JP2012107983A - Workpiece dimension measuring apparatus and workpiece dimension measuring method - Google Patents

Workpiece dimension measuring apparatus and workpiece dimension measuring method Download PDF

Info

Publication number
JP2012107983A
JP2012107983A JP2010256834A JP2010256834A JP2012107983A JP 2012107983 A JP2012107983 A JP 2012107983A JP 2010256834 A JP2010256834 A JP 2010256834A JP 2010256834 A JP2010256834 A JP 2010256834A JP 2012107983 A JP2012107983 A JP 2012107983A
Authority
JP
Japan
Prior art keywords
workpiece
measurement
measuring
segment
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010256834A
Other languages
Japanese (ja)
Inventor
Kiyofumi Fujimura
清文 藤村
Harutaka Imoto
治孝 井本
Tadayuki Tanabe
忠幸 田邉
Hirohide Hashimoto
博英 橋本
Takashi Arai
孝 荒井
Kazuhiro Kobayashi
一博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Ishikawajima Kenzai Kogyo Co Ltd
Ishikawajima Construction Materials Co Ltd
Kanto Segment Co Ltd
Original Assignee
IHI Corp
Ishikawajima Kenzai Kogyo Co Ltd
Ishikawajima Construction Materials Co Ltd
Kanto Segment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Ishikawajima Kenzai Kogyo Co Ltd, Ishikawajima Construction Materials Co Ltd, Kanto Segment Co Ltd filed Critical IHI Corp
Priority to JP2010256834A priority Critical patent/JP2012107983A/en
Publication of JP2012107983A publication Critical patent/JP2012107983A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a workpiece dimension measuring apparatus and a workpiece dimensional measuring method capable of achieving reduction of operation costs from dimension measurement up to preparation of inspection records after measurement and shortening the operation time while achieving improvement of measuring accuracy, and capable of obtaining also three-dimensional data of flatness, distortion, and so on.SOLUTION: A workpiece dimension measuring apparatus 1 for measuring the dimensions of a segment W includes: a plurality of measuring instruments 10 each of which includes a multi-joint arm 12 and is capable of obtaining three-dimensional coordinate values by bringing a probe 11 attached to the tip of the arm 12 into contact with the segment W; calibration operation means 21 for performing operation for calibrating a relative position relation between the measuring instruments 10 and operation for automatically calculating the dimensions of the segment W based on respective three-dimensional coordinate values obtained by the plurality of measuring instruments 10; measurement evaluation means 22 for evaluating the dimension measurement results of the segment W based on the calibration result and the operation result from the calibration operation means 21; and data management means 31 for collecting the measurement results from the measurement evaluation means 22 as an inspection record and outputting the inspection record.

Description

本発明は、例えば、シールド工事用セグメント等の大型ワークの寸法を計測するのに用いられるワーク寸法計測装置及びワーク寸法計測方法に関するものである。   The present invention relates to a workpiece dimension measuring apparatus and a workpiece dimension measuring method used to measure the dimension of a large workpiece such as a shield construction segment, for example.

大型ワーク、例えば、シールドトンネルの壁体として使用されるシールド工事用のセグメントは、一般的に、他の複数のセグメントとともにリング状に組み立てられる。このようにして組み立てられたセグメントリングは、トンネル長手方向に順次連結され、この際、隣接するセグメントリングの各セグメント同士が互いに千鳥状をなすように連結される。   A segment for shielding work used as a wall of a large workpiece, for example, a shield tunnel, is generally assembled in a ring shape together with a plurality of other segments. The segment rings assembled in this way are sequentially connected in the tunnel longitudinal direction, and at this time, the segments of the adjacent segment rings are connected in a staggered manner.

上記したように、シールド工事用のセグメントは、シールドトンネル内において互いに密着した状態で組み立てられることから、セグメントの完成品検査に際しては、セグメントの寸法を正確に計測する必要がある。   As described above, since the segments for shield construction are assembled in close contact with each other in the shield tunnel, it is necessary to accurately measure the dimensions of the segments when inspecting the finished product of the segments.

上記セグメントの寸法計測は、大型のノギスやゲージ等の専用計測具を用いて複数の人手により行うのが一般的であるが、この計測作業及び計測後の検査記録作成作業には、多大な手間隙がかかっているのに加えて、この計測作業では、セグメントの平坦度や捻れ等の三次元データを得ることはほとんどできない。   Measurement of the dimensions of the above segments is generally performed by a plurality of hands using dedicated measuring tools such as large calipers and gauges. In addition to this, in this measurement work, it is almost impossible to obtain three-dimensional data such as segment flatness and twist.

