JP2012109619A - Cooling device of semiconductor module - Google Patents

Cooling device of semiconductor module Download PDF

Info

Publication number
JP2012109619A
JP2012109619A JP2012047392A JP2012047392A JP2012109619A JP 2012109619 A JP2012109619 A JP 2012109619A JP 2012047392 A JP2012047392 A JP 2012047392A JP 2012047392 A JP2012047392 A JP 2012047392A JP 2012109619 A JP2012109619 A JP 2012109619A
Authority
JP
Japan
Prior art keywords
insulating substrate
top plate
lower electrode
semiconductor module
brazing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012047392A
Other languages
Japanese (ja)
Other versions
JP5348264B2 (en
Inventor
Hideo Nakamura
秀生 中村
Migi Yamamoto
右 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012047392A priority Critical patent/JP5348264B2/en
Publication of JP2012109619A publication Critical patent/JP2012109619A/en
Application granted granted Critical
Publication of JP5348264B2 publication Critical patent/JP5348264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4846Connecting portions with multiple bonds on the same bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

PROBLEM TO BE SOLVED: To solve a problem of a conventional cooling device of a semiconductor module that a brazing material joining an insulation substrate with a metal layer in a power semiconductor module is remelted by heat melting a brazing material joining the power semiconductor module with a heat radiator or the like, and a joining end part between the insulation substrate and the metal layer is peeled.SOLUTION: An upper electrode 63, a lower electrode 66, and a top plate 32 of a cooler 3 are formed by members of the same material, a brazing material 22b joining an insulation substrate 12 with the upper electrode 63 and the lower electrode 66 and a brazing material 22b joining the lower electrode 66 with the top plate 32 are formed by members of the same material. A contact prevention material 69, which is for preventing the brazing material 22b joining the lower electrode 66 with the top plate 32 from contacting with a joining interface between at least the lower electrode 66 and the insulation substrate 12, is applied to a peripheral part of the lower electrode 66.

Description

本発明は、絶縁基板の一側面に電極板を介して半導体素子を接合して構成される半導体モジュールの冷却装置に関する。   The present invention relates to a cooling device for a semiconductor module configured by bonding a semiconductor element to one side surface of an insulating substrate via an electrode plate.

一般的に、従来のIGBTモジュール等のパワー半導体モジュールは、絶縁基板の一面側に電極板や回路層を介してパワー半導体素子を実装するとともに、前記絶縁基板の他面側に電極板を接合して構成されており、前記他面側の放熱板を冷却器の天板に接合して、パワー半導体が発した熱を冷却器へ伝導させて放熱するように構成している。
このような、パワー半導体モジュールの熱を放熱するための放熱装置としては、例えば特許文献1に示すようなものがある。
Generally, in a power semiconductor module such as a conventional IGBT module, a power semiconductor element is mounted on one surface side of an insulating substrate via an electrode plate or a circuit layer, and an electrode plate is bonded to the other surface side of the insulating substrate. The heat radiation plate on the other surface side is joined to the top plate of the cooler, and the heat generated by the power semiconductor is conducted to the cooler to radiate heat.
As such a heat radiating device for radiating the heat of the power semiconductor module, there is a device as shown in Patent Document 1, for example.

特許文献1の放熱装置に接合されるパワーモジュール用基板においては、絶縁基板の一面に形成された回路層上に半導体素子が実装され、他面に金属層が接合されている。また、前記金属層には、応力緩和部材を介して放熱装置が接合されている。
前記回路層、金属層、応力緩和部材、および放熱装置は、多くの場合、熱伝導性の観点からアルミにて構成されており、前記絶縁基板、金属層、応力緩和部材、および放熱装置を接合するロウ材はアルミ合金にて構成されている。
また、前記パワー半導体モジュールは、前記絶縁基板の一面側に形成される回路層に半導体素子を実装するとともに、該絶縁基板の他面側に電極板となる金属層をロウ材にて接合して構成されており、絶縁基板に接合された電極板に応力緩和部材をロウ材にて接合し、さらに応力緩和部材と放熱装置とをロウ材にて接合することで、パワー半導体モジュールの放熱装置が構成される。
In the power module substrate bonded to the heat dissipation device of Patent Document 1, a semiconductor element is mounted on a circuit layer formed on one surface of an insulating substrate, and a metal layer is bonded to the other surface. In addition, a heat dissipation device is joined to the metal layer via a stress relaxation member.
The circuit layer, metal layer, stress relaxation member, and heat dissipation device are often made of aluminum from the viewpoint of thermal conductivity, and the insulating substrate, metal layer, stress relaxation member, and heat dissipation device are joined. The brazing material is made of an aluminum alloy.
In the power semiconductor module, a semiconductor element is mounted on a circuit layer formed on one surface side of the insulating substrate, and a metal layer serving as an electrode plate is bonded to the other surface side of the insulating substrate with a brazing material. The stress relief member is joined to the electrode plate joined to the insulating substrate with a brazing material, and the stress relief member and the heat radiating device are joined with the brazing material, so that the heat radiating device of the power semiconductor module is Composed.

また、パワー半導体モジュールを冷却する装置としては、図9に示すような冷却装置がある。
図9に示すパワー半導体モジュールの冷却装置101は、パワー半導体素子111を備えたパワー半導体モジュール102を冷却器103の上に接合することで構成されており、前記パワー半導体モジュール102は、絶縁基板112の上面にロウ材122を介して接合された上部電極板113上にパワー半導体素子111を実装するとともに、絶縁基板112の下面にロウ材122を介して下部電極板114を接合して構成されている。
また、前記パワー半導体モジュール102は、応力緩和材115を介して冷却器103における冷却器本体131の天板に接合されている。前記応力緩和材115はロウ材122によりパワー半導体モジュール102および冷却器本体131の天板と接合されている。
Further, as a device for cooling the power semiconductor module, there is a cooling device as shown in FIG.
A power semiconductor module cooling device 101 shown in FIG. 9 is configured by joining a power semiconductor module 102 including a power semiconductor element 111 on a cooler 103, and the power semiconductor module 102 includes an insulating substrate 112. The power semiconductor element 111 is mounted on the upper electrode plate 113 bonded to the upper surface of the insulating substrate 112 via the brazing material 122, and the lower electrode plate 114 is bonded to the lower surface of the insulating substrate 112 via the brazing material 122. Yes.
The power semiconductor module 102 is joined to the top plate of the cooler body 131 in the cooler 103 via a stress relaxation material 115. The stress relieving material 115 is joined to the power semiconductor module 102 and the top plate of the cooler body 131 by a brazing material 122.

図9に示す冷却装置101の場合も、熱伝導性の観点から、前記上部電極板113、下部電極板114、応力緩和材115、および冷却器本体131をアルミにて構成しており、前記上部電極板113と絶縁基板112、絶縁基板112と下部電極板114、下部電極板114と応力緩和材115、応力緩和材115と冷却器本体131とを接合するロウ材122はアルミ合金(例えばAl−Si)にて構成されている。   In the case of the cooling device 101 shown in FIG. 9 as well, from the viewpoint of thermal conductivity, the upper electrode plate 113, the lower electrode plate 114, the stress relaxation material 115, and the cooler body 131 are made of aluminum, The brazing material 122 that joins the electrode plate 113 and the insulating substrate 112, the insulating substrate 112 and the lower electrode plate 114, the lower electrode plate 114 and the stress relaxation material 115, and the stress relaxation material 115 and the cooler body 131 is an aluminum alloy (for example, Al— Si).

