JP2012107686A - Spherical band-shaped seal body and method of manufacturing the same - Google Patents

Spherical band-shaped seal body and method of manufacturing the same Download PDF

Info

Publication number
JP2012107686A
JP2012107686A JP2010256336A JP2010256336A JP2012107686A JP 2012107686 A JP2012107686 A JP 2012107686A JP 2010256336 A JP2010256336 A JP 2010256336A JP 2010256336 A JP2010256336 A JP 2010256336A JP 2012107686 A JP2012107686 A JP 2012107686A
Authority
JP
Japan
Prior art keywords
heat
outer layer
resistant material
spherical
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010256336A
Other languages
Japanese (ja)
Other versions
JP5724315B2 (en
Inventor
Hiroaki Wada
寛明 和田
Toshikazu Takasago
俊和 高砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Oiles Industry Co Ltd
Original Assignee
Oiles Corp
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp, Oiles Industry Co Ltd filed Critical Oiles Corp
Priority to JP2010256336A priority Critical patent/JP5724315B2/en
Publication of JP2012107686A publication Critical patent/JP2012107686A/en
Application granted granted Critical
Publication of JP5724315B2 publication Critical patent/JP5724315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Joints Allowing Movement (AREA)
  • Gasket Seals (AREA)
  • Sealing Material Composition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spherical band-shaped seal body which does not generate friction noise resulting from a stick flip phenomenon even if forces in a twisting direction and a shearing direction are applied to an exhaust pipe connected to a manifold, and does not impart discomfort to a driver or the like, and a method of manufacturing the same.SOLUTION: The spherical band-shaped seal body 45 used in an exhaust pipe joint comprises a spherical band-shaped base 43 which is defined by a cylindrical internal face 39, a partially-protruded spherical face 40 and annular end faces 41 and 42 at the large-diameter side and the small-diameter side of the partially-protruded spherical face 40, and an outer layer 44 which is integrally formed at the partially-protruded spherical face 40 of the spherical band-shaped base 43. The spherical band-shaped base 43 comprises a reinforcing material for the spherical band-shaped base which is composed of a metal gauze, and a heat resistance material for the spherical band-shaped base which fills the metal gauze of the reinforcing material, is mixedly integrated with the reinforcing material, and contains compressed expansible graphite.

Description

本発明は、自動車排気管の球面管継手に使用される球帯状シール体及びその製造方法に関する。   The present invention relates to a ball-shaped seal body used for a spherical pipe joint of an automobile exhaust pipe and a manufacturing method thereof.

自動車用エンジンの排気ガスは、自動車エンジンの排気通路の一例を示す図32において、エンジンの各気筒(図示せず)で発生した排気ガスは、排気マニホールド触媒コンバータ600にまとめられ、排気管601及び排気管602を通じてサブマフラ603に送られ、このサブマフラ603を通過した排気ガスは、更に排気管604及び排気管605を介してマフラ(消音器)606へと送られ、このマフラ606を通じて大気中に放出される。   In FIG. 32, which shows an example of the exhaust passage of the automobile engine, the exhaust gas of the automobile engine is collected in the exhaust manifold catalytic converter 600 in the exhaust cylinder catalytic converter 600, and the exhaust pipe 601 and The exhaust gas that has been sent to the sub muffler 603 through the exhaust pipe 602 and passed through the sub muffler 603 is further sent to the muffler (silencer) 606 through the exhaust pipe 604 and the exhaust pipe 605, and is released into the atmosphere through this muffler 606. Is done.

これら排気管601及び602並びに604及び605や、サブマフラ603及びマフラ606等の排気系部材にあっては、エンジンのロール挙動及び振動などにより繰返し応力を受ける。とくに高速回転で高出力エンジンの場合は、排気系部材に加わる応力はかなり大きなものとなる。したがって、排気系部材は疲労破壊を招く虞があり、またエンジン振動が排気系部材を共振させ、室内静粛性を悪化させる場合もある。このような問題を解決するために、排気マニホールド触媒コンバータ600と排気管601との連結部607及び排気管604と排気管605との連結部608を排気管球面継手又は蛇腹式継手等の振動吸収機構によって可動連結することにより、自動車エンジンのロール挙動及び振動などにより排気系部材に繰返し受ける応力が吸収され、当該排気系部材の疲労破壊等が防止されると共にエンジンの振動が排気系部材を共振させ車室内の静粛性を悪化させる問題も解決されるという利点を有する。   Exhaust system members such as the exhaust pipes 601 and 602, 604 and 605, the sub muffler 603, and the muffler 606 are repeatedly subjected to stress due to the roll behavior and vibration of the engine. In particular, in the case of a high-speed engine with high-speed rotation, the stress applied to the exhaust system member is considerably large. Therefore, the exhaust system member may cause fatigue failure, and engine vibration may cause the exhaust system member to resonate and deteriorate indoor silence. In order to solve such a problem, the connection portion 607 between the exhaust manifold catalytic converter 600 and the exhaust pipe 601 and the connection portion 608 between the exhaust pipe 604 and the exhaust pipe 605 are absorbed by vibrations such as an exhaust pipe spherical joint or a bellows type joint. By movably connecting with the mechanism, the stress repeatedly applied to the exhaust system member due to the roll behavior and vibration of the automobile engine is absorbed, preventing fatigue failure of the exhaust system member and the vibration of the engine resonating the exhaust system member The problem of worsening the quietness in the passenger compartment is also solved.

特開昭54−76759号公報JP 54-76759 A 特開2004−301261号公報JP 2004-301261 A

上記した振動吸収機構の一例として、特許文献1に記載された排気管継手及び該継手に使用されるシール体が挙げられる。特許文献1に記載されたシール体は、該シール体の凸球面状の外面で、下流側排気管の端部に固着されたフランジ部材の凹球面状の内面に摺動自在に接触するようにしてその円筒状の内面で上流側排気管の管端部の外周面に嵌装されて用いられ、フランジ部材の凹球面状の内面に対するシール体の凸球面状の外面の相対的な摺動で排気管継手に作用する応力を吸収するようにしている。   As an example of the above-described vibration absorbing mechanism, there is an exhaust pipe joint described in Patent Document 1 and a seal body used for the joint. The sealing body described in Patent Document 1 is slidably in contact with the concave spherical inner surface of the flange member fixed to the end of the downstream exhaust pipe at the convex spherical outer surface of the sealing body. The cylindrical inner surface is used by being fitted to the outer peripheral surface of the pipe end of the upstream side exhaust pipe, and the relative sliding of the convex spherical outer surface of the sealing body with respect to the concave spherical inner surface of the flange member. The stress acting on the exhaust pipe joint is absorbed.

ところで、前輪駆動横置きエンジンでは、エンジンの後ろ側に排気マニホールドが設けられる場合があり、排気マニホールドに接続される排気管にはせん断方向(排気管の管軸方向と直交する方向)の力に加えて、とくに捩じり方向(排気管の管軸を中心とした回転方向)の力が加わり、この力が排気管継手にも入力されることになる。   By the way, in a front-wheel drive horizontal engine, an exhaust manifold may be provided on the rear side of the engine, and the exhaust pipe connected to the exhaust manifold is subjected to a force in a shearing direction (a direction perpendicular to the pipe axis direction of the exhaust pipe). In addition, a force in the twisting direction (rotation direction around the tube axis of the exhaust pipe) is applied, and this force is also input to the exhaust pipe joint.

上記排気管に生じるせん断力及び捩じり力に対処するべく、排気管継手においては、例えば、シール体と排気管を“しまりばめ”として該シール体を排気管の外周面に圧入し、該シール体の円筒内面での回転を防止させる技術、あるいはシール体の円筒内面を金網からなる補強材の露出面とすることにより、シール体の円筒内面と排気管の外面との間の摩擦を高め、シール体を排気管の外面に強固に固定するようにした技術(特許文献2参照)がある。   In order to cope with the shearing force and torsional force generated in the exhaust pipe, in the exhaust pipe joint, for example, the seal body and the exhaust pipe are pressed into the outer peripheral surface of the exhaust pipe as "tight fit", Friction between the cylindrical inner surface of the seal body and the outer surface of the exhaust pipe can be reduced by using a technique for preventing the rotation of the seal body on the inner surface of the cylinder, or by making the cylindrical inner surface of the seal body an exposed surface of a reinforcing material made of a metal mesh. There is a technique (see Patent Document 2) in which the sealing body is firmly fixed to the outer surface of the exhaust pipe.

しかしながら、シール体と排気管を“しまりばめ”としてシール体を排気管の外周面に圧入する技術においては、シール体の使用過程に排気管内を流通する排気ガスの熱負荷が加わることにより応力緩和が発生し、“しまりばめ”による圧入力の低下を来たして両者間の強固な一体性が失われるという問題がある。また、特許文献2に記載された技術においては、シール体を排気管の外面に圧入する際には、作業員の力だけでは圧入することができず、別途作製された治具を必要とするなど、作業性に問題があるのと、前記と同様、排気ガスの熱負荷が加わることにより応力緩和が発生し、シール体と排気管の外面との強固な一体性が失われるという問題もある。   However, in the technology in which the seal body and the exhaust pipe are “fitted” and the seal body is press-fitted into the outer peripheral surface of the exhaust pipe, the stress caused by the heat load of the exhaust gas flowing in the exhaust pipe is added to the process of using the seal body. There is a problem that relaxation occurs and the pressure input due to “fitting fit” is reduced, and the strong integrity between the two is lost. Further, in the technique described in Patent Document 2, when the sealing body is press-fitted into the outer surface of the exhaust pipe, it cannot be press-fitted only by the operator's force, and a separately prepared jig is required. As described above, there is a problem in that workability is reduced and stress relaxation occurs due to the heat load of the exhaust gas, as described above, and there is a problem that strong integrity between the seal body and the outer surface of the exhaust pipe is lost. .

シール体の円筒内面と排気管の外面との一体性が失われた状態で、排気管継手にせん断方向及び捩じり方向の変位を生じさせる力が入力されると、シール体の円筒内面において排気管の管軸回りに回転を生じさせる力が生じると共に、シール体の大径側の環状端面にも回転を生じさせるような力が生じる。大径側の環状端面は、該環状端面と該環状端面が当接するフランジ部材との間からの排気ガスの漏洩を防止するという観点から膨張黒鉛を含む耐熱材の露出面としているため、大径側の端面とフランジ部材との摺動により該フランジ部材の表面に耐熱材の被膜が移着し、この移着した耐熱材の被膜と耐熱材が露出した大径側の環状端面との摺動に移行した場合には、耐熱材同志の摺動摩擦となり、耐熱材(膨張黒鉛)の静止摩擦係数と動摩擦係数との差が大きいこと、また耐熱材のすべり速度に対する摩擦抵抗が負性抵抗を示すことに起因して、往々にしてスティックスリップ現象を生じ、該スティックスリップ現象に起因する摩擦異常音を発生させる虞があり、この摩擦異常音が運転者等に不快感を与えるという問題を生じる虞がある。   If force that causes displacement in the shear direction and torsional direction is input to the exhaust pipe joint in a state where the integrity of the cylindrical inner surface of the seal body and the outer surface of the exhaust pipe is lost, A force that causes rotation around the tube axis of the exhaust pipe is generated, and a force that causes rotation is also generated on the annular end surface of the large-diameter side of the seal body. The large-diameter annular end surface is an exposed surface of the heat-resistant material containing expanded graphite from the viewpoint of preventing leakage of exhaust gas from between the annular end surface and the flange member with which the annular end surface abuts. The heat-resistant material film is transferred to the surface of the flange member by sliding between the end surface on the side and the flange member, and the sliding between the transferred heat-resistant material film and the annular end surface on the large diameter side where the heat-resistant material is exposed , It becomes sliding friction between heat-resistant materials, the difference between the coefficient of static friction and the coefficient of dynamic friction of heat-resistant materials (expanded graphite) is large, and the friction resistance against the sliding speed of heat-resistant materials shows negative resistance As a result, a stick-slip phenomenon often occurs, and there is a risk of generating abnormal frictional noise due to the stick-slip phenomenon, and this abnormal frictional sound may cause problems such as discomfort to the driver or the like. There is.

本発明は前記諸点に鑑みてなされたものであり、その目的とするところは、マニホールドに接続された排気管に捩じり方向及びせん断方向の力が入力された場合においても、スティックスリップ現象に起因する摩擦異常音を発生させることがなく、運転者等に不快感を与えることのない球帯状シール体及びその製造方法を提供することにある。   The present invention has been made in view of the above-mentioned points, and the object of the present invention is to cause stick-slip phenomenon even when forces in the twisting direction and shearing direction are input to the exhaust pipe connected to the manifold. It is an object of the present invention to provide a ball-shaped seal body that does not generate abnormal frictional noise and causes discomfort to the driver and the manufacturing method thereof.

本発明の球帯状シール体は、円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面により規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた、排気管継手に用いられる球帯状シール体であって、球帯状基体は、金網からなる球帯状基体用の補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材とを具備しており、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面は、球帯状基体用の耐熱材からなる面と、当該耐熱材からなる面と面一となっていると共に球帯状基体用の補強材からなる面とを含んでおり、球帯状基体用の耐熱材からなる面及び球帯状基体用の補強材からなる面は、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面において混在一体化されており、球帯状基体用の補強材からなる面は、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面において球帯状基体用の耐熱材からなる面に対して点在している。   The spherical belt-shaped sealing body of the present invention includes a spherical inner surface defined by a cylindrical inner surface, a partially convex spherical surface, and annular end surfaces on the large-diameter side and small-diameter side of the partially convex spherical surface, and a partially convex spherical surface of the spherical belt-shaped substrate. A spherical band-shaped sealing body used for an exhaust pipe joint having an outer layer integrally formed on a cylindrical surface, wherein the spherical band-shaped substrate includes a reinforcing material for a spherical belt-shaped substrate made of a wire mesh, and the reinforcing material of the reinforcing material. A heat-resistant material for a spherical belt-shaped substrate filled with a mesh of a metal mesh and mixed with and integrated with the reinforcing material and containing compressed expanded graphite. The annular end surface on the large-diameter side of the spherical surface has a surface made of a heat-resistant material for a spherical belt-shaped substrate and a surface made of a reinforcing material for the spherical belt-shaped substrate that is flush with the surface made of the heat-resistant material. A surface made of a heat-resistant material for the ball-shaped substrate and a reinforcing material for the ball-shaped substrate The surface formed by the spherical belt-shaped substrate is mixed and integrated on the cylindrical inner surface of the spherical belt-shaped substrate and the annular end surface on the large diameter side of the partially convex spherical surface, and the surface made of the reinforcing material for the spherical belt-shaped substrate is The cylindrical inner surface and the annular end surface on the large-diameter side of the partially convex spherical surface are scattered with respect to a surface made of a heat-resistant material for a spherical band-shaped substrate.

本発明の球帯状シール体によれば、球帯状シール体の円筒内面と該球帯状シール体が配置される排気管の一端部の外面との間に一体性が失われた状態で、排気管に捩じり方向及びせん断方向の力が入力されて該球帯状シール体の円筒内面において排気管がその管軸回りで回転して、当該排気管に固着されたフランジ部材もそれに連れて回転して球帯状シール体の大径側の環状端面と当該環状端面が接触するフランジ部材との間に相対的な回転摺動を生じても、該大径側の環状端面には膨張黒鉛を含む球帯状基体用の耐熱材からなる面に加えて金網からなる球帯状基体用の補強材からなる面が点在して露出しているので、フランジ部材の表面への球帯状基体用の耐熱材の過度の移着は回避され、適正な球帯状基体用の耐熱材の被膜をフランジ部材の表面に形成できて、球帯状シール体の大径側の環状端面とフランジ部材との間の相対的な回転摺動は、適正にフランジの表面に移着されて形成された球帯状基体用の耐熱材の被膜を介しての回転摺動に移行するので、大径側の環状端面は、スティックスリップ現象を生じることはなく、該スティックスリップ現象に起因するフランジ部材の表面と大径側の環状端面との摺動面での摩擦異常音の発生もないので、運転者等に不快感を与えることもない上に、当該球帯状シール体の大径側の環状端面とフランジ部材との間の密封性を低下させることがない。   According to the spherical belt-shaped sealing body of the present invention, the exhaust pipe is in a state where the integrity is lost between the cylindrical inner surface of the spherical belt-shaped sealing body and the outer surface of one end portion of the exhaust pipe where the spherical belt-shaped sealing body is disposed. The force in the torsional direction and the shearing direction is input to the cylinder, and the exhaust pipe rotates around the pipe axis on the cylindrical inner surface of the ball-shaped seal body, and the flange member fixed to the exhaust pipe also rotates accordingly. Even if relative rotational sliding occurs between the annular end surface on the large diameter side of the spherical belt-shaped seal body and the flange member in contact with the annular end surface, the annular end surface on the large diameter side contains a sphere containing expanded graphite. In addition to the surface made of the heat-resistant material for the belt-shaped substrate, the surface made of the reinforcing material for the spherical belt-shaped substrate made of a metal mesh is scattered and exposed, so the heat-resistant material for the ball-shaped substrate on the surface of the flange member is exposed. Excessive transfer is avoided, and a proper heat-resistant coating for the ball-shaped base is applied to the flange. The relative rotational sliding between the annular end surface of the large-diameter side of the spherical belt-shaped seal body and the flange member is formed on the surface of the spherical belt-shaped substrate formed by being properly transferred to the flange surface. Therefore, the annular end surface on the large diameter side does not cause stick-slip phenomenon, and the surface of the flange member caused by the stick-slip phenomenon and the large-diameter side end face Since there is no frictional noise on the sliding surface with the annular end surface, there is no discomfort to the driver and the like, and there is no gap between the annular end surface on the large diameter side of the ball-shaped seal body and the flange member. The sealing performance is not reduced.

本発明の球帯状シール体における部分凸球面状面の大径側の環状端面において、球帯状基体用の補強材からなる面は、好ましくは、5〜40%の面積割合をもって点在している。   In the annular end surface on the large diameter side of the partially convex spherical surface in the spherical belt-shaped sealing body of the present invention, the surface made of the reinforcing material for the spherical belt-shaped substrate is preferably dotted with an area ratio of 5 to 40%. .

大径側の環状端面において、球帯状基体用の補強材からなる面の面積割合が5%未満では、環状端面に露出する耐熱材からなる面の量が多くなり、フランジ部材の表面に移着する該耐熱材の量が多くなるので、該フランジ部材の表面に移着した耐熱材の被膜と環状端面との摺動回転に移行した際に、往々にしてスティックスリップ現象を発生し、該スティックスリップ現象に起因する摩擦異常音を発生させる虞があり、また、大径側の環状端面において、球帯状基体用の補強材からなる面の面積割合が40%を超えると、環状端面に露出する補強材からなる面の割合が多くなりすぎ、該金網からなる補強材と金属からなるフランジ部材との金属同志の摺動回転となり、金属摺動異音を発生させるばかりか、球帯状基体の環状端面とフランジ部材の表面との間の密封性を損なう虞がある。   If the area ratio of the surface made of the reinforcing material for the spherical band base is less than 5% in the annular end surface on the large diameter side, the amount of the surface made of the heat-resistant material exposed to the annular end surface increases, and the surface is transferred to the surface of the flange member. Since the amount of the heat-resistant material to be increased, a stick-slip phenomenon is often generated when the heat-resistant material film transferred to the surface of the flange member shifts to sliding rotation between the annular end surface, and the stick-slip phenomenon occurs. There is a risk of generating abnormal frictional noise due to the slip phenomenon, and when the area ratio of the surface made of the reinforcing material for the ball-shaped substrate exceeds 40% in the annular end surface on the large diameter side, the annular end surface is exposed. The ratio of the surface made of the reinforcing material increases too much, and the sliding rotation of the metal between the reinforcing material made of the metal mesh and the flange member made of metal not only generates the metal sliding noise but also the annular shape of the ball-shaped substrate. End face and flange There is a possibility that impairs the seal between the surfaces.

また、球帯状基体の円筒内面においても、球帯状基体用の補強材からなる面は、面5〜40%の面積割合をもって点在して露出していることが好ましい。   Also, on the cylindrical inner surface of the spherical belt-shaped substrate, it is preferable that the surface made of the reinforcing material for the spherical belt-shaped substrate is dotted and exposed with an area ratio of 5 to 40% of the surface.

本発明の球帯状シール体において、球帯状基体の部分凸球面状面に一体的に形成される外層は、膨張黒鉛を含む外層用の耐熱材と金網からなる外層用の補強材とが圧縮されて外層用の補強材の金網の網目に外層用の耐熱材が充填されて当該耐熱材と補強材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と外層用の耐熱材からなる面とが混在した平滑な面に形成されていてもよく、また球帯状基体の部分凸球面状面に一体的に形成される外層は、膨張黒鉛を含む外層用の耐熱材と、固体潤滑剤と、金網からなる外層用の補強材とが圧縮されて外層用の補強材の金網の網目に固体潤滑剤及び外層用の耐熱材が充填されて当該固体潤滑剤及び耐熱材と外層用の補強材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが混在した平滑な面に形成されていてもよい。   In the spherical belt-shaped sealing body of the present invention, the outer layer integrally formed on the partially convex spherical surface of the spherical belt-shaped substrate is formed by compressing an outer layer heat-resistant material containing expanded graphite and an outer layer reinforcing material made of a wire mesh. The outer layer reinforcing material is meshed with the outer layer heat-resistant material and the heat-resistant material and the reinforcing material are mixed and integrated, and the outer surface of the outer layer is a surface made of the outer-layer reinforcing material. And a surface made of a heat-resistant material for the outer layer may be formed on a smooth surface, and the outer layer integrally formed on the partially convex spherical surface of the spherical base is for the outer layer containing expanded graphite. The heat-resistant material, the solid lubricant, and the reinforcing material for the outer layer made of a wire mesh are compressed, and the wire mesh of the reinforcing material for the outer layer is filled with the solid lubricant and the heat-resistant material for the outer layer. And a heat-resistant material and an outer layer reinforcing material are mixed and integrated, and the outer surface of the outer layer is an outer layer. Surface made of reinforcing material and the surface constituted by the solid lubricant may be formed into a smooth surface which is mixed.