従来において、上記したような欠点を解消するべく成された技術としては、例えば、特許文献1に記載されたセグメント寸法計測装置がある。このセグメント寸法計測装置は、セグメントを水平に載置して定位置に保持する受け台と、この受け台上に配置されてセグメントの四方の側面と互いに平行を成す4本のレールと、これらのレール上を移動するセンサを備えており、レール上を移動するセンサからの出力信号の時間的変化により、セグメントの四方の側面に設けられたボルト孔のピッチを測定するようになっている。   Conventionally, as a technique for solving the above-described drawbacks, for example, there is a segment dimension measuring apparatus described in Patent Document 1. The segment dimension measuring device includes a pedestal for placing the segment horizontally and holding it in place, four rails arranged on the pedestal and parallel to the four side surfaces of the segment, and A sensor that moves on the rail is provided, and the pitch of the bolt holes provided on the four side surfaces of the segment is measured by a temporal change in the output signal from the sensor that moves on the rail.

特許第2971965号Patent No. 2971965

しかしながら、上記したセグメント寸法計測装置では、セグメントの側面にあるボルト孔のピッチを正確に測定することはできるものの、形態の異なるセグメント毎に専用の受け台を必要とする分だけコスト高となるうえ、測定する度にセグメントの受け台に対する位置決めを行う分だけ多くの時間を費やしてしまうという問題を有しており、これらの問題を解決することが従来の課題となっていた。   However, although the above-described segment dimension measuring apparatus can accurately measure the pitch of the bolt holes on the side surface of the segment, it increases the cost because it requires a dedicated cradle for each segment having a different form. However, each time measurement is performed, there is a problem that a lot of time is spent for positioning the segment with respect to the cradle, and it has been a conventional problem to solve these problems.

本発明は、上記した従来の課題に着目してなされたもので、計測精度の向上を実現したうえで、寸法計測から計測後の検査記録作成までを低コストで且つ短時間で行うことができ、加えて、平坦度や捻れ等の三次元データをも得ることが可能であるワーク寸法計測装置及びワーク寸法計測方法を提供することを目的としている。   The present invention has been made by paying attention to the above-described conventional problems, and can improve the measurement accuracy, and can perform from the dimension measurement to the creation of the inspection record after the measurement at a low cost and in a short time. In addition, an object of the present invention is to provide a workpiece dimension measuring apparatus and a workpiece dimension measuring method capable of obtaining three-dimensional data such as flatness and twist.

本発明の請求項1に係る発明は、シールド工事用セグメント等の大型ワークの寸法を計測するワーク寸法計測装置であって、多関節アームを具備して、該アームの先端に有する探触子を前記ワークに接触させることで三次元座標値を得る複数の測定機と、前記複数の測定機の相対位置関係を校正する作業及び該複数の測定機で得られた各三次元座標値に基づいて前記ワークの寸法を自動算出する作業を行う校正演算手段と、前記校正演算手段からの校正結果及び演算結果に基づいて前記ワークの寸法計測結果を評価する計測評価手段と、前記計測評価手段からの計測結果を検査記録にまとめて出力するデータ管理手段を備えている構成としたことを特徴としており、この構成のワーク寸法計測装置を前述した従来の課題を解決するための手段としている。   The invention according to claim 1 of the present invention is a workpiece dimension measuring device for measuring a dimension of a large workpiece such as a shield construction segment, and is provided with a probe having an articulated arm at the tip of the arm. Based on a plurality of measuring machines that obtain a three-dimensional coordinate value by contacting the workpiece, an operation of calibrating the relative positional relationship between the plurality of measuring machines, and each three-dimensional coordinate value obtained by the plurality of measuring machines. Calibration operation means for automatically calculating the dimensions of the workpiece, measurement evaluation means for evaluating the dimension measurement result of the workpiece based on the calibration result and calculation result from the calibration calculation means, and from the measurement evaluation means It is characterized by having a data management means for collectively outputting the measurement results in the inspection record, and means for solving the above-described conventional problems in the work dimension measuring apparatus having this structure It is.

また、本発明の請求項2に係るワーク寸法計測装置は、前記計測評価手段からの計測結果を管理するデータベースを備えている構成としている。   Moreover, the workpiece dimension measuring apparatus according to claim 2 of the present invention is configured to include a database for managing the measurement results from the measurement evaluation means.

