JP2017032466A - Optical reflectometry device and optical reflectometry method - Google Patents

Optical reflectometry device and optical reflectometry method Download PDF

Info

Publication number
JP2017032466A
JP2017032466A JP2015154407A JP2015154407A JP2017032466A JP 2017032466 A JP2017032466 A JP 2017032466A JP 2015154407 A JP2015154407 A JP 2015154407A JP 2015154407 A JP2015154407 A JP 2015154407A JP 2017032466 A JP2017032466 A JP 2017032466A
Authority
JP
Japan
Prior art keywords
optical
light
unit
signal
phase modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015154407A
Other languages
Japanese (ja)
Other versions
JP6342857B2 (en
Inventor
達也 岡本
Tatsuya Okamoto
達也 岡本
大輔 飯田
Daisuke Iida
大輔 飯田
邦弘 戸毛
Kunihiro Komo
邦弘 戸毛
哲也 真鍋
Tetsuya Manabe
哲也 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015154407A priority Critical patent/JP6342857B2/en
Publication of JP2017032466A publication Critical patent/JP2017032466A/en
Application granted granted Critical
Publication of JP6342857B2 publication Critical patent/JP6342857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a long distance measurement in optical reflectometry, and to enable high spatial resolving power therein.SOLUTION: A device measuring an optical reflectometry distribution of a measured device 7 is configured to: branch light emitted from an optical frequency com light source 1 into two light with one as probe light and the other as reference light; impart a phase modulation at prescribed timing based on a variable delay and prescribed signal with respect to the probe light; make the probe light incident upon the measured device 7 via a circulator 6; impart a phase modulation at timing delayed by τfurther than the prescribed timing based on the prescribed signal with respect to the reference light; multiplex the reference light and rear scattering light obtained via the circulator 6 and from the measured device 7; detect multiplexed light; acquire an interference signal; and obtain optical reflectance at a desired position in a long-side direction of the measured device 7 on the basis of the interference signal.SELECTED DRAWING: Figure 1

Description

本発明は、光反射測定装置及び光反射測定方法に関する。   The present invention relates to a light reflection measurement device and a light reflection measurement method.

光反射測定技術について、非特許文献1、非特許文献2及び非特許文献3が報告されている。   Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3 have been reported for the light reflection measurement technique.

非特許文献1は低コヒーレンス光源と片アームが遅延量可変な干渉計から構成され、以下のように反射測定を実現する。低コヒーレンス光源から出射した光を干渉計に入力し、2分岐する。2分岐された光のうち、一方はプローブ光として、被測定デバイスに入射し、もう一方は参照光として、遅延量可変なアームに入射する。被測定デバイスのある地点において、プローブ光は後方散乱され、後方散乱された光は被測定デバイスを往復することで、τDUTの遅延を受ける。一方、遅延量可変なアームに入射した参照光はτRefの遅延を受ける。後方散乱された光と参照光を合波し、それらの干渉信号(相関)を測定する。低コヒーレンスであるから、干渉信号はτRefと一致するτDUTからの後方散乱光強度を表し、数十μm程度の高空間分解能の測定を実現できる。そして、τRefを変化させることで、位置分解を行い、被測定デバイスの後方散乱光強度分布を測定することができる。 Non-Patent Document 1 is composed of a low coherence light source and an interferometer in which one arm has a variable delay amount, and realizes reflection measurement as follows. The light emitted from the low coherence light source is input to the interferometer and branched into two. Of the two branched lights, one is incident as a probe light on the device under measurement, and the other is incident as a reference light on the arm with variable delay amount. At a certain point of the device under measurement, the probe light is backscattered, and the backscattered light travels back and forth through the device under measurement, and is subjected to a delay of τ DUT . On the other hand, the reference light incident on the variable delay amount arm is delayed by τ Ref . The backscattered light and the reference light are combined and their interference signal (correlation) is measured. Because of the low coherence, the interference signal represents the intensity of backscattered light from τ DUT that matches τ Ref, and a high spatial resolution measurement of about several tens of μm can be realized. And by changing (tau) Ref , position decomposition can be performed and the backscattered light intensity distribution of a to-be-measured device can be measured.

非特許文献2はパルス光源を用いて以下のように反射測定を実現する。パルス光源から出射されたパルス光EProbe(t)をプローブ光として被測定デバイスに入射する。プローブ光は被測定デバイスの各遅延における反射率R(τ)に応じて後方散乱される。後方散乱光はプローブ光に対する被測定デバイスの応答であり、EProbe(t)とR(τ)の畳み込み積分

Figure 2017032466
で表される。 Non-Patent Document 2 realizes reflection measurement using a pulse light source as follows. Pulse light E Probe (t) emitted from the pulse light source is incident on the device under measurement as probe light. The probe light is backscattered according to the reflectance R (τ) at each delay of the device under measurement. The backscattered light is the response of the device under test to the probe light, and the convolution integral of E Probe (t) and R (τ)
Figure 2017032466
It is represented by

プローブ光はパルス光であるため、

Figure 2017032466
(空間分解能はパルス幅程度)となり、後方散乱光の時間変化は各遅延における反射率R(τ)を表し、後方散乱光強度を測定することで各遅延における反射率を測定する。 Since probe light is pulsed light,
Figure 2017032466
(The spatial resolution is about the pulse width), the time change of the backscattered light represents the reflectivity R (τ) at each delay, and the reflectivity at each delay is measured by measuring the backscattered light intensity.

非特許文献3は周波数掃引光源と干渉計から構成され、以下のように反射測定を実現する。周波数掃引速度gを持つ周波数掃引光源から出射された周波数掃引光を干渉計に入力し、2分岐する。2分岐された光のうち、一方はプローブ光として、被測定デバイスに入射し、もう一方は参照光として用いる。被測定デバイスの各遅延τからの後方散乱光の光周波数は参照光の光周波数に対してgτ周波数シフトしているため、後方散乱光と参照光を干渉させ、そのビート信号を周波数解析することで、被測定デバイスの反射率分布を測定する。   Non-Patent Document 3 includes a frequency sweep light source and an interferometer, and realizes reflection measurement as follows. The frequency sweep light emitted from the frequency sweep light source having the frequency sweep speed g is input to the interferometer and branched into two. Of the two branched lights, one is used as the probe light and is incident on the device to be measured, and the other is used as the reference light. Since the optical frequency of the backscattered light from each delay τ of the device under test is shifted by the gτ frequency with respect to the optical frequency of the reference light, the backscattered light and the reference light are caused to interfere and the beat signal is subjected to frequency analysis. Then, the reflectance distribution of the device under measurement is measured.

しかしながら、非特許文献1では、τRefの遅延量可変範囲が測定可能範囲となる。可動ミラーによる遅延付与が代表的であるが、その最大遅延量は数ns(長さ換算では、数10cm)であり、長尺なデバイスを評価することはできない。従って、非特許文献1は短距離かつ高空間分解能の反射測定を実現していた。非特許文献2では、プローブ光の帯域(パルス幅の逆数程度)よりも広帯域な受信系が必要となる。受信系の広帯域化は受信感度を劣化させるため、プローブ光のパルス幅(空間分解能)と測定距離はトレードオフの関係にある。非特許文献3では、数mmの空間分解能で数kmの測定距離を実現していた。以上のように、光反射測定技術において、長距離測定可能かつ高空間分解能の測定技術は存在しなかった。 However, in Non-Patent Document 1, the delay amount variable range of τ Ref is the measurable range. The delay is typically given by a movable mirror, but the maximum delay amount is several ns (several tens of centimeters in terms of length), and a long device cannot be evaluated. Therefore, Non-Patent Document 1 realizes reflection measurement with a short distance and high spatial resolution. In Non-Patent Document 2, a receiving system having a wider band than the probe light band (about the reciprocal of the pulse width) is required. Since widening the reception system deteriorates reception sensitivity, the pulse width (spatial resolution) of the probe light and the measurement distance are in a trade-off relationship. In Non-Patent Document 3, a measurement distance of several kilometers is realized with a spatial resolution of several millimeters. As described above, in the light reflection measurement technique, there is no measurement technique capable of measuring a long distance and having a high spatial resolution.

R.C.Youngquist,S.Carr,and D.E.N.Davies,“Optical coherence−domain reflectometry:a new optical evaluation technique,”Opt.Lett.,Vol.12,No.3,1987.R. C. Youngquist, S.M. Carr, and D.C. E. N. Davies, “Optical coherence-domain reflexometry: a new optical evaluation technique,” Opt. Lett. , Vol. 12, no. 3, 1987. M.P.Gold,“Design of a Long−Range Single−Mode OTDR,”J.Lightw.Technol.,Vol.LT−3,No.1,1985.M.M. P. Gold, "Design of a Long-Range Single-Mode OTDR," J. Lighttw. Technol. , Vol. LT-3, No. 1, 1985. D.K.Gifford,M.E.Froggatt,M.S.Wolfe,S.T.Kreger,and B.J.Soller,“Millimeter Resolution Reflectometry Over Two Kilometers,” in Proc.33rd ECOC,Tu.3.6.1,2007.D. K. Gifford, M .; E. Froggatt, M.M. S. Wolfe, S.M. T. T. Kreger, and B.B. J. et al. Soller, “Millimeter Resolution Reflection Over Two Kilometers,” in Proc. 33rd ECOC, Tu. 3.6.1, 2007.