これにより、パワー半導体素子111にて生じた熱を、上部電極板113、絶縁基板112、下部電極板114、および応力緩和材115を通じて冷却器103に伝達し、放熱するように構成されている。
また、前記冷却器103においては、冷却器本体131の内部に形成される冷却水通路131a内に多数の冷却フィン132を形成して、冷却水通路131a内を流れる冷却水による冷却効率を向上させている。
Thus, heat generated in the power semiconductor element 111 is transmitted to the cooler 103 through the upper electrode plate 113, the insulating substrate 112, the lower electrode plate 114, and the stress relaxation material 115, and is radiated.
Further, in the cooler 103, a large number of cooling fins 132 are formed in the cooling water passage 131a formed in the cooler body 131 to improve the cooling efficiency by the cooling water flowing in the cooling water passage 131a. ing.

特開2007−19203号公報JP 2007-19203 A

前述の特許文献1に記載された放熱装置においては、ロウ材にて絶縁基板の他面に金属層を接合した状態のパワー半導体モジュールを、ロウ材にて応力緩和部材および放熱装置に接合するように構成されているが、絶縁基板と金属層とを接合するロウ材と、金属層と応力緩和部材、および応力緩和部材と放熱装置とを接合するロウ材とは同種の材質(アルミ合金)にて構成されているため、両者のロウ付け温度が略等しくなっている。
従って、前記パワー半導体モジュールを応力緩和部材および放熱装置に接合する際の、パワー半導体モジュールにおける温度分布や接合装置による温度制御のばらつきによっては、パワー半導体モジュールと応力緩和部材および放熱装置とを接合するロウ材を溶融させる熱によって、絶縁基板と金属層とを接合しているロウ材が再溶融してしまい、該絶縁基板と金属層との接合端部が剥離してしまう場合があった。
In the heat radiating device described in Patent Document 1, the power semiconductor module in which the metal layer is bonded to the other surface of the insulating substrate with the brazing material is joined to the stress relaxation member and the heat radiating device with the brazing material. The brazing material that joins the insulating substrate and the metal layer, the brazing material that joins the metal layer and the stress relaxation member, and the stress relaxation member and the heat dissipation device are made of the same material (aluminum alloy). Therefore, the brazing temperatures of both are substantially equal.
Accordingly, when the power semiconductor module is joined to the stress relaxation member and the heat dissipation device, the power semiconductor module, the stress relaxation member, and the heat dissipation device are joined depending on the temperature distribution in the power semiconductor module and the variation in temperature control by the joining device. Due to the heat that melts the brazing material, the brazing material joining the insulating substrate and the metal layer may be remelted, and the joining end portion between the insulating substrate and the metal layer may peel off.

また、前記図9に示す冷却装置101においても、絶縁基板112の上面にロウ材122を介して接合された上部電極板113上にパワー半導体素子111を実装するとともに、絶縁基板112の下面にロウ材122を介して下部電極板114を接合して構成されたパワー半導体モジュール102を、前記ロウ材122により応力緩和材115を介して冷却器本体131の天板に接合している。
従って、パワー半導体モジュール102と前記応力緩和材115および冷却器本体131とを接合する際に、該パワー半導体モジュール102と前記応力緩和材115および冷却器本体131とを接合するロウ材122を溶融させる熱によって、絶縁基板112に上部電極板113および下部電極板114を接合しているロウ材が再溶融してしまい、該絶縁基板112と上部電極板113および下部電極板114との接合端部が剥離してしまうという問題があった。
In the cooling device 101 shown in FIG. 9, the power semiconductor element 111 is mounted on the upper electrode plate 113 bonded to the upper surface of the insulating substrate 112 via the brazing material 122, and the brazing is applied to the lower surface of the insulating substrate 112. The power semiconductor module 102 formed by joining the lower electrode plate 114 via the material 122 is joined to the top plate of the cooler body 131 via the stress relaxation material 115 by the brazing material 122.
Accordingly, when the power semiconductor module 102 is bonded to the stress relaxation material 115 and the cooler body 131, the brazing material 122 that bonds the power semiconductor module 102 to the stress relaxation material 115 and the cooler body 131 is melted. The brazing material joining the upper electrode plate 113 and the lower electrode plate 114 to the insulating substrate 112 is remelted due to heat, and the joining end portion between the insulating substrate 112 and the upper electrode plate 113 and the lower electrode plate 114 becomes There was a problem of peeling.

そこで、本発明においては、パワー半導体モジュールを冷却装置に接合する際に、該パワー半導体モジュールの絶縁基板に接合される電極板等の接合部が、パワー半導体モジュールと冷却装置とを接合するためのロウ材を溶融させる熱によって剥離することがない、信頼性の高いパワー半導体モジュールの冷却装置を提供するものである。   Therefore, in the present invention, when the power semiconductor module is joined to the cooling device, a joining portion such as an electrode plate joined to the insulating substrate of the power semiconductor module serves to join the power semiconductor module and the cooling device. It is an object of the present invention to provide a highly reliable power semiconductor module cooling device that does not peel off by heat that melts a brazing material.

上記課題を解決する半導体モジュールの冷却装置は、以下の特徴を有する。
即ち、請求項1記載の如く、絶縁基板の一面側に第一の電極板を介して半導体素子が接合された半導体モジュールの他面側を、第二の電極板を介して冷却器の天板に接合して構成される、半導体モジュールの冷却装置であって、前記第一の電極板および第二の電極板と前記冷却器の天板とを同質部材にて構成するとともに、前記絶縁基板と第一の電極板および第二の電極板とを接合する接合材ならびに前記第二の電極板と前記天板とを接合する接合材を同質部材にて構成し、前記第二の電極板の周縁部に、第二の電極板と天板とを接合する接合材が、少なくとも前記第二の電極板と絶縁基板との接合界面に接触することを防止するための接触防止材が塗布される。
特に、請求項2記載の如く、前記第一の電極板および第二の電極板と前記冷却器の天板とはアルミにて構成され、前記絶縁基板と第一の電極板および第二の電極板とを接合する接合材ならびに前記第二の電極板と前記天板とを接合する接合材はアルミとシリコンまたはマグネシウムとの合金材にて構成され、前記接触防止材はホウ素または酸化チタンにて構成される。
A semiconductor module cooling device that solves the above problems has the following characteristics.
That is, the other surface side of the semiconductor module in which the semiconductor element is bonded to the one surface side of the insulating substrate via the first electrode plate is connected to the top plate of the cooler via the second electrode plate. A cooling device for a semiconductor module, wherein the first electrode plate, the second electrode plate, and the top plate of the cooler are made of homogeneous members, and the insulating substrate; A bonding material for bonding the first electrode plate and the second electrode plate, and a bonding material for bonding the second electrode plate and the top plate are made of homogeneous members, and the periphery of the second electrode plate A contact preventing material for preventing the bonding material for bonding the second electrode plate and the top plate from contacting at least the bonding interface between the second electrode plate and the insulating substrate is applied to the portion.
In particular, according to claim 2, the first electrode plate and the second electrode plate and the top plate of the cooler are made of aluminum, and the insulating substrate, the first electrode plate and the second electrode are formed. The bonding material for bonding the plate and the bonding material for bonding the second electrode plate and the top plate are made of an alloy material of aluminum and silicon or magnesium, and the contact prevention material is made of boron or titanium oxide. Composed.

これにより、前記接合材による接合時に絶縁基板と第二の電極板との接合界面に、溶融した接合材が侵入して第二の電極板の中へ拡散して偏析することを防止することができ、第二の電極板と前記天板との接合を行うときに、絶縁基板と第二の電極板との接合部が再溶融して剥離することを防止できる。   This prevents the molten bonding material from entering the bonding interface between the insulating substrate and the second electrode plate during bonding by the bonding material and diffusing into the second electrode plate and segregating. In addition, when the second electrode plate and the top plate are bonded, it is possible to prevent the bonded portion between the insulating substrate and the second electrode plate from being remelted and peeled off.

本発明によれば、パワー半導体モジュールを冷却器に接合する際に、該パワー半導体モジュールの絶縁基板に既に接合された電極板の該絶縁基板との接合部が再溶融して剥離することを防止でき、信頼性の高いパワー半導体モジュールの冷却装置を構成することが可能となる。   According to the present invention, when the power semiconductor module is bonded to the cooler, the bonding portion of the electrode plate already bonded to the insulating substrate of the power semiconductor module is prevented from being remelted and separated. This makes it possible to configure a highly reliable power semiconductor module cooling device.