一方、本発明の請求項3に係る発明は、請求項1記載のワーク寸法計測装置を用いて、シールド工事用セグメント等の大型ワークの寸法を計測するに際して、前記校正演算手段により前記多関節アームを具備した複数の測定機の相対位置関係を校正した後、前記複数の測定機の各探触子を前記ワークに接触させてそれぞれ三次元座標値を得るのに続いて、前記校正演算手段により前記複数の測定機で得た各三次元座標値に基づいて前記ワークの寸法を自動算出し、次いで、前記計測評価手段により前記校正演算手段からの校正結果及び演算結果に基づいて前記ワークの寸法計測結果を評価して、前記データ管理手段により前記計測評価手段からの計測結果を検査記録にまとめて出力する構成としている。   On the other hand, in the invention according to claim 3 of the present invention, when measuring the dimensions of a large workpiece such as a shield construction segment using the workpiece dimension measuring apparatus according to claim 1, the articulated arm is used by the calibration calculation means. After calibrating the relative positional relationship of a plurality of measuring machines equipped with each of the probes, the respective probes of the plurality of measuring machines are brought into contact with the workpiece to obtain respective three-dimensional coordinate values, The dimensions of the workpiece are automatically calculated based on the three-dimensional coordinate values obtained by the plurality of measuring machines, and then the dimensions of the workpiece are calculated based on the calibration result and the calculation result from the calibration calculation means by the measurement evaluation means. The measurement result is evaluated, and the measurement result from the measurement evaluation unit is output to the inspection record by the data management unit.

本発明に係るワーク寸法計測装置及びワーク寸法計測方法では、ワーク上に適宜設定される計測点、例えば、研磨加工が施されたポイントに、複数の測定機の各探触子を接触させることで三次元座標値が得られる。例えば、ワークの幅や長さや高さの寸法計測に必要となるコーナ頂点の三次元座標値は、互いに交差する3つの平面の各々において、任意の3点で計測をそれぞれ実施して3つの仮想平面を作成すれば、それらの交点として算出される。   In the workpiece dimension measuring apparatus and the workpiece dimension measuring method according to the present invention, the probes of a plurality of measuring machines are brought into contact with measurement points appropriately set on the workpiece, for example, points subjected to polishing. A three-dimensional coordinate value is obtained. For example, the three-dimensional coordinate values of the corner vertices necessary for measuring the width, length and height of the workpiece are measured at three arbitrary points on each of three intersecting planes, and three virtual values are obtained. If planes are created, they are calculated as their intersections.

また、本発明に係るワーク寸法計測装置及びワーク寸法計測方法において、ワークの寸法計測結果を評価する計測評価手段は、校正演算手段からの校正結果及び演算結果に基づいて、ワークの種別選択や温度補正や設計値との比較等を行う。   Further, in the workpiece dimension measuring apparatus and the workpiece dimension measuring method according to the present invention, the measurement evaluation means for evaluating the workpiece dimension measurement result is based on the calibration result and the calculation result from the calibration calculation means, and the workpiece type selection and temperature Compensation and comparison with design values are performed.

本発明に係るワーク寸法計測装置及びワーク寸法計測方法では、相対位置関係が校正された複数の測定機の各探触子をワークの長さや幅や高さを算出するのに必要な計測点に接触させてそれぞれ三次元座標値を取得して、これらのデータに基づいてワークの寸法を自動算出し、この演算結果に基づいてワークの寸法計測結果を評価して出力するようにしているので、計測精度の向上が図られ、この際、専用の治具を必要としたり、ワークの位置決めを行ったりしなくて済む分だけ、寸法計測から計測後の検査記録作成までの作業コストの低減及び作業時間の短縮が図られることとなり、加えて、平坦度や捻れ等の三次元データも得られることとなる。   In the workpiece dimension measuring apparatus and the workpiece dimension measuring method according to the present invention, the probes of a plurality of measuring machines whose relative positional relationships are calibrated are used as measurement points necessary for calculating the length, width, and height of the workpiece. Since the three-dimensional coordinate values are obtained by contact, the workpiece dimensions are automatically calculated based on these data, and the workpiece dimension measurement results are evaluated and output based on the calculation results. The measurement accuracy is improved. At this time, the work cost from the dimension measurement to the creation of the inspection record after measurement is reduced and the work is done as much as it is not necessary to use a dedicated jig or position the workpiece. Time will be shortened, and in addition, three-dimensional data such as flatness and twist will be obtained.

また、計測結果を管理するデータベースを備えた構成とすると、ワークが例えばセグメントである場合には、セグメント製造型枠の経年変化を評価し得ることとなり、したがって、セグメントの品質向上が図られることとなる。   In addition, when the configuration includes a database for managing measurement results, when the work is a segment, for example, the secular change of the segment manufacturing form can be evaluated, and therefore the quality of the segment can be improved. Become.

