入れて新しい変数r’m を定義し、γ(τm )はその絶対値のみを残す形に表記しても問題ない。すなわち
Figure 2012112657
In equation (9), both r m and γ (τ m ) are complex numbers, and r m is a random random complex variable whose declination is uniformly distributed from 0 to 2π. Therefore, there is no problem even if a new variable r ′ m is defined by incorporating the argument of γ (τ m ) into r m and γ (τ m ) is left in its absolute value. Ie

Figure 2012112657
が成立する。r’m はrm と全く同じ性質の確率変数である。遅延τm におけるΩ(gτm )の絶対値の標準偏差は、(11)式より直ちに
Figure 2012112657
Is established. r ′ m is a random variable having exactly the same properties as r m . The standard deviation of the absolute value of Ω (gτ m ) at the delay τ m is immediately calculated from the equation (11).

Figure 2012112657
と求めることができる。(10)式、(12)式の比をとってσ|γ|を消去すれば、以下のようにコヒーレンス関数を求めることができる。
Figure 2012112657
It can be asked. If σ | γ | is eliminated by taking the ratio of Equations (10) and (12), the coherence function can be obtained as follows.

Figure 2012112657
標準偏差を求めるには多数の標本を必要とする。C-OFDRの理論によれば、観測されるレイリー散乱強度は、光周波数1/Tごとに独立である。したがって、例えばΩ(0)の標準偏差を求めるに当たっては、τ=0近傍において、Δf=1/Tごとに標本
Figure 2012112657
A large number of samples are required to obtain the standard deviation. According to the C-OFDR theory, the observed Rayleigh scattering intensity is independent for each optical frequency 1 / T. Therefore, for example, when obtaining the standard deviation of Ω (0), in the vicinity of τ = 0, every Δf = 1 / T

Figure 2012112657
を収集し、これらの標準偏差を求めればよい。Ω(gτm )の標準偏差を求める場合も同様である。
以上の知見にもとづき、図1の構成において次の手順でコヒーレンス関数を求める。
データ取得部17は、例えばA/Dコンバータによる数値化装置と数値化された値を格納するメモリによって構成され、バランス型受光素子16に生じた光電流i(t)を数値化し、メモリに記録する。フーリエ変換部18は、パーソナルコンピュータ等の数値演算処理装置で構成され、上記光電流i(t)をフーリエ変換し、
Figure 2012112657
Are collected, and these standard deviations may be obtained. The same applies when obtaining the standard deviation of Ω (gτ m ).
Based on the above knowledge, a coherence function is obtained by the following procedure in the configuration of FIG.
The data acquisition unit 17 includes, for example, a digitizing device using an A / D converter and a memory that stores the digitized value. The data acquisition unit 17 digitizes the photocurrent i (t) generated in the balanced light receiving element 16 and records it in the memory. To do. The Fourier transform unit 18 is composed of a numerical calculation processing device such as a personal computer, and Fourier transforms the photocurrent i (t).

Figure 2012112657
を得る。
最後に、コヒーレンス関数解析部19は、Ω(0)近傍及びΩ(gτ)近傍でのそれぞれの標準偏差を算出し、
Figure 2012112657
Get.
Finally, the coherence function analysis unit 19 calculates respective standard deviations in the vicinity of Ω (0) and Ω (gτ),

Figure 2012112657
によりτにおけるコヒーレンス関数の絶対値を求める。
この作業は、使用する光ファイバ15の全長の光の往復時間よりも小さいτの場合であっても可能であり、その範囲でのコヒーレンス関数の絶対値を求めることができる。その値が1/eに減ずるτを求めれば、光源のコヒーレンス時間を求めることもできる。
Figure 2012112657
To obtain the absolute value of the coherence function at τ.
This operation can be performed even when τ is smaller than the round-trip time of light of the entire length of the optical fiber 15 to be used, and the absolute value of the coherence function in that range can be obtained. If the value τ whose value is reduced to 1 / e is obtained, the coherence time of the light source can be obtained.

