JP2012109250A - Electrochemical cell and manufacturing method thereof - Google Patents

Electrochemical cell and manufacturing method thereof Download PDF

Info

Publication number
JP2012109250A
JP2012109250A JP2011277112A JP2011277112A JP2012109250A JP 2012109250 A JP2012109250 A JP 2012109250A JP 2011277112 A JP2011277112 A JP 2011277112A JP 2011277112 A JP2011277112 A JP 2011277112A JP 2012109250 A JP2012109250 A JP 2012109250A
Authority
JP
Japan
Prior art keywords
box
current collecting
shaped base
electrochemical cell
collecting terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011277112A
Other languages
Japanese (ja)
Inventor
Kazutaka Yuzurihara
一貴 譲原
Hironobu Ito
浩信 伊藤
Hideharu Onodera
英晴 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011277112A priority Critical patent/JP2012109250A/en
Publication of JP2012109250A publication Critical patent/JP2012109250A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical cell of which the shape flexibility is enhanced, that can be smaller and thinner easily, that realizes the high capacity, and realizes low cost by reducing the number of man-hours.SOLUTION: The electrochemical cell includes: a base member 11 that is made up of a resin material and formed in a box-like shape; a first collector terminal 15 that is made up of a metal material and fixedly penetrates from the inner side to the outer side of the bottom of the box-like base member 11; a second collector terminal 16 that fixedly penetrates from the inner side to the outer side of the side part of the box-like base member 11; and a cover member 13 that is made up of a resin material deposited to the base member.

Description

本発明は非水電解質電池および電気二重層原理を利用した電気二重層キャパシタ等の電気化学セルおよびその製造方法に関する。   The present invention relates to a non-aqueous electrolyte battery, an electrochemical cell such as an electric double layer capacitor utilizing the electric double layer principle, and a method for producing the same.

非水電解質電池および電気二重層キャパシタ等の電気化学セルは、時計機能のバックアップ電源や半導体メモリのバックアップ電源、マイクロコンピュータやICメモリ等の電子装置の予備電源、ソーラ時計の電池、モータ駆動用の電源などとして使用されている。近年の電気化学セルは、半導体メモリの不揮発化、時計機能素子の低消費電力化により、容量、電流ともにそれほど大きなものの必要性が減ってきている。むしろ、電気化学セルのニーズとしては、ICや水晶、SAWデバイス等とともに高密度実装が要求され、小型・薄型化構造が求められている。   Electrochemical cells such as non-aqueous electrolyte batteries and electric double layer capacitors are used for backup power supplies for clock functions, backup power supplies for semiconductor memories, standby power supplies for electronic devices such as microcomputers and IC memories, batteries for solar clocks, and motor drives. Used as a power source. In recent years, the need for an electrochemical cell having a large capacity and current has been reduced due to non-volatile semiconductor memory and low power consumption of a timepiece functional element. Rather, as a need for electrochemical cells, high-density mounting is required together with ICs, crystals, SAW devices, etc., and a small and thin structure is required.

従来、非水電解質電池および電気二重層キャパシタ等の電気化学セルは、コインやボタンのような形状の金属ケースでパッケージングされていた(例えば、特許文献1参照。)。   Conventionally, electrochemical cells such as non-aqueous electrolyte batteries and electric double layer capacitors have been packaged in a metal case shaped like a coin or a button (see, for example, Patent Document 1).

図8に、従来の電気化学セルを説明する断面図を示す。電極としての正極活物質601、負極活物質603とセパレータ602を収納するための上端面側が円形に開口したステンレスの正極ケース61と、絶縁性の樹脂からなる円形のガスケット62を介して正極ケース61と勘合する円形の負極ケース63で構成されている。また、表面実装を必要とする場合は、正極ケース61に溶接される正極端子65aと、負極ケース63に溶接される負極端子65bとを有していた。   FIG. 8 is a cross-sectional view illustrating a conventional electrochemical cell. The positive electrode case 61 is formed via a stainless steel positive electrode case 61 having a circular opening on the upper end surface for accommodating the positive electrode active material 601, the negative electrode active material 603 and the separator 602 as electrodes, and a circular gasket 62 made of an insulating resin. It is comprised with the circular negative electrode case 63 which fits. In addition, when surface mounting is required, it has a positive terminal 65 a welded to the positive case 61 and a negative terminal 65 b welded to the negative case 63.

特開2002−190427号公報JP 2002-190427 A

以上に述べた従来の非水電解質電池および電気二重層キャパシタ等の電気化学セルは、円形に開口した正極ケース61と円形の負極ケース63で円環状のガスケット62を押しつぶすことでカシメる封止構造がおこなわれていた。電気化学セルの封止性を確保するためには、コインやボタンのような形状であった。ところが、実装基板に配置されるICや水晶、SAWデバイスなどのパッケージは角型であるため、コイン型の電気化学セルを配置すると隙間が生じる。この隙間を有効に使えば、電気化学セルの蓄積容量は2割強の増加が見込める。また、正極ケース61は金属材料で成形されているが、負極端子65bと正極ケース61とは接触すると短絡してしまうため、隙間を確保しなければならない。すなわち、図8に示すように負極端子65bは正極ケース61の外径よりも外側に張り出す必要があり、実装基板上の占有スペースがさらに増えてしまうこととなった。したがって、実装基板上に配置した際、デッドスペースが生じて占有面積が増え、実装基板上の単位面積あたりの容量を高めることは困難であった。また、正極ケース61および負極ケース63に正極端子65aや負極端子65bを取り付ける場合、図12に示すようにそれぞれの部品を重ね合わせて溶接するため、電気化学セルの総厚が増してしまい薄型化が困難となるとともに、正極・負極端子を取り付けるための工数も増えて高価なものとなっていた。   The conventional electrochemical cells such as the non-aqueous electrolyte battery and the electric double layer capacitor described above have a sealing structure that is crimped by crushing the annular gasket 62 with the positive electrode case 61 and the circular negative electrode case 63 opened in a circular shape. Was done. In order to ensure the sealing performance of the electrochemical cell, it was shaped like a coin or button. However, since packages such as ICs, crystals, and SAW devices arranged on the mounting substrate are square, a gap is generated when coin-type electrochemical cells are arranged. If this gap is used effectively, the storage capacity of the electrochemical cell can be expected to increase by more than 20%. Moreover, although the positive electrode case 61 is shape | molded with the metal material, since it will short-circuit if the negative electrode terminal 65b and the positive electrode case 61 contact, you must ensure a clearance gap. That is, as shown in FIG. 8, the negative electrode terminal 65b needs to protrude outside the outer diameter of the positive electrode case 61, and the occupied space on the mounting board is further increased. Therefore, when it is arranged on the mounting substrate, a dead space is generated and the occupied area is increased, and it is difficult to increase the capacity per unit area on the mounting substrate. Further, when the positive electrode terminal 65a and the negative electrode terminal 65b are attached to the positive electrode case 61 and the negative electrode case 63, since the respective components are overlapped and welded as shown in FIG. 12, the total thickness of the electrochemical cell is increased and the thickness is reduced. However, the number of steps for attaching the positive electrode and the negative electrode terminal has increased, and the cost has been increased.