固体潤滑剤としては、六方晶窒化硼素23〜57質量%、アルミナ水和物5〜15質量%及び四ふっ化樹脂33〜67質量%を含む潤滑組成物からなるものを好ましい例として挙げることができる。   As a solid lubricant, a preferable example is a lubricant composed of a lubricating composition containing 23 to 57% by mass of hexagonal boron nitride, 5 to 15% by mass of alumina hydrate, and 33 to 67% by mass of tetrafluororesin. it can.

本発明の球帯状シール体において、球帯状基体用の耐熱材及び外層用の耐熱材は、酸化抑制剤としての燐酸塩を1.0〜16.0質量%の割合で含有していてもよく、また酸化抑制剤として燐酸塩を1.0〜16.0質量%及び燐酸を0.05〜5.0質量%含有していてもよい。   In the ball-shaped seal body of the present invention, the heat-resistant material for the ball-shaped substrate and the heat-resistant material for the outer layer may contain a phosphate as an oxidation inhibitor in a ratio of 1.0 to 16.0% by mass. Moreover, you may contain 1.0-16.0 mass% of phosphates and 0.05-5.0 mass% of phosphoric acid as an oxidation inhibitor.

酸化抑制剤としての燐酸塩又は燐酸塩及び燐酸と膨張黒鉛とを含有する耐熱材は、球帯状シール体自体の耐熱性及び耐酸化消耗性を向上させることができ、球帯状シール体の高温領域でのより好ましい使用を可能とするものである。   A heat-resistant material containing phosphate or phosphate and phosphoric acid and expanded graphite as an oxidation inhibitor can improve the heat resistance and oxidation resistance of the ball-shaped seal body itself, and the high-temperature region of the ball-shaped seal body This enables a more preferable use.

円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面によって規定される球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えている本発明による球帯状シール体の製造方法は、(a)密度αが0.3〜0.9Mg/mの膨張黒鉛シートからなる球帯状基体用の耐熱材を準備する工程と、(b)金属細線を織ったり編んだりして得られる金網からなる球帯状基体用の補強材の二つの層間に該球帯状基体用の耐熱材を挿入し、当該耐熱材を挿入した補強材を耐熱材の厚さ方向に加圧し、球帯状基体用の補強材の金網の網目に球帯状基体用の耐熱材を密に充填すると共に球帯状基体用の補強材の一部を露出させて耐熱材中に当該補強材を埋設するように互いに圧着して、球帯状基体用の耐熱材と球帯状基体用の補強材とが圧縮されていると共に球帯状基体用の耐熱材からなる面と球帯状基体用の補強材からなる面とが面一となっている表面と該補強材の両側において球帯状基体用の耐熱材が充填されていない部分とを有している扁平状の複合シート材を形成する工程と、(c)扁平状の複合シート材を円筒状に数回捲回して筒状母材を形成する工程と、(d)密度αが1.0〜1.5Mg/mの膨張黒鉛シートからなる外層用の耐熱材を準備する工程と、(e)金属細線を織ったり編んだりして得られる金網からなる二つの層を有した外層用の補強材を準備し、この補強材の二つの層間に外層用の耐熱材を挿入し、当該耐熱材を挿入した外層用補強材を当該耐熱材の厚さ方向に加圧し、外層用の補強材の金網の網目に外層用の耐熱材を充填して、表面に外層用の補強材からなる面と外層用の耐熱材からなる面とが混在して露出した扁平状の外層形成部材を形成する工程と、(f)前記筒状母材の外周面に前記外層形成部材を捲回して予備円筒成形体を形成する工程と、(g)該予備円筒成形体を金型のコア外周面に挿入し、該コアを金型内に配置すると共に該金型内において予備円筒成形体をコア軸方向に圧縮成形する工程とを具備しており、球帯状基体は、金網からなる球帯状基体用の補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材とを具備しており、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面は、球帯状基体用の耐熱材からなる面と、当該耐熱材からなる面と面一となっていると共に球帯状基体用の補強材からなる面とを含んでおり、球帯状基体用の耐熱材からなる面及び球帯状基体用の補強材からなる面は、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面において混在一体化されており、球帯状基体用の補強材からなる面は、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面において球帯状基体用の耐熱材からなる面に対して点在しており、外層は、膨張黒鉛を含む外層用の耐熱材と金網からなる外層用の補強材とが圧縮されて外層用の補強材の金網の網目に外層用の耐熱材が充填されて当該耐熱材と補強材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と外層用の耐熱材からなる面とが混在した平滑な面に形成されている。 The spherical inner surface defined by the cylindrical inner surface, the partially convex spherical surface, and the annular end surfaces on the large diameter side and the small diameter side of the partially convex spherical surface, and the partially convex spherical surface of the spherical belt substrate are integrally formed. The manufacturing method of the spherical belt-shaped sealing body by this invention provided with an outer layer prepares the heat-resistant material for the spherical belt-shaped base | substrate which consists of an expanded graphite sheet whose density (alpha) is 0.3-0.9 Mg / m < 3 >. And (b) inserting the heat-resistant material for the spherical belt-shaped substrate between the two layers of the reinforcing material for the spherical belt-shaped substrate made of a wire mesh obtained by weaving or knitting a thin metal wire, and inserting the heat-resistant material. Pressurize the reinforcing material in the thickness direction of the heat-resistant material, densely fill the heat-resistant material for the ball-shaped substrate with the mesh of the reinforcing material for the ball-shaped substrate, and expose a part of the reinforcing material for the ball-shaped substrate. And press-fit each other so that the reinforcing material is embedded in the heat-resistant material. A surface in which a surface made of a heat-resistant material for a spherical belt-like substrate and a surface made of a reinforcing material for a spherical belt-like substrate are flush with the heat material and the reinforcing material for the spherical belt-like substrate, and the reinforcement Forming a flat composite sheet material having portions that are not filled with a heat-resistant material for the ball-shaped substrate on both sides of the material, and (c) forming the flat composite sheet material in a cylindrical shape several times A step of winding to form a cylindrical base material, (d) a step of preparing a heat-resistant material for an outer layer made of an expanded graphite sheet having a density α of 1.0 to 1.5 Mg / m 3 , and (e) a metal Prepare a reinforcing material for the outer layer with two layers of wire mesh obtained by weaving or knitting fine wires, insert a heat resistant material for the outer layer between the two layers of this reinforcing material, and insert the heat resistant material The outer layer reinforcement is pressed in the thickness direction of the heat-resistant material, and the outer layer reinforcement mesh is used for the outer layer. Filling the heat-resistant material to form a flat outer-layer forming member having a surface made of a surface made of a reinforcing material for the outer layer and a surface made of the heat-resistant material for the outer layer, and (f) the cylinder; Winding the outer layer forming member on the outer peripheral surface of the shaped base material to form a preliminary cylindrical molded body; and (g) inserting the preliminary cylindrical molded body into the core outer peripheral surface of the mold, and inserting the core into the mold And a step of compressing and molding the preliminary cylindrical molded body in the core axial direction in the mold, and the spherical belt-shaped substrate includes a reinforcing material for a spherical belt-shaped substrate made of a metal mesh, and the reinforcing material of the reinforcing material. A heat-resistant material for a spherical belt-shaped substrate filled with a mesh of a metal mesh and mixed with and integrated with the reinforcing material and containing compressed expanded graphite. An annular end surface on the large-diameter side of the spherical surface includes a surface made of a heat-resistant material for the ball-shaped substrate and the heat-resistant material. And a surface made of a heat-resistant material for a spherical belt-shaped substrate and a surface made of a reinforcing material for a spherical belt-shaped substrate. The spherical inner surface of the spherical belt-shaped substrate and the annular end surface on the large-diameter side of the partially convex spherical surface are mixed and integrated, and the surface made of the reinforcing material for the spherical belt-shaped substrate is the cylindrical inner surface and a portion of the spherical belt-shaped substrate. The annular end surface on the large-diameter side of the convex spherical surface is interspersed with the surface made of a heat-resistant material for a spherical base, and the outer layer is for an outer layer made of a heat-resistant material for an outer layer containing expanded graphite and a wire mesh. The reinforcing material is compressed and the outer layer reinforcing material wire mesh is filled with the outer layer heat-resistant material and the heat-resistant material and the reinforcing material are mixed and integrated, and the outer surface of the outer layer is used for the outer layer. It is formed on a smooth surface with a surface composed of a reinforcing material and a surface composed of a heat-resistant material for the outer layer. That.

本発明の球帯状シール体の製造方法によれば、円筒内面及び部分凸球面状面の大径側の環状端面に、球帯状基体用の膨張黒鉛を含む球帯状基体用の耐熱材からなる面と球帯状基体用の補強材からなる面とが面一となっていると共に互いに面一とされた補強材からなる面が耐熱材からなる面に対して点在して露出している球帯状シール体を製造できるので、特に相手材としてのフランジ部材の表面への球帯状基体用の耐熱材の過度の移着はなく、フランジ部材の表面とは、常時、補強材からなる面が耐熱材からなる面に対して点在して露出する大径側の環状端面において回転摺動するので、大径側の環状端面は、フランジ部材との間にスティックスリップ現象を生じることはなく、スティックスリップ現象に起因するフランジ部材の表面と大径側の環状端面との摺動面での摩擦異常音の発生のない球帯状シール体を得ることができる。   According to the method for manufacturing a spherical belt-shaped sealing body of the present invention, a surface made of a heat-resistant material for a spherical belt-shaped substrate containing expanded graphite for the spherical belt-shaped substrate on the cylindrical inner surface and the annular end surface on the large diameter side of the partially convex spherical surface. And the surface made of the reinforcing material for the spherical belt-shaped substrate are flush with each other, and the surfaces made of the reinforcing material made flush with each other are scattered and exposed to the surface made of the heat-resistant material. Since the sealing body can be manufactured, there is no excessive transfer of the heat-resistant material for the ball-shaped substrate to the surface of the flange member as the counterpart material, and the surface of the flange member is always a surface made of a reinforcing material. Since the large-diameter annular end surface is slid and rotated on the large-diameter annular end surface that is scattered and exposed with respect to the surface made of, the stick-slip phenomenon does not occur between the large-diameter side annular end surface and the flange member. Surface and large diameter of the flange member due to the phenomenon It can be obtained with the annular end face without generating spherical annular seal member abnormal frictional noise in the sliding surface of the.

大径側の環状端面において、球帯状基体用の補強材からなる面の露出する面積割合は、5〜40%であることが好ましく、この面積割合は、前記製造方法の(b)工程の扁平状の複合シート材において、球帯状基体用の耐熱材が充填されない部分の幅を変更することによって調整することができる。図31は、幅が48±1.2mmの扁平状の複合シート材の片側(耳部)に生じた球帯状基体用の耐熱材が充填されない部分の幅(mm)と球帯状基体の大径側の環状端面に補強材からなる面が点在して露出する面積割合の関係を、実験に基づき得たグラフである。   In the annular end surface on the large diameter side, the exposed area ratio of the surface made of the reinforcing material for the spherical belt-shaped substrate is preferably 5 to 40%, and this area ratio is flat in the step (b) of the manufacturing method. In the sheet-like composite sheet material, it can be adjusted by changing the width of the part not filled with the heat-resistant material for the ball-shaped substrate. FIG. 31 shows the width (mm) of the portion not filled with the heat-resistant material for the ball-shaped substrate formed on one side (ear portion) of the flat composite sheet material having a width of 48 ± 1.2 mm and the large diameter of the ball-shaped substrate. It is the graph which obtained the relationship of the area ratio which the surface which consists of a reinforcing material interspersed in the cyclic | annular end surface on the side, and was exposed based on experiment.

また、前記製造方法の(e)工程において、固体潤滑剤の被覆層を含む外層形成部材とすることができる。すなわち、外層用の補強材の金網からなる二つの層間に、一方の表面に固体潤滑剤の被覆層を具備した外層用の耐熱材を挿入し、以下(e)工程を実施することにより、表面に外層用の補強材からなる面と固体潤滑剤の被覆層からなる面とが混在して露出した扁平状の外層形成部材を形成し、この外層形成部材を用いて(f)工程及び(g)工程を実施することにより、外層は、膨張黒鉛を含む外層用の耐熱材と固体潤滑剤と金網からなる外層用の補強材とが圧縮されて外層用の補強材の網目に固体潤滑剤及び外層用の耐熱材が充填されて当該固体潤滑剤及び外層用の耐熱材と外層用の補強材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが混在した平滑な面に形成されている球帯状シール体を得ることができる。   In the step (e) of the manufacturing method, an outer layer forming member including a coating layer of a solid lubricant can be obtained. That is, by inserting a heat-resistant material for an outer layer having a coating layer of a solid lubricant on one surface between two layers made of a wire mesh of a reinforcing material for an outer layer, and performing the following step (e), And forming a flat outer layer forming member that is exposed by mixing the surface made of the reinforcing material for the outer layer and the surface made of the coating layer of the solid lubricant, and using the outer layer forming member, step (f) and (g )), The outer layer is compressed with the outer layer heat-resistant material containing expanded graphite, the solid lubricant, and the outer layer reinforcing material composed of the wire mesh, and the outer layer reinforcing material mesh is compressed into the solid lubricant and The outer layer heat-resistant material is filled and the solid lubricant and the outer layer heat-resistant material and the outer layer reinforcing material are mixed and integrated, and the outer surface of the outer layer is a surface made of the outer layer reinforcing material and A spherical belt formed on a smooth surface with a solid lubricant surface. It can be obtained Le body.

本発明によれば、球帯状シール体の円筒内面と該球帯状シール体が配置される排気管の一端部の外面との間に一体性が失われた状態で、排気管に捩じり方向及びせん断方向の力が入力されて該球帯状シール体の円筒内面において排気管がその管軸回りで回転して、当該排気管に固着されたフランジ部材もそれに連れて回転して球帯状シール体の大径側の環状端面と当該環状端面が接触するフランジ部材との間に相対的な回転摺動を生じても、該大径側の環状端面には膨張黒鉛を含む球帯状基体用の耐熱材からなる面に加えて金網からなる球帯状基体用の補強材からなる面が点在して露出しているので、フランジ部材の表面への球帯状基体用の耐熱材の過度の移着は回避され、適正な球帯状基体用の耐熱材の被膜をフランジ部材の表面に形成できて、球帯状シール体の大径側の環状端面とフランジ部材との間の相対的な回転摺動は、適正にフランジの表面に移着されて形成された球帯状基体用の耐熱材の被膜を介しての回転摺動に移行するので、大径側の環状端面は、スティックスリップ現象を生じることはなく、該スティックスリップ現象に起因するフランジ部材の表面と大径側の環状端面との摺動面での摩擦異常音の発生もないので、運転者等に不快感を与えることもない上に、当該球帯状シール体の大径側の環状端面とフランジ部材との間の密封性を低下させることのない球帯状シール体及びその製造方法を提供することができる。   According to the present invention, in the state where the integrity is lost between the cylindrical inner surface of the ball-shaped seal body and the outer surface of one end portion of the exhaust pipe on which the ball-shaped seal body is disposed, And a force in the shearing direction is inputted, and the exhaust pipe rotates around the pipe axis on the inner surface of the cylinder of the spherical belt-shaped sealing body, and the flange member fixed to the exhaust pipe also rotates accordingly. Even if relative rotational sliding occurs between the annular end surface on the large diameter side and the flange member in contact with the annular end surface, the annular end surface on the large diameter side has a heat resistance for a spherical band-shaped substrate containing expanded graphite. In addition to the surface made of the material, the surface made of the reinforcing material for the spherical belt-shaped substrate made of the metal mesh is scattered and exposed, so that the excessive transfer of the heat-resistant material for the spherical belt-shaped substrate to the surface of the flange member is A heat-resistant material coating for the appropriate spherical belt-like substrate can be formed on the surface of the flange member. In addition, the relative rotational sliding between the annular end surface on the large-diameter side of the spherical belt-shaped sealing body and the flange member is formed by appropriately transferring the heat-resistant material for the spherical belt-shaped substrate to the flange surface. Therefore, the large-diameter annular end surface does not cause stick-slip phenomenon, and the sliding between the surface of the flange member and the large-diameter-side annular end surface due to the stick-slip phenomenon does not occur. Since there is no occurrence of abnormal frictional noise on the moving surface, there is no discomfort to the driver, etc., and the sealing performance between the annular end surface on the large diameter side of the ball-shaped seal body and the flange member is reduced. It is possible to provide a spherical belt-shaped sealing body that is not allowed to be produced and a method for manufacturing the same.

図1は、本発明の実施の形態の一例で製造された球帯状シール体の縦断面説明図である。FIG. 1 is a longitudinal cross-sectional explanatory view of a ball-shaped seal body manufactured in an example of an embodiment of the present invention. 図2は、図1に示す球帯状シール体の部分拡大説明図である。FIG. 2 is a partially enlarged explanatory view of the ball-shaped seal body shown in FIG. 図3は、本発明の実施の形態の一例で製造された他の球帯状シール体の断面説明図である。FIG. 3 is a cross-sectional explanatory view of another spherical belt-shaped sealing body manufactured in an example of the embodiment of the present invention. 図4は、図3に示す球帯状シール体の部分拡大説明図である。FIG. 4 is a partially enlarged explanatory view of the ball-shaped seal body shown in FIG. 図5は、本発明の球帯状シール体の製造工程における球帯状基体用の耐熱材の斜視説明図である。FIG. 5 is a perspective explanatory view of a heat-resistant material for the ball-shaped base in the process of manufacturing the ball-shaped seal body of the present invention. 図6は、補強材の金網の網目の平面説明図である。FIG. 6 is an explanatory plan view of a mesh of a reinforcing material mesh. 図7は、本発明の球帯状シール体の製造工程における複合シート材の製造工程の説明図である。FIG. 7 is an explanatory diagram of the manufacturing process of the composite sheet material in the manufacturing process of the ball-shaped seal body of the present invention. 図8は、図7に示す複合シート材の製造工程における複数個の環状凹溝を有するローラの正面説明図である。FIG. 8 is a front explanatory view of a roller having a plurality of annular grooves in the manufacturing process of the composite sheet material shown in FIG. 図9は、図7に示す複合シート材の製造工程における円筒状編組金網からなる球帯状基体用の補強材内に球帯状基体用の耐熱材を挿入し、該補強材を扁平状に変形させると共に扁平状に変形された補強材内に耐熱材が位置せしめられた状態の断面説明図である。FIG. 9 shows that a heat-resistant material for a spherical belt-like substrate is inserted into a reinforcing material for a spherical belt-shaped substrate made of a cylindrical braided wire net in the manufacturing process of the composite sheet material shown in FIG. 7, and the reinforcing material is deformed into a flat shape. It is sectional explanatory drawing of the state by which the heat-resistant material was located in the reinforcing material deform | transformed into flat shape with it. 図10は、図7に示す複合シート材の製造工程における円筒状編組金網からなる球帯状基体用の補強材内に球帯状基体用の耐熱材を挿入し、該補強材を扁平状に変形させると共に扁平状に変形された補強材内に耐熱材が位置せしめられた状態の斜視説明図である。FIG. 10 shows that a heat-resistant material for a spherical belt-shaped substrate is inserted into a reinforcing material for a spherical belt-shaped substrate made of a cylindrical braided wire net in the manufacturing process of the composite sheet material shown in FIG. 7, and the reinforcing material is deformed into a flat shape. It is perspective explanatory drawing of the state by which the heat-resistant material was located in the reinforcement material deform | transformed into flat shape with it. 図11は、図7に示す複合シート材の製造工程における扁平状に変形せしめられた補強材内に位置せしめられた耐熱材を複数個の環状凹溝を有するローラと円筒ローラとで加圧する状態の説明図である。11 shows a state in which the heat-resistant material positioned in the flattened reinforcing material in the manufacturing process of the composite sheet material shown in FIG. 7 is pressed by a roller having a plurality of annular grooves and a cylindrical roller. It is explanatory drawing of. 図12は、図7に示す複合シート材の製造工程における扁平状に変形せしめられた補強材内に位置せしめられた耐熱材を複数個の環状凹溝を有するローラと円筒ローラとで加圧している状態の説明図である。FIG. 12 shows a heat-resistant material positioned in a flattened reinforcing material in the manufacturing process of the composite sheet material shown in FIG. 7, and is pressed by a roller having a plurality of annular grooves and a cylindrical roller. It is explanatory drawing of the state which exists. 図13は、図7に示す複合シート材の製造工程における扁平状に変形せしめられた補強材内に位置せしめられた耐熱材を複数個の環状凹溝を有するローラと円筒ローラとで加圧した後の状態の説明図である。In FIG. 13, the heat-resistant material positioned in the reinforcing material deformed into a flat shape in the manufacturing process of the composite sheet material shown in FIG. 7 is pressed by a roller having a plurality of annular grooves and a cylindrical roller. It is explanatory drawing of a back state. 図14は、図7に示す複合シート材の製造工程における扁平状に変形せしめられた補強材内に位置せしめられた耐熱材を複数個の環状凹溝を有するローラと円筒ローラとで加圧した後、一対の円筒ローラで加圧している状態の説明図である。FIG. 14 shows a heat resistant material positioned in the flattened reinforcing material in the manufacturing process of the composite sheet material shown in FIG. 7 and pressed with a roller having a plurality of annular grooves and a cylindrical roller. It is explanatory drawing of the state currently pressurized with a pair of cylindrical roller. 図15は、図7に示す複合シート材の製造工程を経て製造された複合シート材の説明図である。FIG. 15 is an explanatory view of a composite sheet material manufactured through the manufacturing process of the composite sheet material shown in FIG. 図16は、本発明の球帯状シール体の製造工程における筒状母材の平面説明図である。FIG. 16 is an explanatory plan view of a cylindrical base material in the manufacturing process of the ball-shaped seal body of the present invention. 図17は、図16に示す筒状母材の縦断面説明図である。FIG. 17 is a longitudinal sectional view of the cylindrical base material shown in FIG. 図18は、本発明の球帯状シール体の製造工程における外層用の耐熱材の斜視説明図である。FIG. 18 is a perspective explanatory view of the heat-resistant material for the outer layer in the manufacturing process of the ball-shaped seal body of the present invention. 図19は、本発明の球帯状シール体の製造工程における扁平状の外層形成部材の製造工程の説明図である。FIG. 19 is an explanatory diagram of the manufacturing process of the flat outer layer forming member in the manufacturing process of the ball-shaped seal body of the present invention. 図20は、本発明の球帯状シール体の製造工程における外層形成部材の形成方法の説明図である。FIG. 20 is an explanatory diagram of a method for forming the outer layer forming member in the manufacturing process of the spherical belt-shaped sealing body of the present invention. 図21は、本発明の球帯状シール体の製造工程における図18に示す外層用の耐熱材を使用した外層形成部材の形成方法の説明図である。FIG. 21 is an explanatory diagram of a method for forming an outer layer forming member using the outer layer heat-resistant material shown in FIG. 18 in the manufacturing process of the ball-shaped seal body of the present invention. 図22は、本発明の球帯状シール体の製造工程における固体潤滑剤の被覆層を備えた外層用の耐熱材の断面説明図である。FIG. 22 is a cross-sectional explanatory view of a heat-resistant material for an outer layer provided with a coating layer of a solid lubricant in the manufacturing process of the ball-shaped seal body of the present invention. 図23は、本発明の球帯状シール体の製造工程における図22に示す外層用の耐熱材を使用した外層形成部材の形成方法の説明図である。FIG. 23 is an explanatory view of a method for forming an outer layer forming member using the outer layer heat-resistant material shown in FIG. 22 in the manufacturing process of the ball-shaped seal body of the present invention. 図24は、本発明の球帯状シール体の製造工程における図22に示す外層用の耐熱材を使用して形成された外層形成部材の説明図である。FIG. 24 is an explanatory diagram of an outer layer forming member formed using the outer layer heat-resistant material shown in FIG. 22 in the manufacturing process of the ball-shaped seal body of the present invention. 図25は、本発明の球帯状シール体の製造工程における帯状金網の説明図である。FIG. 25 is an explanatory view of a belt-like wire mesh in the manufacturing process of the spherical belt-like sealing body of the present invention. 図26は、本発明の球帯状シール体の製造工程における図18に示す外層用の耐熱材を使用した外層形成部材の他の形成方法の説明図である。FIG. 26 is an explanatory diagram of another method for forming the outer layer forming member using the outer layer heat-resistant material shown in FIG. 18 in the manufacturing process of the ball-shaped seal body of the present invention. 図27は、本発明の球帯状シール体の製造工程における図18に示す外層用の耐熱材を使用した外層形成部材の他の形成方法の説明図である。FIG. 27 is an explanatory view of another method for forming the outer layer forming member using the outer layer heat-resistant material shown in FIG. 18 in the manufacturing process of the ball-shaped seal body of the present invention. 図28は、本発明の球帯状シール体の製造工程における予備円筒成形体の平面説明図である。FIG. 28 is an explanatory plan view of a preliminary cylindrical molded body in the manufacturing process of the spherical belt-shaped sealing body of the present invention. 図29は、本発明の球帯状シール体の製造工程における金型中に予備円筒成形体を配置した状態の断面説明図である。FIG. 29 is a cross-sectional explanatory view showing a state in which a pre-cylindrical molded body is arranged in a mold in the manufacturing process of the spherical belt shaped sealing body of the present invention. 図30は、本発明の球帯状シール体を組込んだ排気管球面継手の断面説明図である。FIG. 30 is a cross-sectional explanatory view of an exhaust pipe spherical joint incorporating the ball-shaped seal body of the present invention. 図31は、本発明の球帯状シール体を組込んだ他の排気管球面継手の断面説明図である。FIG. 31 is a cross-sectional explanatory view of another exhaust pipe spherical joint incorporating the ball-shaped seal body of the present invention. 図32は、自動車エンジンの排気系の説明図である。FIG. 32 is an explanatory diagram of an exhaust system of an automobile engine. 図33は、球帯状基体の部分凸球面部の大径側の環状端面において、補強材からなる面が点在して露出する面積割合と複合シート材の耐熱材が充填されない部分の幅との関係を示すグラフ図である。FIG. 33 shows the ratio of the area where the surface made of the reinforcing material is scattered and exposed in the annular end surface on the large diameter side of the partially convex spherical surface portion of the spherical base and the width of the portion not filled with the heat-resistant material of the composite sheet material. It is a graph which shows a relationship.