但し、標準偏差の代わりに変動係数(標準偏差/標準偏差の算出に使用したポイント数)を用いてもコヒーレンス関数を求めることができる。
上記実施形態によるコヒーレンス関数の測定方法並びにコヒーレンス時間の測定方法は、従来技術に対して以下の優位性を持つ。
However, the coherence function can also be obtained by using a variation coefficient (standard deviation / number of points used for calculating the standard deviation) instead of the standard deviation.
The coherence function measurement method and the coherence time measurement method according to the above embodiment have the following advantages over the prior art.

第1に、コヒーレンス時間と同程度の光ファイバ長により測定が可能な上、仮にコヒーレンス時間が光ファイバ長よりもはるかに長かった場合には、そのこと自体が測定により明らかにされるので、より長い光ファイバに置き換えて測定をやり直すなどの処置を取ることができる。よって、本実施形態は、従来技術よりも信頼性に優れた測定結果を提供するといえる。   First, measurement is possible with an optical fiber length comparable to the coherence time, and if the coherence time is much longer than the optical fiber length, the measurement itself is revealed by the measurement. It is possible to take measures such as re-measurement by replacing with a long optical fiber. Therefore, it can be said that this embodiment provides a measurement result that is more reliable than the prior art.

第2に、単にコヒーレンス時間の測定が可能となるだけでなく、そのコヒーレンス関数の絶対値の全容が掌握される。これにより、レーザ光の性質をより詳しく測定できると考えられる。
以上、実施形態に記載の構成によれば、スペクトル線幅が狭い(コヒーレンス時間が長い)レーザ光のコヒーレンス時間を正確に測定することのできるレーザ光測定方法及びその測定装置が実現する。
Second, not only is it possible to measure the coherence time, but the entire absolute value of the coherence function is captured. Thereby, it is considered that the properties of the laser beam can be measured in more detail.
As described above, according to the configuration described in the embodiments, a laser beam measurement method and a measurement apparatus that can accurately measure the coherence time of a laser beam having a narrow spectral line width (long coherence time) are realized.

尚、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成を削除してもよい。さらに、異なる実施形態例に亘る構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some configurations may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different example embodiments may be combined as appropriate.

11…被測定レーザ光源、12…光周波数掃引装置、131…光分岐器、132…光合波器、14…光サーキュレータ、15…光ファイバ、14…バランス型受光素子、17…データ取得部、18…フーリエ変換部、19…コヒーレンス関数解析部。   DESCRIPTION OF SYMBOLS 11 ... Laser light source to be measured, 12 ... Optical frequency sweep device, 131 ... Optical splitter, 132 ... Optical multiplexer, 14 ... Optical circulator, 15 ... Optical fiber, 14 ... Balance type light receiving element, 17 ... Data acquisition unit, 18 ... Fourier transform unit, 19 ... coherence function analysis unit.

Claims (4)