パワー半導体モジュールの冷却装置を示す側面断面図である。It is side surface sectional drawing which shows the cooling device of a power semiconductor module. 冷却フィンを示す側面断面図である。It is side surface sectional drawing which shows a cooling fin. パワー半導体モジュールの冷却装置の組み付け手順を示す図である。It is a figure which shows the assembly | attachment procedure of the cooling device of a power semiconductor module. パワー半導体モジュールの冷却装置の第二の実施形態を示す側面断面図である。It is side surface sectional drawing which shows 2nd embodiment of the cooling device of a power semiconductor module. パワー半導体モジュールの冷却装置の第二の実施形態の組み付け手順を示す図である。It is a figure which shows the assembly | attachment procedure of 2nd embodiment of the cooling device of a power semiconductor module. アルミ−シリコン(Al−Si)の状態図を示す図である。It is a figure which shows the phase diagram of aluminum-silicon (Al-Si). 下部電極(アルミ板)にシリコンが偏析している様子を示す側面断面図である。It is side surface sectional drawing which shows a mode that the silicon has segregated to the lower electrode (aluminum plate). 絶縁基板と下部電極との接合端部、および下部電極と冷却フィンとの接合端部に塗布された接触防止材を示す側面断面図である。It is side surface sectional drawing which shows the contact prevention material apply | coated to the junction edge part of an insulated substrate and a lower electrode, and the junction edge part of a lower electrode and a cooling fin. 従来のパワー半導体モジュールの冷却装置を示す側面断面図である。It is side surface sectional drawing which shows the cooling device of the conventional power semiconductor module.

次に、本発明を実施するための形態を、添付の図面を用いて説明する。   Next, modes for carrying out the present invention will be described with reference to the accompanying drawings.

[第一の実施形態]
図1に示すパワー半導体モジュールの冷却装置1は、パワー半導体モジュール2と冷却器3とを接合して構成されており、該パワー半導体モジュール2のパワー半導体素子11からの発熱を冷却器3へ放熱して冷却するものである。
前記パワー半導体モジュール2は、パワー半導体素子11、電極板である上部電極13、および絶縁基板12を積層して構成されており、前記絶縁基板12の上面に上部電極13がロウ材22aを介して接合され、前記上部電極13の上面にパワー半導体素子11がはんだを介して接合されている。
[First embodiment]
A power semiconductor module cooling device 1 shown in FIG. 1 is configured by joining a power semiconductor module 2 and a cooler 3, and heat generated from the power semiconductor element 11 of the power semiconductor module 2 is radiated to the cooler 3. And cool it.
The power semiconductor module 2 is configured by laminating a power semiconductor element 11, an upper electrode 13 which is an electrode plate, and an insulating substrate 12, and the upper electrode 13 is disposed on the upper surface of the insulating substrate 12 via a brazing material 22a. The power semiconductor element 11 is joined to the upper surface of the upper electrode 13 via solder.

前記冷却器3は、上面が開口した箱体に形成され、内部に冷却水が流れる冷却器本体31と、該冷却器本体31の上面を閉塞する天板32とを備えており、該冷却器本体31と天板32とがロウ材22bにより接合されている。   The cooler 3 includes a cooler main body 31 that is formed in a box having an open upper surface, into which cooling water flows, and a top plate 32 that closes the upper surface of the cooler main body 31. The main body 31 and the top plate 32 are joined by the brazing material 22b.

前記天板32には開口部32aが形成されており、天板32の一面(図1における上面)側における前記開口部32aの周縁部には、嵌合凹部32bが形成されている。
前記嵌合凹部32bは、前記絶縁基板12の外形と略同じ形状で略同じ大きさか若干大きく形成されており、該絶縁基板12の周縁部が嵌合凹部32bに嵌合可能となっている。
An opening 32 a is formed in the top plate 32, and a fitting recess 32 b is formed in the peripheral portion of the opening 32 a on one surface (upper surface in FIG. 1) side of the top plate 32.
The fitting recess 32b is substantially the same shape as the outer shape of the insulating substrate 12, and is formed to be approximately the same size or slightly larger. The peripheral edge of the insulating substrate 12 can be fitted into the fitting recess 32b.

また、絶縁基板12の周縁部と嵌合凹部32bとの間には前記ロウ材22bが介装されており、該ロウ材22bにより絶縁基板12の周縁部と嵌合凹部32bとが接合されている。
また、前記絶縁基板12の他面(図1における下面)側には、複数の冷却フィン14・14・・・が取り付けられており、該冷却フィン14・14・・・は前記天板32の開口部32aから冷却器本体31内へ向けて突出している。
前記冷却フィン14・14・・・は前記ロウ材22aにより前記絶縁基板12に接合されている。
The brazing material 22b is interposed between the peripheral edge of the insulating substrate 12 and the fitting recess 32b, and the peripheral edge of the insulating substrate 12 and the fitting recess 32b are joined by the brazing material 22b. Yes.
Further, a plurality of cooling fins 14, 14... Are attached to the other surface (the lower surface in FIG. 1) side of the insulating substrate 12, and the cooling fins 14, 14. Projecting from the opening 32a into the cooler body 31.
The cooling fins 14, 14... Are joined to the insulating substrate 12 by the brazing material 22a.

前記絶縁基板12は、例えば熱伝導率が高くて高強度なセラミックス材(Si34、Al23、AlN等)にて構成され、前記上部電極13および冷却フィン14・14・・・は、例えば熱伝導性が高い銅材(Cu)にて構成されている。前記絶縁基板12と上部電極13および冷却フィン14・14・・・とを接合するためのロウ材22aは、例えばチタン(Ti)および銅材(Cu)を添加した銀合金材(銀ロウ;Ag−Cu−Ti)にて構成されており、例えばペースト状、線状、または箔状に形成されたものが用いられる。
また、前記冷却器本体31および天板32は熱伝導性が高いアルミ材(Al)にて構成されており、前記絶縁基板12と前記天板32、および前記天板32と冷却器本体31とを接合するためのロウ材22bは例えば熱伝導性が高いアルミ合金(Al−Si、Al−Mg)にて構成されており、例えばペースト状、線状、または箔状に形成されたものが用いられる。
また、前記ロウ材22bは、冷却器本体31および天板32の接合部に予めクラッドしたものを用いることもできる。
The insulating substrate 12 is made of, for example, a ceramic material (Si 3 N 4 , Al 2 O 3 , AlN, etc.) having high thermal conductivity and high strength, and the upper electrode 13 and cooling fins 14, 14. Is made of, for example, a copper material (Cu) having high thermal conductivity. The brazing material 22a for joining the insulating substrate 12 to the upper electrode 13 and the cooling fins 14, 14... Is, for example, a silver alloy material (silver brazing; Ag) to which titanium (Ti) and copper material (Cu) are added. -Cu-Ti), for example, a paste, a wire, or a foil is used.
The cooler body 31 and the top plate 32 are made of an aluminum material (Al) having high thermal conductivity. The insulating substrate 12 and the top plate 32, and the top plate 32 and the cooler body 31 For example, the brazing material 22b for joining the electrodes is made of an aluminum alloy (Al-Si, Al-Mg) having a high thermal conductivity, for example, a paste, wire, or foil. It is done.
Further, the brazing material 22b may be a material clad in advance at the joint between the cooler body 31 and the top plate 32.

このように、パワー半導体素子11から冷却器3の間にかけて介在される部材に熱伝導性が高い部材を用いることで、パワー半導体素子11で発生した熱を効率良く冷却器3へ伝達させるようにしている。   Thus, by using a member having high thermal conductivity as a member interposed between the power semiconductor element 11 and the cooler 3, heat generated in the power semiconductor element 11 is efficiently transmitted to the cooler 3. ing.