本発明に係るワーク寸法計測装置では、上記した構成としているので、計測精度を向上させることができると共に、寸法計測から計測後の検査記録作成に至るまでの作業コストの低減及び作業時間の短縮を実現でき、加えて、平坦度や捻れ等の三次元データをも得ることが可能であるという非常に優れた効果がもたらされる。   Since the workpiece dimension measuring apparatus according to the present invention has the above-described configuration, the measurement accuracy can be improved, and the work cost and the work time from the dimension measurement to the creation of the inspection record after the measurement can be reduced. In addition to this, there is an excellent effect that three-dimensional data such as flatness and twist can be obtained.

本発明に係るワーク寸法計測装置の一実施例を示す測定機の配置状況を説明する全体斜視説明図である。It is a whole perspective explanatory view explaining the arrangement situation of a measuring machine which shows one example of the work size measuring device concerning the present invention. 図1に示したワーク寸法計測装置の構成説明図である。FIG. 2 is a configuration explanatory view of the workpiece dimension measuring apparatus shown in FIG. 図1に示したワーク寸法計測装置の測定機による計測要領を説明する部分斜視説明図である。It is a partial perspective explanatory view explaining the measuring point by the measuring machine of the work size measuring device shown in FIG. 図1に示したワーク寸法計測装置の測定機によるコーナ頂点の算出要領を説明する部分斜視説明図である。It is a fragmentary perspective explanatory view explaining the calculation point of the corner vertex by the measuring machine of the work size measuring apparatus shown in FIG. 図1に示したワーク寸法計測装置によるワーク寸法計測要領を説明するフローチャートである。It is a flowchart explaining the workpiece dimension measuring point by the workpiece dimension measuring apparatus shown in FIG.

以下、本発明を図面に基づいて説明する。
図1〜図5は本発明に係るワーク寸法計測装置の一実施例を示しており、この実施例では、大型ワークがシールド工事用のセグメントである場合を示す。
Hereinafter, the present invention will be described with reference to the drawings.
FIGS. 1-5 has shown one Example of the workpiece dimension measuring apparatus based on this invention, In this Example, the case where a large sized workpiece | work is a segment for shield construction is shown.

図1に示すように、このワーク寸法計測装置1は、ワークであるセグメントWを寝かせた状態で載置するベッド2と、探触子11を先端に有する多関節アーム12を具備した複数(この実施例では3台)の測定機10を備えており、これらの測定機10は、ベッド2の周囲に配置されて、各々の探触子11をベッド2上のセグメントWに接触させることで三次元座標値を得るものとなっている。   As shown in FIG. 1, the workpiece dimension measuring apparatus 1 includes a plurality of beds (a bed 2 on which a segment W, which is a workpiece, is placed and a multi-joint arm 12 having a probe 11 at its tip. In the embodiment, three measuring devices 10 are provided, and these measuring devices 10 are arranged around the bed 2, and each probe 11 is brought into contact with the segment W on the bed 2 to make a tertiary. The original coordinate value is obtained.

また、このワーク寸法計測装置1は、図2に示すように、ベッド2の周囲に配置される3台の測定機10の相対位置関係を校正すると共に、3台の測定機10で得られた各三次元座標値に基づいてセグメントWの幅や長さや高さなどの寸法を自動算出する校正演算手段21と、この校正演算手段21からの校正結果及び演算結果に基づいてセグメントWの寸法計測結果を評価する計測評価手段22を備えている。これらの校正演算手段21及び計測評価手段22は、いずれも計測現場に設置される計測用コンピュータ20に搭載されている。   In addition, as shown in FIG. 2, the workpiece dimension measuring apparatus 1 calibrated the relative positional relationship of the three measuring machines 10 arranged around the bed 2 and was obtained by the three measuring machines 10. Calibration calculation means 21 that automatically calculates dimensions such as the width, length, and height of the segment W based on each three-dimensional coordinate value, and the dimension measurement of the segment W based on the calibration results and calculation results from the calibration calculation means 21 Measurement evaluation means 22 for evaluating the result is provided. These calibration calculation means 21 and measurement evaluation means 22 are both mounted on a measurement computer 20 installed at the measurement site.