次に本発明を、図に示す好ましい実施の形態の例に基づいて更に詳細に説明する。なお、本発明はこれらの例に何等限定されない。   Next, the present invention will be described in more detail based on an example of a preferred embodiment shown in the drawings. Note that the present invention is not limited to these examples.

本発明の球帯状シール体における構成材料及び球帯状シール体の製造方法について説明する。   The constituent material in the spherical belt-shaped sealing body of the present invention and the manufacturing method of the spherical belt-shaped sealing body will be described.

<耐熱材I及びその製造方法について>
濃度98%の濃硫酸を撹拌しながら、酸化剤として過酸化水素の60%水溶液を加え、これを反応液とする。この反応液を冷却して10℃の温度に保持し、該反応液に粒度30〜80メッシュの鱗片状天然黒鉛粉末を添加して30分間反応を行う。反応後、吸引濾過して酸処理黒鉛粉末を分離し、該酸処理黒鉛粉末を水で10分間撹拌して吸引濾過するという洗浄作業を2回繰返し、酸処理黒鉛粉末から硫酸分を充分除去する。ついで、硫酸を充分除去した酸処理黒鉛粉末を乾燥炉で乾燥し、これを酸処理黒鉛粉末とする。
<About heat-resistant material I and its manufacturing method>
While stirring concentrated sulfuric acid having a concentration of 98%, a 60% aqueous solution of hydrogen peroxide is added as an oxidizing agent to make a reaction solution. The reaction solution is cooled and maintained at a temperature of 10 ° C., and scale-like natural graphite powder having a particle size of 30 to 80 mesh is added to the reaction solution and reacted for 30 minutes. After the reaction, the acid-treated graphite powder is separated by suction filtration, and the washing operation of stirring the acid-treated graphite powder with water for 10 minutes and suction-filtering is repeated twice to sufficiently remove the sulfuric acid content from the acid-treated graphite powder. . Next, the acid-treated graphite powder from which sulfuric acid has been sufficiently removed is dried in a drying furnace to obtain an acid-treated graphite powder.

上記酸処理黒鉛粉末を、950〜1200℃の温度で1〜10秒間加熱(膨張)処理して分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張させた膨張黒鉛粒子(膨張倍率240〜300倍)を形成する。この膨張黒鉛粒子を所望のロール隙間に調整した双ローラ装置に供給してロール成形し、所望の厚さの膨張黒鉛シートを作製し、この膨張黒鉛シートを耐熱材Iとする。   The above-mentioned acid-treated graphite powder is heated (expanded) at a temperature of 950 to 1200 ° C. for 1 to 10 seconds to generate decomposition gas, and expanded between graphite layers by the gas pressure (expansion magnification). 240 to 300 times). The expanded graphite particles are supplied to a double roller apparatus adjusted to a desired roll gap and roll-molded to produce an expanded graphite sheet having a desired thickness. This expanded graphite sheet is used as a heat resistant material I.

<耐熱材II及びその製造方法>
上記酸処理黒鉛粉末と同様の方法で得た酸処理黒鉛粉末を撹拌しながら、該酸処理黒鉛粉末に燐酸塩として、例えば濃度50%の第一燐酸アルミニウム〔Al(HPO〕水溶液をメタノールで希釈した溶液を噴霧状に配合し、均一に撹拌して湿潤性を有する混合物を作製する。この湿潤性を有する混合物を乾燥炉で乾燥する。ついで、乾燥した混合物を950〜1200℃の温度で1〜10秒間加熱(膨張)処理して分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張させた膨張黒鉛粒子(膨張倍率240〜300倍)を形成する。この膨張処理工程において、第一燐酸アルミニウムは構造式中の水が脱離する。この膨張黒鉛粒子を所望のロール隙間に調整した双ローラ装置に供給してロール成形し、所望の厚さの膨張黒鉛シートを作製し、この膨張黒鉛シートを耐熱材IIとする。
<Heat-resistant material II and production method thereof>
While stirring the acid-treated graphite powder obtained by the same method as the above-mentioned acid-treated graphite powder, the acid-treated graphite powder has a phosphate concentration of, for example, 50% concentration of primary aluminum phosphate [Al (H 2 PO 4 ) 3 ]. A solution obtained by diluting an aqueous solution with methanol is blended in a spray form, and stirred uniformly to prepare a wettable mixture. The wettable mixture is dried in a drying oven. Next, the dried mixture was heated (expanded) at a temperature of 950 to 1200 ° C. for 1 to 10 seconds to generate decomposition gas, and expanded graphite particles (expansion ratio 240) were expanded by expanding the graphite layer by the gas pressure. ~ 300 times). In this expansion treatment step, water in the structural formula is released from the primary aluminum phosphate. The expanded graphite particles are supplied to a double roller apparatus adjusted to a desired roll gap and roll-molded to produce an expanded graphite sheet having a desired thickness. This expanded graphite sheet is used as a heat-resistant material II.

<耐熱材III及びその製造方法について>
上記酸処理黒鉛粉末と同様の方法で得た酸処理黒鉛粉末を撹拌しながら、該酸処理黒鉛粉末に燐酸塩として、例えば濃度50%の第一燐酸アルミニウム水溶液と燐酸として、例えば濃度84%のオルト燐酸(HPO)水溶液をメタノールで希釈した溶液を噴霧状に配合し、均一に撹拌して湿潤性を有する混合物を作製する。この湿潤性を有する混合物を乾燥炉で乾燥する。ついで、乾燥した混合物を950〜1200℃の温度で1〜10秒間加熱(膨張)処理して分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張させた膨張黒鉛粒子(膨張倍率240〜300倍)を形成する。この膨張処理工程において、第一燐酸アルミニウムは構造式中の水が脱離し、オルト燐酸は脱水反応を生じて五酸化燐を生成する。この膨張黒鉛粒子を所望のロール隙間に調整した双ローラ装置に供給してロール成形し、所望の厚さの膨張黒鉛シートを作製し、この膨張黒鉛シートを耐熱材IIIとする。
<About heat-resistant material III and its manufacturing method>
While stirring the acid-treated graphite powder obtained by the same method as the acid-treated graphite powder, the acid-treated graphite powder is used as a phosphate, for example, as a first aluminum phosphate aqueous solution having a concentration of 50% and phosphoric acid, for example, having a concentration of 84%. A solution obtained by diluting an aqueous solution of orthophosphoric acid (H 3 PO 4 ) with methanol is blended in a spray form, and stirred uniformly to prepare a wettable mixture. The wettable mixture is dried in a drying oven. Next, the dried mixture was heated (expanded) at a temperature of 950 to 1200 ° C. for 1 to 10 seconds to generate decomposition gas, and expanded graphite particles (expansion ratio 240) were expanded by expanding the graphite layer by the gas pressure. ~ 300 times). In this expansion treatment step, water in the structural formula of primary aluminum phosphate is eliminated, and orthophosphoric acid generates a dehydration reaction to generate phosphorus pentoxide. The expanded graphite particles are supplied to a double roller apparatus adjusted to a desired roll gap and roll-molded to produce an expanded graphite sheet having a desired thickness. This expanded graphite sheet is used as a heat-resistant material III.

このようにして作製された耐熱材IIには、第一燐酸アルミニウムが1.0〜16.0質量%含有されているのが好ましく、耐熱材IIIには、第一燐酸アルミニウムが1.0〜16.0質量%及び五酸化燐が0.05〜5.0質量%含有されているのが好ましい。この燐酸塩又は燐酸塩及び五酸化燐を含有した膨張黒鉛は、膨張黒鉛自体の耐熱性が向上されると共に酸化抑制作用が付与されるため、例えば600℃ないし600℃を超える高温領域での使用を可能とする。ここで、燐酸塩としては、上記第一燐酸アルミニウムの他に、第一燐酸リチウム(LiHPO)、第二燐酸リチウム(LiPO)、第一燐酸カルシウム〔Ca(HPO〕、第二燐酸カルシウム(CaHPO)、第二燐酸アルミニウム〔Al(HPO〕などを使用することができ、燐酸としては、上記オルト燐酸の他に、メタ燐酸(HPO)、ポリ燐酸などを使用することができる。 The heat-resistant material II thus prepared preferably contains 1.0 to 16.0% by mass of primary aluminum phosphate, and the heat-resistant material III contains 1.0 to 1% of primary aluminum phosphate. It is preferable that 16.0% by mass and 0.05 to 5.0% by mass of phosphorus pentoxide are contained. The expanded graphite containing phosphate or phosphate and phosphorus pentoxide improves the heat resistance of the expanded graphite itself and imparts an oxidation inhibiting action. For example, it is used in a high temperature range exceeding 600 ° C. to 600 ° C. Is possible. Here, as the phosphate, in addition to the primary aluminum phosphate, primary lithium phosphate (LiH 2 PO 4 ), secondary lithium phosphate (Li 2 H 2 PO 4 ), primary calcium phosphate [Ca (H 2 PO 4 ) 2 ], dicalcium phosphate (CaHPO 4 ), dibasic aluminum phosphate [Al 2 (HPO 4 ) 3 ] and the like can be used. As the phosphoric acid, in addition to the orthophosphoric acid, metaphosphoric acid ( HPO 3 ), polyphosphoric acid and the like can be used.

上記耐熱材I、耐熱材II及び耐熱材IIIにおいて、外層用に使用される耐熱材I、耐熱材II及び耐熱材IIIの密度αは、1.0〜1.5Mg/m、好ましくは1.0〜1.2Mg/mで、厚さが0.30〜0.40mmの耐熱材が使用されて好適であり、球帯状基体用に使用される耐熱材I、耐熱材II及び耐熱材IIIは、球帯状シール体の製造時において密度が外層用に使用される耐熱材の密度の0.3〜0.6倍の密度、すなわち0.3〜0.9Mg/m、好ましくは0.3〜0.6Mg/mの密度で、厚さが1.0〜1.5mmを有する耐熱材が使用されて好適である。 In the heat resistant material I, the heat resistant material II, and the heat resistant material III, the density α of the heat resistant material I, the heat resistant material II, and the heat resistant material III used for the outer layer is 1.0 to 1.5 Mg / m 3 , preferably 1. A heat-resistant material having a thickness of 0.3 to 1.2 Mg / m 3 and a thickness of 0.30 to 0.40 mm is preferably used. III is a density 0.3 to 0.6 times the density of the heat-resistant material used for the outer layer in the production of the ball-shaped seal body, that is, 0.3 to 0.9 Mg / m 3 , preferably 0 A heat-resistant material having a density of .3-0.6 Mg / m 3 and a thickness of 1.0-1.5 mm is preferably used.

<補強材について>
補強材は、鉄系としてオーステナイト系のSUS304、SUS310S、SUS316、フェライト系のSUS430などのステンレス鋼線、鉄線(JISG3532)もしくは亜鉛メッキ鋼線(JISG3547)又は銅系として銅−ニッケル合金(白銅)線、銅−ニッケル−亜鉛合金(洋白)線、黄銅線、ベリリウム銅線からなる金属細線を一本又は2本以上を使用して織ったり編んだりして形成される織組金網又は編組金網が使用されて好適である。
<About reinforcing material>
The reinforcing material is austenitic SUS304, SUS310S, SUS316, ferritic SUS430, iron wire (JISG3532) or galvanized steel wire (JISG3547), or copper-copper-nickel alloy (white copper) wire. A woven wire mesh or a braided wire mesh formed by weaving or knitting one or more fine metal wires made of copper-nickel-zinc alloy (white) wire, brass wire, or beryllium copper wire It is preferably used.

金網を形成する金属細線において、線径は、0.28〜0.32mm程度のものが使用され、該線径の金属細線で形成された球帯状基体用の金網の目幅(編組金網を示す図6参照)は、縦4〜6mm、横3〜5mm程度のものが使用されて好適であり、該線径の金属細線で形成された外層用の金網の網目の目幅は、縦2.5〜3.5mm、横1.5〜2.5mm程度のものが使用されて好適である。   In the fine metal wire forming the wire mesh, a wire diameter of about 0.28 to 0.32 mm is used, and the mesh width of the wire mesh for the ball-shaped substrate formed of the fine metal wire of the wire diameter (showing the braided wire mesh) 6) is preferably about 4 to 6 mm in length and about 3 to 5 mm in width, and the mesh width of the metal mesh for the outer layer formed by the fine metal wire having the diameter is 2. The thing of about 5-3.5 mm and a width of about 1.5-2.5 mm is used suitably.

<固体潤滑剤について>
固体潤滑剤は、摺動性の向上のために球帯状シール体の外層に使用されて好適であって、固体潤滑剤は、六方晶窒化硼素(以下「h−BN」と略称する。)23〜57質量%、アルミナ水和物5〜15質量%及び四ふっ化エチレン樹脂(以下「PTFE」と略称する。)33〜67質量%を含む潤滑組成物を好ましい例として例示し得る。
<About solid lubricant>
The solid lubricant is suitable for use in the outer layer of the ball-shaped seal body in order to improve the slidability, and the solid lubricant is hexagonal boron nitride (hereinafter abbreviated as “h-BN”) 23. As a preferred example, a lubricating composition containing ˜57 mass%, alumina hydrate 5 to 15 mass%, and tetrafluoroethylene resin (hereinafter abbreviated as “PTFE”) 33 to 67 mass% can be exemplified.

固体潤滑剤は、製造過程においては、分散媒としての酸を含有するアルミナ水和物粒子を分散含有した水素イオン濃度(pH)が2〜3を呈するアルミナゾルに、h−BN粉末及びPTFE粉末を分散含有した水性ディスパージョンであって、h−BN粉末23〜57質量%とPTFE粉末33〜67質量%及びアルミナ水和物5〜15質量%とを含む潤滑組成物を固形分30〜50質量%分散含有した水性ディスパージョンの形態で使用されるとよい。水性ディスパージョンを形成するh−BN及びPTFEは、可及的に微粉末であることが好ましく、これらは平均粒径10μm以下、さらに好ましくは0.5μm以下の微粉末が使用されて好適である。   In the production process of solid lubricant, h-BN powder and PTFE powder are added to alumina sol having a hydrogen ion concentration (pH) of 2 to 3 in which alumina hydrate particles containing acid as a dispersion medium are dispersed. Dispersion-containing aqueous dispersion comprising a lubricating composition comprising h-BN powder 23 to 57 mass%, PTFE powder 33 to 67 mass% and alumina hydrate 5 to 15 mass% in a solid content of 30 to 50 mass It may be used in the form of an aqueous dispersion containing% dispersion. The h-BN and PTFE forming the aqueous dispersion are preferably as fine powder as possible, and these are preferably used as fine powder having an average particle size of 10 μm or less, more preferably 0.5 μm or less. .

水性ディスパージョンにおけるアルミナゾルの分散媒としての水に含有される酸は、アルミナゾルを安定化させるための解膠剤として作用するものである。そして、酸としては、塩酸、硝酸、硫酸、アミド硫酸等の無機酸が挙げられるが、特には硝酸が好ましい。   The acid contained in the water as the dispersion medium of the alumina sol in the aqueous dispersion acts as a peptizer for stabilizing the alumina sol. Examples of the acid include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and amidosulfuric acid, and nitric acid is particularly preferable.

水性ディスパージョンにおけるアルミナゾルを形成するアルミナ水和物は、組成式Al・nHO(組成式中、0<n<3)で表わされる化合物である。該組成式において、nは、通常、0(零)を超えて3未満の数、好ましくは0.5〜2、さらに好ましくは0.7〜1.5程度である。アルミナ水和物としては、例えばベーマイト(Al・HO)やダイアスポア(Al・HO)などのアルミナ一水和物(水酸化酸化アルミニウム)、ギブサイト(Al・3HO)やバイヤライト(Al・3HO)などのアルミナ三水和物、擬ベーマイトなどが挙げられる。 The alumina hydrate forming the alumina sol in the aqueous dispersion is a compound represented by the composition formula Al 2 O 3 .nH 2 O (0 <n <3 in the composition formula). In the composition formula, n is usually a number exceeding 0 (zero) and less than 3, preferably 0.5 to 2, and more preferably about 0.7 to 1.5. The alumina hydrate, for example, boehmite (Al 2 O 3 · H 2 O) and diaspore (Al 2 O 3 · H 2 O) alumina monohydrate such as (aluminum hydroxide oxide), gibbsite (Al 2 O 3 · 3H 2 O) and bayerite (Al 2 O 3 · 3H 2 O) alumina trihydrate, such as, such as pseudo-boehmite and the like.

次に、上記した構成材料からなる球帯状シール体の製造方法について、図面に基づき説明する。   Next, a method for manufacturing a spherical belt-shaped sealing body made of the above-described constituent materials will be described with reference to the drawings.

(第一工程)密度が0.3〜0.9Mg/m、好ましくは0.3〜0.6Mg/mを有する膨張黒鉛シートからなる球帯状基体用の耐熱材1を準備する(図5参照)。 (First step) A heat-resistant material 1 for a spherical band-shaped substrate made of an expanded graphite sheet having a density of 0.3 to 0.9 Mg / m 3 , preferably 0.3 to 0.6 Mg / m 3 is prepared (FIG. 5).