また、前記冷却フィン14・14・・・は、図2に示すように、ロールフォーミング等により薄板状部材を凹凸形状に折り畳むように屈曲させて、垂直部14a、底部14b、および頂部14cを備えた略三角形状に形成されている。
この三角形状の冷却フィン14・14・・・においては、前記底部14bが絶縁基板12に接合される部分となり、前記頂部14cとその両側の垂直部14aとが前記冷却器本体31内へ侵入して熱を冷却水へ放熱するフィン部分となっている。
Further, as shown in FIG. 2, the cooling fins 14, 14... Have a vertical portion 14 a, a bottom portion 14 b, and a top portion 14 c that are bent by roll forming or the like so as to be folded into an uneven shape. It is formed in a substantially triangular shape.
In the triangular cooling fins 14, 14..., The bottom portion 14b becomes a portion joined to the insulating substrate 12, and the top portion 14c and the vertical portions 14a on both sides thereof enter the cooler body 31. The fins that dissipate heat to the cooling water.

このように、冷却フィン14・14・・・を、薄板状部材を凹凸形状に屈曲させた後に折り畳み方向に圧縮して略三角形状に形成することで、冷却フィン14・14・・・の表面積を大きくして、冷却効率の向上を図ることが可能となっている。
また、前記底部14bにより広い面積で冷却フィン14・14・・・を絶縁基板12に接合することにより、絶縁基板12から冷却フィン14・14・・・への熱伝導性を向上させている。
As described above, the cooling fins 14, 14... Are formed in a substantially triangular shape by bending the thin plate-like member into a concavo-convex shape and then compressing it in the folding direction. Thus, it is possible to improve the cooling efficiency.
In addition, the thermal conductivity from the insulating substrate 12 to the cooling fins 14, 14... Is improved by bonding the cooling fins 14.

また、前述のように構成されるパワー半導体モジュールの冷却装置1は、次のようにして組み立てが行われる。
つまり、図3に示すように、まず、絶縁基板12の上面にロウ材22aを介して上部電極13を配するとともに、絶縁基板12の下面にロウ材22aを介して冷却フィン14・14・・・を配して、該絶縁基板12に上部電極13および冷却フィン14・14・・・を組み付けた状態で(S01)、前記ロウ材22aを加熱して溶融させ、上部電極13および冷却フィン14・14・・・をロウ材22aにより絶縁基板12に接合する(S02)。
The power semiconductor module cooling device 1 configured as described above is assembled as follows.
That is, as shown in FIG. 3, first, the upper electrode 13 is disposed on the upper surface of the insulating substrate 12 via the brazing material 22a, and the cooling fins 14, 14,. , And the upper electrode 13 and the cooling fins 14, 14... Are assembled to the insulating substrate 12 (S 01), the brazing material 22 a is heated and melted, and the upper electrode 13 and the cooling fins 14 are heated. ... Are joined to the insulating substrate 12 by the brazing material 22a (S02).

この場合、前記上部電極13および冷却フィン14・14・・・が銅材(Cu)にて構成されており、ロウ材22aが銀合金材(Ag−Cu−Ti)にて構成されているため、ロウ付け温度は800℃程度に設定される。
また、ロウ材22aのロウ付け時の酸化を防止するために真空炉内でのロウ付けが行われる。
In this case, the upper electrode 13 and the cooling fins 14, 14... Are made of a copper material (Cu), and the brazing material 22a is made of a silver alloy material (Ag—Cu—Ti). The brazing temperature is set to about 800 ° C.
Further, brazing in a vacuum furnace is performed to prevent oxidation during brazing of the brazing material 22a.

次に、上部電極13および冷却フィン14・14・・・が接合された絶縁基板12を、前記ロウ材22bを介して前記天板32の嵌合凹部32bに嵌合させて、該絶縁基板12を天板32に組み付ける(S03)。
この状態で、前記ロウ材22bを加熱して溶融させ、前記絶縁基板12を天板32に接合する(S04)。この場合、絶縁基板12と天板32とは、両者が密着されるように冶具により加圧固定される。
また、この際同時に、前記冷却器本体31と天板32とをロウ材22bにより接合することも可能である。冷却器本体31と天板32とを接合する際にも、該冷却器本体31と天板32とは、両者が密着されるように冶具により加圧固定される。
Next, the insulating substrate 12 to which the upper electrode 13 and the cooling fins 14, 14... Are joined is fitted into the fitting recess 32 b of the top plate 32 through the brazing material 22 b, and the insulating substrate 12. Is assembled to the top board 32 (S03).
In this state, the brazing material 22b is heated and melted, and the insulating substrate 12 is joined to the top plate 32 (S04). In this case, the insulating substrate 12 and the top plate 32 are pressure-fixed by a jig so that they are in close contact with each other.
At the same time, the cooler body 31 and the top plate 32 can be joined by the brazing material 22b. Also when the cooler body 31 and the top plate 32 are joined, the cooler body 31 and the top plate 32 are pressure-fixed by a jig so that they are in close contact with each other.

この場合、前記天板32および冷却器本体31はアルミ材にて構成されており、前記ロウ材22bはアルミ合金(Al−Si等)にて構成されているため、ロウ付け温度は600℃程度に設定される。
また、ロウ材22bのロウ付け時の酸化を防止するために、例えば1×10-5Torr程度の真空炉内でのロウ付けが行われる。
ロウ付け後、天板32および冷却器本体31は冷却されるが、ロウ付け時に両者は冶具により加圧固定されているため、その熱歪が低減されている。
In this case, since the top plate 32 and the cooler body 31 are made of an aluminum material, and the brazing material 22b is made of an aluminum alloy (Al-Si or the like), the brazing temperature is about 600 ° C. Set to
In order to prevent oxidation of the brazing material 22b during brazing, for example, brazing is performed in a vacuum furnace of about 1 × 10 −5 Torr.
After brazing, the top plate 32 and the cooler main body 31 are cooled, but since both are pressure-fixed by a jig at the time of brazing, the thermal strain is reduced.

このように、本例のパワー半導体モジュールの冷却装置1においては、上部電極13および冷却フィン14・14・・・を銅材(Cu)にて構成するとともに、ロウ材22aを銀合金材(Ag−Cu−Ti)にて構成し、前記天板32および冷却器本体31をアルミ材にて構成するとともに、前記ロウ材22bをアルミ合金(Al−Si等)にて構成しているので、上部電極13および冷却フィン14・14・・・を絶縁基板12に接合する際のロウ付け温度(800℃程度)よりも、絶縁基板12を天板32にロウ付けする際のロウ付け温度(600℃程度)を、大きな温度差をもって低くすることができる。   As described above, in the cooling device 1 for the power semiconductor module of this example, the upper electrode 13 and the cooling fins 14, 14... Are made of a copper material (Cu), and the brazing material 22 a is made of a silver alloy material (Ag). -Cu-Ti), the top plate 32 and the cooler body 31 are made of an aluminum material, and the brazing material 22b is made of an aluminum alloy (such as Al-Si). The brazing temperature (600 ° C.) when brazing the insulating substrate 12 to the top plate 32 is higher than the brazing temperature (about 800 ° C.) when joining the electrodes 13 and the cooling fins 14, 14. Degree) can be lowered with a large temperature difference.