本発明は、電気化学セルの形状自由度を高め、小型・薄型化を容易とするとともに高容量を実現し、部品数および工数を減らして安価とすることを目的とするものである。   It is an object of the present invention to increase the degree of freedom of shape of an electrochemical cell, to facilitate downsizing and thinning, to realize a high capacity, to reduce the number of parts and man-hours, and to reduce the cost.

そして、本発明は上記目的を達成するために、正極活物質と負極活物質からなる一対の電極と、一対の電極を分離するセパレータと、電解質と、前記一対の電極と電解質とを収納する箱状ベース部と、箱状ベース部を封止するカバー部とからなる電気化学セルであって、箱状ベース部と前記カバー部は、それぞれ樹脂材料からなり、一対の電極のうち一方の電極は、他方の電極より小さく、かつ箱状ベース部の底部内側から外側に貫通した第1の集電端子と接続され、一対の電極のうち他方の電極は、箱状ベース部の側部内側から外側に貫通した第2の集電端子と接続されたことを特徴とするものである。   In order to achieve the above object, the present invention provides a pair of electrodes made of a positive electrode active material and a negative electrode active material, a separator that separates the pair of electrodes, an electrolyte, and a box that houses the pair of electrodes and the electrolyte. An electrochemical cell composed of a base portion and a cover portion that seals the box-shaped base portion, wherein the box-shaped base portion and the cover portion are each made of a resin material, and one of the pair of electrodes is The first electrode is connected to a first current collecting terminal that is smaller than the other electrode and penetrates from the inside to the outside of the bottom of the box-shaped base portion, and the other electrode of the pair of electrodes is outside from the inside of the side portion of the box-shaped base portion. The second current collector terminal is connected to a second current collecting terminal penetrating through the terminal.

また、箱状ベース部は、側部内側に段差を有し、段差は、第2の集電端子と箱状ベース部の底部との間にあり、第2の集電端子は、段差の上に配置されていることを特徴とするものである。   Further, the box-shaped base portion has a step inside the side portion, the step is between the second current collecting terminal and the bottom of the box-shaped base portion, and the second current collecting terminal is above the step. It is characterized by being arranged.

また、カバー部と箱状ベース部は、溶着により封止されていることを特徴とするものである。   Moreover, the cover part and the box-shaped base part are sealed by welding.

また、箱状ベース部とカバー部の樹脂材料は、熱可塑性樹脂ポリイミド系、ポリスチレン系、ポリフェニレンサルファイド系、ポリエステル系、ポリアミド系、ポリエーテル系の何れかからなることを特徴とするものである。   The resin material of the box-shaped base portion and the cover portion is any one of thermoplastic resin polyimide, polystyrene, polyphenylene sulfide, polyester, polyamide, and polyether.

また、カバー部は、電解液を注入可能な注入口が設けられ、注入口は、栓部により封止されていることを特徴とするものである。   The cover portion is provided with an inlet through which an electrolyte can be injected, and the inlet is sealed by a stopper.

また、第1の集電端子と第2の集電端子が、ステンレス、アルミニウム、またはアルミニウム合金のいずれかからなることを特徴とする。   Further, the first current collecting terminal and the second current collecting terminal are made of any one of stainless steel, aluminum, and an aluminum alloy.

また、第1の集電端子の一部と第2の集電端子の一部が、箱状ベース部の底部外側と同一平面上に位置することを特徴とするものである。   Moreover, a part of 1st current collection terminal and a part of 2nd current collection terminal are located on the same plane as the bottom part outer side of a box-shaped base part, It is characterized by the above-mentioned.

また、第1の集電端子は、箱状ベース部の底部内側から外側に貫通するように成形型に配置し、第2の集電体端子は、箱状ベース部の側部内側から外側に貫通するように成形型に配置する工程と、成形型内に樹脂材料を注入して箱状ベース部を成形する工程と、第1の集電端子に正極活物質と負極活物質からなる一対の電極の一方の他方の電極より小さい電極を接続する工程と、第2の集電端子に正極活物質と負極活物質からなる一対の電極の他方の電極を接続する工程と、一対の電極を分離するセパレータと電解質とを箱状ベース部に収納する工程と、箱状ベース部にカバー部を載置し、レーザー溶着または超音波溶着で封止する工程と、を有するものである。   The first current collector terminal is arranged in the mold so as to penetrate from the inside of the bottom of the box-shaped base portion to the outside, and the second current collector terminal is arranged from the inside of the side portion of the box-shaped base portion to the outside. A step of arranging in a molding die so as to penetrate; a step of injecting a resin material into the molding die to form a box-shaped base portion; and a pair of a positive electrode active material and a negative electrode active material for the first current collecting terminal Separating the electrode smaller than one of the other electrodes, connecting the other electrode of the pair of positive electrode active material and negative electrode active material to the second current collecting terminal, and separating the pair of electrodes The separator and the electrolyte are stored in a box-shaped base portion, and the cover portion is placed on the box-shaped base portion and sealed by laser welding or ultrasonic welding.