遅延時間τの関数である被測定レーザ光のコヒーレンス関数γ(τ)を測定する方法であって、
前記被測定レーザ光の光周波数を線形に掃引し、
前記光周波数が掃引されたレーザ光を分岐し、
前記分岐された一方のレーザ光を光ファイバに入射してレイリー散乱光を生じさせ、
前記光ファイバで生じたレイリー散乱光と前記分岐されたもう一方のレーザ光とを合波し、
前記合波された光を受光して光電流を検出し、
前記検出された光電流を数値化してフーリエ変換し、フーリエ変換された光電流値より、遅延0における振幅の標準偏差と遅延τにおける振幅の標準偏差とを算出し、両者の比により遅延τにおけるコヒーレンス関数の絶対値を求める
ことを特徴とするレーザ光測定方法。
A method for measuring a coherence function γ (τ) of a laser beam to be measured, which is a function of a delay time τ,
The optical frequency of the laser beam to be measured is swept linearly,
Branching the laser light whose optical frequency has been swept,
One of the branched laser beams is incident on an optical fiber to generate Rayleigh scattered light,
Combining the Rayleigh scattered light generated in the optical fiber and the other branched laser light,
Receiving the combined light and detecting a photocurrent;
The detected photocurrent is digitized and Fourier transformed. From the Fourier transformed photocurrent value, the standard deviation of amplitude at delay 0 and the standard deviation of amplitude at delay τ are calculated. A method for measuring a laser beam, characterized by obtaining an absolute value of a coherence function.
さらに、前記コヒーレンス関数の絶対値が1/eになるτをもってコヒーレンス時間を求めることを特徴とする請求項1に記載のレーザ光測定方法。   2. The laser beam measurement method according to claim 1, wherein the coherence time is obtained from τ where the absolute value of the coherence function is 1 / e. 遅延時間τの関数であるレーザ光のコヒーレンス関数γ(τ)を測定する装置であって、
被測定レーザ光の光周波数を線形に掃引する光周波数掃引手段と、
前記光周波数掃引がされたレーザ光を分岐する分岐手段と、
前記分岐された一方のレーザ光を入射してレイリー散乱光を生じさせる光ファイバと、
前記光ファイバで生じたレイリー散乱光と前記分岐されたもう一方のレーザ光とを合波する合波手段と、
前記合波された光を受光して光電流を検出する検出手段と、
前記検出された光電流を数値化してフーリエ変換し、フーリエ変換された光電流値より、遅延0における振幅の標準偏差と遅延τにおける振幅の標準偏差とを算出し、両者の比により遅延τにおけるコヒーレンス関数の絶対値を求める演算手段と
を具備することを特徴とするレーザ光測定装置。
An apparatus for measuring a coherence function γ (τ) of laser light that is a function of a delay time τ,
An optical frequency sweeping means for linearly sweeping the optical frequency of the laser beam to be measured;
Branching means for branching the laser light subjected to the optical frequency sweep;
An optical fiber that injects one of the branched laser beams to generate Rayleigh scattered light;
Multiplexing means for multiplexing the Rayleigh scattered light generated in the optical fiber and the other branched laser beam;
Detecting means for receiving the combined light and detecting a photocurrent;
The detected photocurrent is digitized and Fourier transformed. From the Fourier transformed photocurrent value, the standard deviation of amplitude at delay 0 and the standard deviation of amplitude at delay τ are calculated. A laser beam measuring apparatus comprising: an arithmetic means for obtaining an absolute value of a coherence function.
前記演算手段は、さらに前記コヒーレンス関数の絶対値が1/eになるτをもってコヒーレンス時間を求めることを特徴とする請求項3に記載のレーザ光測定装置。   4. The laser beam measuring apparatus according to claim 3, wherein the arithmetic means further obtains a coherence time from τ where the absolute value of the coherence function is 1 / e.
JP2010259156A 2010-11-19 2010-11-19 Laser light measuring method and measuring apparatus Active JP5371933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010259156A JP5371933B2 (en) 2010-11-19 2010-11-19 Laser light measuring method and measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010259156A JP5371933B2 (en) 2010-11-19 2010-11-19 Laser light measuring method and measuring apparatus

Publications (2)

Publication Number Publication Date
JP2012112657A true JP2012112657A (en) 2012-06-14
JP5371933B2 JP5371933B2 (en) 2013-12-18

Family

ID=46497056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010259156A Active JP5371933B2 (en) 2010-11-19 2010-11-19 Laser light measuring method and measuring apparatus

Country Status (1)

Country Link
JP (1) JP5371933B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007571A (en) * 2011-06-22 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Laser beam coherence function measuring method and measuring apparatus
JP2013152118A (en) * 2012-01-24 2013-08-08 Nippon Telegr & Teleph Corp <Ntt> Measurement method and device of laser beam characteristics
JP2014038004A (en) * 2012-08-13 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Measuring method and measuring apparatus of laser beam characteristics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242104A (en) * 1991-01-14 1992-08-28 Nippon Telegr & Teleph Corp <Ntt> Optical delay element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242104A (en) * 1991-01-14 1992-08-28 Nippon Telegr & Teleph Corp <Ntt> Optical delay element