本発明では、従来技術の上記問題を鑑み、光反射測定において、長距離測定が可能でありかつ高空間分解能を可能にすることを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and has an object to enable long distance measurement and high spatial resolution in light reflection measurement.

上記目的を達成するために、本願発明は、被測定デバイスの光反射率分布を測定する装置において、光周波数コム光源から出射した光を2分岐して一方をプローブ光、他方を参照光とし、プローブ光に対して可変の遅延と所定信号による所定タイミングの位相変調を与え、該プローブ光をサーキュレータを介して被測定デバイスに入射させ、参照光に対して所定信号による所定タイミングよりτ遅延させたタイミングの位相変調を与え、該参照光とサーキュレータを介して得られた被測定デバイスからの後方散乱光とを合波させ、該合波された光を検出して干渉信号を取得し、該干渉信号に基づき被測定デバイスの長手方向の所望の位置における光反射率を求める。 In order to achieve the above object, the present invention provides an apparatus for measuring the light reflectance distribution of a device under test, wherein the light emitted from the optical frequency comb light source is branched into two, one as the probe light and the other as the reference light. A variable delay and a phase modulation at a predetermined timing by a predetermined signal are given to the probe light, the probe light is made incident on the device under measurement via the circulator, and delayed by τ 1 from the predetermined timing by the predetermined signal with respect to the reference light The reference light and the backscattered light from the device under measurement obtained via the circulator are combined, the combined light is detected to obtain an interference signal, Based on the interference signal, the light reflectance at a desired position in the longitudinal direction of the device under measurement is obtained.

具体的には、本発明に係る光反射測定装置は、
被測定デバイスの光反射率を測定する装置であって、
光周波数コム光源と、
前記光周波数コム光源から出射された光を2分岐する光分岐部と、
前記光分岐部で分岐された光に遅延差を発生させる光遅延部と、
前記光分岐部で分岐された一方の光を任意信号波形で位相変調する第1の光位相変調部と、
前記光分岐部で分岐された他方の光を、前記任意信号波形で位相変調する第2の光位相変調部と、
前記第1の光位相変調部及び前記第2の光位相変調部における位相変調のタイミングを制御するトリガ制御部と、
前記第1の光位相変調部で位相変調された前記一方の光をプローブ光として前記被測定デバイスに入射し、前記プローブ光が前記被測定デバイスで散乱された後方散乱光を導波するサーキュレータと、
前記第2の光位相変調部で位相変調された前記他方の光を参照光とし、前記参照光と前記後方散乱光を合波する光合波部と、
前記光合波部で合波された前記参照光と前記後方散乱光の干渉信号を検出する受光器と、
前記受光部から出力された干渉信号に含まれる位相変調された信号の自己相関関数を用いて、前記被測定デバイスの長手方向の任意の位置における光反射率を求めるデータ取得部と、
を備え、
前記トリガ制御部は、前記被測定デバイスの長手方向の任意の位置において反射された前記プローブ光が前記光合波部で前記参照光と合波されるように、前記第1の光位相変調部及び前記第2の光位相変調部における位相変調のタイミングを制御する。
Specifically, the light reflection measuring apparatus according to the present invention is:
An apparatus for measuring the light reflectance of a device under test,
An optical frequency comb light source;
An optical branching unit that splits the light emitted from the optical frequency comb light source into two;
An optical delay unit that generates a delay difference in the light branched by the optical branch unit;
A first optical phase modulation unit that phase-modulates one of the lights branched by the optical branching unit with an arbitrary signal waveform;
A second optical phase modulation unit that phase-modulates the other light branched by the optical branching unit with the arbitrary signal waveform;
A trigger controller for controlling timing of phase modulation in the first optical phase modulator and the second optical phase modulator;
A circulator that enters the device under measurement as the one light phase-modulated by the first optical phase modulation unit as probe light, and guides backscattered light scattered by the device under measurement; ,
An optical multiplexing unit configured to combine the reference light and the backscattered light with the other light phase-modulated by the second optical phase modulation unit as a reference light;
A light receiver for detecting an interference signal between the reference light and the backscattered light combined by the optical multiplexing unit;
Using the autocorrelation function of the phase-modulated signal included in the interference signal output from the light receiving unit, a data acquisition unit for obtaining a light reflectance at an arbitrary position in the longitudinal direction of the device under measurement;
With
The trigger control unit includes the first optical phase modulation unit and the first optical phase modulation unit so that the probe light reflected at an arbitrary position in the longitudinal direction of the device to be measured is combined with the reference light by the optical multiplexing unit. The timing of phase modulation in the second optical phase modulator is controlled.

本発明に係る光反射測定装置では、
前記第1の光位相変調部が位相変調するタイミングを制御するための第1のトリガ信号を出力する第1のトリガ源と、
前記第2の光位相変調部が位相変調するタイミングを制御するための第2のトリガ信号を出力する第2のトリガ源と、
前記第1のトリガ源から第1のトリガ信号が入力されたタイミングで任意信号波形の変調信号を発生し、前記第1の光位相変調部に当該変調信号で位相変調させる第1の任意信号発生部と、
前記第2のトリガ源から第2のトリガ信号が入力されたタイミングで前記任意信号波形の変調信号を発生し、前記第2の光位相変調部に当該変調信号で位相変調させる第2の任意信号発生部と、
をさらに備え、
前記光遅延部は、前記光分岐部によって2分岐された光周波数コムの自己相関関数を掃引するよう、前記光分岐部によって2分岐された光の遅延量を変化させ、
前記トリガ制御部は、反射率を測定する前記被測定デバイスの長手方向の位置に応じて、前記第1のトリガ信号及び前記第2のトリガ信号の出力時刻に遅延を設け、
前記データ取得部は、前記光遅延部の発生させた遅延差及び前記第1のトリガ源及び前記第2のトリガ源がトリガ信号を出力する時刻間の遅延量を用いて、前記受光部から出力された干渉信号から前記被測定デバイスの長手方向の位置を特定してもよい。
In the light reflection measuring apparatus according to the present invention,
A first trigger source that outputs a first trigger signal for controlling the timing at which the first optical phase modulation section performs phase modulation;
A second trigger source that outputs a second trigger signal for controlling the timing of phase modulation by the second optical phase modulator;
Generation of a first arbitrary signal that generates a modulation signal having an arbitrary signal waveform at a timing when the first trigger signal is input from the first trigger source, and causes the first optical phase modulation unit to perform phase modulation with the modulation signal. And
A second arbitrary signal that generates a modulation signal having the arbitrary signal waveform at a timing when the second trigger signal is input from the second trigger source, and causes the second optical phase modulation unit to perform phase modulation with the modulation signal. Generating part,
Further comprising
The optical delay unit changes the delay amount of the light branched by the optical branching unit so as to sweep the autocorrelation function of the optical frequency comb branched by the optical branching unit,
The trigger control unit provides a delay in the output time of the first trigger signal and the second trigger signal according to the position in the longitudinal direction of the device under test for measuring the reflectance,
The data acquisition unit outputs from the light receiving unit using a delay difference generated by the optical delay unit and a delay amount between times when the first trigger source and the second trigger source output a trigger signal. The position of the device under measurement in the longitudinal direction may be specified from the interference signal thus obtained.

本発明に係る光反射測定装置では、前記光周波数コム光源の繰返し周波数がfrepである場合、前記トリガ制御部は、1/frepの周期で現れる光周波数コムの自己相関関数のうち、任意の自己相関関数を選択するよう、前記第1のトリガ信号及び前記第2のトリガ信号の出力時刻に遅延を設けてもよい。 In the light reflection measuring apparatus according to the present invention, when the repetition frequency of the optical frequency comb light source is f rep , the trigger control unit may select any one of the autocorrelation functions of the optical frequency comb that appears at a period of 1 / f rep. A delay may be provided in the output times of the first trigger signal and the second trigger signal so as to select the autocorrelation function.

本発明に係る光反射測定装置では、前記第1の任意信号発生部及び前記第2の任意信号発生部から出力される前記任意信号波形のサンプルレートfsamは、前記光周波数コム光源の繰返し周波数frepよりも大きくてもよい。 In the light reflection measuring apparatus according to the present invention, the sample rate f sam of the arbitrary signal waveform output from the first arbitrary signal generator and the second arbitrary signal generator is a repetition frequency of the optical frequency comb light source. It may be larger than f rep .