また、第1の集電端子と前記第2の集電端子が、フープに形成されていることを特徴とするものである。   Further, the first current collecting terminal and the second current collecting terminal are formed in a hoop.

上記の課題解決手段による作用は次の通りである。すなわち、一対の電極とセパレータと電解質とをベース部材の凹部に収納し、カバー部材と枠部材を重ね合わせて接合することで、任意の形状および封止構造をもつ電気化学セルが実現する。   The operation of the above problem solving means is as follows. That is, an electrochemical cell having an arbitrary shape and sealing structure is realized by housing a pair of electrodes, a separator, and an electrolyte in a recess of a base member and overlapping and joining the cover member and the frame member.

また、正極と負極は第1の集電端子と第2の集電端子で実装基板に接続される。電気化学セルの構成としては、ベース部材が第1の集電端子と第2の集電端子とを絶縁する。したがって、ベース部材の下端面に第1の集電端子と第2の集電端子とを配置することが可能となり、実装基板上のデッドスペースは極力小さくでき、高容量となる。   Further, the positive electrode and the negative electrode are connected to the mounting substrate by the first current collecting terminal and the second current collecting terminal. As a structure of the electrochemical cell, the base member insulates the first current collecting terminal and the second current collecting terminal. Therefore, the first current collecting terminal and the second current collecting terminal can be arranged on the lower end surface of the base member, and the dead space on the mounting substrate can be minimized and the capacity can be increased.

また、枠接続端子は、枠部材、もしくは、カバー部材から延出する構造としたため、電気化学セルの総厚が増すことなく薄型化される。正極・負極端子を取り付けるための工数も不要となる。   Further, since the frame connection terminal has a structure extending from the frame member or the cover member, the thickness is reduced without increasing the total thickness of the electrochemical cell. The man-hour for attaching a positive electrode and a negative electrode terminal is also unnecessary.

上述したように本発明は、電気化学セルの形状自由度を高め、小型・薄型化を容易とするとともに、高容量を実現し、部品数および工数を減らして安価とするという効果を発揮するものである。   As described above, the present invention increases the degree of freedom of shape of the electrochemical cell, facilitates downsizing and thinning, realizes high capacity, and reduces the number of parts and man-hours, thereby reducing the cost. It is.

本発明の電気化学セルの構成図である。It is a block diagram of the electrochemical cell of this invention. 本発明の電気化学セルの外観図である。It is an external view of the electrochemical cell of this invention. 本発明の電気化学セルの断面図である。It is sectional drawing of the electrochemical cell of this invention. 本発明の電気化学セルの外観図である。It is an external view of the electrochemical cell of this invention. 本発明の電気化学セルの断面図である。It is sectional drawing of the electrochemical cell of this invention. 本発明の電気化学セルの製造方法を説明するフロー図である。It is a flowchart explaining the manufacturing method of the electrochemical cell of this invention. 本発明の電気化学セルの製造方法を説明する外観図である。It is an external view explaining the manufacturing method of the electrochemical cell of this invention. 従来の電気化学セルの断面図である。It is sectional drawing of the conventional electrochemical cell.

以下、本発明の実施の形態を図1〜7に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1および図2、図3においては、11は凹部11aを有する箱状に形成された樹脂材料からなるベース部材で、ベース部材11の凹部11aの内側から外側に、ベース部材11の壁面を貫通する第1の集電端子15および第2の集電端子16で容器を構成する。また、正極活物質101と第1の集電端子15とは導電性接着剤で貼りあわせ、凹部11aに正極活物質101と重ねあわせてセパレータ102を収納し、負極活物質102と第2の集電端子16とは導電接着剤で張り合わせ、図示しない電解質を収納する。また、ベース部材11とカバー部材13とを重ね合わせて溶着する。また、第1の集電端子15および第2の集電端子16にはステンレス、もしくは、アルミニウムが用いられる。   In FIGS. 1, 2, and 3, reference numeral 11 denotes a base member made of a resin material formed in a box shape having a recess 11 a, which penetrates the wall surface of the base member 11 from the inside to the outside of the recess 11 a of the base member 11. The first and second current collecting terminals 15 and 16 constitute a container. In addition, the positive electrode active material 101 and the first current collecting terminal 15 are bonded together with a conductive adhesive, and the separator 102 is accommodated in the recess 11a so as to overlap the positive electrode active material 101, and the negative electrode active material 102 and the second current collector terminal 15 are stored. The electrical terminals 16 are bonded together with a conductive adhesive and accommodate an electrolyte (not shown). Further, the base member 11 and the cover member 13 are overlapped and welded. The first current collecting terminal 15 and the second current collecting terminal 16 are made of stainless steel or aluminum.

ここで、集電端子の構成としては、第2の集電端子をカバー部材に置く構成も用いられる。   Here, as a configuration of the current collecting terminal, a configuration in which the second current collecting terminal is placed on the cover member is also used.

また、集電端子の材質としては、ステンレスであれば19Cr−9Ni鋼、18Cr−12Ni−Mo−Cu鋼など、アルミニウム、アルミニウム合金などから、プレス性や切削性に適合する金属が用いられる。また、第1の集電端子をステンレスとし第2の集電端子をアルミニウム、アルミニウム合金とする構成及び逆の組み合わせの構成も用いられる。また、カバー部材とベース部材とを溶着する方法としては、YAGレーザ、半導体レーザなどの光吸収を用いる方法、カバー部材に超音波振動子を押し当ててベース部材との間を擦り合わせ、摩擦熱を用いる方法が用いられる。   In addition, as the material of the current collecting terminal, a metal suitable for pressability and machinability is used from aluminum, aluminum alloy, etc., such as 19Cr-9Ni steel and 18Cr-12Ni-Mo-Cu steel, in the case of stainless steel. Further, a configuration in which the first current collecting terminal is made of stainless steel and the second current collecting terminal is made of aluminum or an aluminum alloy, or a configuration in the opposite combination is also used. The cover member and the base member can be welded by using a light absorption method such as a YAG laser or a semiconductor laser, or by pressing an ultrasonic vibrator against the cover member and rubbing it between the base member and frictional heat. The method using is used.