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6013044537; 井上雅晶 他: '"C-OFDRによる後方散乱統計解析を用いたレーザのコヒーレンス評価"' 電子情報通信学会ソサイエティ大会講演論文集 2011年通信(2), 20110830, Page 356 [B-13-19] *
JPN6013044542; INOUE,M. 他: '"Coherence characterization of narrow-linewidth beam by C-OFDR based Rayleigh speckle analysis"' Optics Express Volume 19, Issue 21, 20110926, Pages 19790-19796 *
JPN6013044545; KOSHIKIYA,Y. 他: '"Long Range and cm-Level Spatial Resolution Measurement Using Coherent Optical Frequency Domain Ref' Journal of Lightwave Technology Volume 26, Issue 18, 20080915, Pages 3287-3294 *
JPN6013044547; SHIMIZU,K. 他: '"Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for' Journal of Lightwave Technology Volume 10, Issue 7, 199207, Pages 982-987 *
JPN6013044548; KAMATANI,O. 他: '"Optical coherence domain reflectometry by synthesis of coherence function with nonlinearity compen' Journal of Lightwave Technology Volume 11, Issue 11, 199311, Pages 1854-1862 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007571A (en) * 2011-06-22 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Laser beam coherence function measuring method and measuring apparatus
JP2013152118A (en) * 2012-01-24 2013-08-08 Nippon Telegr & Teleph Corp <Ntt> Measurement method and device of laser beam characteristics
JP2014038004A (en) * 2012-08-13 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Measuring method and measuring apparatus of laser beam characteristics

Also Published As

Publication number Publication date
JP5371933B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
EP2128588B1 (en) Optical refractometry measuring method and device
JP6308160B2 (en) Optical fiber strain measuring device and optical fiber strain measuring method
JP6552983B2 (en) Brillouin scattering measurement method and Brillouin scattering measurement apparatus
JP6893137B2 (en) Optical fiber vibration detection sensor and its method
JP6358277B2 (en) Optical fiber strain and temperature measuring device and optical fiber strain and temperature measuring method
JP2017026503A (en) Vibration distribution measurement method and vibration distribution measurement device
WO2020008886A1 (en) Distributed optical fiber vibration measurement device and distributed optical fiber vibration measurement method
JP7286994B2 (en) Optical fiber strain and temperature measuring device and optical fiber strain and temperature measuring method
JP4769668B2 (en) Optical reflectometry measuring method and apparatus
JP5371933B2 (en) Laser light measuring method and measuring apparatus
JP5827140B2 (en) Laser light characteristic measuring method and measuring apparatus
JP5613627B2 (en) Laser optical coherence function measuring method and measuring apparatus
US11522606B2 (en) Phase measurement method, signal processing device, and program
JP6539931B2 (en) Brillouin frequency shift distribution measurement system, Brillouin frequency shift distribution measurement apparatus, Brillouin frequency shift distribution measurement method, and Brillouin frequency shift distribution measurement program
JP7040386B2 (en) Optical fiber strain and temperature measuring device and optical fiber strain and temperature measuring method
JP6751379B2 (en) Optical time domain reflectometry method and optical time domain reflectometry apparatus
JP5207252B2 (en) Optical frequency domain reflection measurement method and optical frequency domain reflection measurement apparatus
JP5470320B2 (en) Laser light coherence length measuring method and measuring apparatus
JP5927079B2 (en) Laser light characteristic measuring method and measuring apparatus
JP7424360B2 (en) Optical fiber characteristic measuring device and optical fiber characteristic measuring method
US11300455B2 (en) Optical spectral line width calculation method, device, and program
JP2022096792A (en) Device and method for measuring strain and temperature of optical fiber
JP2017032466A (en) Optical reflectometry device and optical reflectometry method
JP2023000350A (en) Measurement device for strain and temperature of optical fiber and measurement method for strain and temperature of optical fiber
CN116222404A (en) Sensing system for measuring difference between two arms of MZI and measuring method for difference between two arms of MZI

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350