具体的には、本発明に係る光反射測定方法は、
被測定デバイスの光反射率を測定する装置が実行する光反射測定方法であって、
光分岐部が、光周波数コム光源から出射された光を2分岐する光分岐手順と、
光遅延部が、前記光分岐部で分岐された光に遅延差を発生させる光周波数コム遅延発生手順と、
第1の光位相変調部が、前記光分岐部で分岐された一方の光を任意信号波形で位相変調し、第2の光位相変調部が、前記光分岐部で分岐された他方の光を、前記任意信号波形で位相変調する位相変調手順と、
サーキュレータが、前記第1の光位相変調部で位相変調された前記一方の光をプローブ光として前記被測定デバイスに入射し、前記プローブ光が前記被測定デバイスで散乱された後方散乱光を導波し、光合波部が、前記第2の光位相変調部で位相変調された前記他方の光を参照光とし、前記参照光と前記後方散乱光を合波する合波手順と、
データ取得部が、前記受光部から出力された干渉信号に含まれる位相変調された信号の自己相関関数を用いて、前記被測定デバイスの長手方向の任意の位置における光反射率を求めるデータ取得手順と、
を有し、
前記位相変調手順において、トリガ制御部が、前記被測定デバイスの長手方向の任意の位置において反射された前記プローブ光が前記光合波部で前記参照光と合波されるように、前記第1の光位相変調部及び前記第2の光位相変調部における位相変調のタイミングを制御する。
Specifically, the light reflection measurement method according to the present invention is:
A light reflection measurement method executed by an apparatus for measuring light reflectance of a device under test,
An optical branching procedure in which the optical branching unit splits the light emitted from the optical frequency comb light source into two;
An optical delay unit, an optical frequency comb delay generation procedure for generating a delay difference in the light branched by the optical branch unit;
The first optical phase modulation unit phase-modulates one light branched by the optical branching unit with an arbitrary signal waveform, and the second optical phase modulation unit converts the other light branched by the optical branching unit. , A phase modulation procedure for phase modulation with the arbitrary signal waveform;
A circulator is incident on the device under measurement as the one light phase-modulated by the first optical phase modulation unit as probe light, and the probe light guides backscattered light scattered by the device under measurement. And an optical multiplexing unit that uses the other light phase-modulated by the second optical phase modulation unit as reference light, and combines the reference light and the backscattered light,
A data acquisition procedure in which the data acquisition unit obtains the light reflectance at an arbitrary position in the longitudinal direction of the device under test using the autocorrelation function of the phase-modulated signal included in the interference signal output from the light receiving unit. When,
Have
In the phase modulation procedure, the trigger control unit is configured so that the probe light reflected at an arbitrary position in the longitudinal direction of the device under measurement is combined with the reference light by the optical multiplexing unit. The timing of phase modulation in the optical phase modulator and the second optical phase modulator is controlled.

本発明に係る光反射測定方法では、
前記光反射測定装置は、
前記第1の光位相変調部が位相変調するタイミングを制御するための第1のトリガ信号を出力する第1のトリガ源と、
前記第2の光位相変調部が位相変調するタイミングを制御するための第2のトリガ信号を出力する第2のトリガ源と、
前記第1のトリガ源から第1のトリガ信号が入力されたタイミングで任意信号波形の変調信号を発生し、前記第1の光位相変調部に当該変調信号で位相変調させる第1の任意信号発生部と、
前記第2のトリガ源から第2のトリガ信号が入力されたタイミングで前記任意信号波形の変調信号を発生し、前記第2の光位相変調部に当該変調信号で位相変調させる第2の任意信号発生部と、
をさらに備え、
前記光遅延手順において、前記光遅延部は、前記光分岐部によって2分岐された光周波数コムの自己相関関数を掃引するよう、前記光分岐部によって2分岐された光の遅延量を変化させ、
前記位相変調手順において、前記トリガ制御部は、反射率を測定する前記被測定デバイスの長手方向の位置に応じて、前記第1のトリガ信号及び前記第2のトリガ信号の出力時刻に遅延を設け、
前記データ取得手順において、前記データ取得部は、前記光遅延部の発生させた遅延差及び前記第1のトリガ源及び前記第2のトリガ源がトリガ信号を出力する時刻間の遅延量を用いて、前記被測定デバイスの長手方向の位置を特定してもよい。
In the light reflection measurement method according to the present invention,
The light reflection measuring device is:
A first trigger source that outputs a first trigger signal for controlling the timing at which the first optical phase modulation section performs phase modulation;
A second trigger source that outputs a second trigger signal for controlling the timing of phase modulation by the second optical phase modulator;
Generation of a first arbitrary signal that generates a modulation signal having an arbitrary signal waveform at a timing when the first trigger signal is input from the first trigger source, and causes the first optical phase modulation unit to perform phase modulation with the modulation signal. And
A second arbitrary signal that generates a modulation signal having the arbitrary signal waveform at a timing when the second trigger signal is input from the second trigger source, and causes the second optical phase modulation unit to perform phase modulation with the modulation signal. Generating part;
Further comprising
In the optical delay procedure, the optical delay unit changes the delay amount of the light bifurcated by the optical branching unit so as to sweep the autocorrelation function of the optical frequency comb bifurcated by the optical branching unit,
In the phase modulation procedure, the trigger control unit provides a delay in the output time of the first trigger signal and the second trigger signal according to the position in the longitudinal direction of the device under test for measuring reflectance. ,
In the data acquisition procedure, the data acquisition unit uses a delay difference generated by the optical delay unit and a delay amount between times when the first trigger source and the second trigger source output a trigger signal. The position of the device under measurement in the longitudinal direction may be specified.

本発明に係る光反射測定方法では、前記光周波数コム光源の繰返し周波数がfrepである場合、前記位相変調手順において、前記トリガ制御部は、1/frepの周期で現れる光周波数コムの自己相関関数のうち、任意の自己相関関数を選択するよう、前記第1のトリガ信号及び前記第2のトリガ信号の出力時刻に遅延を設けてもよい。 In the light reflection measurement method according to the present invention, when the repetition frequency of the optical frequency comb light source is f rep , in the phase modulation procedure, the trigger control unit performs the self-measurement of the optical frequency comb that appears at a period of 1 / f rep. A delay may be provided in the output times of the first trigger signal and the second trigger signal so as to select an arbitrary autocorrelation function among the correlation functions.

本発明に係る光反射測定方法では、前記位相変調手順において、前記第1の任意信号発生部及び前記第2の任意信号発生部から出力される前記任意信号波形のサンプルレートfsamは、前記光周波数コム光源の繰返し周波数frepよりも大きくてもよい。 In the light reflection measurement method according to the present invention, in the phase modulation procedure, the sample rate f sam of the arbitrary signal waveform output from the first arbitrary signal generator and the second arbitrary signal generator is the light It may be greater than the repetition frequency f rep of the frequency comb light source.

本発明によれば、光反射測定において、長距離測定が可能でありかつ高空間分解能を可能にすることができる。   According to the present invention, long distance measurement is possible and high spatial resolution is possible in light reflection measurement.

実施形態に係る光反射測定装置の一例を示す。An example of the light reflection measuring apparatus which concerns on embodiment is shown. 変調信号f(t)の振幅に対する係数CXTの振る舞いの一例を示す。An example of the behavior of the coefficient C XT with respect to the amplitude of the modulation signal f (t) is shown. 変調信号f(t)及び光周波数コムの自己相関の一例を示す。An example of the autocorrelation of the modulation signal f (t) and the optical frequency comb is shown.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本発明は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to embodiment shown below. These embodiments are merely examples, and the present invention can be implemented in various modifications and improvements based on the knowledge of those skilled in the art. In the present specification and drawings, the same reference numerals denote the same components.

本発明に係る光反射測定装置の実施形態例を図1に示す。ここで、1は光周波数コム光源、2は光分岐部、3は光遅延部、4−1と4−2は光位相変調部、5−1と5−2は任意信号発生部、6は光サーキュレータ、7は被測定デバイス、8−1と8−2はトリガ源、9はトリガ源制御部、10は光合波部、11はバランス型受光器、12はデータ取得部を表す。光位相変調部4−1は第1の光位相変調部として機能し、光位相変調部4−2は第2の光位相変調部として機能する。任意信号発生部5−1は第1の任意信号発生部として機能し、任意信号発生部5−2は第2の任意信号発生部として機能する。トリガ源8−1は第1のトリガ源として機能し、トリガ源8−2は第2のトリガ源として機能する。   An embodiment of a light reflection measuring apparatus according to the present invention is shown in FIG. Here, 1 is an optical frequency comb light source, 2 is an optical branching unit, 3 is an optical delay unit, 4-1 and 4-2 are optical phase modulation units, 5-1 and 5-2 are arbitrary signal generation units, and 6 is An optical circulator, 7 is a device to be measured, 8-1 and 8-2 are trigger sources, 9 is a trigger source control unit, 10 is an optical multiplexing unit, 11 is a balanced light receiver, and 12 is a data acquisition unit. The optical phase modulation unit 4-1 functions as a first optical phase modulation unit, and the optical phase modulation unit 4-2 functions as a second optical phase modulation unit. The arbitrary signal generator 5-1 functions as a first arbitrary signal generator, and the arbitrary signal generator 5-2 functions as a second arbitrary signal generator. The trigger source 8-1 functions as a first trigger source, and the trigger source 8-2 functions as a second trigger source.