この場合、測定機10の探触子11を接触させる部位は、図3に示すように、例えば、研磨加工が施された計測点WPであり、セグメントW上に適宜設定される。
ここで、図4に示すように、セグメントWの幅や長さや高さの寸法計測に必要となるコーナ頂点Wcの三次元座標値は、互いに交差する3つの平面A,B,Cの各々において、任意の3点A1〜A3,B1〜B3,C1〜C3で計測をそれぞれ実施して3つの仮想平面を作成すれば、校正演算手段21において3つの仮想平面の交点として算出される。
In this case, as shown in FIG. 3, the part that contacts the probe 11 of the measuring instrument 10 is, for example, a measurement point WP that has been subjected to polishing, and is appropriately set on the segment W.
Here, as shown in FIG. 4, the three-dimensional coordinate values of the corner vertex Wc necessary for measuring the width, length, and height of the segment W are in each of the three planes A, B, and C intersecting each other. When three virtual planes are created by performing measurement at arbitrary three points A1 to A3, B1 to B3, and C1 to C3, the calibration calculation means 21 calculates the intersections of the three virtual planes.

一方、セグメントWの寸法計測結果を評価する計測評価手段22では、校正演算手段21からの校正結果及び演算結果に基づいて、セグメントWの種別選択や温度補正や設計値との比較等を行う。   On the other hand, the measurement evaluation unit 22 that evaluates the dimension measurement result of the segment W performs the type selection of the segment W, temperature correction, comparison with the design value, and the like based on the calibration result and the calculation result from the calibration calculation unit 21.

さらに、このワーク寸法計測装置1は、計測評価手段22からの計測結果を出力するデータ管理手段31を備えていると共に、計測評価手段22からの計測結果を管理するデータベース32を備えており、これらのデータ管理手段31及びデータベース32は、いずれも管理用コンピュータ30に搭載されている。   Further, the workpiece dimension measuring apparatus 1 includes a data management unit 31 that outputs a measurement result from the measurement evaluation unit 22, and a database 32 that manages the measurement result from the measurement evaluation unit 22. Both the data management means 31 and the database 32 are mounted on the management computer 30.

データ管理手段31は計測結果を検査記録にまとめて帳票の形で出力するほか、計測結果(外観観測結果を含む)が登録され、一方、データベース32には計測結果が一元管理されて、このデータベース32内の計測結果は、セグメント製造型枠の経年変化の評価に用いられる。   The data management means 31 collects the measurement results in an inspection record and outputs them in the form of a form. In addition, the measurement results (including the appearance observation results) are registered. On the other hand, the database 32 centrally manages the measurement results. The measurement result in 32 is used for evaluating the secular change of the segment manufacturing formwork.

上記したワーク寸法計測装置1を用いて、シールド工事用のセグメントWの寸法を計測するに際しては、図5に示すように、まず、ステップS1,S2において、校正演算手段21により多関節アーム12を具備した測定機10の単体校正及び3台の測定機10の相対位置関係を校正した後、ステップS3において、3台の測定機10の各探触子11をセグメントWの計測点WPに接触させてそれぞれ三次元座標値を得る。   When measuring the dimension of the segment W for shield construction using the workpiece dimension measuring apparatus 1 described above, as shown in FIG. 5, first, in steps S1 and S2, the articulated arm 12 is moved by the calibration calculating means 21. After the calibration of the single measuring machine 10 and the relative positional relationship of the three measuring machines 10 are calibrated, the probes 11 of the three measuring machines 10 are brought into contact with the measurement points WP of the segment W in step S3. Each to obtain a three-dimensional coordinate value.

続いて、校正演算手段21により3台の測定機10で得た各三次元座標値に基づいてセグメントWの寸法(幅、弧長、高さ、孔ピッチ、側面平坦度、端面平坦度及び捻れ)が自動算出されて、ステップS4において、これらの測定データが保存される。   Subsequently, the dimensions (width, arc length, height, hole pitch, side surface flatness, end surface flatness and twist) of the segment W based on the three-dimensional coordinate values obtained by the three measuring machines 10 by the calibration calculation means 21. ) Is automatically calculated, and in step S4, these measurement data are stored.

次いで、計測評価手段22により校正演算手段21からの校正結果及び演算結果に基づいて、ステップS5〜S7において、セグメントWの種別選択や温度補正や設計値との比較等が行われてセグメントWの寸法計測結果が評価され、管理用コンピュータ30のデータ管理手段31に出力される。
なお、ステップS7におけるセグメントWの寸法計測結果の評価が劣る場合には、ステップS3以降の工程をやり直す。
Next, based on the calibration result and the calculation result from the calibration calculation unit 21 by the measurement evaluation unit 22, the segment W type selection, temperature correction, comparison with the design value, etc. are performed in steps S5 to S7, and the segment W The dimension measurement result is evaluated and output to the data management means 31 of the management computer 30.
In addition, when evaluation of the dimension measurement result of the segment W in step S7 is inferior, the process after step S3 is redone.