これにより、既に上部電極13および冷却フィン14・14・・・が接合された絶縁基板12を天板32に接合する際に、該上部電極13および冷却フィン14・14・・・を接合しているロウ材22aが再溶融することがなく、該上部電極13と絶縁基板12との接合部端、および冷却フィン14・14・・・と絶縁基板12との接合部端が剥離することもない。
従って、組み立てられたパワー半導体モジュールの冷却装置1において、パワー半導体素子11からの発熱の冷却器3への伝達が阻害されることがなく、信頼性の高い冷却装置1を構成することが可能となっている。
When the insulating substrate 12 to which the upper electrode 13 and the cooling fins 14, 14... Are already bonded is bonded to the top plate 32, the upper electrode 13 and the cooling fins 14, 14. The brazing material 22a is not melted again, and the joint end between the upper electrode 13 and the insulating substrate 12 and the joint end between the cooling fins 14, 14... .
Therefore, in the assembled cooling device 1 of the power semiconductor module, the transmission of the heat generated from the power semiconductor element 11 to the cooler 3 is not hindered, and the highly reliable cooling device 1 can be configured. It has become.

また、パワー半導体モジュールの冷却装置1においては、前記絶縁基板12と天板32との接合は、該絶縁基板12の周縁部と天板32の嵌合凹部32bとを接合することで行われており、絶縁基板12の他側面の大部分(天板32の開口部32aに相当する部分)は天板32と接合されていない。
従って、従来のように絶縁基板12の他側面の全面を、下部電極を介して放熱板に接合する場合に比べて、絶縁基板12の他側面における接合面積が小さくなり、絶縁基板12と天板32との線膨張係数の差に伴って両者間に生じる応力を低減して、絶縁基板12の反り変形を抑えることが可能となっている。
In the power semiconductor module cooling device 1, the insulating substrate 12 and the top plate 32 are joined by joining the peripheral edge of the insulating substrate 12 and the fitting recess 32 b of the top plate 32. In addition, most of the other side surface of the insulating substrate 12 (portion corresponding to the opening 32 a of the top plate 32) is not joined to the top plate 32.
Therefore, compared with the conventional case where the entire other side surface of the insulating substrate 12 is bonded to the heat sink via the lower electrode, the bonding area on the other side surface of the insulating substrate 12 is reduced, and the insulating substrate 12 and the top plate are reduced. It is possible to reduce the stress generated between the two in accordance with the difference in linear expansion coefficient from 32 and suppress warping deformation of the insulating substrate 12.

さらに、前記天板32は板状部材にて構成されており、前記天板32の嵌合凹部32bの外周側周辺部位には天板32を屈曲させて形成したベント部33が配置されている。
該ベント部33は、力が加わると弾性変形が可能となっているため、絶縁基板12の周縁部と天板32の嵌合凹部32bとの接合部に応力が発生した際に、該接合部の近傍に位置するベント部33が変形することとなって、前記接合部に生じた応力を低減させることが可能となる。
Further, the top plate 32 is constituted by a plate-like member, and a vent portion 33 formed by bending the top plate 32 is disposed on the outer peripheral side portion of the fitting recess 32b of the top plate 32. .
Since the bent portion 33 can be elastically deformed when a force is applied, when a stress is generated at the joint between the peripheral edge of the insulating substrate 12 and the fitting recess 32b of the top plate 32, the joint As a result, the bent portion 33 located near is deformed, and the stress generated in the joint portion can be reduced.

また、前記冷却フィン14・14・・・は、その底部14b・14b・・・が絶縁基板12の他面に接合されているが、該底部14b・14b・・・と前記絶縁基板12の一面に接合されている上部電極13との剛性や熱容量が等しくなるように構成して、絶縁基板12に上部電極13および冷却フィン14・14・・・を接合する際に、該絶縁基板12に反りが生じないようにしている。   Further, the bottom portions 14b, 14b,... Of the cooling fins 14, 14,... Are joined to the other surface of the insulating substrate 12. .. When the upper electrode 13 and the cooling fins 14... Are joined to the insulating substrate 12. Is prevented from occurring.

また、前記冷却フィン14・14・・・は、絶縁基板12が冷却器3に接合された状態では冷却器本体31内に侵入しているが、該冷却器本体31の内壁面と接触しないように構成されている。
これは、冷却フィン14・14・・・と冷却器本体31とが接触すると、該冷却フィン14・14・・・を構成する銅材と冷却器本体31を構成するアルミとの電位差によりアルミに電解腐食が生じることとなるが、このような電解腐食が発生することを防止するためである。
また、冷却フィン14・14・・・の頂部14cが冷却器本体31の底面と接触しないように構成することで、絶縁基板12の熱による伸縮の影響を受けて冷却器本体31に反りが生じることを防止することが可能となっている。
In addition, the cooling fins 14, 14... Penetrate into the cooler body 31 when the insulating substrate 12 is joined to the cooler 3, but do not contact the inner wall surface of the cooler body 31. It is configured.
When the cooling fins 14, 14... And the cooler main body 31 come into contact with each other, the potential difference between the copper material forming the cooling fins 14. Electrolytic corrosion will occur, but this is to prevent such electrolytic corrosion from occurring.
Further, the top 14c of the cooling fins 14, 14... Is not in contact with the bottom surface of the cooler main body 31, so that the cooler main body 31 warps due to the expansion and contraction due to the heat of the insulating substrate 12. It is possible to prevent this.

また、前記各冷却フィン14の垂直部14aの底部14bに対する角度θは(図2参照)、本例の場合70°程度以下となるように設定されている。
これは、パワー半導体素子11と上部電極13とを接合するはんだ中における、放熱を阻害するボイドの有無を、前記冷却装置1の上方または下方からX線を照射することにより検査しているが、前記冷却フィン14の垂直部14aの角度θが70°程度を超えると(垂直部14aが底部14bに対して垂直に近くなると)、X線の前記垂直部14aを透過する距離が長くなって該垂直部14aの影が写し出されることとなり、ボイドの判別力が低下する原因となるからである。
Further, the angle θ of each cooling fin 14 with respect to the bottom portion 14b of the vertical portion 14a (see FIG. 2) is set to be about 70 ° or less in this example.
This is inspecting the presence or absence of voids that inhibit heat dissipation in the solder joining the power semiconductor element 11 and the upper electrode 13 by irradiating X-rays from above or below the cooling device 1, When the angle θ of the vertical portion 14a of the cooling fin 14 exceeds about 70 ° (when the vertical portion 14a becomes nearly perpendicular to the bottom portion 14b), the distance that the X-ray passes through the vertical portion 14a becomes longer. This is because the shadow of the vertical portion 14a is projected, which causes a decrease in void discrimination.

また、パワー半導体モジュールの冷却装置1においては、前記絶縁基板12の他側面に接合される複数の冷却フィン14・14・・・が、冷却器本体31の内部に天板32の開口部32aを通じて侵入しており、絶縁基板12の他側面は開口部32aを通じて冷却器本体31内に面している。
従って、冷却器本体31内を流れる冷却水により、絶縁基板12に直接接合される冷却フィン14・14・・・のみならず、該絶縁基板12の他側面も冷却されるため、従来のように絶縁基板12を下部電極や放熱板を介して冷却器に接合した場合に比べて、パワー半導体素子11の冷却効率が向上する。
In the power semiconductor module cooling device 1, a plurality of cooling fins 14, 14... Bonded to the other side surface of the insulating substrate 12 are passed through the opening 32 a of the top plate 32 inside the cooler body 31. The other side surface of the insulating substrate 12 faces into the cooler body 31 through the opening 32a.
Therefore, the cooling water flowing in the cooler body 31 cools not only the cooling fins 14, 14... Directly bonded to the insulating substrate 12 but also the other side surface of the insulating substrate 12. The cooling efficiency of the power semiconductor element 11 is improved as compared with the case where the insulating substrate 12 is joined to the cooler via the lower electrode or the heat sink.

また、該絶縁基板12の他面、該他面と各冷却フィン14・14・・・との接合部、および天板32が、前記冷却水により同時に冷却されることとなるため、絶縁基板12や天板32の各部の温度に温度勾配が生じにくく、絶縁基板12と天板32との線膨張係数の差による応力も発生し難くなっている。   Further, the other surface of the insulating substrate 12, the joint between the other surface and each of the cooling fins 14, 14, and the top plate 32 are simultaneously cooled by the cooling water. In addition, a temperature gradient is hardly generated in the temperature of each part of the top plate 32 and stress due to a difference in linear expansion coefficient between the insulating substrate 12 and the top plate 32 is hardly generated.