本実施形態に係る光反射測定方法は、
被測定デバイスの光反射率を測定する装置が実行する光反射測定方法であって、光分岐手順と、光周波数コム遅延発生手順と、位相変調手順と、合波手順と、データ取得手順と、を有する。光周波数コム遅延発生手順及び位相変調手順の前後は任意である。例えば、位相変調手順の後に光周波数コム遅延発生手順を行ってもよい。
The light reflection measurement method according to this embodiment is:
A light reflection measurement method executed by an apparatus for measuring the light reflectance of a device under measurement, comprising: an optical branching procedure, an optical frequency comb delay generation procedure, a phase modulation procedure, a multiplexing procedure, a data acquisition procedure, Have Before and after the optical frequency comb delay generation procedure and the phase modulation procedure are arbitrary. For example, the optical frequency comb delay generation procedure may be performed after the phase modulation procedure.

光分岐手順では、光分岐部2が、光周波数コム光源から出射された光を2分岐する。
光周波数コム遅延発生手順では、光遅延部3が、光分岐部2で分岐された光に遅延差を発生させる。このとき、光遅延部3は、光分岐部2によって2分岐された光周波数コムの自己相関関数を掃引するよう、光分岐部2によって2分岐された光の遅延量を変化させる。
In the optical branching procedure, the optical branching unit 2 splits the light emitted from the optical frequency comb light source into two.
In the optical frequency comb delay generation procedure, the optical delay unit 3 generates a delay difference in the light branched by the optical branching unit 2. At this time, the optical delay unit 3 changes the delay amount of the light branched by the optical branching unit 2 so as to sweep the autocorrelation function of the optical frequency comb branched by the optical branching unit 2.

位相変調手順では、光位相変調部4−1が、光分岐部2で分岐された一方の光を任意信号波形で位相変調してプローブ光を生成し、光位相変調部4−2が、光分岐部2で分岐された他方の光を、任意信号波形で位相変調して参照光を生成する。このとき、トリガ源制御部9は、反射率を測定する被測定デバイス7の長手方向の位置に応じて、トリガ源8−1及び8−2がトリガ信号を出力する時刻に遅延を設ける。これにより、トリガ源制御部9は、被測定デバイス7の長手方向の任意の位置において反射されたプローブ光が光合波部10で参照光と合波されるように、光位相変調部4−1及び4−2における位相変調のタイミングを制御する。   In the phase modulation procedure, the optical phase modulation unit 4-1 phase-modulates one of the lights branched by the optical branching unit 2 with an arbitrary signal waveform to generate probe light, and the optical phase modulation unit 4-2 The other light branched by the branching unit 2 is phase-modulated with an arbitrary signal waveform to generate reference light. At this time, the trigger source control unit 9 provides a delay in the time at which the trigger sources 8-1 and 8-2 output the trigger signal according to the position in the longitudinal direction of the device under measurement 7 for measuring the reflectance. Thereby, the trigger source control unit 9 causes the optical phase modulation unit 4-1 so that the probe light reflected at an arbitrary position in the longitudinal direction of the device under measurement 7 is combined with the reference light by the optical multiplexing unit 10. And 4-2 control the timing of phase modulation.

合波手順では、サーキュレータ6が、プローブ光を被測定デバイス7に入射し、プローブ光が被測定デバイス7で散乱された後方散乱光を導波し、光合波部10が参照光と後方散乱光を合波する。   In the multiplexing procedure, the circulator 6 enters the probe light into the device under measurement 7, the probe light guides the backscattered light scattered by the device under measurement 7, and the optical multiplexing unit 10 transmits the reference light and the backscattered light. Are combined.

データ取得手順では、データ取得部12が、受光部から出力された干渉信号に含まれる位相変調された信号の自己相関関数を用いて、被測定デバイス7の長手方向の任意の位置における光反射率を求める。このとき、データ取得部12は、光遅延部3の発生させた遅延差及びトリガ源8−1及び8−2がトリガ信号を出力する時刻間の遅延量を用いて、被測定デバイス7の長手方向の位置を特定する。   In the data acquisition procedure, the data acquisition unit 12 uses the autocorrelation function of the phase-modulated signal included in the interference signal output from the light receiving unit, and the light reflectance at an arbitrary position in the longitudinal direction of the device under measurement 7. Ask for. At this time, the data acquisition unit 12 uses the delay difference generated by the optical delay unit 3 and the delay amount between the times when the trigger sources 8-1 and 8-2 output the trigger signal. Specify the position of the direction.

図1の構成で本実施形態に係る光反射測定装置が長距離測定可能かつ高空間分解能を実現できることを示す。   1 shows that the light reflection measuring apparatus according to the present embodiment can measure long distances and can realize high spatial resolution with the configuration of FIG.

光周波数コム光源1は、広帯域かつ櫛状のスペクトルを持つ光である光周波数コムを出射する。光周波数コム光源1から出射される光の複素電界振幅E(t)を次式で表す。

Figure 2017032466
The optical frequency comb light source 1 emits an optical frequency comb which is light having a broadband and comb-like spectrum. A complex electric field amplitude E (t) of light emitted from the optical frequency comb light source 1 is expressed by the following equation.
Figure 2017032466

ここで、A(t)は光周波数コム光源1から出射する光の振幅波形、νは中心周波数、θ(t)は位相雑音を表す。光周波数コム光源1の繰返し周波数をfrepとすると、光周波数コムの振幅波形A(t)は周期1/frepの周期関数である。すなわち、光周波数コムの振幅波形A(t)は1/frepごとにピークが現れる。

Figure 2017032466
ここで、nは整数である。 Here, A (t) represents the amplitude waveform of the light emitted from the optical frequency comb light source 1, ν represents the center frequency, and θ (t) represents the phase noise. If the repetition frequency of the optical frequency comb light source 1 is f rep , the amplitude waveform A (t) of the optical frequency comb is a periodic function with a period of 1 / f rep . That is, the amplitude waveform A (t) of the optical frequency comb has a peak every 1 / f rep .
Figure 2017032466
Here, n is an integer.

振幅波形A(t)は(2)式で表される周期関数であるから、振幅波形A(t)の帯域の逆数よりも十分長い時間で積分すれば、その自己相関関数rAA(τ)も周期関数である。

Figure 2017032466
Since the amplitude waveform A (t) is a periodic function represented by the equation (2), the autocorrelation function r AA (τ) is obtained by integrating in a time sufficiently longer than the reciprocal of the band of the amplitude waveform A (t). Is also a periodic function.
Figure 2017032466

光分岐部2によって、光は2分岐され、一方は光位相変調部4−1、もう一方は光位相変調部4−2に送られる。光位相変調部4−1に送られた光は、任意信号発生部5−1から出力される変調信号で位相変調され、プローブ光となる。   The light is branched into two by the optical branching unit 2, and one is sent to the optical phase modulation unit 4-1, and the other is sent to the optical phase modulation unit 4-2. The light transmitted to the optical phase modulation unit 4-1 is phase-modulated with the modulation signal output from the arbitrary signal generation unit 5-1 and becomes probe light.

ここで、光を位相変調する時刻は、トリガ源8−1からのトリガ信号を任意信号発生部5−1が受け付けた時刻である。任意信号発生部5−1から出力される変調信号をf(t)とすると、光位相変調部4−1で変調されたプローブ光の複素電界振幅は次式で表される。

Figure 2017032466
Here, the time when the light is phase-modulated is the time when the arbitrary signal generator 5-1 receives the trigger signal from the trigger source 8-1. Assuming that the modulation signal output from the arbitrary signal generator 5-1 is f (t), the complex electric field amplitude of the probe light modulated by the optical phase modulator 4-1 is expressed by the following equation.
Figure 2017032466

光位相変調部4−1で発生したプローブ光は、光サーキュレータ6を介して被測定デバイス7に入射し、被測定デバイス7の内部において後方散乱される。被測定デバイス7の遅延τにおける反射率をR(τ)とすると、後方散乱光Esig(t)は反射率R(τ)とプローブ光の畳み込み積分で表される。

Figure 2017032466
ここで、τmaxは被測定デバイス7が与える最大の遅延量である。 The probe light generated by the optical phase modulation unit 4-1 enters the device under measurement 7 via the optical circulator 6 and is backscattered inside the device under measurement 7. When the reflectance at the delay τ of the device under measurement 7 is R (τ), the backscattered light E sig (t) is expressed by the convolution integral of the reflectance R (τ) and the probe light.
Figure 2017032466
Here, τ max is the maximum delay amount given by the device under measurement 7.