そして、ステップS8において、データ管理手段31に計測評価手段22からの計測結果が登録されるのに続いて、ステップS9において、計測結果が検査記録にまとめられて帳票の形で出力され、ステップS10において、上記計測結果がデータベース32に一元管理され、このデータベース32内の計測結果は、ステップS11において、セグメント製造型枠の経年変化の評価に用いられる。   In step S8, after the measurement result from the measurement evaluation unit 22 is registered in the data management unit 31, in step S9, the measurement result is collected into an inspection record and output in the form of a form. The measurement result is centrally managed in the database 32, and the measurement result in the database 32 is used for evaluating the secular change of the segment manufacturing form in step S11.

このように、上記したワーク寸法計測装置1では、相対位置関係が校正された3台の測定機10の各探触子11をセグメントWの長さや幅や高さを算出するのに必要な計測点WP(図4では任意の3点A1〜A3,B1〜B3,C1〜C3)に接触させて三次元座標値を取得して、これらのデータに基づいてセグメントWの寸法を自動算出し、この演算結果に基づいてセグメントWの寸法計測結果を評価して出力するようにしているので、計測精度の向上が図られることとなる。   As described above, in the workpiece dimension measuring apparatus 1 described above, the measurement required to calculate the length, width, and height of the segment W of each of the probes 11 of the three measuring machines 10 whose relative positional relationships are calibrated is performed. A point WP (in FIG. 4, any three points A1 to A3, B1 to B3, C1 to C3) are contacted to obtain a three-dimensional coordinate value, and the dimension of the segment W is automatically calculated based on these data. Since the dimension dimension measurement result of the segment W is evaluated and output based on the calculation result, the measurement accuracy can be improved.

この際、専用の治具を必要としたり、セグメントWの位置決めを行ったりしなくて済む分だけ、寸法計測から計測後の検査記録作成までの作業コストの低減が図られると共に、作業時間の短縮が図られるうえ、平坦度や捻れ等の三次元データも得られることとなる。   At this time, the work cost from the dimension measurement to the creation of the inspection record after the measurement is reduced and the work time is shortened by the amount that does not require a dedicated jig or positioning the segment W. In addition, three-dimensional data such as flatness and twist can be obtained.

また、上記したワーク寸法計測装置1では、計測結果を管理するデータベース32を備えているので、データベース32内の計測結果をセグメント製造型枠の経年変化の評価に用いれば、セグメントWの品質向上が図られることとなる。   In addition, since the workpiece dimension measuring apparatus 1 includes the database 32 for managing the measurement results, if the measurement results in the database 32 are used for evaluating the secular change of the segment manufacturing formwork, the quality of the segment W can be improved. Will be illustrated.

本発明に係るワーク寸法計測装置及びワーク寸法計測方法の構成は、上記した実施例の構成に限定されるものではなく、3台の測定機10の配置は適宜変更可能であり、測定機10の台数も3台に限定されない。   The configurations of the workpiece dimension measuring apparatus and the workpiece dimension measuring method according to the present invention are not limited to the configurations of the above-described embodiments, and the arrangement of the three measuring machines 10 can be appropriately changed. The number is not limited to three.

また、測定機10の多関節アーム12の探触子11をセグメントWに触れさせる操作は、自動的に行われるようにしてもよいし、人手によって行うようにしてもよい。   Further, the operation of causing the probe 11 of the articulated arm 12 of the measuring instrument 10 to touch the segment W may be performed automatically or manually.

さらに、上記した実施例では、セグメントWをベッド2に載置して計測を行うようにしているが、セグメントWを安定して保持することが可能であれば、ベッド2は必ずしも必要ではない。   Furthermore, in the above-described embodiment, the segment W is placed on the bed 2 for measurement, but the bed 2 is not necessarily required if the segment W can be stably held.

さらにまた、上記した実施例では、大型ワークがシールド工事用のセグメントである場合を示したが、これに限定されるものではない。   Furthermore, in the above-described embodiment, the case where the large workpiece is a segment for shield construction is shown, but the present invention is not limited to this.