また、ベース部材の材料は絶縁性の樹脂で、ポリスチレン系、ポリフェニレンサルファイド系、ポリエステル系、ポリアミド系、ポリエーテル系の熱可塑樹脂が、溶着性、剛性、耐熱性の面から適している。ここで、ポリスチレン系としてはシンジオタクチックポリスチレン、ポリフェニレンサルファイド系としてはリニア型および架橋型ポリフェニレンサルファイド、ポリエステル系としては液晶ポリマーの呼称の全芳香族ポリエステル、ポリアミド系としてはナイロン、ポリエーテル系としてはポリエーテルエーテルケトン、ポリエーテルサルホン、ポリエーテルイミド、などが選択される。また、これら樹脂にガラス繊維、マイカ、セラミックス微粉等を添加したものも用いられる。   The material of the base member is an insulating resin, and polystyrene-based, polyphenylene sulfide-based, polyester-based, polyamide-based, and polyether-based thermoplastic resins are suitable in terms of weldability, rigidity, and heat resistance. Here, syndiotactic polystyrene is used as the polystyrene system, linear and cross-linked polyphenylene sulfide is used as the polyphenylene sulfide system, wholly aromatic polyester is called liquid crystal polymer as the polyester system, nylon is used as the polyamide system, and polyether is used as the polyether system Polyether ether ketone, polyether sulfone, polyether imide, etc. are selected. Further, those obtained by adding glass fiber, mica, ceramic fine powder, etc. to these resins are also used.

また、ベース部材と第1の集電端子および第2の集電端子で構成される容器に収納する電気化学セルの発電要素としては、非水電解質電池であれば、正極活物質にリチウム含有マンガン酸化物、リチウム含有コバルト酸化物、リチウム含有チタン酸化物、負極活物質に炭素、リチウム合金、遷移金属酸化物、シリコン酸化物など従来から知られているものを用いることが出来る。電気二重層キャパシタでは正極及び負極活物質に活性炭を用いることができる。   In addition, as a power generation element of an electrochemical cell housed in a container composed of a base member, a first current collecting terminal, and a second current collecting terminal, a lithium-containing manganese is used as a positive electrode active material if it is a nonaqueous electrolyte battery. As oxides, lithium-containing cobalt oxides, lithium-containing titanium oxides, and negative electrode active materials, conventionally known materials such as carbon, lithium alloys, transition metal oxides, and silicon oxides can be used. In the electric double layer capacitor, activated carbon can be used for the positive electrode and the negative electrode active material.

また、セパレータとしては、大きなイオン透過度を有し、所定の機械的強度を有する絶縁膜が用いられ、ガラス繊維が安定して用いることができるが、ポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリアミド、ポリイミドなどの樹脂を用いることもできる。セパレータの孔径、厚みは特に限定されないが、使用機器の電流値と電気化学セルの内部抵抗にもとづき決定する設計的事項である。また、セラミックスの多孔質体を用いることもできる。   In addition, as the separator, an insulating film having a large ion permeability and a predetermined mechanical strength is used, and glass fiber can be used stably. Polyphenylene sulfide, polyethylene terephthalate, polyamide, polyimide, Resin can also be used. The pore diameter and thickness of the separator are not particularly limited, but are design matters determined based on the current value of the equipment used and the internal resistance of the electrochemical cell. A ceramic porous body can also be used.

電解液の溶媒としては、電気二重層キャパシタや非水二次電池を例とすると、従来の非水溶媒が用いられる。この非水溶媒には、環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類、等が含まれる。リフロー実装を考慮すると、γ―ブチロラクトン(γBL)やプロピレンカーボネート(PC)、エチレンカーボネート(EC)、等から選ばれる単独または複合物で用いることができる。   As the solvent for the electrolytic solution, when an electric double layer capacitor or a non-aqueous secondary battery is taken as an example, a conventional non-aqueous solvent is used. This non-aqueous solvent includes cyclic esters, chain esters, cyclic ethers, chain ethers, and the like. Considering reflow mounting, it can be used alone or in combination selected from γ-butyrolactone (γBL), propylene carbonate (PC), ethylene carbonate (EC), and the like.

電解質としては、(C254PBF4、(C374PBF4、(CH3)(C253NBF4、(C254NBF4、(C254PPF6、(C254PCF3SO4、(C254NPF6、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ホウフッ化リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]、チオシアン塩、アルミニウムフッ化塩などのリチウム塩、 等の一種以上の塩を用いることができる。ポリエチレンオキサイド誘導体かポリエチレンオキサイド誘導体を含むポリマー、ポリプロピレンオキサイド誘導体やポリプロピレンオキサイド誘導体を含むポリマー、リン酸エステルポリマー、PVDF等と非水溶媒、支持塩と併用しゲル状または固体状で用いることが含まれる。また、LiS/SiS2/Li4SiO4の無機固体電解質を用いることが含まれる。またピリジン系や脂環式アミン系、脂肪族アミン系のイオン性液体やアミジン系などの常温溶融塩でもよい。 As the electrolyte, (C 2 H 5 ) 4 PBF 4 , (C 3 H 7 ) 4 PBF 4 , (CH 3 ) (C 2 H 5 ) 3 NBF 4 , (C 2 H 5 ) 4 NBF 4 , (C 2 H 5) 4 PPF 6, (C 2 H 5) 4 PCF 3 SO 4, (C 2 H 5) 4 NPF 6, lithium perchlorate (LiClO 4), lithium hexafluorophosphate (LiPF 6), Lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), lithium trifluorometasulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ], thiocyanate One or more salts such as lithium salt such as aluminum fluoride and the like can be used. Polyethylene oxide derivatives or polymers containing polyethylene oxide derivatives, polymers containing polypropylene oxide derivatives and polypropylene oxide derivatives, phosphate ester polymers, PVDF, etc., used in combination with nonaqueous solvents and supporting salts, including gel or solid use . Also it includes the use of an inorganic solid electrolyte LiS / SiS 2 / Li 4 SiO 4. Also, pyridine-based, alicyclic amine-based, aliphatic amine-based ionic liquids and amidine-based room temperature molten salts may be used.