後方散乱光は光サーキュレータ6を介して、光合波部10に送られる。   The backscattered light is sent to the optical multiplexing unit 10 via the optical circulator 6.

次に光分岐部2によって、光位相変調部4−2に送られる光を考える。光位相変調部4−2は任意信号発生部5−2から出力される変調信号で位相変調され、参照光となる。ここで、光位相変調部4−2が光を位相変調する時刻は、トリガ源8−2からのトリガ信号を任意信号発生部5−2が受け付けた時刻である。任意信号発生部5−2から出力される変調信号をg(t)とすると、光位相変調部4−2で変調された参照光の複素電界振幅ELo(t)は次式で表される。

Figure 2017032466
Next, consider the light sent by the optical branching unit 2 to the optical phase modulation unit 4-2. The optical phase modulation unit 4-2 is phase-modulated with the modulation signal output from the arbitrary signal generation unit 5-2 and becomes reference light. Here, the time when the optical phase modulation unit 4-2 performs phase modulation on the light is the time when the arbitrary signal generation unit 5-2 receives the trigger signal from the trigger source 8-2. When the modulation signal output from the arbitrary signal generator 5-2 is g (t), the complex electric field amplitude E Lo (t) of the reference light modulated by the optical phase modulator 4-2 is expressed by the following equation. .
Figure 2017032466

参照光は光合波部10に送られる。   The reference light is sent to the optical multiplexing unit 10.

光合波部10は後方散乱光Esig(t)と参照光ELo(t)を合波する。バランス型受光器11は、合波された光強度の干渉成分を検出する。バランス型受光器11で検出された干渉成分は、光電流I(τ)として出力され、データ取得部12でAD変換される。バランス型受光器11の積分時間をTとすると、I(τ)は次式で表される。

Figure 2017032466
The optical multiplexing unit 10 combines the backscattered light E sig (t) and the reference light E Lo (t). The balance type light receiver 11 detects an interference component of the combined light intensity. The interference component detected by the balanced photoreceiver 11 is output as a photocurrent I (τ) and AD converted by the data acquisition unit 12. Assuming that the integration time of the balanced photoreceiver 11 is T, I (τ) is expressed by the following equation.
Figure 2017032466

ここで、光周波数コム光源1のコヒーレンス時間τがτに対して、十分長ければ、光周波数コム光源1の位相雑音θ(t)は次式を満たす。

Figure 2017032466
Here, if the coherence time τ c of the optical frequency comb light source 1 is sufficiently longer than τ, the phase noise θ (t) of the optical frequency comb light source 1 satisfies the following equation.
Figure 2017032466

(7)、(8)式より、光電流I(τ)は

Figure 2017032466
となる。 From equations (7) and (8), the photocurrent I (τ) is
Figure 2017032466
It becomes.

(3)式で表されるように、光周波数コム光源1の自己相関関数は周期関数であるため、周期関数に応じた反射率R(τ)の和が光電流I(τ)として測定される。反射率R(τ)の和から任意の位置における反射率R(τ)を任意信号発生部5−2で選択する。   Since the autocorrelation function of the optical frequency comb light source 1 is a periodic function as expressed by the equation (3), the sum of the reflectances R (τ) corresponding to the periodic function is measured as the photocurrent I (τ). The The arbitrary signal generator 5-2 selects the reflectance R (τ) at an arbitrary position from the sum of the reflectances R (τ).

任意信号発生部5−2から出力される変調信号g(t)は、任意信号発生部5−1から出力される変調信号f(t)と同一の波形である。さらに、トリガ源制御部9で任意信号発生部5−2が駆動する時刻を、任意信号発生部5−1が駆動する時刻に対して、τ遅延させる。これにより、被測定デバイス7の長手方向の任意の位置において反射されたプローブ光が光合波部10で参照光と合波されるように、光位相変調部4−1及び光位相変調部4−2における位相変調のタイミングを制御することができる。このとき、変調信号g(t)は次式で表される。

Figure 2017032466
The modulation signal g (t) output from the arbitrary signal generation unit 5-2 has the same waveform as the modulation signal f (t) output from the arbitrary signal generation unit 5-1. Furthermore, the trigger source controller 9 delays the time when the arbitrary signal generator 5-2 is driven by τ 1 with respect to the time when the arbitrary signal generator 5-1 is driven. Thereby, the optical phase modulation unit 4-1 and the optical phase modulation unit 4-4 are combined so that the probe light reflected at an arbitrary position in the longitudinal direction of the device under measurement 7 is combined with the reference light by the optical multiplexing unit 10. 2 can control the timing of phase modulation. At this time, the modulation signal g (t) is expressed by the following equation.
Figure 2017032466

(9)式及び(10)式より、光電流I(τ)は次式で表される。

Figure 2017032466
From the equations (9) and (10), the photocurrent I (τ) is expressed by the following equation.
Figure 2017032466

ここで、係数CXTは次式で与えられる。

Figure 2017032466
Here, the coefficient C XT is given by the following equation.
Figure 2017032466

(11)式において、第1項目は所望の位置である遅延τにおける反射率R(τ)を表す項で、第2項目は他の位置である遅延τ≠τからのクロストークを表す。CXT<<1を満たせば、所望の位置である遅延τにおける反射率R(τ)を測定することができる。係数CXTは、変調信号f(t)の波形とその振幅に依存する。A(t)A(t−τ)が積分結果に与える影響は係数CXTの大きさを決めるものであり、係数CXTの振る舞いを決めるものではない。 In the equation (11), the first item is a term representing the reflectance R (τ) at the delay τ 1 which is a desired position, and the second item is a crosstalk from the delay τ ≠ τ 1 which is another position. . If C XT << 1 is satisfied, the reflectance R (τ) at the delay τ 1 that is a desired position can be measured. The coefficient C XT depends on the waveform of the modulation signal f (t) and its amplitude. Effect of A (t) A (t- τ) has on the result of the integration is intended to determine the magnitude of the coefficients C XT, does not determine the behavior of the coefficients C XT.

簡単のために光周波数コムの振幅波形A(t)は一定とし、位相オフセット2πντはゼロ、変調信号f(t)を一様分布する白色雑音とした場合における変調信号f(t)の振幅に対する係数CXTの振る舞いを図2に示す。ここで、変調信号を白色雑音としているため、振幅として、雑音の標準偏差を用いている。図2より変調信号f(t)がある振幅値の場合、係数CXTは極小値を持つ。この極小値は位相オフセット2πντによらず一定である。このため、図2に示されるように、係数CXTに極小値を与える振幅値で変調信号f(t)を設計することで、次式で表すように、(12)式における第2項に現れる係数CXTの影響を排除することができる。 For the sake of simplicity, the amplitude waveform A (t) of the optical frequency comb is constant, the phase offset 2πντ is zero, and the amplitude of the modulation signal f (t) when the modulation signal f (t) is uniformly distributed white noise. The behavior of the coefficient C XT is shown in FIG. Here, since the modulation signal is white noise, the standard deviation of noise is used as the amplitude. From FIG. 2, when the modulation signal f (t) has a certain amplitude value, the coefficient C XT has a minimum value. This local minimum is constant regardless of the phase offset 2πντ. Therefore, as shown in FIG. 2, by designing the modulation signal f (t) with an amplitude value that gives a minimum value to the coefficient CXT , the second term in the expression (12) is expressed as The influence of the appearing coefficient C XT can be eliminated.