1 ワーク寸法計測装置
10 測定機
11 探触子
12 多関節アーム
21 校正演算手段
22 計測評価手段
31 データ管理手段
32 データベース
W セグメント(ワーク)
DESCRIPTION OF SYMBOLS 1 Work dimension measuring apparatus 10 Measuring machine 11 Probe 12 Articulated arm 21 Calibration calculation means 22 Measurement evaluation means 31 Data management means 32 Database W Segment (work)

Claims (3)

シールド工事用セグメント等の大型ワークの寸法を計測するワーク寸法計測装置であって、
多関節アームを具備して、該アームの先端に有する探触子を前記ワークに接触させることで三次元座標値を得る複数の測定機と、
前記複数の測定機の相対位置関係を校正する作業及び該複数の測定機で得られた各三次元座標値に基づいて前記ワークの寸法を自動算出する作業を行う校正演算手段と、
前記校正演算手段からの校正結果及び演算結果に基づいて前記ワークの寸法計測結果を評価する計測評価手段と、
前記計測評価手段からの計測結果を検査記録にまとめて出力するデータ管理手段を備えている
ことを特徴とするワーク寸法計測装置。
A workpiece dimension measuring device that measures the dimensions of large workpieces such as shield construction segments,
A plurality of measuring instruments each having a multi-joint arm and obtaining a three-dimensional coordinate value by bringing a probe at the tip of the arm into contact with the workpiece;
Calibration operation means for performing an operation of calibrating the relative positional relationship of the plurality of measuring machines and an operation of automatically calculating the dimensions of the workpiece based on each three-dimensional coordinate value obtained by the plurality of measuring machines;
A measurement evaluation unit that evaluates a dimension measurement result of the workpiece based on a calibration result and a calculation result from the calibration calculation unit;
A workpiece dimension measuring apparatus, comprising: data management means for collectively outputting the measurement results from the measurement evaluation means in an inspection record.
前記計測評価手段からの計測結果を管理するデータベースを備えている請求項1に記載のワーク寸法計測装置。   The workpiece dimension measuring apparatus according to claim 1, further comprising a database that manages measurement results from the measurement evaluation unit. 請求項1記載のワーク寸法計測装置を用いて、シールド工事用セグメント等の大型ワークの寸法を計測するに際して、
前記校正演算手段により前記多関節アームを具備した複数の測定機の相対位置関係を校正した後、
前記複数の測定機の各探触子を前記ワークに接触させてそれぞれ三次元座標値を得るのに続いて、前記校正演算手段により前記複数の測定機で得た各三次元座標値に基づいて前記ワークの寸法を自動算出し、
次いで、前記計測評価手段により前記校正演算手段からの校正結果及び演算結果に基づいて前記ワークの寸法計測結果を評価して、
前記データ管理手段により前記計測評価手段からの計測結果を検査記録にまとめて出力する
ことを特徴とするワーク寸法計測方法。
When measuring the dimensions of a large workpiece such as a shield construction segment using the workpiece dimension measuring device according to claim 1,
After calibrating the relative positional relationship of a plurality of measuring machines equipped with the articulated arm by the calibration calculation means,
After obtaining the respective three-dimensional coordinate values by bringing the probes of the plural measuring machines into contact with the workpiece, based on the three-dimensional coordinate values obtained by the plural measuring machines by the calibration calculation means. Automatically calculates the dimensions of the workpiece,
Then, the measurement evaluation means evaluates the dimension measurement result of the workpiece based on the calibration result and the calculation result from the calibration calculation means,
The work size measurement method, wherein the data management means outputs the measurement results from the measurement evaluation means together in an inspection record.
JP2010256834A 2010-11-17 2010-11-17 Workpiece dimension measuring apparatus and workpiece dimension measuring method Pending JP2012107983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010256834A JP2012107983A (en) 2010-11-17 2010-11-17 Workpiece dimension measuring apparatus and workpiece dimension measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010256834A JP2012107983A (en) 2010-11-17 2010-11-17 Workpiece dimension measuring apparatus and workpiece dimension measuring method

Publications (1)

Publication Number Publication Date
JP2012107983A true JP2012107983A (en) 2012-06-07

Family

ID=46493770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010256834A Pending JP2012107983A (en) 2010-11-17 2010-11-17 Workpiece dimension measuring apparatus and workpiece dimension measuring method

Country Status (1)