本発明の実施の形態では、ベース部材11と第1の集電端子15および第2の集電端子16との接合部は形状によらず密着し、また、ベース部材11とカバー部材13とは樹脂溶着による封止性が得られるため、形状の制約はない。すなわち、ベース部材11が角箱型の収納容器であっても、外部からの湿度の浸入を防ぐとともに、電気化学セルの特性を維持することができる。   In the embodiment of the present invention, the joints between the base member 11 and the first current collecting terminal 15 and the second current collecting terminal 16 are in close contact regardless of the shape, and the base member 11 and the cover member 13 are Since sealing performance by resin welding can be obtained, there is no restriction on the shape. That is, even if the base member 11 is a rectangular box-shaped storage container, moisture from the outside can be prevented and the characteristics of the electrochemical cell can be maintained.

実施例では、平面実装型の実装例について述べるが、スルーホールに挿入して実装する挿入型の実装、ホルダーを用いた接触による実装形態においても構成が可能である。   In the embodiment, a planar mounting type mounting example will be described. However, an insertion type mounting that is inserted into a through hole and mounted, and a mounting form by contact using a holder are also possible.

図1に本発明の電気化学セルの構成図を示す。また、図2に本発明の電気化学セルの外観図を示す。また、図3に本発明の電気化学セルの断面図を示す。   FIG. 1 shows a configuration diagram of the electrochemical cell of the present invention. Moreover, the external view of the electrochemical cell of this invention is shown in FIG. FIG. 3 shows a cross-sectional view of the electrochemical cell of the present invention.

本実施例では、ベース部材11はポリフェニレンサルファイドを、第1の集電端子15および第2の集電端子16はステンレスの18Cr−12Ni−Mo−Cu鋼を用いた。また、第1の集電端子15がベース部材11の外壁に延出する部位と、第2の集電端子16がベース部材11の外壁に延出する部位とが同一平面上に位置する構成とした。また、第1の集電端子15および第2の集電端子16がベース部材11の外壁に延出する部位には、実装基板とはんだ接合を容易とするために錫めっきを施した。また、活物質は市販の活性炭に導電剤としてのカーボンブラックと、バインダーとしてPTFEを混練して作製した。混練物をロールプレスで圧延してシート状にし、切断して正極活物質101と負極活物質103とした。電解質は(C254NBF4を、PCに溶かしたものを用いた。ここで、電気化学セルの組立方法としては、ベース部材成形型内に第1の集電端子15および第2の集電端子16を配置し、ポリフェニレンサルファイド樹脂を注入して凹部11aを有する箱状のベース部材11を成形する。第1の集電端子15と正極活物質101とを接着したのち、凹部11aにセパレータ102を収め、凹部11aに負極活物質103を収め第2の集電端子と接着し、凹部11aに電解質を注入した。次にベース部材11とカバー部材13とを重ねあわせ、摩擦加熱工法の超音波溶着をおこなった。 In this embodiment, the base member 11 is made of polyphenylene sulfide, and the first current collecting terminal 15 and the second current collecting terminal 16 are made of stainless 18Cr-12Ni—Mo—Cu steel. Further, a configuration in which a portion where the first current collecting terminal 15 extends to the outer wall of the base member 11 and a portion where the second current collecting terminal 16 extends to the outer wall of the base member 11 are located on the same plane. did. Further, the portions where the first current collecting terminal 15 and the second current collecting terminal 16 extend to the outer wall of the base member 11 were subjected to tin plating in order to facilitate solder bonding with the mounting substrate. The active material was prepared by kneading carbon black as a conductive agent and PTFE as a binder in commercially available activated carbon. The kneaded product was rolled into a sheet by a roll press, and cut into a positive electrode active material 101 and a negative electrode active material 103. The electrolyte used was (C 2 H 5 ) 4 NBF 4 dissolved in PC. Here, as an assembling method of the electrochemical cell, the first current collecting terminal 15 and the second current collecting terminal 16 are arranged in the base member mold, and a box shape having a recess 11a by injecting polyphenylene sulfide resin. The base member 11 is formed. After the first current collecting terminal 15 and the positive electrode active material 101 are adhered, the separator 102 is accommodated in the recess 11a, the negative electrode active material 103 is accommodated in the recess 11a, and is adhered to the second current collecting terminal, and the electrolyte is provided in the recess 11a. Injected. Next, the base member 11 and the cover member 13 were overlapped, and ultrasonic welding of the friction heating method was performed.

電気化学セルの封止性を評価するため、フッ素系液体に浸漬してリークテストをおこなったところ、10-5atm・cc/sec以上の封止性を有していることを確認した。また、この電気化学セルを、予備加熱が140℃・1分、本加熱が220℃以上の時間が20秒でピーク温度が240℃のリフロー炉を通してはんだ付けをおこない、はんだ付け前と後での特性に変化がないことを確認した。 In order to evaluate the sealing performance of the electrochemical cell, a leak test was performed by immersion in a fluorine-based liquid, and it was confirmed that the sealing performance was 10 −5 atm · cc / sec or more. The electrochemical cell was soldered through a reflow oven with a preheating of 140 ° C for 1 minute, a main heating time of 220 ° C or more for 20 seconds and a peak temperature of 240 ° C before and after soldering. It was confirmed that there was no change in characteristics.

図4に本発明の電気化学セルの外観図を示す。また、図5に本発明の電気化学セルの断面図を示す。   FIG. 4 shows an external view of the electrochemical cell of the present invention. FIG. 5 shows a cross-sectional view of the electrochemical cell of the present invention.