[第二の実施形態]
図4に示すパワー半導体モジュールの冷却装置51は、パワー半導体モジュール52と冷却器3とを接合して構成されており、該パワー半導体モジュール52のパワー半導体素子11からの発熱を冷却器3へ放熱して冷却するものである。
以下に本例の冷却装置51について説明するが、前述の冷却装置1と同様の構成となる部分については同じ符号を付して詳細な説明は省略する。
[Second Embodiment]
The power semiconductor module cooling device 51 shown in FIG. 4 is configured by joining the power semiconductor module 52 and the cooler 3, and heat generated from the power semiconductor element 11 of the power semiconductor module 52 is radiated to the cooler 3. And cool it.
Although the cooling device 51 of this example will be described below, the same reference numerals are given to portions having the same configuration as the cooling device 1 described above, and detailed description thereof will be omitted.

前記パワー半導体モジュール52は、パワー半導体素子11、上部電極63、絶縁基板12、および下部電極66を積層して構成されており、前記絶縁基板12の上面に上部電極13がロウ材22bを介して接合され、前記上部電極63の上面にパワー半導体素子11がはんだを介して接合されている。
また、前記下部電極66はロウ材22bにより絶縁基板12に接合されており、該下部電極66の下面には冷却フィン64・64・・・がロウ材22bにより接合されている。
The power semiconductor module 52 is configured by laminating the power semiconductor element 11, the upper electrode 63, the insulating substrate 12, and the lower electrode 66, and the upper electrode 13 is disposed on the upper surface of the insulating substrate 12 via the brazing material 22b. The power semiconductor element 11 is joined to the upper surface of the upper electrode 63 via solder.
The lower electrode 66 is joined to the insulating substrate 12 by a brazing material 22b, and cooling fins 64, 64... Are joined to the lower surface of the lower electrode 66 by the brazing material 22b.

このように上部電極63、下部電極66、および冷却フィン64・64・・・が接合された絶縁基板12は、前記ロウ材22bにより冷却器3の天板32に接合されており、該天板32は前記冷却器本体31とロウ材22bにより接合されている。
前記絶縁基板12が天板32に接合された状態では、前記冷却フィン64・64・・・が前記天板32の開口部32aから冷却器本体31内へ向けて突出している。
In this way, the insulating substrate 12 to which the upper electrode 63, the lower electrode 66, and the cooling fins 64, 64... Are joined is joined to the top plate 32 of the cooler 3 by the brazing material 22b. 32 is joined to the cooler body 31 by the brazing material 22b.
In a state where the insulating substrate 12 is bonded to the top plate 32, the cooling fins 64, 64... Protrude from the opening 32a of the top plate 32 into the cooler body 31.

本例における前記上部電極13、下部電極66、および冷却フィン64・64・・・は、前記冷却器本体31および天板32と同様に、例えば熱伝導性が高いアルミ材(Al)にて構成されている。   The upper electrode 13, the lower electrode 66, and the cooling fins 64, 64... In this example are made of, for example, an aluminum material (Al) having high thermal conductivity, like the cooler body 31 and the top plate 32. Has been.

また、前記冷却フィン64・64・・・は、前記冷却フィン14・14・・・と同様に、ロールフォーミング等により薄板状部材を凹凸形状に折り畳むように屈曲させて、垂直部64a、底部64b、および頂部64cを備えた略三角形状に形成されている。
この三角形状の冷却フィン64・64・・・においては、前記底部64bが下部電極66に接合される部分となり、前記頂部64cとその両側の垂直部64aとが前記冷却器本体31内へ侵入して熱を冷却水へ放熱するフィン部分となっている。
Further, the cooling fins 64, 64... Are bent so as to fold the thin plate member into an uneven shape by roll forming or the like, similarly to the cooling fins 14, 14. , And a top portion 64c.
In the triangular cooling fins 64, 64,..., The bottom portion 64b becomes a portion joined to the lower electrode 66, and the top portion 64c and the vertical portions 64a on both sides thereof enter the cooler body 31. The fins that dissipate heat to the cooling water.

このように構成されるパワー半導体モジュールの冷却装置51は、次のようにして組み立てが行われる。
つまり、図5に示すように、まず、絶縁基板12の上面および下面にロウ材22bを介して上部電極63および下部電極66をそれぞれ配するとともに、前記下部電極66の下面にロウ材22bを介して冷却フィン64・64・・・を配して、該絶縁基板12に上部電極63、下部電極66および冷却フィン64・64・・・を組み付けた状態で(S11)、前記ロウ材22bを加熱して溶融させ、上部電極63、下部電極66および冷却フィン64・64・・・をロウ材22bにより絶縁基板12に接合する(S12)。
The power semiconductor module cooling device 51 configured as described above is assembled as follows.
That is, as shown in FIG. 5, first, the upper electrode 63 and the lower electrode 66 are respectively disposed on the upper surface and the lower surface of the insulating substrate 12 via the brazing material 22b, and the lower surface of the lower electrode 66 is disposed via the brazing material 22b. The cooling fins 64, 64,... Are arranged, and the brazing material 22b is heated with the upper electrode 63, the lower electrode 66, and the cooling fins 64, 64,. The upper electrode 63, the lower electrode 66, and the cooling fins 64, 64... Are joined to the insulating substrate 12 by the brazing material 22b (S12).

この場合、前記上部電極63、下部電極66および冷却フィン64・64・・・はアルミ材にて構成され、前記ロウ材22bはアルミ合金(Al−Si等)にて構成されているため、ロウ付け温度は600℃程度に設定される。
また、ロウ材22bのロウ付け時の酸化を防止するために真空炉内でのロウ付けが行われる。
In this case, the upper electrode 63, the lower electrode 66, and the cooling fins 64, 64... Are made of an aluminum material, and the brazing material 22b is made of an aluminum alloy (Al—Si or the like). The attaching temperature is set to about 600 ° C.
Also, brazing in a vacuum furnace is performed to prevent oxidation during brazing of the brazing material 22b.

なお、前記ステップS12にてロウ付けを行うときには、接合後の下部電極66内に、前記ロウ材22bに含まれるシリコン(Si)が所定の濃度で均一に分散している状態となるような条件でロウ付けを行う。この場合におけるシリコン(Si)の分散濃度は、例えば0.2%以下に設定する。
これは、図6に示すように、下部電極66内におけるシリコン(Si)の分散濃度が0
.2%以下であると、下部電極66を構成するアルミ材の融点が640℃以上の高い温度となるためであり、後述するステップS14にて下部電極66と天板32とをロウ付けする際の加熱により、下部電極66と絶縁基板12との接合部における下部電極66および間のロウ材22bが再溶融し難くなる。
It should be noted that when brazing is performed in step S12, a condition that silicon (Si) contained in the brazing material 22b is uniformly dispersed at a predetermined concentration in the lower electrode 66 after bonding. And brazing. In this case, the dispersion concentration of silicon (Si) is set to 0.2% or less, for example.
This is because, as shown in FIG. 6, the dispersion concentration of silicon (Si) in the lower electrode 66 is zero.
. If it is 2% or less, the melting point of the aluminum material constituting the lower electrode 66 becomes a high temperature of 640 ° C. or higher, and when the lower electrode 66 and the top plate 32 are brazed in step S14 described later. By heating, the lower electrode 66 and the brazing material 22b between the lower electrode 66 and the insulating substrate 12 are hardly melted again.