Country Link
JP (1) JP2012107983A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768762A (en) * 2012-06-18 2012-11-07 同济大学 Digital camera calibration method targeted to shield tunnel defect digital radiography detection and device thereof
CN104534953A (en) * 2015-01-16 2015-04-22 青岛四方车辆研究所有限公司 Method for measuring three-dimensional relative displacement through guyed displacement sensors
JP2015102489A (en) * 2013-11-27 2015-06-04 株式会社ミツトヨ Precision measuring device
JP2015212681A (en) * 2014-04-18 2015-11-26 株式会社キーエンス Optical coordinate measurement device and probe
CN106382121A (en) * 2016-12-05 2017-02-08 中交第三航务工程局有限公司 Measuring method for subway tunnel shield excavation
CN113251957A (en) * 2021-06-17 2021-08-13 中交疏浚技术装备国家工程研究中心有限公司 Tunnel pipe ring end face flatness automatic measurement system
CN117516438A (en) * 2024-01-03 2024-02-06 陕西省计量科学研究院 Preparation precision evaluation method and system of additive manufacturing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693004A (en) * 1979-12-27 1981-07-28 Toyo Electric Mfg Co Ltd Setting method for origin in three-dimension measurement
JPH09304003A (en) * 1996-05-17 1997-11-28 Hitachi Ltd Contact-type 3-d measuring method and its system
JP2009529132A (en) * 2006-03-07 2009-08-13 サイデス オサケユキチュア Method, system and computer program for positioning a measuring device and for measuring a large object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693004A (en) * 1979-12-27 1981-07-28 Toyo Electric Mfg Co Ltd Setting method for origin in three-dimension measurement
JPH09304003A (en) * 1996-05-17 1997-11-28 Hitachi Ltd Contact-type 3-d measuring method and its system
JP2009529132A (en) * 2006-03-07 2009-08-13 サイデス オサケユキチュア Method, system and computer program for positioning a measuring device and for measuring a large object

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768762A (en) * 2012-06-18 2012-11-07 同济大学 Digital camera calibration method targeted to shield tunnel defect digital radiography detection and device thereof
JP2015102489A (en) * 2013-11-27 2015-06-04 株式会社ミツトヨ Precision measuring device
JP2015212681A (en) * 2014-04-18 2015-11-26 株式会社キーエンス Optical coordinate measurement device and probe
CN104534953A (en) * 2015-01-16 2015-04-22 青岛四方车辆研究所有限公司 Method for measuring three-dimensional relative displacement through guyed displacement sensors
CN106382121A (en) * 2016-12-05 2017-02-08 中交第三航务工程局有限公司 Measuring method for subway tunnel shield excavation
CN113251957A (en) * 2021-06-17 2021-08-13 中交疏浚技术装备国家工程研究中心有限公司 Tunnel pipe ring end face flatness automatic measurement system
CN113251957B (en) * 2021-06-17 2022-05-27 中交疏浚技术装备国家工程研究中心有限公司 Tunnel pipe ring end face flatness automatic measurement system
CN117516438A (en) * 2024-01-03 2024-02-06 陕西省计量科学研究院 Preparation precision evaluation method and system of additive manufacturing equipment
CN117516438B (en) * 2024-01-03 2024-03-22 陕西省计量科学研究院 Preparation precision evaluation method and system of additive manufacturing equipment

Similar Documents

Publication Publication Date Title
JP2012107983A (en) Workpiece dimension measuring apparatus and workpiece dimension measuring method
JP5823306B2 (en) Calibration method of surface texture measuring machine
US10422619B2 (en) Identification of geometric deviations of a motion guide in a coordinate-measuring machine or in a machine tool
TW201514445A (en) System and method for measuring flatness
CN202761475U (en) Detecting device for assessing spatial precision of occlusion model scanner
KR20110060892A (en) Composite calibration/verification gauge and method of its manufacture
CN101745845B (en) Measuring method of outer contour shape of metal part and detecting method of processing precision
CN106813547B (en) Detection process for automobile frame longitudinal beam assembly
US11022419B2 (en) Thread inspection systems and methods
KR100941970B1 (en) Measuring device for hole size and gap between holes
CN104330009B (en) Part height dimension measurement method and measurement frock
JP2007101279A (en) Correction coefficient determining method of rectangular coordinate moving mechanism, and collecting method of measuring data
CN106508059B (en) Presurized water reactor nuclear fuel component skeleton check device
JP5272248B2 (en) Surface texture measuring device, surface texture measuring method, and program
JP2018004625A (en) Contact measurement on tooth flank of gearwheel workpiece
CN201397109Y (en) Cylinder body bearing seat lateral face position inspection device
JP6570543B2 (en) Method and apparatus for characterizing instrument errors
TWM462360U (en) Vertical axis detection device
CN113720231A (en) Detection process for automobile instrument board beam component assembly
US20080052035A1 (en) Three-Dimensional Measurement Method and Device
CN205300469U (en) Measure device that both ends identity distance leaves
KR20100045816A (en) Measuring device for hole size and gap between holes
CN104457518B (en) A kind of symmetrical component profile tolerance and symmetry measuring method
CN102768032A (en) Method for measuring thickness of floor by using nondestructive thickness gauge
TWI838193B (en) Method and device for measuring degree of bending of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140709