ベース部材31はポリフェニレンサルファイドを、第1の集電端子35および第2の集電端子36はステンレスの18Cr−12Ni−Mo−Cu鋼を用いた。また、第1の集電端子15がベース部材11の外壁に延出する部位と、第2の集電端子16がベース部材11の外壁に延出する部位とが同一平面上に位置する構成とした。また、第1の集電端子35および第2の集電端子36がベース部材31の外壁に延出する部位には、実装基板とはんだ接合を容易とするために錫めっきを施した。また、カバー部材33に注入口33aを設置し、カバー部材33をベース部材31に溶着したのちに電解質を注入し栓部材37により封止する構成とした。また、活物質は市販の活性炭に導電剤としてのカーボンブラックと、バインダーとしてPTFEを混練して作製した。混練物をロールプレスで圧延してシート状にし、切断して正極活物質301と負極活物質303とした。電解質は(C254NBF4を、PCに溶かしたものを用いた。ここで、電気化学セルの組立方法としては、ベース部材成形型内に第1の集電端子35および第2の集電端子36を配置し、ポリフェニレンサルファイド樹脂を注入して凹部31aを有する箱状のベース部材31を成形する。第1の集電端子35と正極活物質301とを接着したのち、凹部31aにセパレータ302を収め、第2の集電端子36と負極活物質303とを接着した。次にベース部材31とカバー部材33とを重ねあわせ、摩擦加熱工法の超音波溶着をおこなったのち、電解質を注入口33aから注入し、注入口33aと栓部材37を勘合し、栓部材38を加熱溶着により封止をおこなった。 The base member 31 is made of polyphenylene sulfide, and the first current collecting terminal 35 and the second current collecting terminal 36 are made of stainless 18Cr-12Ni—Mo—Cu steel. Further, a configuration in which a portion where the first current collecting terminal 15 extends to the outer wall of the base member 11 and a portion where the second current collecting terminal 16 extends to the outer wall of the base member 11 are located on the same plane. did. Further, tin plating was applied to the portion where the first current collecting terminal 35 and the second current collecting terminal 36 extend to the outer wall of the base member 31 in order to facilitate solder bonding with the mounting substrate. In addition, an injection port 33 a is provided in the cover member 33, and after the cover member 33 is welded to the base member 31, an electrolyte is injected and sealed with a plug member 37. The active material was prepared by kneading carbon black as a conductive agent and PTFE as a binder in commercially available activated carbon. The kneaded material was rolled with a roll press to form a sheet, and cut into a positive electrode active material 301 and a negative electrode active material 303. The electrolyte used was (C 2 H 5 ) 4 NBF 4 dissolved in PC. Here, as an assembling method of the electrochemical cell, the first current collecting terminal 35 and the second current collecting terminal 36 are arranged in the base member molding die, and a box shape having a recess 31a by injecting polyphenylene sulfide resin. The base member 31 is formed. After bonding the first current collecting terminal 35 and the positive electrode active material 301, the separator 302 was placed in the recess 31a, and the second current collecting terminal 36 and the negative electrode active material 303 were bonded. Next, after superposing the base member 31 and the cover member 33 and performing ultrasonic welding by the friction heating method, the electrolyte is injected from the injection port 33a, the injection port 33a and the plug member 37 are fitted, and the plug member 38 is attached. Sealing was performed by heat welding.

電気化学セルの封止性を評価するため、フッ素系液体に浸漬してリークテストをおこなったところ、10-5atm・cc/sec以上の封止性を有していることを確認した。また、この電気化学セルを、予備加熱が140℃・1分、本加熱が220℃以上の時間が20秒でピーク温度が240℃のリフロー炉を通してはんだ付けをおこない、はんだ付け前と後での特性に変化がないことを確認した。 In order to evaluate the sealing performance of the electrochemical cell, a leak test was performed by immersion in a fluorine-based liquid, and it was confirmed that the sealing performance was 10 −5 atm · cc / sec or more. The electrochemical cell was soldered through a reflow oven with a preheating of 140 ° C for 1 minute, a main heating time of 220 ° C or more for 20 seconds and a peak temperature of 240 ° C before and after soldering. It was confirmed that there was no change in characteristics.

図6に本発明の電気化学セルの製造方法を説明するフロー図を示す。また、図7に本発明の電気化学セルの製造方法を説明する外観図を示す。   FIG. 6 shows a flow chart for explaining the method for producing an electrochemical cell of the present invention. Moreover, the external view explaining the manufacturing method of the electrochemical cell of this invention is shown in FIG.

フープに形成した第1の集電端子55および第2の集電端子56をベース部材成形型内に配置する(工程301)。次に、ベース部材成形型内に樹脂材料を注入して凹部51aを有する箱状にベース部材51を成形するとともに、第1の集電端子55および第2の集電端子56容器として組み立てる(工程302)。次に、一対の電極とセパレータと電解質とをベース部材の凹部51aに収納する(工程303)。ベース部材51と図示しないカバー部材を重ね合わせて溶着する(工程304)。   The first current collecting terminal 55 and the second current collecting terminal 56 formed in the hoop are disposed in the base member mold (step 301). Next, a resin material is injected into the base member molding die to mold the base member 51 into a box shape having a recess 51a, and is assembled as a first current collecting terminal 55 and a second current collecting terminal 56 container (steps) 302). Next, the pair of electrodes, the separator, and the electrolyte are accommodated in the recess 51a of the base member (step 303). The base member 51 and a cover member (not shown) are overlapped and welded (step 304).