次に、上部電極63、下部電極66、および冷却フィン64・64・・・が接合された絶縁基板12を、前記ロウ材22bを介して前記天板32の嵌合凹部32bに嵌合させて、該絶縁基板12を天板32に組み付ける(S13)。
この状態では、下部電極66が前記嵌合凹部32bに当接しており、前記ロウ材22bを加熱して溶融させることで、前記下部電極66と天板32とが接合される(S14)。この場合、絶縁基板12と天板32とは、下部電極66と天板32とが密着されるように冶具により加圧固定される。
また、この際同時に、前記冷却器本体31と天板32とをロウ材22bにより接合することも可能である。冷却器本体31と天板32とを接合する際にも、該冷却器本体31と天板32とは、両者が密着されるように冶具により加圧固定される。
Next, the insulating substrate 12 to which the upper electrode 63, the lower electrode 66, and the cooling fins 64, 64... Are joined is fitted into the fitting recess 32b of the top plate 32 through the brazing material 22b. The insulating substrate 12 is assembled to the top plate 32 (S13).
In this state, the lower electrode 66 is in contact with the fitting recess 32b, and the lower electrode 66 and the top plate 32 are joined by heating and melting the brazing material 22b (S14). In this case, the insulating substrate 12 and the top plate 32 are pressure-fixed by a jig so that the lower electrode 66 and the top plate 32 are in close contact with each other.
At the same time, the cooler body 31 and the top plate 32 can be joined by the brazing material 22b. Also when the cooler body 31 and the top plate 32 are joined, the cooler body 31 and the top plate 32 are pressure-fixed by a jig so that they are in close contact with each other.

この場合、前記天板32および冷却器本体31はアルミ材にて構成され、前記ロウ材22bはアルミ合金(Al−Si等)にて構成されているため、ロウ付け温度は600℃程度に設定される。   In this case, since the top plate 32 and the cooler body 31 are made of an aluminum material and the brazing material 22b is made of an aluminum alloy (Al-Si or the like), the brazing temperature is set to about 600 ° C. Is done.

ここで、図6に示すように、前述のごとくアルミ材内のシリコン分散濃度が少ないと溶融温度が高くなるが(0.2%以下で640℃以上)、アルミ材内にシリコン(Si)が偏析してシリコン濃度が高くなると溶融温度が低くなる(例えばアルミ材中のシリコン濃度が10%程度になると溶融温度は577℃程度となる)。
なお、アルミ合金が「Si−Mg」にて構成されている場合も同様である(以下についても同様)。
Here, as shown in FIG. 6, when the silicon dispersion concentration in the aluminum material is small as described above, the melting temperature becomes high (0.2% or less and 640 ° C. or more), but silicon (Si) is contained in the aluminum material. When the silicon concentration increases due to segregation, the melting temperature decreases (for example, when the silicon concentration in the aluminum material is approximately 10%, the melting temperature is approximately 577 ° C.).
The same applies to the case where the aluminum alloy is composed of “Si—Mg” (the same applies to the following).

また、図7に示すように、下部電極66内にシリコン(Si)が低濃度で分散するように絶縁基板12と下部電極66とをロウ付けした場合でも、その後にロウ材22bにより下部電極66にそのまま冷却器3の天板32をロウ付けすると、下部電極66と冷却器3との間のロウ材22bが、下部電極66の外周端面に上ってフィレットを形成する。そして、下部電極66の外周端面に上ったロウ材22b内のシリコン(Si)が下部電極66の外周端部および下部電極66と絶縁基板12との接合界面に偏析することとなる。
特に、下部電極66と絶縁基板12との接合界面は下部電極66の母材よりも低密度となるためロウ材22b内のシリコン(Si)が侵入し易く偏析することとなる。
Further, as shown in FIG. 7, even when the insulating substrate 12 and the lower electrode 66 are brazed so that silicon (Si) is dispersed in the lower electrode 66 at a low concentration, the lower electrode 66 is then brazed by the brazing material 22b. If the top plate 32 of the cooler 3 is brazed as it is, the brazing material 22b between the lower electrode 66 and the cooler 3 goes up to the outer peripheral end face of the lower electrode 66 to form a fillet. Then, silicon (Si) in the brazing material 22 b that has risen on the outer peripheral end surface of the lower electrode 66 is segregated at the outer peripheral end portion of the lower electrode 66 and the bonding interface between the lower electrode 66 and the insulating substrate 12.
In particular, since the bonding interface between the lower electrode 66 and the insulating substrate 12 has a lower density than the base material of the lower electrode 66, silicon (Si) in the brazing material 22b easily enters and segregates.

このように、下部電極66と天板32とを接合する際に、下部電極66の外周端部および下部電極66と絶縁基板12との接合界面に、ロウ材22b内のシリコン(Si)が偏析することで、これらの部分の融点が低くなって再溶融し、下部電極66と絶縁基板12との接合端部が剥離する恐れがある。
これは、下部電極66と冷却フィン64・64・・・との接合部についても同様のことがいえる。
As described above, when the lower electrode 66 and the top plate 32 are bonded, silicon (Si) in the brazing material 22b is segregated at the outer peripheral end of the lower electrode 66 and the bonding interface between the lower electrode 66 and the insulating substrate 12. As a result, the melting point of these portions is lowered and remelted, and there is a possibility that the joint end portion between the lower electrode 66 and the insulating substrate 12 is peeled off.
The same can be said for the joints between the lower electrode 66 and the cooling fins 64.

そこで、本例のパワー半導体モジュールの冷却装置51においては、次のようにして、下部電極66と天板32との接合時に下部電極66へのシリコン(Si)の偏析の発生を抑え、下部電極66と絶縁基板12との接合端部に剥離が生じることを防止している。   Therefore, in the cooling device 51 for the power semiconductor module of this example, the occurrence of segregation of silicon (Si) to the lower electrode 66 is suppressed when the lower electrode 66 and the top plate 32 are joined as follows. Peeling is prevented from occurring at the joint end between 66 and the insulating substrate 12.

つまり、図8に示すように、下部電極66と天板32とを接合する前に、絶縁基板12と下部電極66との接合端部、および下部電極66と冷却フィン64・64・・・との接合端部に、これらの接合端部がロウ材22bと接触することを防止する、接触防止材69を塗布するようにしている。
前記接触防止材69は、前記ロウ材22bを構成するアルミ合金(Al−Si等)と反応しない、ホウ素や酸化チタン等にて構成されている。
That is, as shown in FIG. 8, before joining the lower electrode 66 and the top plate 32, the joining end part of the insulating substrate 12 and the lower electrode 66, and the lower electrode 66 and the cooling fins 64, 64. A contact preventing material 69 for preventing the joining end portions from coming into contact with the brazing material 22b is applied to the joining end portions.
The contact preventing material 69 is made of boron, titanium oxide or the like that does not react with the aluminum alloy (Al—Si or the like) constituting the brazing material 22b.

このように、アルミ合金と反応しない材質で構成される接触防止材69を前記接合端部に予め塗布することで、ロウ材22bのロウ付け時に絶縁基板12と下部電極66との接合界面、および下部電極66と冷却フィン64・64・・・との接合界面に、溶融したロウ材22bが侵入して下部電極66等の中へ拡散して偏析することを防止することができる。
これにより、下部電極66と天板32との接合を行うときに、絶縁基板12と下部電極66との接合部が再溶融して剥離することを防止できる。
In this way, by previously applying the contact preventing material 69 made of a material that does not react with the aluminum alloy to the joining end portion, when the brazing material 22b is brazed, the joining interface between the insulating substrate 12 and the lower electrode 66, and It is possible to prevent the molten brazing material 22b from entering the bonding interface between the lower electrode 66 and the cooling fins 64, 64,.
Thereby, when joining the lower electrode 66 and the top plate 32, it can prevent that the junction part of the insulated substrate 12 and the lower electrode 66 remelts and peels.