例えば図2より雑音波形の標準偏差が約1.8radの場合にCxTが極小となるので、変調信号f(t)を、標準偏差が1.8rad/2πとなるような一様分布白色雑音に2πをかけた波形とすることで実現できる。ただし、雑音波形であっても、式(10)より、f(t)とg(t)は遅延差がある同一波形である必要があるため、任意信号発生部5−1と5−2で別々に雑音を生成するのではなく、同一の雑音波形を両信号発生部で共有して送出する必要がある。したがって、係数CXTが極小値となるような振幅値の変調信号f(t)を用いることで、所望の位置における反射率R(τ)を測定することができる。

Figure 2017032466
For example, as shown in FIG. 2, when the standard deviation of the noise waveform is about 1.8 rad, C xT becomes minimum, so that the modulated signal f (t) is uniformly distributed white noise with a standard deviation of 1.8 rad / 2π. This can be realized by setting the waveform to 2π multiplied by 2π. However, even if it is a noise waveform, f (t) and g (t) need to be the same waveform with a delay difference from the equation (10), so that the arbitrary signal generators 5-1 and 5-2 Rather than generating noise separately, the same noise waveform must be shared by both signal generators and transmitted. Therefore, the reflectance R (τ) at a desired position can be measured by using the modulation signal f (t) having such an amplitude value that the coefficient C XT becomes a minimum value.
Figure 2017032466

光遅延部3で光周波数コムの自己相関関数の位置を掃引し、トリガ源制御部9で任意信号発生部5−1と5−2を駆動させる時刻を変化させることで、光周波数コムの周期的な自己相関関数から任意の自己相関関数を選択し、被測定デバイス7の任意の位置における反射率R(τ)を測定することができる。なお、光遅延部3は、光周波数コムの繰返し周波数frep(光周波数コムの周波数間隔)を変化させることでも代替可能である。 By sweeping the position of the autocorrelation function of the optical frequency comb by the optical delay unit 3 and changing the time at which the arbitrary signal generators 5-1 and 5-2 are driven by the trigger source control unit 9, the period of the optical frequency comb is changed. An arbitrary autocorrelation function is selected from typical autocorrelation functions, and the reflectance R (τ) at an arbitrary position of the device under measurement 7 can be measured. The optical delay unit 3 can be replaced by changing the repetition frequency f rep (frequency interval of the optical frequency comb) of the optical frequency comb.

(13)式で表されるように、本実施形態に係る測定法では、光周波数コムの周期的な自己相関関数の中から一つの相関ピークを選択することができるが、その条件は下記のとおりである。   As represented by the equation (13), in the measurement method according to the present embodiment, one correlation peak can be selected from the periodic autocorrelation function of the optical frequency comb. It is as follows.

変調信号f(t)のサンプルレートをfsamとすると、その自己相関は2/fsamの幅を持つ。一方、光周波数コムの自己相関関数は(3)式で表されるように1/frepの周期関数である。この場合、図3に示すように、光周波数コムの周期的な自己相関関数から一つの相関ピークを選択するためには、選択する相関ピークに隣接する相関ピークを含まないために次式を満たす必要がある。

Figure 2017032466
If the sample rate of the modulation signal f (t) is f sam , the autocorrelation has a width of 2 / f sam . On the other hand, the autocorrelation function of the optical frequency comb is a periodic function of 1 / f rep as expressed by equation (3). In this case, as shown in FIG. 3, in order to select one correlation peak from the periodic autocorrelation function of the optical frequency comb, since the correlation peak adjacent to the selected correlation peak is not included, the following equation is satisfied. There is a need.
Figure 2017032466

また、本実施形態に係る測定法の分解能は、光周波数コムの自己相関関数の幅で決定する。ウィーナー・ヒンチンの定理より、自己相関関数は光周波数コムのスペクトルのフーリエ変換で与えられる。1THzの帯域を持つ光周波数コムであれば、その自己相関関数の幅は1ps(100μm)程度である。このため、1THzの帯域を持つ光周波数コムを用いることで、所望の位置における反射率R(τ)を1ps(100μm)程度の分解能で測定することができる。   Further, the resolution of the measurement method according to the present embodiment is determined by the width of the autocorrelation function of the optical frequency comb. From Wiener Hinchin's theorem, the autocorrelation function is given by the Fourier transform of the spectrum of the optical frequency comb. In the case of an optical frequency comb having a band of 1 THz, the width of the autocorrelation function is about 1 ps (100 μm). Therefore, by using an optical frequency comb having a 1 THz band, the reflectance R (τ) at a desired position can be measured with a resolution of about 1 ps (100 μm).

以上のように、本実施形態に係る発明は、光周波数コム光源1を2分岐し、一方をプローブ光、もう一方を参照光とし、トリガ源制御部9を用いてそれぞれの光を変調する時間の間に遅延τを設けること、かつ、光位相変調部4−1及び4−2において同一の波形で位相変調し、被測定デバイス7の内部から後方散乱されたプローブ光と参照光の相関をとることで、被測定デバイス7の光反射測定を行う技術である。トリガ源制御部9を用いてプローブ光と参照光を変調する時刻を制御することと、光遅延部3を用いて2分岐された光周波数コムの間に遅延を設けることで、2分岐された光周波数コムの間の自己相関関数を掃引し、被測定デバイス7の後方散乱位置の分解を行うことができる。 As described above, in the invention according to the present embodiment, the optical frequency comb light source 1 is branched into two, one is the probe light, the other is the reference light, and the time for modulating each light using the trigger source control unit 9 Between the probe light and the reference light that are back-scattered from the inside of the device under measurement 7 with a delay τ 1 between them and phase modulation with the same waveform in the optical phase modulators 4-1 and 4-2. This is a technique for measuring the light reflection of the device under measurement 7 by taking The trigger source control unit 9 is used to control the time when the probe light and the reference light are modulated, and the optical delay comb 3 is used to provide a delay between the two optical frequency combs. The autocorrelation function between the optical frequency combs can be swept, and the backscattering position of the device under measurement 7 can be resolved.

なお、測定距離は光周波数コム光源1のコヒーレンス時間τによって決まり、式(8)が満たされる限り、光反射測定を行うことができる。このため、ファイバレーザ等の高コヒーレンス光源を光周波数コム光源1の種光とすることで、長距離測定を実現することができる。したがって、本実施形態に係る光反射測定装置は、非特許文献1〜非特許文献3では到達できなかった測定距離数十km、空間分解能100μmの性能を持つ長距離高空間分解能反射測定技術を実現することができる。 Note that the measurement distance is determined by the coherence time τ c of the optical frequency comb light source 1, and light reflection measurement can be performed as long as Expression (8) is satisfied. For this reason, long distance measurement can be realized by using a high coherence light source such as a fiber laser as the seed light of the optical frequency comb light source 1. Therefore, the light reflection measuring apparatus according to the present embodiment realizes a long-distance high-spatial-resolution reflection measurement technique having a performance of several tens of kilometers and a spatial resolution of 100 μm that could not be reached in Non-Patent Documents 1 to 3. can do.

本発明は、図1に示す構成に限定されない。
例えば、光遅延部3は、光分岐部2で分岐された光に遅延差を発生さる任意の構成を採用することができる。例えば、光位相変調部4−1と光サーキュレータ6の間に配置されていてもよい。また、光遅延部3は、光分岐部2と光位相変調部4−2の間、或いは、光位相変調部4−2と光合波部10の間に配置され、参照光を遅延させてもよい。
また、トリガ源8−1のトリガ信号をトリガ源8−2のトリガ信号よりも遅延させてもよい。
The present invention is not limited to the configuration shown in FIG.
For example, the optical delay unit 3 can employ any configuration that generates a delay difference in the light branched by the optical branch unit 2. For example, the optical phase modulator 4-1 and the optical circulator 6 may be disposed. The optical delay unit 3 is arranged between the optical branching unit 2 and the optical phase modulation unit 4-2 or between the optical phase modulation unit 4-2 and the optical multiplexing unit 10, and delays the reference light. Good.
Further, the trigger signal of the trigger source 8-1 may be delayed from the trigger signal of the trigger source 8-2.

本発明は情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

1:光周波数コム光源
2:光分岐部
3:光遅延部
4−1、4−2:光位相変調部
5−1、5−2:任意信号発生部
6:光サーキュレータ
7:被測定デバイス
8−1、8−2:トリガ源
9:トリガ源制御部
10:光合波部
11:バランス型受光器
12:データ取得部
1: Optical frequency comb light source 2: Optical branching unit 3: Optical delay unit 4-1, 4-2: Optical phase modulation unit 5-1, 5-2: Arbitrary signal generation unit 6: Optical circulator 7: Device under test 8 -1, 8-2: Trigger source 9: Trigger source control unit 10: Optical multiplexing unit 11: Balanced light receiver 12: Data acquisition unit

Claims (8)