ここで、第1の集電端子55および第2の集電端子56にはステンレスの18Cr−12Ni−Mo−Cu鋼の薄板を用いてプレス加工を行い、フープを作製した。プレス加工では、各工程においてワークの位置決めにも用いる送り穴59の加工と、第1の集電端子55および第2の集電端子56を保持するためのブリッジ58を残した窓抜き加工をおこなった。また、ベース部材51の樹脂材料はポリフェニレンサルファイドを用いた。熱可塑性樹脂のポリフェニレンサルファイドは、ベース部材成形型を用い射出成形した。この際、ベース部材成形型内に配置した第1の集電端子55および第2の集電端子56はベース部材51のポリフェニレンサルファイドに密着するとともに、所望の形状に成形が可能である。また、カバー部材の樹脂材料はポリフェニレンサルファイドを用いた。熱可塑性樹脂のポリフェニレンサルファイドは、カバー部材成形型を用い射出成形した。   Here, the 1st current collection terminal 55 and the 2nd current collection terminal 56 were pressed using the thin plate of stainless 18Cr-12Ni-Mo-Cu steel, and the hoop was produced. In the press work, the feed hole 59 used for positioning the workpiece in each process is processed, and the window is left leaving the bridge 58 for holding the first current collecting terminal 55 and the second current collecting terminal 56. It was. The resin material for the base member 51 is polyphenylene sulfide. The thermoplastic resin polyphenylene sulfide was injection molded using a base member mold. At this time, the first current collecting terminal 55 and the second current collecting terminal 56 arranged in the base member molding die are in close contact with the polyphenylene sulfide of the base member 51 and can be molded into a desired shape. Further, polyphenylene sulfide was used as the resin material for the cover member. The thermoplastic resin polyphenylene sulfide was injection molded using a cover member mold.

ベース部材51とカバー部材の接合には、超音波溶着を用い、具体的には、超音波振動体をカバー部材に均等に押し当てて振動させた。ベース部材51とカバー部材の接触面の樹脂が摩擦により発熱し溶融する。超音波振動を停止することにより溶融樹脂が冷却され固化するとともにベース部材51とカバー部材が接合する。   For joining the base member 51 and the cover member, ultrasonic welding was used. Specifically, the ultrasonic vibrator was pressed against the cover member evenly to vibrate. The resin on the contact surface between the base member 51 and the cover member generates heat due to friction and melts. By stopping the ultrasonic vibration, the molten resin is cooled and solidified, and the base member 51 and the cover member are joined.

この溶着の後、枠部材52とつながるブリッジ58をフープから切り離し、電気化学セルを作製した。 電気化学セルの封止性を評価するため、フッ素系液体に浸漬してリークテストをおこなったところ、10-5atm・cc/sec以上の封止性を有していることを確認した。また、この電気化学セルを、予備加熱が140℃・1分、本加熱が220℃以上の時間が20秒でピーク温度が240℃のリフロー炉を通してはんだ付けをおこない、はんだ付け前と後での特性に変化がないことを確認した。 After this welding, the bridge 58 connected to the frame member 52 was cut off from the hoop to produce an electrochemical cell. In order to evaluate the sealing performance of the electrochemical cell, a leak test was performed by immersion in a fluorine-based liquid, and it was confirmed that the sealing performance was 10 −5 atm · cc / sec or more. The electrochemical cell was soldered through a reflow oven with a preheating of 140 ° C for 1 minute, a main heating time of 220 ° C or more for 20 seconds and a peak temperature of 240 ° C before and after soldering. It was confirmed that there was no change in characteristics.

11、31、51 ベース部材
12,32、52 枠部材
13、33 カバー部材
15,35,55 第1の集電端子
16,36,56 第2の集電端子
61 正極缶
62 ガスケット
63 負極缶
65a 正極端子
65b 負極端子
601 正極
602 セパレータ
603 負極
11, 31, 51 Base members 12, 32, 52 Frame members 13, 33 Cover members 15, 35, 55 First current collecting terminals 16, 36, 56 Second current collecting terminals 61 Positive electrode can 62 Gasket 63 Negative electrode can 65a Positive electrode terminal 65b Negative electrode terminal 601 Positive electrode 602 Separator 603 Negative electrode

Claims (9)