(第二工程)線径が0.28〜0.32mmの金属細線を編み機(図示せず)で連続的に編んで得られる網目の目幅が縦4〜6mm、横3〜5mm(図6参照)の円筒状編組金網からなる球帯状基体用の補強材2の二つの層間としての内部に、該円筒状編組金網(図25参照)の直径(内径)の長さより小さい長さ(幅)に形成した球帯状基体用の耐熱材1を連続的に挿入し、耐熱材1を挿入した補強材2をその挿入開始端から平滑な円筒状の外周面を有する円筒ローラ3と軸方向に沿って複数個の環状凹溝4をもった円筒状の外周面を有したローラ5(図7及び図8参照)との間の隙間Δ1に供給して耐熱材1の厚さ方向に加圧(図7、図9、図10、図11、図12及び図13参照)し、さらに別の平滑な円筒状の外周面を有する一対の円筒ローラ6及び7間の隙間Δ2に供給して加圧(図7及び図14参照)し、球帯状基体用の補強材2の金網の網目に球帯状基体用の耐熱材1を密に充填すると共に球帯状基体用の補強材2の一部が耐熱材1からなる面8と共に露出し、その他の部分が耐熱材1に埋設するように互いに圧着して、球帯状基体用の耐熱材1からなる面8と球帯状基体用の補強材2からなる面9とを面一に形成して、耐熱材1からなる面8と補強材2からなる面9とが面一となって露出した両表面と補強材2の幅方向の両側に耐熱材1が充填されない部分10及び10とを有する扁平状の複合シート材11(図15参照)を形成する。   (Second step) The mesh width obtained by continuously knitting fine metal wires having a wire diameter of 0.28 to 0.32 mm with a knitting machine (not shown) is 4 to 6 mm in length and 3 to 5 mm in width (FIG. 6). The length (width) smaller than the length of the diameter (inner diameter) of the cylindrical braided wire mesh (see FIG. 25) inside the reinforcing material 2 for the spherical belt-shaped substrate made of the cylindrical braided wire mesh The heat-resistant material 1 for the sphere-shaped substrate formed in the above is continuously inserted, and the reinforcing material 2 into which the heat-resistant material 1 is inserted is inserted into the cylindrical roller 3 having a smooth cylindrical outer peripheral surface from the insertion start end along the axial direction. Is supplied to a gap Δ1 between the roller 5 having a cylindrical outer peripheral surface having a plurality of annular grooves 4 (see FIGS. 7 and 8) and pressed in the thickness direction of the heat-resistant material 1 ( 7, 9, 10, 11, 12, and 13) and yet another pair of smooth cylindrical outer peripheral surfaces Supply to the gap Δ2 between the cylindrical rollers 6 and 7 and apply pressure (see FIGS. 7 and 14), and densely fill the heat-resistant material 1 for the ball-shaped substrate with the mesh of the reinforcing material 2 for the ball-shaped substrate. At the same time, a part of the reinforcing material 2 for the sphere-shaped base is exposed together with the surface 8 made of the heat-resistant material 1 and the other parts are pressure-bonded so as to be embedded in the refractory material 1. The surface 8 made of the base material and the surface 9 made of the reinforcing material 2 for the ball-shaped base are formed to be flush with each other, and the surface 8 made of the heat-resistant material 1 and the surface 9 made of the reinforcing material 2 are exposed to be flush with each other. A flat composite sheet material 11 (see FIG. 15) having both surfaces 10 and 10 not filled with the heat-resistant material 1 on both sides in the width direction of the reinforcing material 2 is formed.

円筒ローラ3と軸方向に沿って複数個の環状凹溝4をもった円筒状の外周面を有したローラ5との間の隙間Δ1は、0.35〜0.60mmの範囲に設定されるのが好ましく、また一対の円筒ローラ6及び7間の隙間Δ2は、0.45〜0.65mmの範囲に設定されるのが好ましい。   A gap Δ1 between the cylindrical roller 3 and the roller 5 having a cylindrical outer peripheral surface having a plurality of annular grooves 4 along the axial direction is set in a range of 0.35 to 0.60 mm. The gap Δ2 between the pair of cylindrical rollers 6 and 7 is preferably set in the range of 0.45 to 0.65 mm.

上記第二工程で得られた扁平状の複合シート材11の一方の表面12において、球帯状基体用の耐熱材1からなる面8と共に露出する球帯状基体用の補強材2からなる面9の面積割合は、複合シート材11の一方の表面12の面積の5〜40%であることが好ましい。   On one surface 12 of the flat composite sheet material 11 obtained in the second step, the surface 9 made of the reinforcing material 2 for the ball-shaped substrate exposed together with the surface 8 made of the heat-resistant material 1 for the ball-shaped substrate. The area ratio is preferably 5 to 40% of the area of the one surface 12 of the composite sheet material 11.

(第三工程)扁平状の複合シート材11を円筒状に数回捲回して筒状母材13を形成する(図16及び図17参照)。この筒状母材13において、円筒状の上、下部側に球帯状基体用の耐熱材1が充填されていない部分10及び10が位置する。 (Third Step) The flat composite sheet material 11 is wound into a cylindrical shape several times to form a tubular base material 13 (see FIGS. 16 and 17). In this cylindrical base material 13, portions 10 and 10 that are not filled with the heat-resistant material 1 for the spherical band base body are positioned on the upper and lower sides of the cylindrical shape.

(第四工程)密度αが1.0〜1.5Mg/m、好ましくは1.0〜1.2Mg/m、厚さを有する膨張黒鉛シートからなる外層用の耐熱材14(図18)を準備し、この耐熱材14を筒状母材13の外周面を一回巻きできる程度の長さに切断する。 (Fourth step) A heat-resistant material 14 for an outer layer made of an expanded graphite sheet having a density α of 1.0 to 1.5 Mg / m 3 , preferably 1.0 to 1.2 Mg / m 3 and a thickness (FIG. 18). The heat-resistant material 14 is cut into a length that allows the outer peripheral surface of the cylindrical base material 13 to be wound once.

(第五工程)
<外層形成部材I及びその製造方法>
線径が0.28〜0.32mmの金属細線を円筒状に編んで形成した網目の目幅が縦2.5〜3.5mm、横1.5〜1.5mm程度(図6参照)の円筒状編組金網(図25参照)からなる外層用の補強材15の二つの層間としての内部に、該円筒状編組金網の直径(内径)の長さよりも小さい長さ(幅)に形成した外層用の耐熱材14を連続的に挿入し、耐熱材14を挿入した補強材15をその挿入開始端から平滑な外周面を有する一対の円筒ローラ16及び17間の隙間Δ3に供給して耐熱材14の厚さ方向に加圧(図19及び図20参照)し、外層用の補強材15の金網の網目に外層用の耐熱材14を密に充填すると共に補強材15の一部18が耐熱材14からなる面19と共に露出し、その他の部分が耐熱材14に埋設するように互いに圧着して、表面に外層用の補強材15からなる面と外層用の耐熱材14からなる面とが混在して露出した扁平状の外層形成部材20(図21参照)を形成する。
(Fifth process)
<Outer layer forming member I and manufacturing method thereof>
The mesh width formed by knitting a thin metal wire having a wire diameter of 0.28 to 0.32 mm into a cylindrical shape has a length of about 2.5 to 3.5 mm and a width of about 1.5 to 1.5 mm (see FIG. 6). An outer layer formed in a length (width) smaller than the diameter (inner diameter) of the cylindrical braided wire mesh inside two layers of the outer layer reinforcing material 15 made of a cylindrical braided wire mesh (see FIG. 25). The heat-resistant material 14 is inserted continuously, and the reinforcing material 15 into which the heat-resistant material 14 is inserted is supplied from the insertion start end to the gap Δ3 between the pair of cylindrical rollers 16 and 17 having a smooth outer peripheral surface. 14 is pressed in the thickness direction (see FIGS. 19 and 20), the outer layer heat-resistant material 14 is densely filled in the mesh of the outer layer reinforcing material 15, and a part 18 of the reinforcing material 15 is heat-resistant. It is exposed together with the surface 19 made of the material 14, and the other part is embedded in the heat-resistant material 14. Crimp to form a reinforcing member 15 face the outer layer of the heat-resistant material 14 faces and is mixed flat outer layer forming member was exposed 20 consisting of consisting of a layer (see FIG. 21) to the surface.

<外層形成部材II及びその製造方法>
解膠剤として作用する硝酸を含有した分散媒としての水にアルミナ水和物粒子を分散含有した水素イオン濃度が2〜3を呈するアルミナゾルに、h−BN粉末及びPTFE粉末を分散含有した水性ディスパージョンであって、h−BN23〜57質量%とPTFE33〜67質量%及びアルミナ水和物5〜15質量%とを含む潤滑組成物を固形分として30〜50質量%分散含有した水性ディスパージョンを準備する。
<Outer layer forming member II and manufacturing method thereof>
Aqueous disperse containing h-BN powder and PTFE powder dispersed in an alumina sol having a hydrogen ion concentration of 2 to 3 dispersed in water as a dispersion medium containing nitric acid acting as a peptizer An aqueous dispersion comprising 30 to 50% by mass of a lubricating composition containing 23 to 57% by mass of h-BN, 33 to 67% by mass of PTFE and 5 to 15% by mass of alumina hydrate as a solid content. prepare.

外層用の耐熱材14を別途準備し、耐熱材14の一方の表面21に、h−BN23〜57質量%とPTFE33〜67質量%及びアルミナ水和物5〜15質量%とを含む潤滑組成物を固形分として30〜50質量%分散含有した水性ディスパージョンを刷毛塗り、ローラ塗りあるいはスプレー等の手段で適用し、これを乾燥させて潤滑組成物からなる被覆層22を形成する(図22参照)。   A heat-resistant material 14 for the outer layer is separately prepared, and a lubricating composition containing h-BN 23-57 mass%, PTFE 33-67 mass%, and alumina hydrate 5-15 mass% on one surface 21 of the heat-resistant material 14 Is applied by means of brushing, roller coating or spraying, and dried to form a coating layer 22 made of a lubricating composition (see FIG. 22). ).

外層形成部材Iと同様にして、線径が0.28〜0.32mmの金属細線を円筒状に編んで形成した網目の目幅が縦2.5〜3.5mm、横1.5〜1.5mm程度(図6参照)の円筒状編組金網(図25参照)からなる外層用の補強材15の二つの層間としての内部に、該円筒状編組金網の直径(内径)の長さよりも小さい長さ(幅)に形成した固体潤滑剤の被覆層22を備えた外層用の耐熱材14を連続的に挿入し、耐熱材14を挿入した補強材15をその挿入開始端から平滑な外周面を有する一対の円筒ローラ16及び17間の隙間Δ3に供給して耐熱材14の厚さ方向に加圧(図19及び図23参照)して一体化させ、外層用の補強材15の金網の網目に外層用の耐熱材14と該耐熱材14の表面21に形成された固体潤滑剤の被覆層22とを充填して、表面に外層用の補強材15からなる面23と固体潤滑剤からなる面24とが混在して露出した扁平状の外層形成部材20aを形成する(図24参照)。   Similarly to the outer layer forming member I, the mesh width formed by knitting a thin metal wire having a wire diameter of 0.28 to 0.32 mm into a cylindrical shape has a length of 2.5 to 3.5 mm and a width of 1.5 to 1 Inside the two layers of the outer layer reinforcing material 15 made of a cylindrical braided wire mesh (see FIG. 25) of about 5 mm (see FIG. 6), it is smaller than the length of the diameter (inner diameter) of the cylindrical braided wire mesh. The outer layer heat-resistant material 14 provided with the solid lubricant coating layer 22 formed in length (width) is continuously inserted, and the reinforcing material 15 into which the heat-resistant material 14 is inserted is smooth from the insertion start end to the outer peripheral surface. Is supplied to a gap Δ3 between a pair of cylindrical rollers 16 and 17 and pressed in the thickness direction of the heat-resistant material 14 (see FIGS. 19 and 23) to be integrated. Heat-resistant material 14 for outer layer and coating of solid lubricant formed on surface 21 of heat-resistant material 14 in the mesh 22 and filled with a surface 24 consisting of the surface 23 and the solid lubricant consisting of the reinforcing member 15 for the outer layer to form a flat outer layer forming member 20a exposed mixed on the surface (see FIG. 24).

上記外層形成部材IIを図25及び図27に示すように他の方法で形成してもよい。即ち、線径が0.28〜0.32mmの金属細線を円筒状に編んで形成した網目の目幅が縦2.5〜3.5mm、横1.5〜2.5mm程度の円筒状編組金網を一対のローラ25及び26間に通して所定の幅の帯状金網27を作製し、帯状金網27を所定の長さに切断した外層用の補強材15を準備する(図25参照)。この帯状金網27からなる外層用の補強材15の二つの層間としての内部に、一方の表面21に固体潤滑剤の被覆層22を備えた外層用の耐熱材14を挿入すると共にこれらを一対のローラ28及び29間の隙間に供給し、耐熱材14の厚さ方向に加圧して一体化させ、外層用の補強材15の金網の網目に耐熱材14と該耐熱材14の表面に形成された固体潤滑剤の被覆層22とを充填して、表面に外層用の補強材15からなる面23と固体潤滑剤からなる面24とが混在して露出した扁平状の外層形成部材20a(図24参照)を形成してもよい。   The outer layer forming member II may be formed by other methods as shown in FIGS. That is, a cylindrical braid having a mesh width of about 2.5 to 3.5 mm in length and about 1.5 to 2.5 mm in width formed by knitting thin metal wires having a wire diameter of 0.28 to 0.32 mm in a cylindrical shape. A band-shaped wire mesh 27 having a predetermined width is produced by passing the wire mesh between the pair of rollers 25 and 26, and an outer layer reinforcing material 15 obtained by cutting the band-shaped wire mesh 27 into a predetermined length is prepared (see FIG. 25). An outer layer heat-resistant material 14 having a solid lubricant coating layer 22 on one surface 21 is inserted into the outer layer reinforcing material 15 made of the belt-shaped wire mesh 27 as two layers, and these are paired with each other. It is supplied to the gap between the rollers 28 and 29, and is pressed and integrated in the thickness direction of the heat-resistant material 14, and is formed on the surface of the heat-resistant material 14 and the heat-resistant material 14 in the mesh of the reinforcing mesh 15 for the outer layer. The outer layer forming member 20a having a flat shape in which the surface 23 made of the reinforcing material 15 for the outer layer and the surface 24 made of the solid lubricant are mixed and exposed on the surface is filled with the coating layer 22 of the solid lubricant. 24) may be formed.

(第六工程)このようにして得た外層形成部材20を、筒状母材13の外周面に巻付け、図28に示すような予備円筒成形体30を作製するか、外層形成部材20aを、固体潤滑剤の被覆層22を外側にして筒状母材13の外周面に巻付け、予備円筒成形体30aを作製する。   (Sixth Step) The outer layer forming member 20 obtained in this way is wound around the outer peripheral surface of the cylindrical base material 13 to produce a preliminary cylindrical molded body 30 as shown in FIG. 28, or the outer layer forming member 20a is The pre-cylindrical molded body 30a is manufactured by winding the solid lubricant covering layer 22 on the outer peripheral surface of the cylindrical base material 13 outside.

(第七工程)内面に円筒壁面31と円筒壁面31に連なる部分凹球面状壁面32と部分凹球面状壁面32に連なる貫通孔33とを備え、貫通孔33に段付きコア34を嵌挿することによって内部に中空円筒部35と中空円筒部35に連なる球帯状中空部36とが形成された図29に示すような金型37を準備し、金型37の段付きコア34に予備円筒成形体30又は30aを挿入する。   (Seventh step) The inner surface includes a cylindrical wall surface 31, a partially concave spherical wall surface 32 continuous to the cylindrical wall surface 31, and a through hole 33 continuous to the partially concave spherical wall surface 32, and the stepped core 34 is fitted into the through hole 33. Thus, a die 37 as shown in FIG. 29 in which a hollow cylindrical portion 35 and a spherical belt-like hollow portion 36 connected to the hollow cylindrical portion 35 are formed is prepared, and preliminary cylindrical molding is performed on the stepped core 34 of the die 37. Insert body 30 or 30a.

金型37の中空円筒部35及び球帯状中空部36に配された予備円筒成形体30又は30aをコア軸方向に98〜294N/mm(1〜3トン/cm)の圧力で圧縮成形し、図1ないし図4に示すような、中央部に貫通孔38を有すると共に円筒内面39と部分凸球面状面40と部分凸球面状面40の大径側及び小径側の環状端面41及び42とにより規定された球帯状基体43と、球帯状基体43の部分凸球面状面40に一体的に形成された外層44とを備えた球帯状シール体45又は45aを作製する。 The pre-cylindrical molded body 30 or 30a disposed in the hollow cylindrical portion 35 and the spherical belt-shaped hollow portion 36 of the mold 37 is compression molded at a pressure of 98 to 294 N / mm 2 (1 to 3 ton / cm 2 ) in the core axis direction. As shown in FIGS. 1 to 4, a through hole 38 is provided at the center, and the cylindrical inner surface 39, the partially convex spherical surface 40, the annular end surface 41 on the large diameter side and the small diameter side of the partially convex spherical surface 40, and The ball-shaped seal body 45 or 45 a is prepared, which includes the ball-shaped base 43 defined by the reference numeral 42 and the outer layer 44 integrally formed on the partially convex spherical surface 40 of the ball-shaped base 43.

予備円筒成形体30を使用して作製された球帯状シール体45においては、図1及び図2に示すように、金網からなる球帯状基体用の補強材2と補強材2の金網の網目を充填し、かつこの補強材2と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材1とを具備している球帯状基体43は、球帯状基体用の耐熱材1と球帯状基体用の補強材2とが互いに圧縮され、互いに絡み合って構造的一体性を有するように構成されていると共に、露出した球帯状基体43の円筒内面39及び大径側の環状端面41は、球帯状基体用の耐熱材1からなる面46と、面46と面一となっていると共に球帯状基体用の補強材2からなる面47とを含んでおり、面46と面47とは、円筒内面39及び環状端面41において混在一体化されており、面47は、円筒内面39及び環状端面41において面46に対して点在しており、外層44は、膨張黒鉛を含む外層用の耐熱材14と金網からなる外層用の補強材15とが圧縮されて補強材15の金網の網目にに耐熱材14が充填されて当該耐熱材14と補強材15とが混在一体化されてなり、外層44の外表面48は、外層用の補強材15からなる面49と外層用の耐熱材14からなる面50とが混在した平滑な面51に形成されている。   As shown in FIGS. 1 and 2, the ball-shaped seal body 45 manufactured using the pre-cylindrical molded body 30 has a reinforcing member 2 for a spherical band-shaped substrate made of a wire mesh and a mesh of the mesh of the reinforcing material 2. A ball-shaped base 43 comprising a heat-resistant material 1 for a ball-shaped substrate that is filled and integrated with the reinforcing material 2 and contains compressed expanded graphite is a heat-resistant material for the ball-shaped substrate. 1 and the reinforcing member 2 for the spherical belt-shaped substrate are compressed to be intertwined with each other to have structural integrity, and the exposed cylindrical inner surface 39 of the spherical belt-shaped substrate 43 and the annular end surface on the large diameter side 41 includes a surface 46 made of the heat-resistant material 1 for the sphere-shaped substrate, and a surface 47 which is flush with the surface 46 and made of the reinforcing material 2 for the sphere-shaped substrate. Is mixed and integrated in the cylindrical inner surface 39 and the annular end surface 41. The surface 47 is scattered with respect to the surface 46 in the cylindrical inner surface 39 and the annular end surface 41, and the outer layer 44 is an outer layer heat-resistant material 14 containing expanded graphite and an outer layer reinforcing material made of a wire mesh. 15 is compressed and the mesh of the reinforcing material 15 is filled with the heat-resistant material 14 so that the heat-resistant material 14 and the reinforcing material 15 are mixed and integrated, and the outer surface 48 of the outer layer 44 is for the outer layer. The surface 49 made of the reinforcing material 15 and the surface 50 made of the heat-resistant material 14 for the outer layer are formed on a smooth surface 51.

また、予備円筒成形体30aを使用して作製された球帯状シール体45aにおいては、図3及び図4に示すように、金網からなる球帯状基体用の補強材2と補強材2の金網の網目を充填し、かつこの補強材2と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材1とを具備している球帯状基体43は、球帯状基体用の耐熱材1と球帯状基体用の補強材2とが互いに圧縮され、互いに絡み合って構造的一体性を有するように構成されていると共に、露出した球帯状基体43の円筒内面39及び大径側の環状端面41は、球帯状基体用の耐熱材1からなる面46と、面46と面一となっていると共に球帯状基体用の補強材2からなる面47とを含んでおり、面46と面47とは、円筒内面39及び環状端面41において混在一体化されており、面47は、円筒内面39及び環状端面41において面46に対して点在しており、外層44は、膨張黒鉛を含む外層用の耐熱材14と、被覆層22の潤滑組成物からなる固体潤滑剤52と、金網からなる外層用の補強材15とが圧縮されて補強材15の金網の網目に固体潤滑剤52及び耐熱材14が充填されて当該固体潤滑剤52及び耐熱材14と補強材15とが混在一体化されてなり、該外層44の外表面48は、外層用の補強材15からなる面49と固体潤滑剤52からなる面53とが混在した平滑な面54に形成されている。   Further, in the spherical belt-shaped sealing body 45a produced using the preliminary cylindrical molded body 30a, as shown in FIGS. 3 and 4, the reinforcing material 2 for the spherical belt-shaped substrate made of a metal mesh and the wire mesh of the reinforcing material 2 are used. A spherical belt-shaped substrate 43 having a mesh and heat-resistant material 1 for a spherical belt-shaped substrate including expanded graphite that is mixed and integrated with the reinforcing material 2 and compressed is used for the spherical belt-shaped substrate. The heat-resistant material 1 and the reinforcing material 2 for the ball-shaped substrate are compressed and entangled with each other to have structural integrity, and the cylindrical inner surface 39 and the large-diameter side of the exposed ball-shaped substrate 43 are arranged. The annular end surface 41 includes a surface 46 made of the heat-resistant material 1 for the spherical belt-shaped substrate and a surface 47 that is flush with the surface 46 and made of the reinforcing material 2 for the spherical belt-shaped substrate. The surface 47 is the cylindrical inner surface 39 and the annular end surface 41. The surface 47 is scattered with respect to the surface 46 at the cylindrical inner surface 39 and the annular end surface 41, and the outer layer 44 is composed of the heat-resistant material 14 for the outer layer containing expanded graphite and the coating layer 22. The solid lubricant 52 made of the lubricating composition and the reinforcing material 15 for the outer layer made of a wire mesh are compressed, and the solid mesh 52 and the heat-resistant material 14 are filled into the mesh of the wire mesh of the reinforcing material 15 so that the solid lubricant 52 is filled. In addition, the heat-resistant material 14 and the reinforcing material 15 are mixed and integrated, and the outer surface 48 of the outer layer 44 is a smooth surface in which the surface 49 made of the reinforcing material 15 for the outer layer and the surface 53 made of the solid lubricant 52 are mixed. A flat surface 54 is formed.