被測定デバイスの光反射率を測定する装置であって、
光周波数コム光源と、
前記光周波数コム光源から出射された光を2分岐する光分岐部と、
前記光分岐部で分岐された光に遅延差を発生させる光遅延部と、
前記光分岐部で分岐された一方の光を任意信号波形で位相変調する第1の光位相変調部と、
前記光分岐部で分岐された他方の光を、前記任意信号波形で位相変調する第2の光位相変調部と、
前記第1の光位相変調部及び前記第2の光位相変調部における位相変調のタイミングを制御するトリガ制御部と、
前記第1の光位相変調部で位相変調された前記一方の光をプローブ光として前記被測定デバイスに入射し、前記プローブ光が前記被測定デバイスで散乱された後方散乱光を導波するサーキュレータと、
前記第2の光位相変調部で位相変調された前記他方の光を参照光とし、前記参照光と前記後方散乱光を合波する光合波部と、
前記光合波部で合波された前記参照光と前記後方散乱光の干渉信号を検出する受光器と、
前記受光部から出力された干渉信号に含まれる位相変調された信号の自己相関関数を用いて、前記被測定デバイスの長手方向の任意の位置における光反射率を求めるデータ取得部と、
を備え、
前記トリガ制御部は、前記被測定デバイスの長手方向の任意の位置において反射された前記プローブ光が前記光合波部で前記参照光と合波されるように、前記第1の光位相変調部及び前記第2の光位相変調部における位相変調のタイミングを制御する、
光反射測定装置。
An apparatus for measuring the light reflectance of a device under test,
An optical frequency comb light source;
An optical branching unit that splits the light emitted from the optical frequency comb light source into two;
An optical delay unit that generates a delay difference in the light branched by the optical branch unit;
A first optical phase modulation unit that phase-modulates one of the lights branched by the optical branching unit with an arbitrary signal waveform;
A second optical phase modulation unit that phase-modulates the other light branched by the optical branching unit with the arbitrary signal waveform;
A trigger controller for controlling timing of phase modulation in the first optical phase modulator and the second optical phase modulator;
A circulator that enters the device under measurement as the one light phase-modulated by the first optical phase modulation unit as probe light, and guides backscattered light scattered by the device under measurement; ,
An optical multiplexing unit configured to combine the reference light and the backscattered light with the other light phase-modulated by the second optical phase modulation unit as a reference light;
A light receiver for detecting an interference signal between the reference light and the backscattered light combined by the optical multiplexing unit;
Using the autocorrelation function of the phase-modulated signal included in the interference signal output from the light receiving unit, a data acquisition unit for obtaining a light reflectance at an arbitrary position in the longitudinal direction of the device under measurement;
With
The trigger control unit includes the first optical phase modulation unit and the first optical phase modulation unit so that the probe light reflected at an arbitrary position in the longitudinal direction of the device to be measured is combined with the reference light by the optical multiplexing unit. Controlling the timing of phase modulation in the second optical phase modulator;
Light reflection measuring device.
前記第1の光位相変調部が位相変調するタイミングを制御するための第1のトリガ信号を出力する第1のトリガ源と、
前記第2の光位相変調部が位相変調するタイミングを制御するための第2のトリガ信号を出力する第2のトリガ源と、
前記第1のトリガ源から第1のトリガ信号が入力されたタイミングで任意信号波形の変調信号を発生し、前記第1の光位相変調部に当該変調信号で位相変調させる第1の任意信号発生部と、
前記第2のトリガ源から第2のトリガ信号が入力されたタイミングで前記任意信号波形の変調信号を発生し、前記第2の光位相変調部に当該変調信号で位相変調させる第2の任意信号発生部と、
をさらに備え、
前記光遅延部は、前記光分岐部によって2分岐された光周波数コムの自己相関関数を掃引するよう、前記光分岐部によって2分岐された光の遅延量を変化させ、
前記トリガ制御部は、反射率を測定する前記被測定デバイスの長手方向の位置に応じて、前記第1のトリガ信号及び前記第2のトリガ信号の出力時刻に遅延を設け、
前記データ取得部は、前記光遅延部の発生させた遅延差及び前記第1のトリガ源及び前記第2のトリガ源がトリガ信号を出力する時刻間の遅延量を用いて、前記受光部から出力された干渉信号から前記被測定デバイスの長手方向の位置を特定する、
ことを特徴とする請求項1記載の光反射測定装置。
A first trigger source that outputs a first trigger signal for controlling the timing at which the first optical phase modulation section performs phase modulation;
A second trigger source that outputs a second trigger signal for controlling the timing of phase modulation by the second optical phase modulator;
Generation of a first arbitrary signal that generates a modulation signal having an arbitrary signal waveform at a timing when the first trigger signal is input from the first trigger source, and causes the first optical phase modulation unit to perform phase modulation with the modulation signal. And
A second arbitrary signal that generates a modulation signal having the arbitrary signal waveform at a timing when the second trigger signal is input from the second trigger source, and causes the second optical phase modulation unit to perform phase modulation with the modulation signal. Generating part,
Further comprising
The optical delay unit changes the delay amount of the light branched by the optical branching unit so as to sweep the autocorrelation function of the optical frequency comb branched by the optical branching unit,
The trigger control unit provides a delay in the output time of the first trigger signal and the second trigger signal according to the position in the longitudinal direction of the device under test for measuring the reflectance,
The data acquisition unit outputs from the light receiving unit using a delay difference generated by the optical delay unit and a delay amount between times when the first trigger source and the second trigger source output a trigger signal. Identifying the position in the longitudinal direction of the device under test from the interference signal
The light reflection measuring apparatus according to claim 1.
前記光周波数コム光源の繰返し周波数がfrepである場合、
前記トリガ制御部は、1/frepの周期で現れる光周波数コムの自己相関関数のうち、任意の自己相関関数を選択するよう、前記第1のトリガ信号及び前記第2のトリガ信号の出力時刻に遅延を設ける、
ことを特徴とする請求項2記載の光反射測定装置。
When the repetition frequency of the optical frequency comb light source is f rep ,
The trigger control unit outputs an output time of the first trigger signal and the second trigger signal so as to select an arbitrary autocorrelation function among the autocorrelation functions of the optical frequency comb that appears at a period of 1 / f rep. A delay in the
The light reflection measuring apparatus according to claim 2.
前記第1の任意信号発生部及び前記第2の任意信号発生部から出力される前記任意信号波形のサンプルレートfsamは、前記光周波数コム光源の繰返し周波数frepよりも大きい、
ことを特徴とする請求項3記載の光反射測定装置。
A sample rate f sam of the arbitrary signal waveform output from the first arbitrary signal generator and the second arbitrary signal generator is greater than a repetition frequency f rep of the optical frequency comb light source;
The light reflection measuring apparatus according to claim 3.
被測定デバイスの光反射率を測定する装置が実行する光反射測定方法であって、
光分岐部が、光周波数コム光源から出射された光を2分岐する光分岐手順と、
光遅延部が、前記光分岐部で分岐された光に遅延差を発生させる光周波数コム遅延発生手順と、
第1の光位相変調部が、前記光分岐部で分岐された一方の光を任意信号波形で位相変調し、第2の光位相変調部が、前記光分岐部で分岐された他方の光を、前記任意信号波形で位相変調する位相変調手順と、
サーキュレータが、前記第1の光位相変調部で位相変調された前記一方の光をプローブ光として前記被測定デバイスに入射し、前記プローブ光が前記被測定デバイスで散乱された後方散乱光を導波し、光合波部が、前記第2の光位相変調部で位相変調された前記他方の光を参照光とし、前記参照光と前記後方散乱光を合波する合波手順と、
データ取得部が、前記受光部から出力された干渉信号に含まれる位相変調された信号の自己相関関数を用いて、前記被測定デバイスの長手方向の任意の位置における光反射率を求めるデータ取得手順と、
を有し、
前記位相変調手順において、トリガ制御部が、前記被測定デバイスの長手方向の任意の位置において反射された前記プローブ光が前記光合波部で前記参照光と合波されるように、前記第1の光位相変調部及び前記第2の光位相変調部における位相変調のタイミングを制御する、
光反射測定方法。
A light reflection measurement method executed by an apparatus for measuring light reflectance of a device under test,
An optical branching procedure in which the optical branching unit splits the light emitted from the optical frequency comb light source into two;
An optical delay unit, an optical frequency comb delay generation procedure for generating a delay difference in the light branched by the optical branch unit;
The first optical phase modulation unit phase-modulates one light branched by the optical branching unit with an arbitrary signal waveform, and the second optical phase modulation unit converts the other light branched by the optical branching unit. , A phase modulation procedure for phase modulation with the arbitrary signal waveform;
A circulator is incident on the device under measurement as the one light phase-modulated by the first optical phase modulation unit as probe light, and the probe light guides backscattered light scattered by the device under measurement. And an optical multiplexing unit that uses the other light phase-modulated by the second optical phase modulation unit as reference light, and combines the reference light and the backscattered light,
A data acquisition procedure in which the data acquisition unit obtains the light reflectance at an arbitrary position in the longitudinal direction of the device under test using the autocorrelation function of the phase-modulated signal included in the interference signal output from the light receiving unit. When,
Have
In the phase modulation procedure, the trigger control unit is configured so that the probe light reflected at an arbitrary position in the longitudinal direction of the device under measurement is combined with the reference light by the optical multiplexing unit. Controlling the timing of phase modulation in the optical phase modulator and the second optical phase modulator,
Light reflection measurement method.
前記光反射測定装置は、
前記第1の光位相変調部が位相変調するタイミングを制御するための第1のトリガ信号を出力する第1のトリガ源と、
前記第2の光位相変調部が位相変調するタイミングを制御するための第2のトリガ信号を出力する第2のトリガ源と、
前記第1のトリガ源から第1のトリガ信号が入力されたタイミングで任意信号波形の変調信号を発生し、前記第1の光位相変調部に当該変調信号で位相変調させる第1の任意信号発生部と、
前記第2のトリガ源から第2のトリガ信号が入力されたタイミングで前記任意信号波形の変調信号を発生し、前記第2の光位相変調部に当該変調信号で位相変調させる第2の任意信号発生部と、
をさらに備え、
前記光遅延手順において、前記光遅延部は、前記光分岐部によって2分岐された光周波数コムの自己相関関数を掃引するよう、前記光分岐部によって2分岐された光の遅延量を変化させ、
前記位相変調手順において、前記トリガ制御部は、反射率を測定する前記被測定デバイスの長手方向の位置に応じて、前記第1のトリガ信号及び前記第2のトリガ信号の出力時刻に遅延を設け、
前記データ取得手順において、前記データ取得部は、前記光遅延部の発生させた遅延差及び前記第1のトリガ源及び前記第2のトリガ源がトリガ信号を出力する時刻間の遅延量を用いて、前記被測定デバイスの長手方向の位置を特定する、
ことを特徴とする請求項5記載の光反射測定方法。
The light reflection measuring device is:
A first trigger source that outputs a first trigger signal for controlling the timing at which the first optical phase modulation section performs phase modulation;
A second trigger source that outputs a second trigger signal for controlling the timing of phase modulation by the second optical phase modulator;
Generation of a first arbitrary signal that generates a modulation signal having an arbitrary signal waveform at a timing when the first trigger signal is input from the first trigger source, and causes the first optical phase modulation unit to perform phase modulation with the modulation signal. And
A second arbitrary signal that generates a modulation signal having the arbitrary signal waveform at a timing when the second trigger signal is input from the second trigger source, and causes the second optical phase modulation unit to perform phase modulation with the modulation signal. Generating part;
Further comprising
In the optical delay procedure, the optical delay unit changes the delay amount of the light bifurcated by the optical branching unit so as to sweep the autocorrelation function of the optical frequency comb bifurcated by the optical branching unit,
In the phase modulation procedure, the trigger control unit provides a delay in the output time of the first trigger signal and the second trigger signal according to the position in the longitudinal direction of the device under test for measuring reflectance. ,
In the data acquisition procedure, the data acquisition unit uses a delay difference generated by the optical delay unit and a delay amount between times when the first trigger source and the second trigger source output a trigger signal. Identifying the position in the longitudinal direction of the device under test,
The light reflection measuring method according to claim 5.
前記光周波数コム光源の繰返し周波数がfrepである場合、
前記位相変調手順において、前記トリガ制御部は、1/frepの周期で現れる光周波数コムの自己相関関数のうち、任意の自己相関関数を選択するよう、前記第1のトリガ信号及び前記第2のトリガ信号の出力時刻に遅延を設ける、
ことを特徴とする請求項6記載の光反射測定方法。
When the repetition frequency of the optical frequency comb light source is f rep ,
In the phase modulation procedure, the trigger control unit selects the first trigger signal and the second trigger signal so as to select an arbitrary autocorrelation function among the autocorrelation functions of the optical frequency comb that appears at a period of 1 / f rep . Provide a delay in the output time of the trigger signal
The light reflection measuring method according to claim 6.
前記位相変調手順において、前記第1の任意信号発生部及び前記第2の任意信号発生部から出力される前記任意信号波形のサンプルレートfsamは、前記光周波数コム光源の繰返し周波数frepよりも大きい、
ことを特徴とする請求項7記載の光反射測定方法。
In the phase modulation procedure, the sample rate f sam of the arbitrary signal waveform output from the first arbitrary signal generator and the second arbitrary signal generator is higher than the repetition frequency f rep of the optical frequency comb light source. large,
The light reflection measuring method according to claim 7.
JP2015154407A 2015-08-04 2015-08-04 Light reflection measuring device and light reflection measuring method Active JP6342857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015154407A JP6342857B2 (en) 2015-08-04 2015-08-04 Light reflection measuring device and light reflection measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015154407A JP6342857B2 (en) 2015-08-04 2015-08-04 Light reflection measuring device and light reflection measuring method