正極活物質と負極活物質からなる一対の電極と、前記一対の電極を分離するセパレータと、電解質と、前記一対の電極と前記電解質とを収納する箱状ベース部と、前記箱状ベース部を封止するカバー部とからなる電気化学セルであって、
前記箱状ベース部と前記カバー部は、それぞれ樹脂材料からなり、
前記一対の電極のうち一方の電極は、他方の電極より小さく、かつ箱状ベース部の底部内側から外側に貫通した第1の集電端子と接続され、
前記一対の電極のうち他方の電極は、箱状ベース部の側部内側から外側に貫通した第2の集電端子と接続されたことを特徴とする電気化学セル。
A pair of electrodes composed of a positive electrode active material and a negative electrode active material; a separator separating the pair of electrodes; an electrolyte; a box-shaped base portion housing the pair of electrodes and the electrolyte; and the box-shaped base portion. An electrochemical cell comprising a cover part to be sealed,
The box-shaped base part and the cover part are each made of a resin material,
One electrode of the pair of electrodes is smaller than the other electrode and connected to the first current collecting terminal penetrating from the inside of the bottom of the box-shaped base portion to the outside,
The other electrode of the pair of electrodes is connected to a second current collecting terminal penetrating from the inner side to the outer side of the box-shaped base portion.
前記箱状ベース部は、側部内側に段差を有し、
前記段差は、前記第2の集電端子と前記箱状ベース部の底部との間にあり、
前記第2の集電端子は、前記段差の上に配置されていることを特徴とする請求項1に記載の電気化学セル。
The box-shaped base portion has a step on the inner side,
The step is between the second current collecting terminal and the bottom of the box-shaped base portion,
The electrochemical cell according to claim 1, wherein the second current collecting terminal is disposed on the step.
前記カバー部と前記箱状ベース部は、溶着により封止されていることを特徴とする請求項1または2に記載の電気化学セル。   The electrochemical cell according to claim 1, wherein the cover part and the box-shaped base part are sealed by welding. 前記箱状ベース部と前記カバー部の樹脂材料は、熱可塑性樹脂ポリイミド系、ポリスチレン系、ポリフェニレンサルファイド系、ポリエステル系、ポリアミド系、ポリエーテル系の何れかからなることを特徴とする請求項1から3のいずれか一項に記載の電気化学セル。   The resin material of the box-shaped base portion and the cover portion is any one of thermoplastic resin polyimide-based, polystyrene-based, polyphenylene sulfide-based, polyester-based, polyamide-based, and polyether-based. 4. The electrochemical cell according to any one of 3. 前記カバー部は、前記電解液を注入可能な注入口が設けられ、
前記注入口は、栓部により封止されていることを特徴とする請求項1から4のいずれか一項に記載の電気化学セル。
The cover part is provided with an inlet through which the electrolyte can be injected,
The electrochemical cell according to any one of claims 1 to 4, wherein the injection port is sealed by a stopper.
前記第1の集電端子と前記第2の集電端子が、ステンレス、アルミニウム、またはアルミニウム合金のいずれかからなることを特徴とする請求項1から5のいずれか一項に記載の電気化学セル。   The electrochemical cell according to any one of claims 1 to 5, wherein the first current collecting terminal and the second current collecting terminal are made of any one of stainless steel, aluminum, and an aluminum alloy. . 前記第1の集電端子の一部と前記第2の集電端子の一部が、箱状ベース部の底部外側と同一平面上に位置することを特徴とする請求項1から6のいずれかに記載の電気化学セル。   The part of said 1st current collection terminal and a part of said 2nd current collection terminal are located on the same plane as the bottom part outer side of a box-shaped base part, The one of Claim 1 to 6 characterized by the above-mentioned. The electrochemical cell according to 1. 第1の集電端子は、箱状ベース部の底部内側から外側に貫通するように成形型に配置し、第2の集電体端子は、前記箱状ベース部の側部内側から外側に貫通するように前記成形型に配置する工程と、
前記成形型内に樹脂材料を注入して前記箱状ベース部を成形する工程と、
前記第1の集電端子に正極活物質と負極活物質からなる一対の電極の一方が他方の電極より小さい電極を接続する工程と、
前記第2の集電端子に正極活物質と負極活物質からなる一対の電極の他方の電極を接続する工程と、
前記一対の電極を分離するセパレータと電解質とを前記箱状ベース部に収納する工程と、
前記箱状ベース部にカバー部を載置し、レーザー溶着または超音波溶着で封止する工程と、を有する電気化学セルの製造方法。
The first current collector terminal is disposed in the mold so as to penetrate from the inside of the bottom of the box-shaped base portion to the outside, and the second current collector terminal penetrates from the inside of the side portion of the box-shaped base portion to the outside. Arranging in the mold so as to
Injecting a resin material into the mold and molding the box-shaped base portion;
Connecting one of a pair of electrodes made of a positive electrode active material and a negative electrode active material to the first current collecting terminal, the electrode being smaller than the other electrode;
Connecting the other electrode of the pair of electrodes made of a positive electrode active material and a negative electrode active material to the second current collecting terminal;
Storing the separator separating the pair of electrodes and the electrolyte in the box-shaped base portion;
Placing the cover portion on the box-shaped base portion, and sealing with laser welding or ultrasonic welding.
前記第1の集電端子と前記第2の集電端子が、フープに形成されていることを特徴とする請求項8に記載の電気化学セルの製造方法。   The method for producing an electrochemical cell according to claim 8, wherein the first current collecting terminal and the second current collecting terminal are formed in a hoop.
JP2011277112A 2011-12-19 2011-12-19 Electrochemical cell and manufacturing method thereof Pending JP2012109250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011277112A JP2012109250A (en) 2011-12-19 2011-12-19 Electrochemical cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277112A JP2012109250A (en) 2011-12-19 2011-12-19 Electrochemical cell and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004273699A Division JP4950417B2 (en) 2004-09-21 2004-09-21 Electrochemical cell

Publications (1)

Publication Number Publication Date
JP2012109250A true JP2012109250A (en) 2012-06-07

Family

ID=46494595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277112A Pending JP2012109250A (en) 2011-12-19 2011-12-19 Electrochemical cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2012109250A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204362U (en) * 1985-06-12 1986-12-23
JP2001216952A (en) * 2000-02-04 2001-08-10 Seiko Instruments Inc Battery of nonaqueous electrolyte and capacitor with electrically double layers
JP2006092798A (en) * 2004-09-21 2006-04-06 Seiko Instruments Inc Electrochemical cell and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204362U (en) * 1985-06-12 1986-12-23
JP2001216952A (en) * 2000-02-04 2001-08-10 Seiko Instruments Inc Battery of nonaqueous electrolyte and capacitor with electrically double layers
JP2006092798A (en) * 2004-09-21 2006-04-06 Seiko Instruments Inc Electrochemical cell and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP4520778B2 (en) Surface-mount type electrochemical cell and manufacturing method thereof
JP4892180B2 (en) ELECTROCHEMICAL CELL, ITS MANUFACTURING METHOD, AND ITS VISION INSPECTION METHOD
US6445566B2 (en) Power source element
CN103682232B (en) Battery
US20100209773A1 (en) Electrode sheet, secondary battery and method for manufacturing the secondary battery
US7031140B2 (en) Electric double layer capacitor, electrolytic cell and process for fabricating same
JP2004006226A (en) Battery
JP6552007B2 (en) Battery pack including electrically insulating pack case
JP2011086382A (en) Sealed battery
JP2005044583A (en) Thin secondary battery
JP5679271B2 (en) Battery cover with electrode terminal, method for manufacturing battery cover with electrode terminal, and sealed battery
JP5361599B2 (en) Sealed battery
JP2011077501A (en) Electrochemical cell and method of manufacturing the same
KR102137846B1 (en) Nonaqueous electrolytic secondary battery
JP4950417B2 (en) Electrochemical cell
JP4965809B2 (en) Electrochemical cell and method for producing electrochemical cell
JP4361319B2 (en) Electrochemical cell and method for producing the same
JP4865219B2 (en) Electrochemical cell and method for producing the same
JP2011086483A (en) Laminated secondary battery
JP2005166974A (en) Electric double layer capacitor, electrolytic battery, and their manufacturing methods
JP2012109250A (en) Electrochemical cell and manufacturing method thereof
JP2010238860A (en) Laminate coating electricity storage device
JP5025277B2 (en) Battery manufacturing method
JP2018029068A (en) Power storage element and power storage device
JP2011210691A (en) Sealed battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119