また、前記接触防止材69を塗布することで、ロウ付けを行う際に接合部の酸化膜除去や再酸化防止を行うためのフラックスを下部電極66と天板32との接合部分に塗布したとしても、塗布したフラックスが絶縁基板12と下部電極66との接合界面、および下部電極66と冷却フィン64・64・・・との接合界面に浸入して、該接合界面へのロウ材22bの侵入を促進することもないので、絶縁基板12と下部電極66、および下部電極66と冷却フィン64・64・・・との接合作業を、接合部分にフラックスを塗布して行うことで、大気圧の窒素雰囲気にて行うことが可能となる。
このように大気圧中での接合作業を行うことで、真空炉内で接合作業を行う場合に比べて真空引きの時間やワークの加熱時間を短縮することができ(大気圧中で加熱すると対流伝熱効果により早く加熱できるため)、冷却装置51の生産性の向上を図ることができる。
Further, by applying the contact preventing material 69, it is assumed that a flux for removing the oxide film and preventing re-oxidation at the joint when brazing is applied to the joint between the lower electrode 66 and the top plate 32. Also, the applied flux penetrates into the bonding interface between the insulating substrate 12 and the lower electrode 66 and the bonding interface between the lower electrode 66 and the cooling fins 64, 64... And the brazing material 22b enters the bonding interface. , So that the bonding of the insulating substrate 12 and the lower electrode 66, and the lower electrode 66 and the cooling fins 64, 64,... It is possible to carry out in a nitrogen atmosphere.
By performing the joining work in the atmospheric pressure in this way, the time required for evacuation and the heating time of the workpiece can be shortened compared to the case where the joining work is performed in a vacuum furnace. Because the heat can be quickly heated due to the heat transfer effect), the productivity of the cooling device 51 can be improved.

1・51 パワー半導体モジュールの冷却装置
2・52 パワー半導体モジュール
3 冷却器
11 パワー半導体素子
13・63 上部電極
14・64 冷却フィン
14a・64a 垂直部
14b・64b 底部
14c・64c 頂部
22a・22b ロウ材
31 冷却器本体
32 天板
32b 嵌合凹部
33 ベント部
66 下部電極
69 接触防止材
1 · 51 Power semiconductor module cooling device 2 · 52 Power semiconductor module 3 Cooler 11 Power semiconductor element 13 · 63 Upper electrode 14 · 64 Cooling fins 14a · 64a Vertical portion 14b · 64b Bottom portion 14c · 64c Top portion 22a · 22b Brazing material 31 Cooler body 32 Top plate 32b Fitting recess 33 Vent part 66 Lower electrode 69 Contact prevention material

Claims (2)

絶縁基板の一面側に第一の電極板を介して半導体素子が接合された半導体モジュールの他面側を、第二の電極板を介して冷却器の天板に接合して構成される、半導体モジュールの冷却装置であって、
前記第一の電極板および第二の電極板と前記冷却器の天板とを同質部材にて構成するとともに、前記絶縁基板と第一の電極板および第二の電極板とを接合する接合材ならびに前記第二の電極板と前記天板とを接合する接合材を同質部材にて構成し、
前記第二の電極板の周縁部に、第二の電極板と天板とを接合する接合材が、少なくとも前記第二の電極板と絶縁基板との接合界面に接触することを防止するための接触防止材が塗布される、
ことを特徴とする半導体モジュールの冷却装置。
A semiconductor configured by joining the other surface side of a semiconductor module in which a semiconductor element is bonded to one surface side of an insulating substrate via a first electrode plate to the top plate of a cooler via a second electrode plate. Module cooling device,
The first electrode plate, the second electrode plate, and the top plate of the cooler are made of a homogeneous material, and a bonding material that joins the insulating substrate, the first electrode plate, and the second electrode plate And the joining material for joining the second electrode plate and the top plate is composed of a homogeneous material,
A bonding material for bonding the second electrode plate and the top plate to the peripheral edge of the second electrode plate is prevented from contacting at least the bonding interface between the second electrode plate and the insulating substrate. A contact prevention material is applied,
A cooling device for a semiconductor module.
前記第一の電極板および第二の電極板と前記冷却器の天板とはアルミにて構成され、
前記絶縁基板と第一の電極板および第二の電極板とを接合する接合材ならびに前記第二の電極板と前記天板とを接合する接合材はアルミとシリコンまたはマグネシウムとの合金材にて構成され、
前記接触防止材はホウ素または酸化チタンにて構成される、
ことを特徴とする請求項1に記載の半導体モジュールの冷却装置。
The first electrode plate and the second electrode plate and the top plate of the cooler are made of aluminum,
The bonding material for bonding the insulating substrate, the first electrode plate and the second electrode plate, and the bonding material for bonding the second electrode plate and the top plate are made of an alloy material of aluminum and silicon or magnesium. Configured,
The contact preventing material is composed of boron or titanium oxide.
The cooling device for a semiconductor module according to claim 1.
JP2012047392A 2012-03-02 2012-03-02 Semiconductor module cooling device Expired - Fee Related JP5348264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012047392A JP5348264B2 (en) 2012-03-02 2012-03-02 Semiconductor module cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012047392A JP5348264B2 (en) 2012-03-02 2012-03-02 Semiconductor module cooling device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007274349A Division JP5056340B2 (en) 2007-10-22 2007-10-22 Semiconductor module cooling device

Publications (2)

Publication Number Publication Date
JP2012109619A true JP2012109619A (en) 2012-06-07
JP5348264B2 JP5348264B2 (en) 2013-11-20

Family

ID=46494820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012047392A Expired - Fee Related JP5348264B2 (en) 2012-03-02 2012-03-02 Semiconductor module cooling device

Country Status (1)

Country Link
JP (1) JP5348264B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086744A (en) * 2000-08-09 2003-03-20 Mitsubishi Materials Corp Power module and power module with heat sink
JP5056340B2 (en) * 2007-10-22 2012-10-24 トヨタ自動車株式会社 Semiconductor module cooling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086744A (en) * 2000-08-09 2003-03-20 Mitsubishi Materials Corp Power module and power module with heat sink
JP5056340B2 (en) * 2007-10-22 2012-10-24 トヨタ自動車株式会社 Semiconductor module cooling device

Also Published As

Publication number Publication date
JP5348264B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5056340B2 (en) Semiconductor module cooling device
JP5614485B2 (en) Power module substrate with heat sink, power module with heat sink, and method for manufacturing power module substrate with heat sink
JP6696215B2 (en) Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
WO2014115677A1 (en) Power module substrate, power module substrate with heat sink, and power module with heat sink
JP2010171279A (en) Heat radiator
TW201503296A (en) Laminate, power module substrate, and power module substrate with heatsink
WO2007145303A1 (en) Semiconductor module and method for manufacturing same
WO2016031754A1 (en) Assembly, power-module substrate provided with heat sink, heat sink, method for manufacturing assembly, method for manufacturing power-module substrate provided with heat sink, and method for manufacturing heat sink
US20220223493A1 (en) Insulation circuit board with heat sink
JP5966512B2 (en) Manufacturing method of power module substrate with heat sink
JP5348265B2 (en) Semiconductor module cooling device
JP2007141932A (en) Power module base
JP6750422B2 (en) Method for manufacturing insulated circuit board, insulated circuit board, power module, LED module, and thermoelectric module
WO2017051798A1 (en) Light-emitting module substrate, light-emitting module, substrate for light-emitting module having cooler, and production method for light-emitting module substrate
JP2008124187A6 (en) Power module base
JP5348264B2 (en) Semiconductor module cooling device
JP2008124187A (en) Base for power module
WO2016002609A1 (en) Method for producing ceramic-aluminum bonded body, method for producing power module substrate, ceramic-aluminum bonded body, and power module substrate
JP2019212808A (en) Manufacturing method of semiconductor device
JP6565735B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP5659935B2 (en) Semiconductor device
JP2016174034A (en) Semiconductor power module
JP2008159946A (en) Cooling device of semiconductor module, and manufacturing method therefor
JP2008294281A (en) Semiconductor device and manufacturing method therefor
JP2016082088A (en) Heat sink with circuit board, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

LAPS Cancellation because of no payment of annual fees