Publications (2)

Publication Number Publication Date
JP2017032466A true JP2017032466A (en) 2017-02-09
JP6342857B2 JP6342857B2 (en) 2018-06-13

Family

ID=57988683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154407A Active JP6342857B2 (en) 2015-08-04 2015-08-04 Light reflection measuring device and light reflection measuring method

Country Status (1)

Country Link
JP (1) JP6342857B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11385127B2 (en) * 2018-06-20 2022-07-12 Nippon Telegraph And Telephone Corporation Optical frequency multiplexing coherent OTDR, testing method, signal processing device, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156339A (en) * 2003-11-26 2005-06-16 Kddi Corp Method of measuring wavelength dispersion, and device for the same
JP2012002594A (en) * 2010-06-15 2012-01-05 Sumitomo Electric Ind Ltd Light reflection measuring method and light reflection measuring device
JP2013007695A (en) * 2011-06-27 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring optical frequency domain reaction
JP2013528834A (en) * 2010-06-03 2013-07-11 ドイツ連邦共和国 Method and optical frequency synthesizer for forming a phase coherent light field having a presettable frequency value
US20140253915A1 (en) * 2013-03-05 2014-09-11 The Regents Of The University Of California Coherent dual parametric frequency comb for ultrafast chromatic dispersion measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156339A (en) * 2003-11-26 2005-06-16 Kddi Corp Method of measuring wavelength dispersion, and device for the same
JP2013528834A (en) * 2010-06-03 2013-07-11 ドイツ連邦共和国 Method and optical frequency synthesizer for forming a phase coherent light field having a presettable frequency value
JP2012002594A (en) * 2010-06-15 2012-01-05 Sumitomo Electric Ind Ltd Light reflection measuring method and light reflection measuring device
JP2013007695A (en) * 2011-06-27 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring optical frequency domain reaction
US20140253915A1 (en) * 2013-03-05 2014-09-11 The Regents Of The University Of California Coherent dual parametric frequency comb for ultrafast chromatic dispersion measurement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBERT C. YOUNGQUIST, ET AL.: "Optical coherence-domain reflectometry: a new optical evaluation technique", OPTICS LETTERS, vol. Vol. 12, No. 3, JPN6018017533, March 1987 (1987-03-01), pages P. 158-160 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11385127B2 (en) * 2018-06-20 2022-07-12 Nippon Telegraph And Telephone Corporation Optical frequency multiplexing coherent OTDR, testing method, signal processing device, and program

Also Published As

Publication number Publication date
JP6342857B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6552983B2 (en) Brillouin scattering measurement method and Brillouin scattering measurement apparatus
JP6308160B2 (en) Optical fiber strain measuring device and optical fiber strain measuring method
CN101517375A (en) Measuring brillouin backscatter from an optical fibre using channelisation
JP2019203859A (en) Device and method for measuring brillouin frequency shift
JP2017116423A (en) Optical fiber characteristic measurement device and optical fiber characteristic measurement method
JP6308183B2 (en) Optical fiber strain measuring device and optical fiber strain measuring method
JP2020056905A (en) Back-scattered light amplification device, optical pulse test apparatus, back-scattered light amplification method, and optical pulse test method
JP3883458B2 (en) Reflective Brillouin spectral distribution measuring method and apparatus
JP2017110953A (en) Inter-propagation-mode group delay difference measurement method and inter-propagation-mode group delay difference measurement system
JP5949341B2 (en) Distance measuring device
JP7272327B2 (en) Optical fiber characteristic measuring device, optical fiber characteristic measuring program, and optical fiber characteristic measuring method
JP5827140B2 (en) Laser light characteristic measuring method and measuring apparatus
JP6342857B2 (en) Light reflection measuring device and light reflection measuring method
JP5613627B2 (en) Laser optical coherence function measuring method and measuring apparatus
JP7040386B2 (en) Optical fiber strain and temperature measuring device and optical fiber strain and temperature measuring method
JP2021128131A (en) Brillouin frequency shift measuring device and Brillouin frequency shift measuring method
JP5371933B2 (en) Laser light measuring method and measuring apparatus
JP2023131864A (en) Optical fiber sensor and method for measuring brillouin frequency shift
KR102177933B1 (en) Distance measurement apparatus and method using visible light laser and near-infrared pulse laser
JP3905780B2 (en) Brillouin spectral distribution measuring method and apparatus
JP5470320B2 (en) Laser light coherence length measuring method and measuring apparatus
Brinkmeyer et al. Fiber optic CW doppler lidar using a synthetic broadband source
JPH05203410A (en) Method and device for measuring reflecting point in optical frequency domain
JP6259753B2 (en) Light reflection measuring device and light reflection measuring method
JP5927079B2 (en) Laser light characteristic measuring method and measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180517

R150 Certificate of patent or registration of utility model

Ref document number: 6342857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150