球帯状シール体45及び45aにおいて、球帯状基体43の円筒内面39での球帯状基体用の補強材2からなる面47の面積割合は、複合シート材11の一方の表面12において、球帯状基体用の補強材2からなる面9が露出する面積割合である5〜40%となり、また部分凸球面状面40の大径側の環状端面41での球帯状基体用の補強材2からなる面47の面積割合は、複合シート材11を形成する球帯状基体用の金網からなる補強材2の両側に形成される球帯状基体用の耐熱材1が充填されない部分10の幅を調整することによって、5〜40%に適宜調整することが可能となる。   In the spherical belt-shaped sealing bodies 45 and 45 a, the area ratio of the surface 47 made of the reinforcing material 2 for the spherical belt-shaped substrate on the cylindrical inner surface 39 of the spherical belt-shaped substrate 43 is equal to the spherical belt-shaped substrate on one surface 12 of the composite sheet material 11. 5 to 40%, which is the area ratio at which the surface 9 made of the reinforcing material 2 for exposure is exposed, and the surface made of the reinforcing material 2 for the spherical base at the annular end surface 41 on the large diameter side of the partially convex spherical surface 40 The area ratio 47 is adjusted by adjusting the width of the portion 10 that is not filled with the heat-resistant material 1 for the ball-shaped substrate formed on both sides of the reinforcing material 2 made of the metal wire for the ball-shaped substrate that forms the composite sheet material 11. , 5 to 40% can be appropriately adjusted.

球帯状シール体45又は45aは、図30又は図31に示す排気管球面継手に組込まれて使用される。すなわち、図30に示す排気管球面継手において、エンジン側に連結された上流側排気管100の外周面には、管端部101を残して鋳物製のフランジ200が立設されており、管端部101には、球帯状シール体45又は45aが貫通孔38を規定する円筒内面39において嵌合されており、大径側の環状端面41において球帯状シール体45又は45aがフランジ200に当接されて着座せしめられており、上流側排気管100と対峙して配されていると共にマフラ側に連結された下流側排気管300には、凹球面部302と凹球面部302に連接されたフランジ部303とを一体に備えた径拡大部301が固着されており、凹球面部302の内面304が球帯状シール体45又は45aの外層44の外表面48における補強材15からなる面49と外層用の耐熱材14からなる面50とが混在した平滑な面51に、あるいは補強材15からなる面49と固体潤滑剤52からなる面53とが混在した平滑な面54に摺動自在に接している。   The spherical belt-like seal body 45 or 45a is used by being incorporated in the exhaust pipe spherical joint shown in FIG. 30 or FIG. That is, in the exhaust pipe spherical joint shown in FIG. 30, a casting flange 200 is erected on the outer peripheral surface of the upstream exhaust pipe 100 connected to the engine side, leaving the pipe end portion 101. A spherical belt-like seal body 45 or 45 a is fitted to the portion 101 at a cylindrical inner surface 39 that defines the through hole 38, and the spherical belt-like seal body 45 or 45 a abuts against the flange 200 at the annular end surface 41 on the large diameter side. The downstream exhaust pipe 300 that is disposed and opposed to the upstream exhaust pipe 100 and that is connected to the muffler side has a concave spherical portion 302 and a flange connected to the concave spherical portion 302. The enlarged diameter portion 301 integrally provided with the portion 303 is fixed, and the inner surface 304 of the concave spherical surface portion 302 is made of the reinforcing material 15 on the outer surface 48 of the outer layer 44 of the ball-shaped seal body 45 or 45a. A smooth surface 51 in which the surface 49 made of the heat-resistant material 14 for the outer layer is mixed, or a smooth surface 54 in which the surface 49 made of the reinforcing material 15 and the surface 53 made of the solid lubricant 52 are mixed. It is in slidable contact.

図31は、図30に示す排気管球面継手において、上流側排気管100の外周面に、管端部を残して立設された鋳物製のフランジ200に代えて、上流排気管100にバルジ加工を施して形成した板金製のフランジ200と該フランジ200に当接して上流側排気管100の外周面と直交して配されたフランジ200aとからなるフランジを備えた排気管球面継手を示すもので、他の構成は図30に示す排気管球面継手と同様である。   FIG. 31 shows a bulge process on the upstream exhaust pipe 100 in place of the casting flange 200 erected on the outer peripheral surface of the upstream side exhaust pipe 100 in the exhaust pipe spherical joint shown in FIG. The exhaust pipe spherical joint is provided with a flange comprising a sheet metal flange 200 formed by applying the flange 200 and a flange 200a disposed in contact with the flange 200 and orthogonal to the outer peripheral surface of the upstream exhaust pipe 100. The other configuration is the same as that of the exhaust pipe spherical joint shown in FIG.

図30又は図31に示す排気管球面継手において、一端がフランジ200又は200aに固定され、他端が径拡大部301のフランジ部303を挿通して配された一対のボルト400とボルト400の膨大頭部及びフランジ部303の間に配された一対のコイルバネ500とにより、下流側排気管300には、常時、上流側排気管100方向にバネ力が付勢されている。そして、排気管球面継手は、上、下流側排気管100、300に生じる相対角変位に対しては、球帯状シール体45又は45aの外表面の平滑な面51又は54と下流側排気管300の端部に形成された径拡大部301の凹球面部302の内面304との摺接でこれを許容するように構成されている。   In the exhaust pipe spherical joint shown in FIG. 30 or FIG. 31, one end is fixed to the flange 200 or 200a, and the other end is inserted through the flange portion 303 of the enlarged diameter portion 301, and a pair of bolts 400 and a large number of bolts 400 are arranged. A spring force is always applied to the downstream exhaust pipe 300 in the direction of the upstream exhaust pipe 100 by the pair of coil springs 500 disposed between the head and the flange portion 303. The exhaust pipe spherical joint has a smooth surface 51 or 54 on the outer surface of the ball-shaped seal body 45 or 45a and the downstream exhaust pipe 300 with respect to relative angular displacement occurring in the upper and downstream exhaust pipes 100 and 300. This is configured so as to allow this by sliding contact with the inner surface 304 of the concave spherical surface portion 302 of the enlarged diameter portion 301 formed at the end portion.

実施例1
球帯状基体用の耐熱材として、密度0.3Mg/m、厚さ1.35mmを有する膨張黒鉛シート(耐熱材I)を準備した。
Example 1
An expanded graphite sheet (heat-resistant material I) having a density of 0.3 Mg / m 3 and a thickness of 1.35 mm was prepared as a heat-resistant material for the spherical band-shaped substrate.

球帯状基体用の補強材として、線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦4mm、横5mmの円筒状編組金網を連続的に編むと共に該円筒状編組金網の二つの層間としての内面に前記球帯状基体用の耐熱材を連続的に挿入し、該耐熱材の挿入開始端から該耐熱材を挿入した補強材を、円筒ローラと外周面に軸方向に沿って複数個の環状凹溝を有するローラとの隙間(隙間Δ1は0.50mmとした。)に供給して該耐熱材の厚さ方向に加圧し、さらに別の一対の円筒ローラ間の隙間(隙間Δ2は0.45mmとした。)に供給し、加圧して球帯状基体用の補強材の金網の網目に球帯状基体用の耐熱材を密に充填すると共に該球帯状基体用の耐熱材中に球帯状基体用の補強材の一部が該耐熱材の表面に露出し、その他の部分が埋設するように互いに圧着して、球帯状基体用の耐熱材からなる面と球帯状基体用の補強材からなる面とを面一に形成すると共に耐熱材からなる面と補強材からなる面とが点在して露出した扁平状の複合シート材を作製した。この複合シート材において、複合シート材の一方の表面で耐熱材の表面と共に露出する補強材からなる面の面積割合をキーエンス社製の画像測定カメラCV−5000を用いて画像測定したところ、当該面積割合は26.4%であった。また、複合シート材を形成する補強材の幅(46.8mm)方向の両側に耐熱材が充填されない部分が生じ、耐熱材が充填されない部分の片側の幅は1.9mmであった。   As a reinforcing material for a spherical band substrate, a single austenitic stainless steel wire (SUS304) having a wire diameter of 0.28 mm is used to continuously knit a cylindrical braided wire mesh having a mesh width of 4 mm and a width of 5 mm. A heat resistant material for the spherical belt-like substrate is continuously inserted into the inner surface as two layers of the cylindrical braided wire mesh, and a reinforcing material inserted with the heat resistant material from the insertion start end of the heat resistant material is connected to the cylindrical roller and the outer periphery. Supplyed to a gap (gap Δ1 is 0.50 mm) with a roller having a plurality of annular grooves along the surface in the axial direction, and pressurized in the thickness direction of the heat-resistant material. Supply to the gap between the cylindrical rollers (gap Δ2 is 0.45 mm), pressurize and tightly fill the sphere-like base material with the heat-resistant material for the sphere-like base, and press the ball. A part of the reinforcing material for the spherical belt-shaped substrate is contained in the heat-resistant material for the belt-shaped substrate. The surface made of the heat-resistant material for the ball-shaped substrate and the surface made of the reinforcing material for the ball-shaped substrate are formed to be flush with each other so as to be exposed on the surface of the heat-resistant material and to embed other parts. A flat composite sheet material in which a surface made of a heat-resistant material and a surface made of a reinforcing material were scattered and exposed was produced. In this composite sheet material, the area ratio of the surface composed of the reinforcing material exposed together with the surface of the heat-resistant material on one surface of the composite sheet material was measured using an image measurement camera CV-5000 manufactured by Keyence Corporation. The percentage was 26.4%. Moreover, the part which is not filled with a heat resistant material produced in the both sides of the width | variety (46.8 mm) direction of the reinforcing material which forms a composite sheet material, and the width | variety of the one side of the part which is not filled with a heat resistant material was 1.9 mm.

該扁平状の複合シート材を、球帯状基体用の耐熱材からなる面と補強材からなる面とが面一となっていると共に耐熱材からなる面と補強材からなる面とが露出した表面を重ね合わせるように円筒状に数回捲回して筒状母材を形成した。   The flat composite sheet material is a surface in which a surface made of a heat-resistant material for a spherical belt-shaped substrate and a surface made of a reinforcing material are flush with each other, and a surface made of a heat-resistant material and a surface made of a reinforcing material are exposed A cylindrical base material was formed by winding several times in a cylindrical shape so as to overlap each other.

金属細線として前記球帯状基体用の補強材と同様の線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦3.5mm、横2.5mmの円筒状編組金網を連続的に編むと共に該円筒状編組金網の二つの層間としての内面に、密度1.12Mg/m、厚さ0.38mmの膨張黒鉛シート(耐熱材I)からなる外層用の耐熱材を連続的に挿入し、該耐熱材の挿入開始端から該耐熱材を挿入した補強材を、平滑な外周面を有する一対の円筒ローラ間の隙間(隙間Δ3は0.6mmとした。)に供給して該耐熱材の厚さ方向に加圧し、外層用の補強材の金網の網目に外層用の耐熱材を充填すると共に該補強材の一部が該耐熱材からなる表面と共に露出した扁平状の外層形成部材を形成した。 A single austenitic stainless steel wire (SUS304) having a wire diameter of 0.28 mm, which is the same as the reinforcing material for the sphere-shaped substrate, is used as the thin metal wire, and the cylinder has a mesh width of 3.5 mm in length and 2.5 mm in width. For the outer layer comprising an expanded graphite sheet (heat-resistant material I) having a density of 1.12 Mg / m 3 and a thickness of 0.38 mm on the inner surface of the cylindrical braided wire mesh as two layers. A heat-resistant material was continuously inserted, and a reinforcing material in which the heat-resistant material was inserted from the insertion start end of the heat-resistant material was used as a gap between a pair of cylindrical rollers having a smooth outer peripheral surface (gap Δ3 was 0.6 mm). ) And pressurizing in the thickness direction of the heat-resistant material, filling the outer layer of the heat-resistant material for the outer layer with the wire mesh of the reinforcing material for the outer layer and exposing a part of the reinforcing material together with the surface made of the heat-resistant material The flat outer layer forming member thus formed was formed.

前記筒状母材の外周面に前記外層形成部材を捲回し、予備円筒成形体を作製した。この予備円筒成形体を図28に示す金型の段付きコアに挿入し、該予備円筒成形体を金型の中空部に位置させた。   The outer layer forming member was wound around the outer peripheral surface of the cylindrical base material to prepare a preliminary cylindrical molded body. This preliminary cylindrical molded body was inserted into the stepped core of the mold shown in FIG. 28, and the preliminary cylindrical molded body was positioned in the hollow portion of the mold.

金型の中空部に配した予備円筒成形体をコア軸方向に294N/mm(3トン/cm)の圧力で圧縮成形し、中央部に貫通孔を有すると共に円筒内面と部分凸球面状面の大径側及び小径側の環状端面とにより規定された球帯状基体と、球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた球帯状シール体を得た。 A pre-cylindrical molded body placed in the hollow part of the mold is compression-molded with a pressure of 294 N / mm 2 (3 ton / cm 2 ) in the core axial direction, and has a through-hole in the central part and a cylindrical inner surface and a partially convex spherical shape. A spherical belt-shaped sealing body was obtained comprising a spherical belt-shaped substrate defined by the large-diameter side and small-diameter annular end surfaces of the surface, and an outer layer integrally formed on the partially convex spherical surface of the spherical belt-shaped substrate.

得られた球帯状シール体において、球帯状基体は、球帯状基体用の耐熱材と球帯状基体用の補強材とが互いに圧縮され、互いに絡み合って構造的一体性を有するように構成されていると共に、該球帯状基体の円筒内面及び大径側の環状端面は、球帯状基体用の耐熱材からなる面と球帯状基体用の耐熱材からなる面と面一となっていると共に球帯状基体用の補強材からなる面とを含んでおり、当該耐熱材からなる面と補強材からなる面とは、球帯状基体の円筒内面及び大径側の環状端面において混在一体化されており、補強材からなる面は、球帯状基体の円筒内面及び大径側の環状端面において耐熱材からなる面に対して点在しており、外層は、外層用の耐熱材と外層用の補強材とが圧縮されて補強材の金網の網目に耐熱材が充填されて当該耐熱材と補強材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と外層用の耐熱材からなる面とが混在した平滑な面に形成されている。   In the obtained spherical belt-shaped sealing body, the spherical belt-shaped substrate is configured such that the heat-resistant material for the spherical belt-shaped substrate and the reinforcing material for the spherical belt-shaped substrate are compressed and entangled with each other to have structural integrity. At the same time, the cylindrical inner surface and the large-diameter annular end surface of the spherical belt-shaped substrate are flush with the surface made of the heat-resistant material for the spherical belt-shaped substrate and the surface made of the heat-resistant material for the spherical belt-shaped substrate. The surface made of the heat-resistant material and the surface made of the reinforcing material are mixed and integrated on the cylindrical inner surface of the spherical base and the annular end surface on the large-diameter side. The surface made of the material is scattered with respect to the surface made of the heat-resistant material on the cylindrical inner surface of the spherical belt-shaped substrate and the annular end surface on the large diameter side, and the outer layer is composed of the heat-resistant material for the outer layer and the reinforcing material for the outer layer. The heat-resistant material is filled in the mesh of the reinforcing metal mesh after being compressed. Becomes wood and reinforcing material is mixed integrated outer surface of the outer layer has a surface made of heat-resistant material for the surface and the outer layer of the reinforcing member for the outer layer is formed into a smooth surface which is mixed.

球帯状基体の部分凸球面状面の大径側の環状端面において、耐熱材からなる面と共に露出する補強材からなる面の面積割合をキーエンス社製の画像測定カメラCV−5000を用いて画像測定したところ、23.2%であった。また、球帯状基体の円筒内面において、補強材からなる面の面積割合は、補強材からなる面が複合シート材の一方の表面で耐熱材からなる面と共に露出する面積割合(26.4%)となっていることを確認した。   Image measurement using the image measurement camera CV-5000 manufactured by Keyence Co., Ltd. is performed on the area ratio of the surface made of the reinforcing material that is exposed together with the surface made of the heat-resistant material at the annular end surface on the large diameter side of the partially convex spherical surface of the spherical belt-shaped substrate. As a result, it was 23.2%. The area ratio of the surface made of the reinforcing material on the cylindrical inner surface of the spherical belt-shaped substrate is the area ratio (26.4%) where the surface made of the reinforcing material is exposed together with the surface made of the heat resistant material on one surface of the composite sheet material. It was confirmed that

実施例2
球帯状基体用の耐熱材として、密度0.5Mg/m、厚さ1.35mmを有する膨張黒鉛シート(耐熱材I)を準備した。
Example 2
An expanded graphite sheet (heat-resistant material I) having a density of 0.5 Mg / m 3 and a thickness of 1.35 mm was prepared as a heat-resistant material for the spherical belt-shaped substrate.

球帯状基体用の補強材として、線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦4mm、横5mmの円筒状編組金網を連続的に編むと共に該円筒状編組金網の二つの層間としての内面に前記球帯状基体用の耐熱材を連続的に挿入し、該耐熱材の挿入開始端から該耐熱材を挿入した補強材を、円筒ローラと外周面に軸方向に沿って複数個の環状凹溝を有するローラとの隙間(隙間Δ1は0.50mmとした。)に供給して該耐熱材の厚さ方向に加圧し、さらに別の一対の円筒ローラ間の隙間(隙間Δ2は0.45mmとした。)に供給し、加圧して球帯状基体用の補強材の金網の網目に球帯状基体用の耐熱材を密に充填すると共に該球帯状基体用の耐熱材中に球帯状基体用の補強材の一部が該耐熱材の表面に露出し、その他の部分が埋設するように互いに圧着して、球帯状基体用の耐熱材からなる面と球帯状基体用の補強材からなる面とを面一に形成すると共に耐熱材からなる面と補強材からなる面とが点在して露出した扁平状の複合シート材を作製した。この複合シート材において、複合シート材の一方の表面で耐熱材の表面と共に露出する補強材からなる面の面積割合をキーエンス社製の画像測定カメラCV−5000を用いて画像測定したところ、当該面積割合は25.7%であった。また、複合シート材を形成する補強材の幅(47mm)方向の両側に耐熱材が充填されない部分を生じ、耐熱材が充填されない部分の片側の幅は片側1.7mmであった。   As a reinforcing material for a spherical band substrate, a single austenitic stainless steel wire (SUS304) having a wire diameter of 0.28 mm is used to continuously knit a cylindrical braided wire mesh having a mesh width of 4 mm and a width of 5 mm. A heat resistant material for the spherical belt-like substrate is continuously inserted into the inner surface as two layers of the cylindrical braided wire mesh, and a reinforcing material inserted with the heat resistant material from the insertion start end of the heat resistant material is connected to the cylindrical roller and the outer periphery. Supplyed to a gap (gap Δ1 is 0.50 mm) with a roller having a plurality of annular grooves along the surface in the axial direction, and pressurized in the thickness direction of the heat-resistant material. Supply to the gap between the cylindrical rollers (gap Δ2 is 0.45 mm), pressurize and tightly fill the sphere-like base material with the heat-resistant material for the sphere-like base, and press the ball. A part of the reinforcing material for the spherical belt-shaped substrate is contained in the heat-resistant material for the belt-shaped substrate. The surface made of the heat-resistant material for the ball-shaped substrate and the surface made of the reinforcing material for the ball-shaped substrate are formed to be flush with each other so as to be exposed on the surface of the heat-resistant material and to embed other parts. A flat composite sheet material in which a surface made of a heat-resistant material and a surface made of a reinforcing material were scattered and exposed was produced. In this composite sheet material, the area ratio of the surface composed of the reinforcing material exposed together with the surface of the heat-resistant material on one surface of the composite sheet material was measured using an image measurement camera CV-5000 manufactured by Keyence Corporation. The percentage was 25.7%. Moreover, the part which is not filled with a heat-resistant material was produced in the both sides of the width | variety (47 mm) direction of the reinforcing material which forms a composite sheet material, and the width | variety of the one side of the part which is not filled with a heat-resistant material was 1.7 mm on one side.

以下、前記実施例1と同様の方法で球帯状シール体を作製した。作製した球帯状シール体において、球帯状基体は、球帯状基体用の耐熱材と球帯状基体用の補強材とが互いに圧縮され、互いに絡み合って構造的一体性を有するように構成されていると共に、該球帯状基体の円筒内面及び大径側の環状端面は、球帯状基体用の耐熱材からなる面と球帯状基体用の耐熱材からなる面と面一となっていると共に球帯状基体用の補強材からなる面とを含んでおり、当該耐熱材からなる面と補強材からなる面とは、球帯状基体の円筒内面及び大径側の環状端面において混在一体化されており、外層は、外層用の耐熱材と外層用の補強材とが圧縮されて補強材の金網の網目に耐熱材が充填されて当該耐熱材と補強材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と外層用の耐熱材からなる面とが混在した平滑な面に形成されている。   Thereafter, a spherical belt-like sealing body was produced in the same manner as in Example 1. In the produced spherical belt-shaped sealing body, the spherical belt-shaped substrate is configured such that the heat-resistant material for the spherical belt-shaped substrate and the reinforcing material for the spherical belt-shaped substrate are compressed and entangled with each other to have structural integrity. The cylindrical inner surface and the large-diameter annular end surface of the spherical belt-shaped substrate are flush with the surface made of the heat-resistant material for the spherical belt-shaped substrate and the surface made of the heat-resistant material for the spherical belt-shaped substrate, and for the spherical belt-shaped substrate. The surface made of the heat-resistant material and the surface made of the reinforcing material are mixed and integrated in the cylindrical inner surface of the spherical base and the annular end surface on the large diameter side, and the outer layer is The outer layer heat-resistant material and the outer-layer reinforcing material are compressed and filled with a heat-resistant material in the reinforcement mesh, and the heat-resistant material and the reinforcing material are mixed and integrated, and the outer surface of the outer layer Is a surface made of reinforcing material for the outer layer and a surface made of heat-resistant material for the outer layer There has been formed into a smooth surface which is mixed.

球帯状基体の部分凸球面状面の大径側の環状端面において、耐熱材からなる面と共に露出する補強材からなる面の面積割合をキーエンス社製の画像測定カメラCV−5000を用いて画像測定したところ、20.3%であった。また、球帯状基体の円筒内面において、補強材からなる面の面積割合は、補強材からなる面が複合シート材の一方の表面で耐熱材からなる面と共に露出する面積割合(25.7%)となっていることを確認した。   Image measurement using the image measurement camera CV-5000 manufactured by Keyence Co., Ltd. is performed on the area ratio of the surface made of the reinforcing material that is exposed together with the surface made of the heat-resistant material at the annular end surface on the large diameter side of the partially convex spherical surface of the spherical belt-shaped substrate. As a result, it was 20.3%. The area ratio of the surface made of the reinforcing material on the cylindrical inner surface of the spherical belt-shaped substrate is the area ratio (25.7%) where the surface made of the reinforcing material is exposed together with the surface made of the heat resistant material on one surface of the composite sheet material. It was confirmed that

実施例3
球帯状基体用の耐熱材として、密度0.5Mg/m、厚さ1.35mmを有し、燐酸塩として第一燐酸アルミニウムを4質量%含有する膨張黒鉛シート(耐熱材II)を準備した。
Example 3
An expanded graphite sheet (heat-resistant material II) having a density of 0.5 Mg / m 3 and a thickness of 1.35 mm and containing 4 mass% of primary aluminum phosphate as a phosphate was prepared as a heat-resistant material for a spherical belt-like substrate. .

球帯状基体用の補強材として、線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦3.5mm、横2.5mmの円筒状編組金網を連続的に編むと共に該円筒状編組金網の二つの層間としての内面に前記球帯状基体用の耐熱材を連続的に挿入し、該耐熱材の挿入開始端から該耐熱材を挿入した補強材を、円筒ローラと外周面に軸方向に沿って複数個の環状凹溝を有するローラとの隙間(隙間Δ1は0.50mmとした。)に供給して該耐熱材の厚さ方向に加圧し、さらに別の一対の円筒ローラ間の隙間(隙間Δ2は0.45mmとした。)に供給し、加圧して球帯状基体用の補強材の金網の網目に球帯状基体用の耐熱材を密に充填すると共に該球帯状基体用の耐熱材中に球帯状基体用の補強材の一部が該耐熱材の表面に露出し、その他の部分が埋設するように互いに圧着して、球帯状基体用の耐熱材からなる面と球帯状基体用の補強材からなる面とを面一に形成すると共に耐熱材からなる面と補強材からなる面とが点在して露出した扁平状の複合シート材を作製した。この複合シート材において、複合シート材の一方の表面で耐熱材の表面と共に露出する補強材からなる面の面積割合をキーエンス社製の画像測定カメラCV−5000を用いて画像測定したところ、当該面積割合は26.7%であった。また、複合シート材を形成する補強材の幅(48.3mm)方向の両側に耐熱材が充填されない部分を生じ、耐熱材が充填されない部分の片側の幅は片側2.8mmであった。   As a reinforcing material for a spherical belt-shaped substrate, a single austenitic stainless steel wire (SUS304) with a wire diameter of 0.28 mm is used, and a continuous braided metal mesh with a mesh width of 3.5 mm and a width of 2.5 mm is continuously provided. A reinforcing material in which the heat-resistant material for the spherical belt-like substrate is continuously inserted into the inner surface as the two layers of the cylindrical braided wire mesh, and the heat-resistant material is inserted from the insertion start end of the heat-resistant material, Supply to a gap between the cylindrical roller and a roller having a plurality of annular grooves along the axial direction on the outer peripheral surface (gap Δ1 is 0.50 mm), pressurize in the thickness direction of the heat-resistant material, Supply to a gap between another pair of cylindrical rollers (gap Δ2 is 0.45 mm) and pressurize to tightly fill the heat-resistant material for the ball-shaped substrate with the mesh of the reinforcing mesh for the ball-shaped substrate. In addition, the reinforcing material for the spherical belt-shaped substrate is included in the heat-resistant material for the spherical belt-shaped substrate. The surface made of the heat-resistant material for the ball-shaped substrate and the surface made of the reinforcing material for the ball-shaped substrate are flush with each other so that a part is exposed on the surface of the heat-resistant material and the other portion is buried. A flat composite sheet material having a surface formed of a heat-resistant material and a surface formed of a reinforcing material was exposed. In this composite sheet material, the area ratio of the surface composed of the reinforcing material exposed together with the surface of the heat-resistant material on one surface of the composite sheet material was measured using an image measurement camera CV-5000 manufactured by Keyence Corporation. The percentage was 26.7%. Moreover, the part which is not filled with a heat resistant material was produced in the both sides of the width | variety (48.3 mm) direction of the reinforcing material which forms a composite sheet material, and the width | variety of the one side of the part which is not filled with a heat resistant material was 2.8 mm on one side.

該扁平状の複合シート材を、球帯状基体用の耐熱材からなる面と補強材からなる面とが面一となっていると共に耐熱材からなる面と補強材からなる面とが露出した表面を重ね合わせるように円筒状に数回捲回して筒状母材を形成した。   The flat composite sheet material is a surface in which a surface made of a heat-resistant material for a spherical belt-shaped substrate and a surface made of a reinforcing material are flush with each other, and a surface made of a heat-resistant material and a surface made of a reinforcing material are exposed A cylindrical base material was formed by winding several times in a cylindrical shape so as to overlap each other.

金属細線として前記球帯状基体用の補強材と同様の線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦3.5mm、横2.5mmの円筒状編組金網を連続的に編むと共に該円筒状編組金網の二つの層間としての内面に、密度1.12Mg/m、厚さ0.38mmを有し、球帯状基体用の耐熱材と同様の膨張黒鉛シート(耐熱材II)からなる外層用の耐熱材を連続的に挿入し、該耐熱材の挿入開始端から該耐熱材を挿入した補強材を、平滑な外周面を有する一対の円筒ローラ間の隙間(隙間Δ3は0.6mmとした。)に供給して該耐熱材の厚さ方向に加圧し、外層用の補強材の金網の網目に外層用の耐熱材を充填すると共に該補強材の一部が該耐熱材からなる面と共に露出した扁平状の外層形成部材を形成した。 A single austenitic stainless steel wire (SUS304) having a wire diameter of 0.28 mm, which is the same as the reinforcing material for the sphere-shaped substrate, is used as the thin metal wire, and the cylinder has a mesh width of 3.5 mm in length and 2.5 mm in width. The braided wire mesh is continuously knitted, and the inner surface as the two layers of the cylindrical braided wire mesh has a density of 1.12 Mg / m 3 and a thickness of 0.38 mm, and is the same as the heat-resistant material for the spherical belt-shaped substrate. A pair of cylindrical rollers having a smooth outer peripheral surface, the outer layer heat-resistant material made of expanded graphite sheet (heat-resistant material II) is continuously inserted, and the reinforcing material into which the heat-resistant material is inserted from the insertion start end of the heat-resistant material The gap is supplied to the gap (gap Δ3 is 0.6 mm) and pressed in the thickness direction of the heat-resistant material, and the outer-layer heat-resistant material is filled into the mesh of the outer-layer reinforcing material and the reinforcement A flat shape with a part of the material exposed along with the heat-resistant surface An outer layer forming member was formed.

前記筒状母材の外周面に前記外層形成部材を捲回し、予備円筒成形体を作製した。この予備円筒成形体を図28に示す金型の段付きコアに挿入し、該予備円筒成形体を金型の中空部に位置させた。   The outer layer forming member was wound around the outer peripheral surface of the cylindrical base material to prepare a preliminary cylindrical molded body. This preliminary cylindrical molded body was inserted into the stepped core of the mold shown in FIG. 28, and the preliminary cylindrical molded body was positioned in the hollow portion of the mold.

以下、前記実施例1と同様の方法で球帯状シール体を作製した。作製した球帯状シール体において、球帯状基体は、球帯状基体用の耐熱材と球帯状基体用の補強材とが互いに圧縮され、互いに絡み合って構造的一体性を有するように構成されていると共に、該球帯状基体の円筒内面及び大径側の環状端面は、該球帯状基体用の耐熱材からなる面と球帯状基体用の耐熱材からなる面と面一となっていると共に球帯状基体用の補強材からなる面とを含んでおり、当該耐熱材からなる面と補強材からなる面とは、球帯状基体の円筒内面及び大径側の環状端面において混在一体化されており、外層は、外層用の耐熱材と外層用の補強材とが圧縮されて補強材の金網の網目に耐熱材が充填されて当該耐熱材と補強材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と外層用の耐熱材からなる面とが混在した平滑な面に形成されている。   Thereafter, a spherical belt-like sealing body was produced in the same manner as in Example 1. In the produced spherical belt-shaped sealing body, the spherical belt-shaped substrate is configured such that the heat-resistant material for the spherical belt-shaped substrate and the reinforcing material for the spherical belt-shaped substrate are compressed and entangled with each other to have structural integrity. The cylindrical inner surface and the large-diameter annular end surface of the spherical belt substrate are flush with the surface made of the heat resistant material for the spherical belt substrate and the surface made of the heat resistant material for the spherical belt substrate, and the spherical belt substrate. The surface made of the heat-resistant material and the surface made of the reinforcing material are mixed and integrated on the cylindrical inner surface of the spherical base and the annular end surface on the large-diameter side, and the outer layer. The heat-resistant material for the outer layer and the reinforcing material for the outer layer are compressed and the mesh of the reinforcing material is filled with the heat-resistant material so that the heat-resistant material and the reinforcing material are mixed and integrated. The surface consists of a surface made of a reinforcing material for the outer layer and a heat-resistant material for the outer layer. Bets are formed into a smooth surface which is mixed.

球帯状基体の部分凸球面状面の大径側の環状端面において、耐熱材からなる面と共に露出する補強材からなる面の面積割合をキーエンス社製の画像測定カメラCV−5000を用いて画像測定したところ、35.9%であった。また、球帯状基体の円筒内面において、補強材からなる面の面積割合は、補強材からなる面が複合シート材の一方の表面で耐熱材からなる面と共に露出する面積割合(26.7%)となっていることを確認した。   Image measurement using the image measurement camera CV-5000 manufactured by Keyence Co., Ltd. is performed on the area ratio of the surface made of the reinforcing material that is exposed together with the surface made of the heat-resistant material at the annular end surface on the large diameter side of the partially convex spherical surface of the spherical belt-shaped substrate. As a result, it was 35.9%. The area ratio of the surface made of the reinforcing material on the cylindrical inner surface of the spherical belt-shaped substrate is the area ratio (26.7%) where the surface made of the reinforcing material is exposed together with the surface made of the heat-resistant material on one surface of the composite sheet material. It was confirmed that

実施例4
球帯状基体用の耐熱材として、密度0.5Mg/m、厚さ1.40mmを有し、燐酸塩として第一燐酸アルミニウムを4質量%及び五酸化燐を1質量%含有する膨張黒鉛シート(耐熱材III)を準備した。
Example 4
An expanded graphite sheet having a density of 0.5 Mg / m 3 and a thickness of 1.40 mm as a heat-resistant material for a spherical belt-shaped substrate, and containing 4% by mass of primary aluminum phosphate and 1% by mass of phosphorus pentoxide as a phosphate. (Heat-resistant material III) was prepared.

球帯状基体用の補強材として、線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦3.5mm、横2.5mmの円筒状編組金網を連続的に編むと共に該円筒状編組金網の二つの層間としての内面に前記球帯状基体用の耐熱材を連続的に挿入し、該耐熱材の挿入開始端から該耐熱材を挿入した補強材を、円筒ローラと外周面に軸方向に沿って複数個の環状凹溝を有するローラとの隙間(隙間Δ1は0.50mmとした。)に供給して該耐熱材の厚さ方向に加圧し、さらに別の一対の円筒ローラ間の隙間(隙間Δ2は0.45mmとした。)に供給し、加圧して球帯状基体用の補強材の金網の網目に球帯状基体用の耐熱材を密に充填すると共に該球帯状基体用の耐熱材中に球帯状基体用の補強材の一部が該耐熱材の表面に露出し、その他の部分が埋設するように互いに圧着して、球帯状基体用の耐熱材からなる面と球帯状基体用の補強材からなる面とを面一に形成すると共に耐熱材からなる面と補強材からなる面とが点在して露出した扁平状の複合シート材を作製した。この複合シート材において、複合シート材の一方の表面で耐熱材の表面と共に露出する補強材からなる面の面積割合をキーエンス社製の画像測定カメラCV−5000を用いて画像測定したところ、当該面積割合は26.6%であった。また、複合シート材を形成する補強材の幅(48mm)方向の両側に耐熱材が充填されない部分を生じ、耐熱材が充填されない部分の片側の幅は片側1.2mmであった。   As a reinforcing material for a spherical belt-shaped substrate, a single austenitic stainless steel wire (SUS304) with a wire diameter of 0.28 mm is used, and a continuous braided metal mesh with a mesh width of 3.5 mm and a width of 2.5 mm is continuously provided. A reinforcing material in which the heat-resistant material for the spherical belt-like substrate is continuously inserted into the inner surface as the two layers of the cylindrical braided wire mesh, and the heat-resistant material is inserted from the insertion start end of the heat-resistant material, Supply to a gap between the cylindrical roller and a roller having a plurality of annular grooves along the axial direction on the outer peripheral surface (gap Δ1 is 0.50 mm), pressurize in the thickness direction of the heat-resistant material, Supply to a gap between another pair of cylindrical rollers (gap Δ2 is 0.45 mm) and pressurize to tightly fill the heat-resistant material for the ball-shaped substrate with the mesh of the reinforcing mesh for the ball-shaped substrate. In addition, the reinforcing material for the spherical belt-shaped substrate is included in the heat-resistant material for the spherical belt-shaped substrate. The surface made of the heat-resistant material for the ball-shaped substrate and the surface made of the reinforcing material for the ball-shaped substrate are flush with each other so that a part is exposed on the surface of the heat-resistant material and the other portion is buried. A flat composite sheet material having a surface formed of a heat-resistant material and a surface formed of a reinforcing material was exposed. In this composite sheet material, the area ratio of the surface composed of the reinforcing material exposed together with the surface of the heat-resistant material on one surface of the composite sheet material was measured using an image measurement camera CV-5000 manufactured by Keyence Corporation. The percentage was 26.6%. Moreover, the part which is not filled with a heat resistant material was produced in the both sides of the width | variety (48 mm) direction of the reinforcing material which forms a composite sheet material, and the width | variety of the one side of the part which is not filled with a heat resistant material was 1.2 mm on one side.

該扁平状の複合シート材を、球帯状基体用の耐熱材からなる面と補強材からなる面とが面一となっていると共に耐熱材からなる面と補強材からなる面とが露出した表面を重ね合わせるように円筒状に数回捲回して筒状母材を形成した。   The flat composite sheet material is a surface in which a surface made of a heat-resistant material for a spherical belt-shaped substrate and a surface made of a reinforcing material are flush with each other, and a surface made of a heat-resistant material and a surface made of a reinforcing material are exposed A cylindrical base material was formed by winding several times in a cylindrical shape so as to overlap each other.

金属細線として前記球帯状基体用の補強材と同様の線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦3.5mm、横2.5mmの円筒状編組金網を作製し、これを一対のローラ間に通して帯状金網とし、これを外層用の補強材とした。外層用の耐熱材として、密度1.12Mg/m、厚さ0.38mmを有し、球帯状基体用の耐熱材と同様の膨張黒鉛シート(耐熱材III)を用意した。 A single austenitic stainless steel wire (SUS304) having a wire diameter of 0.28 mm, which is the same as the reinforcing material for the sphere-shaped substrate, is used as the thin metal wire, and the cylinder has a mesh width of 3.5 mm in length and 2.5 mm in width. A braided wire mesh was produced and passed between a pair of rollers to form a belt-like wire mesh, which was used as a reinforcing material for the outer layer. As the heat-resistant material for the outer layer, an expanded graphite sheet (heat-resistant material III) having a density of 1.12 Mg / m 3 and a thickness of 0.38 mm and the same as the heat-resistant material for the ball-shaped substrate was prepared.

解膠剤として作用する硝酸を含有した分散媒としての水にアルミナ水和物としてベーマイト(アルミナ一水和物:Al・HO)を分散含有した水素イオン濃度(pH)が2を呈するアルミナゾルを準備し、このアルミナゾルにh−BN粉末及びPTFE粉末を分散含有した水性ディスパージョンであって、h−BN41.5質量%とPTFE50.0質量%及びベーマイト8.5質量%を含む潤滑組成物を固形分として50質量%分散含有した水性ディスパージョン(h−BN20.7質量%とPTFE25.0質量%及びベーマイト4.3質量%)を前記外層用の耐熱材の一方の表面にローラ塗りし、乾燥して該潤滑組成物からなる固体潤滑剤の被覆層(h−BN41.5質量%とPTFE50.0質量%及びベーマイト8.5質量%)を形成した。 Hydrogen ion concentration (pH) in which boehmite (alumina monohydrate: Al 2 O 3 .H 2 O) is dispersed and contained as alumina hydrate in water as a dispersion medium containing nitric acid acting as a peptizer is 2 An aqueous dispersion in which h-BN powder and PTFE powder are dispersed and contained in the alumina sol, which includes h-BN 41.5% by mass, PTFE 50.0% by mass, and boehmite 8.5% by mass. An aqueous dispersion (h-BN 20.7% by mass, PTFE 25.0% by mass and boehmite 4.3% by mass) containing 50% by mass of the lubricating composition as a solid content dispersed on one surface of the heat-resistant material for the outer layer. A solid lubricant coating layer (h-BN 41.5 mass%, PTFE 50.0 mass% and boehmite 8. Wt%) was formed.

固体潤滑剤の被覆層を具備した耐熱材を、外層用の補強材である帯状金網の二つの層間としての内部に挿入すると共にこれらを一対のローラ間に通して一体化し、補強材に金網の網目に耐熱材と該耐熱材の表面に形成された固体潤滑剤の被覆層とを充填して、表面に補強材からなる面と固体潤滑剤からなる面とが混在して露出した扁平状の外層形成部材を作製した。   A heat-resistant material having a coating layer of a solid lubricant is inserted into two layers of a belt-like wire mesh that is a reinforcing material for the outer layer, and these are integrated by passing between a pair of rollers. The mesh is filled with a heat-resistant material and a coating layer of a solid lubricant formed on the surface of the heat-resistant material, and a flat surface in which a surface made of a reinforcing material and a surface made of a solid lubricant are mixed and exposed on the surface An outer layer forming member was produced.

前記筒状母材の外周面に前記外層形成部材を、被覆層を外側にして捲回し、予備円筒成形体を作製した。以下、実施例1と同様の方法で球帯状シール体を作製した。   The outer layer forming member was wound on the outer peripheral surface of the cylindrical base material with the coating layer on the outside to prepare a preliminary cylindrical molded body. Thereafter, a spherical belt-like sealing body was produced in the same manner as in Example 1.

作製した球帯状シール体において、球帯状基体は、球帯状基体用の耐熱材と球帯状基体用の補強材とが互いに圧縮され、互いに絡み合って構造的一体性を有するように構成されていると共に、該球帯状基体の円筒内面及び大径側の環状端面は、該球帯状基体用の耐熱材からなる面と球帯状基体用の耐熱材からなる面と面一となっていると共に補強材からなる面とを含んでおり、当該耐熱材からなる面と補強材からなる面とは、球帯状基体の円筒内面及び大径側の環状端面において混在一体化されており、外層は、外層用の耐熱材と、h−BN41.5質量%とPTFE50.0質量%及びベーマイト8.5質量%を含む潤滑組成物からなる固体潤滑剤と、外層用の補強材とが圧縮されて補強材の金網の網目に固体潤滑剤及び耐熱材が充填されて当該固体潤滑剤及び耐熱材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが混在した平滑な面に形成されている。   In the produced spherical belt-shaped sealing body, the spherical belt-shaped substrate is configured such that the heat-resistant material for the spherical belt-shaped substrate and the reinforcing material for the spherical belt-shaped substrate are compressed and entangled with each other to have structural integrity. The cylindrical inner surface and the large-diameter annular end surface of the spherical belt-shaped substrate are flush with the surface made of the heat-resistant material for the spherical belt-shaped substrate and the surface made of the heat-resistant material for the spherical belt-shaped substrate and from the reinforcing material. The surface made of the heat-resistant material and the surface made of the reinforcing material are mixed and integrated on the cylindrical inner surface of the spherical base and the annular end surface on the large diameter side, and the outer layer is for the outer layer. A heat-resistant material, a solid lubricant made of a lubricating composition containing 41.5% by mass of h-BN, 50.0% by mass of PTFE, and 8.5% by mass of boehmite, and a reinforcing material for an outer layer are compressed to form a reinforcing mesh. The mesh is filled with solid lubricant and heat-resistant material The solid lubricant and heat-resistant material are mixed and integrated, and the outer surface of the outer layer is formed as a smooth surface in which a surface made of a reinforcing material for the outer layer and a surface made of a solid lubricant are mixed. .

球帯状基体の部分凸球面状面の大径側の環状端面において、耐熱材からなる面と共に露出する補強材からなる面の面積割合をキーエンス社製の画像測定カメラCV−5000を用いて画像測定したところ、9.5%であった。また、球帯状基体の円筒内面において、補強材からなる面の面積割合は、補強材からなる面が複合シート材の一方の表面で耐熱材からなる面と共に露出する面積割合(26.6%)となっていることを確認した。   Image measurement using the image measurement camera CV-5000 manufactured by Keyence Co., Ltd. is performed on the area ratio of the surface made of the reinforcing material that is exposed together with the surface made of the heat-resistant material at the annular end surface on the large diameter side of the partially convex spherical surface of the spherical belt-shaped substrate. As a result, it was 9.5%. The area ratio of the surface made of the reinforcing material on the cylindrical inner surface of the spherical belt-shaped substrate is the area ratio (26.6%) where the surface made of the reinforcing material is exposed together with the surface made of the heat resistant material on one surface of the composite sheet material. It was confirmed that

比較例
金属細線として線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を一本使用して網目の目幅が縦4mm、横5mmの円筒状編組金網を作製し、これを一対のローラ間に通して帯状金網とし、これを球帯状基体用の補強材とした。耐熱材として、密度1.12Mg/m、厚さ0.38mmの膨張黒鉛シートを使用した。耐熱材をうず巻き状に一周分捲回したのち、耐熱材の内側に球帯状基体用の補強材を重ね合わせ、うず巻き状に捲回して最外周に耐熱材を配して筒状母材を作製した。この筒状母材においては、耐熱材の幅方向の両端部はそれぞれ球帯状基体用の補強材の幅方向に突出(はみ出し)している。
Comparative Example Using a single austenitic stainless steel wire (SUS304) with a wire diameter of 0.28 mm as a thin metal wire, a cylindrical braided wire mesh having a mesh width of 4 mm and a width of 5 mm was prepared, and this was formed between a pair of rollers. A band-shaped wire mesh was made to pass through, and this was used as a reinforcing material for a spherical band-shaped substrate. As the heat-resistant material, an expanded graphite sheet having a density of 1.12 Mg / m 3 and a thickness of 0.38 mm was used. After winding the refractory material in a spiral shape, stack the reinforcing material for the ball belt-shaped substrate on the inner side of the refractory material, wind it in a spiral shape, and arrange the refractory material on the outermost circumference to make a cylindrical base material did. In this cylindrical base material, both end portions in the width direction of the heat-resistant material protrude (extrude) in the width direction of the reinforcing material for the ball-shaped base.

上記球帯状基体用の補強材と同様の金属細線を一本使用して、網目の目幅が3.5mm、横1.5mmの円筒状編組金網を作製し、これを一対のローラ間に通して帯状金網とし、これを外層用の補強材とした。   A cylindrical braided wire mesh having a mesh width of 3.5 mm and a width of 1.5 mm is produced using a single fine metal wire similar to the reinforcing material for the above-mentioned spherical belt-like substrate, and this is passed between a pair of rollers. A belt-like wire mesh was used as a reinforcing material for the outer layer.

上記球帯状基体用の耐熱材と同様の耐熱材を使用し、上記外層用の補強材の帯状金網の幅よりも小さい幅を有する耐熱材を別途準備し、これを外層用の耐熱材とした。   A heat-resistant material similar to the heat-resistant material for the above-described spherical belt-shaped substrate is used, and a heat-resistant material having a width smaller than the width of the belt-shaped wire mesh of the reinforcing material for the outer layer is separately prepared. .

外層用の耐熱材を外層用の補強材である帯状金網内に挿入すると共にこれらを一対のローラ間に通して一体化し、補強材の金網の網目に耐熱材を充填して、表面に補強材からなる面と耐熱材からなる面とが混在して露出した扁平状の外層形成部材を作製した。   The heat-resistant material for the outer layer is inserted into the belt-shaped wire mesh that is the reinforcing material for the outer layer, and these are integrated by passing between a pair of rollers. The heat-resistant material is filled in the wire mesh of the reinforcing material, and the surface is reinforced. A flat outer layer forming member was produced in which a surface made of a material and a surface made of a heat-resistant material were exposed.

前記筒状母材の外周面に前記外層形成部材を捲回し、予備円筒成形体を作製した。この予備円筒成形体を金型の段付きコアに挿入し、該予備円筒成形体を金型の中空部に配置した。   The outer layer forming member was wound around the outer peripheral surface of the cylindrical base material to prepare a preliminary cylindrical molded body. This preliminary cylindrical molded body was inserted into a stepped core of a mold, and the preliminary cylindrical molded body was disposed in a hollow portion of the mold.

金型の中空部に配置した予備円筒成形体をコア軸方向に294N/mmの圧力で圧縮成形し、中央部に貫通孔を規定すると共に円筒内面と部分凸球面状面の大径側及び小径側の環状端面とにより規定された球帯状基体と、該球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた球帯状シール体を得た。 A pre-cylindrical molded body placed in the hollow portion of the mold is compression-molded in the core axial direction with a pressure of 294 N / mm 2 , a through-hole is defined in the central portion, and the large diameter side of the cylindrical inner surface and the partially convex spherical surface and A spherical belt-shaped sealing body comprising a spherical belt-shaped substrate defined by the annular end surface on the small diameter side and an outer layer integrally formed on the partially convex spherical surface of the spherical belt-shaped substrate was obtained.

得られた球帯状シール体において、球帯状基体は、球帯状基体用の耐熱材と球帯状基体用の補強材とが互いに圧縮され、互いに絡み合って構造的一体性を有するように構成されていると共に、該球帯状基体の円筒内面及び大径側の環状端面は、球帯状基体用の耐熱材が露出しており、外層は、外層用の耐熱材と金網からなる外層用の補強材とが圧縮されて補強材の金網の網目に耐熱材が充填されて当該耐熱材と補強材とが混在一体化されてなり、該外層の外表面は、補強材からなる面と耐熱材からなる面とが混在した平滑な面に形成されている。   In the obtained spherical belt-shaped sealing body, the spherical belt-shaped substrate is configured such that the heat-resistant material for the spherical belt-shaped substrate and the reinforcing material for the spherical belt-shaped substrate are compressed and entangled with each other to have structural integrity. In addition, the cylindrical inner surface and the large-diameter-side annular end surface of the spherical belt-shaped substrate are exposed to the heat-resistant material for the spherical belt-shaped substrate, and the outer layer includes a heat-resistant material for the outer layer and a reinforcing material for the outer layer made of a wire mesh. The heat-resistant material is filled in the mesh of the reinforcing metal mesh and the heat-resistant material and the reinforcing material are mixed and integrated, and the outer surface of the outer layer includes a surface made of the reinforcing material and a surface made of the heat-resistant material. Is formed on a smooth surface.

次に、上記した実施例1乃至実施例4及び比較例で得た球帯状シール体を図30及び31に示す排気管球面継手に組み込み、摩擦異音の発生の有無及びガス漏れ量について試験した結果を説明する。   Next, the ball-like seal bodies obtained in the above-described Examples 1 to 4 and the comparative example were incorporated in the exhaust pipe spherical joint shown in FIGS. 30 and 31, and tested for the presence or absence of frictional noise and the amount of gas leakage. The results will be explained.

<摩擦異音の発生の有無について>
試験条件
コイルバネによる押圧力(スプリングセットフォース)760N
回転角 ±0.05° ±0.1° ±0.2° ±0.3° ±0.5°
加振周波数 20Hz
温度(図30及び図31に示す凹球面部302の外表面温度) 室温(25℃)、200℃〜500℃までは100℃ごとに上昇
試験時間 8時間を1サイクルとして3サイクル実施
フランジ材質 (1)鋳物製フランジ(図30に示す排気管球面継手のフランジ200)
(2)板金製フランジ(図31に示す排気管球面継手のフランジ200)

相手材(図30及び図31に示す径拡大部301の材質) SUS409
<About the presence or absence of frictional noise>
Test conditions Pushing force by a coil spring (spring set force) 760N
Rotation angle ± 0.05 ° ± 0.1 ° ± 0.2 ° ± 0.3 ° ± 0.5 °
Excitation frequency 20Hz
Temperature (outer surface temperature of concave spherical surface portion 302 shown in FIGS. 30 and 31) Room temperature (25 ° C.) Increased every 100 ° C. from 200 ° C. to 500 ° C. Test time 3 cycles with 8 hours as one cycle Flange material ( 1) Cast flange (exhaust pipe spherical joint flange 200 shown in FIG. 30)
(2) Flange made of sheet metal (flange 200 of exhaust pipe spherical joint shown in FIG. 31)

Counterpart material (material of diameter enlarged portion 301 shown in FIGS. 30 and 31) SUS409

<試験方法>
図30又は図31に示す排気管球面継手において、上流側排気管100を固定すると共に、球帯状シール体45又は45aの外層44の平滑な面51又は54と該面51又は54が摺動自在に接触する径拡大部の凹球面部302とを固定し、下流側排気管200を管軸回りに揺動回転させることにより、球帯状シール体45又は45aの部分凸球面状面40の大径側の環状端面41と上流側排気管100に立設されたフランジ200との間でのみ揺動回転させ、当該間の摺動部位での摩擦異常音の発生の有無を確認する。摩擦異常音の発生の有無の確認は、室温、200℃、300℃、400℃及び500℃の5回行った。
<Test method>
In the exhaust pipe spherical joint shown in FIG. 30 or FIG. 31, the upstream exhaust pipe 100 is fixed, and the smooth surface 51 or 54 of the outer layer 44 of the ball-shaped seal body 45 or 45a and the surface 51 or 54 are slidable. The large diameter of the partially convex spherical surface 40 of the ball-shaped seal body 45 or 45a is fixed by fixing the concave spherical portion 302 of the enlarged diameter portion in contact with and rotating the downstream exhaust pipe 200 around the tube axis. Is rotated only between the annular end surface 41 on the side and the flange 200 erected on the upstream side exhaust pipe 100, and the presence or absence of occurrence of abnormal frictional noise at the sliding portion between them is confirmed. Confirmation of the occurrence of abnormal frictional noise was performed five times at room temperature, 200 ° C, 300 ° C, 400 ° C, and 500 ° C.

<摩擦異常音の判定レベル>
記号:0 摩擦異常音の発生なし。
記号:0.5 集音パイプで摩擦異常音の発生を確認できる。
記号:1 排気管球面継手の摺動部位から約0.2m離れた位置で摩擦異常音の発
生を確認できる。
記号:1.5 排気管球面継手の摺動部位から約0.5m離れた位置で摩擦異常音の発
生を確認できる。
記号:2 排気管球面継手の摺動部位から約1m離れた位置で摩擦異常音の発生を
確認できる。
記号:2.5 排気管球面継手の摺動部位から約2m離れた位置で摩擦異常音の発生を
確認できる。
記号:3 排気管球面継手の摺動部位から約3m離れた位置で摩擦異常音の発生を
確認できる。
記号:3.5 排気管球面継手の摺動部位から約5m離れた位置で摩擦異常音の発生を
確認できる。
記号:4 排気管球面継手の摺動部位から約10m離れた位置で摩擦異常音の発生
を確認できる。
記号:4.5 排気管球面継手の摺動部位から約15m離れた位置で摩擦異常音の発生
を確認できる。
記号:5 排気管球面継手の摺動部位から約20m離れた位置で摩擦異常音の発生
を確認できる。
以上の判定レベルの総合判定において、記号:0から記号:2.5までを摩擦異常音の発生なしと判定し、記号3から記号5までを摩擦異常音の発生ありと判定した。
<Determination level of frictional noise>
Symbol: 0 Abnormal friction noise is not generated.
Symbol: 0.5 The occurrence of abnormal frictional noise can be confirmed with the sound collecting pipe.
Symbol: Generates abnormal friction noise at a position about 0.2m away from the sliding part of the exhaust pipe spherical joint.
You can see the raw.
Symbol: 1.5 Generates abnormal frictional noise at a position about 0.5m away from the sliding part of the exhaust pipe spherical joint.
You can see the raw.
Symbol: 2 Generate abnormal friction noise at a position about 1m away from the sliding part of the exhaust pipe spherical joint.
I can confirm.
Symbol: 2.5 Generate abnormal frictional noise at a position about 2m away from the sliding part of the exhaust pipe spherical joint.
I can confirm.
Symbol: 3 Abnormal friction noise is generated at a position about 3m away from the sliding part of the exhaust pipe spherical joint.
I can confirm.
Symbol: 3.5 Generate abnormal friction noise at a position about 5m away from the sliding part of the exhaust pipe spherical joint.
I can confirm.
Symbol: 4 Abnormal frictional noise is generated at a position about 10m away from the sliding part of the exhaust pipe spherical joint.
Can be confirmed.
Symbol: 4.5 Generation of abnormal frictional noise at a position about 15m away from the sliding part of the exhaust pipe spherical joint
Can be confirmed.
Symbol: 5 Generation of abnormal frictional noise at a position about 20m away from the sliding part of the exhaust pipe spherical joint
Can be confirmed.
In the comprehensive determination of the above determination levels, it was determined that the symbol 0 to the symbol 2.5 is no occurrence of abnormal friction noise, and the symbol 3 to symbol 5 was determined to be occurrence of abnormal friction noise.

<ガス漏れ量の試験条件及び試験方法>
<試験条件>
コイルばねによる押圧力(スプリングセットフォース):760N
加振角度:±3°
加振周波数(揺動速度):12Hz
温度(図29及び図30に示す凹球面部302の外表面温度):室温(25℃)〜500℃
試験時間 8時間を1サイクルとして3サイクル実施
相手材(図30及び図31に示す径拡大部301の材質) SUS409
<Test conditions and test method for gas leakage>
<Test conditions>
Pressing force by a coil spring (spring set force): 760N
Excitation angle: ± 3 °
Excitation frequency (oscillation speed): 12Hz
Temperature (outer surface temperature of concave spherical surface portion 302 shown in FIGS. 29 and 30): Room temperature (25 ° C.) to 500 ° C.
Test time 8 cycles as one cycle, 3 cycles implemented Partner material (material of the enlarged diameter portion 301 shown in FIGS. 30 and 31) SUS409

<試験方法>
室温(25℃)において12Hzの加振周波数で±3°の揺動運動を継続しながら温度を500℃まで昇温し、3サイクル(24時間後)経過した時点でのガス漏れ量(l(リットル)/30sec)と試験前のガス漏れ量とを測定した。
<Test method>
At room temperature (25 ° C.), the temperature was raised to 500 ° C. while continuing a rocking motion of ± 3 ° at an excitation frequency of 12 Hz, and the amount of gas leakage (l ( Liter) / 30 sec) and the amount of gas leakage before the test.

<ガス漏れ量の測定方法>
図30又は図31に示す排気管球面継手の一方の上流側排気管100の開口部を閉塞し、他方の下流側排気管200側から、10kPa(0.1kgf/cm)の圧力で乾燥空気を流入し、環状端面41と上流側排気管100に立設されたフランジ200との接触部からのガス漏れ量を流量計にて、(1)試験初期(試験開始前)及び試験後の2回測定した。
<Measurement method of gas leakage>
The opening part of one upstream exhaust pipe 100 of the exhaust pipe spherical joint shown in FIG. 30 or FIG. 31 is closed, and dry air is applied at a pressure of 10 kPa (0.1 kgf / cm 2 ) from the other downstream exhaust pipe 200 side. The amount of gas leakage from the contact portion between the annular end surface 41 and the flange 200 erected on the upstream side exhaust pipe 100 is measured with a flow meter (1) at the initial stage of the test (before the start of the test) and after the test. Measured once.

試験結果を表1ないし表3に示す。   The test results are shown in Tables 1 to 3.

Figure 2012107686

表中の「露出面積率」は、球帯状シール体の部分凸球面状面の大径側の環状端面において、補強材からなる面の面積割合であり、回転角のaは、板金製のフランジ、bは鋳物製のフランジであり、以下の表2乃至表5においても同様である。
Figure 2012107686

The “exposed area ratio” in the table is the area ratio of the surface made of the reinforcing material at the annular end surface on the large diameter side of the partially convex spherical surface of the ball-shaped seal body, and the rotation angle a is a flange made of sheet metal. B are casting flanges, and the same applies to Tables 2 to 5 below.

Figure 2012107686
Figure 2012107686

Figure 2012107686
Figure 2012107686

Figure 2012107686
Figure 2012107686

Figure 2012107686
Figure 2012107686

表1乃至表5に示す試験結果から、実施例1乃至実施例4からなる球帯状シール体は、部分凸球面状面の大径側の環状端面と排気管球面継手の上流側排気管に立設されたフランジ(鋳物製及び板金製)との間の回転摺動において、鋳物製及び板金製のフランジの相違による性能の差はほとんどなく、いずれも試験時間を通して摩擦異常音の発生はなく(判定レベル記号2以下)、ガス漏れ量においても優れていることが確認された。一方、比較例からなる球帯状シール体においては、部分凸球面状面の大径側の環状端面と排気管球面継手の上流側排気管に立設されたフランジ(鋳物製及び板金製)との間の回転摺動において、試験時間を通して判定レベル記号3以上を示し、摩擦異常音の発生が確認された。また、ガス漏れ量においても、試験後の漏洩量が大幅に増大していることが確認された。   From the test results shown in Tables 1 to 5, the spherical belt-like sealing body of Examples 1 to 4 stands on the annular end surface on the large diameter side of the partially convex spherical surface and the upstream exhaust pipe of the exhaust pipe spherical joint. There is almost no difference in performance due to the difference between the casting and sheet metal flanges in the rotational sliding with the flanges (casting and sheet metal) installed, and there is no occurrence of abnormal frictional noise throughout the test time ( Judgment level symbol 2 or less), and it was confirmed that the amount of gas leakage was also excellent. On the other hand, in the spherical belt-shaped sealing body according to the comparative example, the annular end surface on the large-diameter side of the partially convex spherical surface and the flange (made of casting and sheet metal) erected on the upstream exhaust pipe of the exhaust pipe spherical joint In the rotational sliding, a judgment level symbol of 3 or more was shown throughout the test time, and the occurrence of abnormal frictional noise was confirmed. Further, it was confirmed that the amount of leakage after the test was greatly increased in the amount of gas leakage.

なお、実施例3において、第一燐酸アルミニウム(燐酸塩)を含有した耐熱材を使用した球帯状シール体の耐熱性及び耐酸化抑制作用による効果、また実施例4において、第一燐酸アルミニウム(燐酸塩)及び五酸化燐を含有した耐熱材を使用し、外層に固体潤滑剤の被覆層を備えた球帯状シール体の耐熱性及び耐酸化抑制作用による効果並びに外層での摺動性の向上については、上記試験では直接的には関係してないが、実際の製品としての球帯状シール体としては重要な要素となるものである。   In Example 3, the effect of the heat resistance and oxidation resistance suppressing action of the ball-shaped seal body using the heat-resistant material containing primary aluminum phosphate (phosphate), and in Example 4, the primary aluminum phosphate (phosphoric acid) Salt) and heat resistance material containing phosphorus pentoxide, and the outer layer is provided with a solid lubricant coating layer. Although it is not directly related in the above test, it is an important element as a ball-shaped seal body as an actual product.

以上説明したように、本発明の球帯状シール体は、部分凸球面状の大径側の環状端面に、補強材からなる面が点在して露出しているので、該球帯状シール体の円筒内面と球帯状シール体が配置される排気管の外面との間の一体性が失われた状態で捩じり方向及びせん断方向の力が入力されて球帯状シール体の円筒内面において排気管の管軸回りの回転が生じても、部分凸球面状の大径側の環状端面において耐熱材からなる面と共に露出して当該耐熱材からなる面と面一とされて点在した補強材からなる面が当該環状端面においてフランジと常に摺接するので、フランジとの間にスティックスリップ現象を生じることなく、当該スティックスリップ現象に起因する摩擦異常音を発生させることがない。   As described above, the spherical belt-shaped sealing body of the present invention has a surface made of a reinforcing material dotted and exposed on the large-diameter annular end surface of the partially convex spherical surface. In the state where the integrity between the cylindrical inner surface and the outer surface of the exhaust pipe on which the spherical belt-shaped seal body is disposed is lost, forces in the torsional direction and the shearing direction are input and the exhaust pipe is formed on the cylindrical inner surface of the spherical belt-shaped seal body. Even if rotation around the tube axis occurs, the reinforcing material is scattered with the surface made of the heat-resistant material exposed at the annular end surface on the large-diameter side of the partially convex spherical surface and flush with the surface made of the heat-resistant material. Therefore, the stick-slip phenomenon does not occur between the flange and the flange, and the abnormal frictional noise caused by the stick-slip phenomenon is not generated.

また、製造工程の扁平状の複合シート材において、円筒状に編まれた編組金網を径方向に圧縮することによって形成される球帯状基体用の補強材である帯状金網の幅方向の両側(耳部)での球帯状基体用の耐熱材である膨張黒鉛が充填されない部分の幅を調整することによって、部分凸球面状の大径側の環状端面において露出した補強材からなる面の面積割合の多少を調整することができる。   In addition, in the flat composite sheet material of the manufacturing process, both sides in the width direction of the belt-shaped metal mesh that is a reinforcing material for the spherical belt-shaped substrate formed by compressing the braided metal mesh knitted in a cylindrical shape in the radial direction. By adjusting the width of the portion not filled with expanded graphite, which is a heat-resistant material for the ball-shaped substrate, in the portion of the surface of the reinforcing material exposed at the annular end surface on the large-diameter side of the partially convex spherical surface Some can be adjusted.

1 球帯状基体用の耐熱材
2 球帯状基体用の補強材
11 複合シート材
13 筒状母材
14 外層用の耐熱材
15 外層用の補強材
20 外層形成部材
30 予備円筒成形体
37 金型
38 貫通孔
39 円筒内面
40 部分凸球面状面
41 大径側の環状端面
42 小径側の環状端面
43 球帯状基体
44 外層
45、45a 球帯状シール体
DESCRIPTION OF SYMBOLS 1 Heat-resistant material for spherical band base 2 Reinforcing material for spherical belt-shaped base 11 Composite sheet material 13 Cylindrical base material 14 Heat-resistant material for outer layer 15 Reinforcing material for outer layer 20 Outer layer forming member 30 Preliminary cylindrical molded body 37 Mold 38 Through-hole 39 Cylindrical inner surface 40 Partially convex spherical surface 41 Large-diameter side annular end surface 42 Small-diameter side annular end surface 43 Spherical belt-shaped substrate 44 Outer layer 45, 45a Spherical belt-shaped sealing body

Claims (14)

円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面により規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた、排気管継手に用いられる球帯状シール体であって、球帯状基体は、金網からなる球帯状基体用の補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材とを具備しており、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面は、球帯状基体用の耐熱材からなる面と、当該耐熱材からなる面と面一となっていると共に球帯状基体用の補強材からなる面とを含んでおり、球帯状基体用の耐熱材からなる面及び球帯状基体用の補強材からなる面は、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面において混在一体化されており、球帯状基体用の補強材からなる面は、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面において球帯状基体用の耐熱材からなる面に対して点在していることを特徴とする球帯状シール体。   The spherical inner surface defined by the cylindrical inner surface, the partially convex spherical surface, and the annular end surfaces on the large diameter side and the small diameter side of the partially convex spherical surface, and the partially convex spherical surface of the spherical belt substrate are integrally formed. A spherical belt-like seal body used for an exhaust pipe joint having an outer layer, wherein the spherical belt-like substrate is filled with a reinforcing material for a spherical belt-like substrate made of a wire mesh, and a mesh of the wire mesh of the reinforcement material. And a heat-resistant material for a ball-shaped base including a expanded graphite that is mixed and integrated with a reinforcing material, and has an annular shape on the large diameter side of the cylindrical inner surface and the partially convex spherical surface of the ball-shaped base The end surface includes a surface made of a heat-resistant material for the spherical belt-shaped substrate, and a surface made of a reinforcing material for the spherical belt-shaped substrate and being flush with the surface made of the heat-resistant material. The surface made of the heat-resistant material and the surface made of the reinforcing material for the spherical band-shaped substrate are the spherical band-shaped substrate. The cylindrical inner surface and the annular end surface on the large-diameter side of the partially convex spherical surface are mixed and integrated, and the surface made of the reinforcing material for the spherical belt-like substrate is larger than the cylindrical inner surface of the spherical belt-like substrate and the partially convex spherical surface. A spherical belt-shaped seal body, characterized in that the annular end surface on the radial side is scattered with respect to a surface made of a heat-resistant material for a spherical belt-shaped substrate. 部分凸球面状面の大径側の環状端面において、球帯状基体用の補強材からなる前記面は、5〜40%の面積割合をもって点在している請求項1に記載の球帯状シール体。   2. The spherical band-shaped sealing body according to claim 1, wherein the surface made of the reinforcing material for the spherical band-shaped substrate is dotted with an area ratio of 5 to 40% at the annular end surface on the large diameter side of the partially convex spherical surface. . 円筒内面において、球帯状基体用の補強材からなる前記面は、5〜40%の面積割合をもって点在している請求項1又は2に記載の球帯状シール体。   3. The spherical belt-shaped sealing body according to claim 1, wherein the surface made of the reinforcing material for the spherical belt-shaped substrate is dotted with an area ratio of 5 to 40% on the inner surface of the cylinder. 外層は、膨張黒鉛を含む外層用の耐熱材と金網からなる外層用の補強材とが圧縮されて外層用の補強材の金網の網目に外層用の耐熱材が充填されて当該耐熱材と補強材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と外層用の耐熱材からなる面とが混在した平滑な面に形成されている請求項1から3のいずれか一項に記載の球帯状シール体。   The outer layer is reinforced with a heat-resistant material for the outer layer containing expanded graphite and a reinforcing material for the outer layer made of a wire mesh, and the mesh of the wire mesh of the reinforcing material for the outer layer is filled with the heat-resistant material for the outer layer. The material is mixed and integrated, and the outer surface of the outer layer is formed as a smooth surface in which a surface made of a reinforcing material for the outer layer and a surface made of a heat-resistant material for the outer layer are mixed. The spherical belt-shaped seal body according to any one of 3. 外層は、膨張黒鉛を含む外層用の耐熱材と、固体潤滑剤と、金網からなる外層用の補強材とが圧縮されて外層用の補強材の金網の網目に固体潤滑剤及び外層用の耐熱材が充填されて当該固体潤滑剤及び耐熱材と外層用の補強材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが混在した平滑な面に形成されている請求項1から3のいずれか一項に記載の球帯状シール体。   The outer layer is composed of a heat-resistant material for outer layer containing expanded graphite, a solid lubricant, and a reinforcing material for outer layer made of a wire mesh. The solid lubricant and the heat-resistant material and the outer layer reinforcing material are mixed and integrated, and the outer surface of the outer layer is composed of a surface made of the outer layer reinforcing material and a surface made of the solid lubricant. The spherical belt-shaped sealing body according to any one of claims 1 to 3, wherein the spherical band-shaped sealing body is formed on a smooth surface in which a mixture of water is present. 固体潤滑剤は、六方晶窒化硼素23〜57質量%、アルミナ水和物5〜15質量%及び四ふっ化樹脂33〜67質量%を含む潤滑組成物からなる請求項5に記載の球帯状シール体。   6. The spherical belt-shaped seal according to claim 5, wherein the solid lubricant comprises a lubricating composition containing 23 to 57% by mass of hexagonal boron nitride, 5 to 15% by mass of alumina hydrate, and 33 to 67% by mass of tetrafluororesin. body. 球帯状基体用の耐熱材及び外層用の耐熱材は、燐酸塩を1.0〜16.0質量%と膨張黒鉛とを含んでいる請求項1から6のいずれか一項に記載の球帯状シール体。   The sphere-like base material according to any one of claims 1 to 6, wherein the heat-resistant material for the sphere-like substrate and the heat-resistant material for the outer layer contain 1.0 to 16.0% by mass of phosphate and expanded graphite. Seal body. 球帯状基体用の耐熱材及び外層用の耐熱材は、更に燐酸を0.05〜5.0質量%含んでいる請求項7に記載の球帯状シール体。   The ball-shaped seal body according to claim 7, wherein the heat-resistant material for the ball-shaped substrate and the heat-resistant material for the outer layer further contain 0.05 to 5.0% by mass of phosphoric acid. 円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面によって規定される球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えている球帯状シール体の製造方法であって、
(a)密度αが0.3〜0.9Mg/mの膨張黒鉛シートからなる球帯状基体用の耐熱材を準備する工程と、
(b)金属細線を織ったり編んだりして得られる金網からなる球帯状基体用の補強材の二つの層間に該球帯状基体用の耐熱材を挿入し、当該耐熱材を挿入した補強材を耐熱材の厚さ方向に加圧し、球帯状基体用の補強材の金網の網目に球帯状基体用の耐熱材を密に充填すると共に球帯状基体用の補強材の一部を露出させて耐熱材中に当該補強材を埋設するように互いに圧着して、球帯状基体用の耐熱材と球帯状基体用の補強材とが圧縮されていると共に球帯状基体用の耐熱材からなる面と球帯状基体用の補強材からなる面とが面一となっている表面と該補強材の両側において耐熱材が充填されていない部分とを有している扁平状の複合シート材を形成する工程と、
(c)扁平状の複合シート材を円筒状に数回捲回して筒状母材を形成する工程と、
(d)密度αが1.0〜1.5Mg/mの膨張黒鉛シートからなる外層用の耐熱材を準備する工程と、
(e)金属細線を織ったり編んだりして得られる金網からなる二つの層を有した外層用の補強材を準備し、この補強材の二つの層間に外層用の耐熱材を挿入し、当該耐熱材を挿入した外層用補強材を当該耐熱材の厚さ方向に加圧し、外層用の補強材の金網の網目に外層用の耐熱材を充填して、表面に外層用の補強材からなる面と外層用の耐熱材からなる面とが混在して露出した扁平状の外層形成部材を形成する工程と、
(f)前記筒状母材の外周面に前記外層形成部材を捲回して予備円筒成形体を形成する工程と、
(g)該予備円筒成形体を金型のコア外周面に挿入し、該コアを金型内に配置すると共に該金型内において予備円筒成形体をコア軸方向に圧縮成形する工程と、
を具備しており、球帯状基体は、金網からなる球帯状基体用の補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材とを具備しており、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面は、球帯状基体用の耐熱材からなる面と、当該耐熱材からなる面と面一となっていると共に球帯状基体用の補強材からなる面とを含んでおり、球帯状基体用の耐熱材からなる面及び球帯状基体用の補強材からなる面は、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面において混在一体化されており、球帯状基体用の補強材からなる面は、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面において球帯状基体用の耐熱材からなる面に対して点在しており、外層は、膨張黒鉛を含む外層用の耐熱材と金網からなる外層用の補強材とが圧縮されて外層用の補強材の金網の網目に外層用の耐熱材が充填されて当該耐熱材と補強材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と外層用の耐熱材からなる面とが混在した平滑な面に形成されていることを特徴とする球帯状シール体の製造方法。
The spherical inner surface defined by the cylindrical inner surface, the partially convex spherical surface, and the annular end surfaces on the large diameter side and the small diameter side of the partially convex spherical surface, and the partially convex spherical surface of the spherical belt substrate are integrally formed. A manufacturing method of a ball-shaped seal body comprising an outer layer,
(A) a step of preparing a heat-resistant material for a spherical band substrate made of an expanded graphite sheet having a density α of 0.3 to 0.9 Mg / m 3 ;
(B) Inserting a heat-resistant material for the spherical belt-shaped substrate between two layers of the reinforcing material for the spherical belt-shaped substrate made of a wire mesh obtained by weaving or knitting a thin metal wire, and a reinforcing material in which the heat-resistant material is inserted Pressurize in the thickness direction of the heat-resistant material, densely fill the heat-resistant material for the sphere-shaped substrate with the mesh of the reinforcing material for the sphere-shaped substrate, and expose part of the reinforcing material for the sphere-shaped substrate. A surface and a ball made of a heat-resistant material for a sphere-shaped substrate and a refractory material for the sphere-shaped substrate and the heat-resistant material for the sphere-shaped substrate are compressed by pressing together so as to embed the reinforcing material in the material. Forming a flat composite sheet material having a surface that is flush with a surface made of a reinforcing material for a belt-like substrate and portions that are not filled with a heat-resistant material on both sides of the reinforcing material; ,
(C) winding a flat composite sheet material into a cylindrical shape several times to form a cylindrical base material;
(D) a step of preparing a heat-resistant material for an outer layer made of an expanded graphite sheet having a density α of 1.0 to 1.5 Mg / m 3 ;
(E) preparing a reinforcing material for an outer layer having two layers made of a wire mesh obtained by weaving or knitting a fine metal wire, inserting a heat-resistant material for the outer layer between the two layers of the reinforcing material, The outer layer reinforcing material into which the heat resistant material is inserted is pressed in the thickness direction of the heat resistant material, and the outer layer reinforcing material is filled in the mesh of the outer layer reinforcing material, and the outer layer reinforcing material is formed on the surface. Forming a flat outer layer forming member exposed by mixing the surface and a surface made of a heat-resistant material for the outer layer; and
(F) winding the outer layer forming member on the outer peripheral surface of the cylindrical base material to form a preliminary cylindrical molded body;
(G) inserting the preliminary cylindrical molded body into the outer peripheral surface of the core of the mold, placing the core in the mold, and compressing the preliminary cylindrical molded body in the mold in the core axial direction;
The spherical belt-shaped substrate is filled with a reinforcing material for a spherical belt-shaped substrate made of a wire mesh, and the mesh of the wire mesh of the reinforcing material is mixed and integrated with the reinforcing material, and is compressed and expanded. A heat-resistant material for a spherical belt-shaped substrate containing graphite, and the cylindrical inner surface of the spherical belt-shaped substrate and the annular end surface on the large diameter side of the partially convex spherical surface are surfaces made of a heat-resistant material for the spherical belt-shaped substrate; A surface made of a heat-resistant material for a spherical belt-shaped substrate and a surface made of a heat-resistant material for a spherical belt-shaped substrate and a reinforcing material for a spherical belt-shaped substrate. And the surface made of the reinforcing material for the spherical belt-like substrate is a cylinder of the spherical belt-like substrate. Is it a heat-resistant material for a ball-shaped substrate on the inner surface and the annular end surface on the large diameter side of the partially convex spherical surface? The outer layer is interspersed with the outer layer heat-resistant material containing expanded graphite and the outer layer reinforcing material made of wire mesh, and the outer layer reinforcing material for the outer layer is compressed into the mesh of the outer layer. The heat-resistant material is filled and the heat-resistant material and the reinforcing material are mixed and integrated, and the outer surface of the outer layer is a smooth surface in which a surface made of the outer-layer reinforcing material and a surface made of the heat-resistant material for the outer layer are mixed. A method for producing a spherical belt-shaped sealing body, characterized in that the ball-shaped sealing body is formed on a flat surface.
円筒内面、部分凸球面状面並びに部分凸球面状面の大径側及び小径側の環状端面によって規定される球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えている球帯状シール体の製造方法であって、
(a)密度αが0.3〜0.6Mg/mの膨張黒鉛シートからなる球帯状基体用の耐熱材を準備する工程と、
(b)金属細線を織ったり編んだりして得られる金網からなる球帯状基体用の補強材の二つの層間に該球帯状基体用の耐熱材を挿入し、当該耐熱材を挿入した補強材を耐熱材の厚さ方向に加圧し、球帯状基体用の補強材の金網の網目に球帯状基体用の耐熱材を密に充填すると共に球帯状基体用の補強材の一部を露出させて耐熱材中に当該補強材を埋設するように互いに圧着して、球帯状基体用の耐熱材と球帯状基体用の補強材とが圧縮されていると共に球帯状基体用の耐熱材からなる面と補強材からなる面とが面一となっている表面と該補強材の両側において耐熱材が充填されていない部分とを有している扁平状の複合シート材を形成する工程と、
(c)扁平状の複合シート材を耐熱材からなる面と補強材からなる面とが面一となっている表面を外側にして円筒状に数回捲回して筒状母材を形成する工程と、
(d)密度αが1.0〜1.5Mg/mの膨張黒鉛シートからなる外層用の耐熱材を準備し、該外層用の耐熱材の一方の表面に固体潤滑剤の水性ディスパージョンを適用し、乾燥して該外層用の耐熱材の表面に固体潤滑剤の被覆層を形成する工程と、
(e)金属細線を織ったり編んだりして得られる金網からなる二つに層を有した外層用の補強材を準備し、この補強材の二つの層間に、固体潤滑剤の被覆層が形成された耐熱材を挿入し、当該耐熱材を挿入した外層用の補強材を加圧し、外層用の補強材の金網の網目に外層用の耐熱材と該耐熱材の表面に形成された固体潤滑剤の被覆層とを充填して、表面に外層用の補強材からなる面と固体潤滑剤の被覆層からなる面とが混在して露出した扁平状の外層形成部材を形成する工程と、
(f)前記筒状母材の外周面に前記外層形成部材をその固体潤滑剤の被覆層を外側にして捲回して予備円筒成形体を形成する工程と、
(g)該予備円筒成形体を金型のコア外周面に挿入し、該コアを金型内に配置すると共に該金型内において予備円筒成形体をコア軸方向に圧縮成形する工程と、
を具備しており、球帯状基体は、金網からなる球帯状基体用の補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されていると共に圧縮された膨張黒鉛を含む球帯状基体用の耐熱材とを具備しており、球帯状基体用の耐熱材からなる面及び球帯状基体用の補強材からなる面は、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面において混在一体化されており、球帯状基体用の補強材からなる面は、該球帯状基体の円筒内面及び部分凸球面状面の大径側の環状端面において球帯状基体用の耐熱材からなる面に対して点在しており、外層は、膨張黒鉛を含む外層用の耐熱材と、固体潤滑剤と、金網からなる外層用の補強材とが圧縮されて外層用の補強材の網目に固体潤滑剤及び外層用の耐熱材が充填されて当該固体潤滑剤及び外層用の耐熱材と外層用の補強材とが混在一体化されてなり、該外層の外表面は、外層用の補強材からなる面と固体潤滑剤からなる面とが混在した平滑な面に形成されていることを特徴とする球帯状シール体の製造方法。
The spherical inner surface defined by the cylindrical inner surface, the partially convex spherical surface, and the annular end surfaces on the large diameter side and the small diameter side of the partially convex spherical surface, and the partially convex spherical surface of the spherical belt substrate are integrally formed. A manufacturing method of a ball-shaped seal body comprising an outer layer,
(A) a step of preparing a heat-resistant material for a spherical band substrate made of an expanded graphite sheet having a density α of 0.3 to 0.6 Mg / m 3 ;
(B) Inserting a heat-resistant material for the spherical belt-shaped substrate between two layers of the reinforcing material for the spherical belt-shaped substrate made of a wire mesh obtained by weaving or knitting a thin metal wire, and a reinforcing material in which the heat-resistant material is inserted Pressurize in the thickness direction of the heat-resistant material, densely fill the heat-resistant material for the sphere-shaped substrate with the mesh of the reinforcing material for the sphere-shaped substrate, and expose part of the reinforcing material for the sphere-shaped substrate. The heat-resistant material for the sphere-shaped substrate and the reinforcement material for the sphere-shaped substrate are compressed, and the surface made of the heat-resistant material for the sphere-shaped substrate and the reinforcement are compressed. Forming a flat composite sheet material having a surface that is flush with a surface made of a material and portions that are not filled with a heat-resistant material on both sides of the reinforcing material;
(C) A step of forming a cylindrical base material by winding the flat composite sheet material several times in a cylindrical shape with the surface of the heat-resistant material and the surface of the reinforcing material being flush with each other. When,
(D) A heat-resistant material for an outer layer made of an expanded graphite sheet having a density α of 1.0 to 1.5 Mg / m 3 is prepared, and an aqueous dispersion of a solid lubricant is applied to one surface of the heat-resistant material for the outer layer. Applying and drying to form a coating layer of a solid lubricant on the surface of the heat-resistant material for the outer layer;
(E) A reinforcing material for an outer layer having two layers made of a wire mesh obtained by weaving or knitting a fine metal wire is prepared, and a coating layer of a solid lubricant is formed between the two layers of the reinforcing material. A heat-resistant material for the outer layer and a solid lubricant formed on the surface of the heat-resistant material. Filling the coating layer of the agent and forming a flat outer layer forming member in which the surface made of the reinforcing material for the outer layer and the surface made of the coating layer of the solid lubricant are mixed and exposed on the surface;
(F) winding the outer layer forming member on the outer peripheral surface of the cylindrical base material with the coating layer of the solid lubricant facing outward to form a preliminary cylindrical molded body;
(G) inserting the preliminary cylindrical molded body into the outer peripheral surface of the core of the mold, placing the core in the mold, and compressing the preliminary cylindrical molded body in the mold in the core axial direction;
The spherical belt-shaped substrate is filled with a reinforcing material for a spherical belt-shaped substrate made of a wire mesh, and the mesh of the wire mesh of the reinforcing material is mixed and integrated with the reinforcing material, and is compressed and expanded. A surface made of a heat-resistant material for the spherical belt-shaped substrate and a surface made of a reinforcing material for the spherical belt-shaped substrate, The spherical end surface of the spherical surface is mixed and integrated, and the surface made of the reinforcing material for the spherical band-shaped substrate is the cylindrical inner surface of the spherical band-shaped substrate and the large-diameter side annular end surface of the partially convex spherical surface. In the outer layer, the outer layer is dotted with a heat resistant material for the outer layer containing expanded graphite, a solid lubricant, and a reinforcing material for the outer layer made of a wire mesh. The outer layer reinforcing material mesh is filled with solid lubricant and outer layer heat-resistant material. The solid lubricant and the heat-resistant material for the outer layer and the reinforcing material for the outer layer are mixed and integrated, and the outer surface of the outer layer is a mixture of a surface made of the reinforcing material for the outer layer and a surface made of the solid lubricant. A method for manufacturing a spherical belt-shaped sealing body, characterized in that it is formed on a smooth surface.
固体潤滑剤の水性ディスパージョンは、分散媒としての酸を含有する水にアルミナ水和物粒子を分散した水素イオン濃度が2〜3を呈するアルミナゾルに、六方晶窒化硼素粉末及び四ふっ化エチレン樹脂粉末を分散含有した水性ディスパージョンであって、六方晶窒化硼素23〜57質量%、アルミナ水和物5〜15質量%及び四ふっ化エチレン樹脂33〜67質量%を含む潤滑組成物を固形分として含む水性ディスパージョンである請求項10に記載の球帯状シール体の製造方法。   An aqueous dispersion of a solid lubricant includes hexagonal boron nitride powder and ethylene tetrafluoride resin in alumina sol having a hydrogen ion concentration of 2 to 3 in which alumina hydrate particles are dispersed in water containing an acid as a dispersion medium. An aqueous dispersion containing dispersed powder, comprising a lubricating composition containing 23 to 57% by mass of hexagonal boron nitride, 5 to 15% by mass of alumina hydrate and 33 to 67% by mass of ethylene tetrafluoride resin as a solid content The manufacturing method of the spherical belt-shaped sealing body according to claim 10, wherein the dispersion is an aqueous dispersion. 該球帯状基体の円筒内面において、球帯状基体用の補強材からなる前記面は、5〜40%の面積割合をもって点在している請求項9から11のいずれか一項に記載の球帯状シール体の製造方法。   The spherical band according to any one of claims 9 to 11, wherein the surface made of the reinforcing material for the spherical belt-shaped substrate is dotted with an area ratio of 5 to 40% on the cylindrical inner surface of the spherical belt-shaped substrate. Manufacturing method of sealing body. 球帯状基体用の耐熱材及び外層用の耐熱材は、燐酸塩1.0〜16.0質量%と膨張黒鉛とを含んでいる請求項9から12のいずれか一項に記載の球帯状シール体の製造方法。   The ball-shaped seal according to any one of claims 9 to 12, wherein the heat-resistant material for the ball-shaped substrate and the heat-resistant material for the outer layer contain 1.0 to 16.0% by mass of phosphate and expanded graphite. Body manufacturing method. 球帯状基体用の耐熱材及び外層用の耐熱材は、更に燐酸を0.05〜5.0質量%含んでいる請求項13に記載の球帯状シール体の製造方法。   The method for producing a spherical belt-shaped sealing body according to claim 13, wherein the heat-resistant material for the spherical belt-shaped substrate and the heat-resistant material for the outer layer further contain 0.05 to 5.0% by mass of phosphoric acid.
JP2010256336A 2010-11-16 2010-11-16 Sphere seal Active JP5724315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010256336A JP5724315B2 (en) 2010-11-16 2010-11-16 Sphere seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010256336A JP5724315B2 (en) 2010-11-16 2010-11-16 Sphere seal

Publications (2)

Publication Number Publication Date
JP2012107686A true JP2012107686A (en) 2012-06-07
JP5724315B2 JP5724315B2 (en) 2015-05-27

Family

ID=46493521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010256336A Active JP5724315B2 (en) 2010-11-16 2010-11-16 Sphere seal

Country Status (1)

Country Link
JP (1) JP5724315B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061184A1 (en) * 2012-10-16 2014-04-24 オイレス工業株式会社 Spherical band-shaped sealing body and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220585A (en) * 1997-02-10 1998-08-21 Oiles Ind Co Ltd Spherically zonal seal body and manufacture thereof
JP2003343729A (en) * 2002-05-27 2003-12-03 Oiles Ind Co Ltd Spherical band-shaped seal body
JP2005282625A (en) * 2004-03-26 2005-10-13 Oiles Ind Co Ltd Spherical zone seal
JP2006029368A (en) * 2004-07-12 2006-02-02 Honda Motor Co Ltd Spherical band seal member, and method for manufacturing the same
WO2009078165A1 (en) * 2007-12-17 2009-06-25 Oiles Corporation Spherical-zone seal body, and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220585A (en) * 1997-02-10 1998-08-21 Oiles Ind Co Ltd Spherically zonal seal body and manufacture thereof
JP2003343729A (en) * 2002-05-27 2003-12-03 Oiles Ind Co Ltd Spherical band-shaped seal body
JP2005282625A (en) * 2004-03-26 2005-10-13 Oiles Ind Co Ltd Spherical zone seal
JP2006029368A (en) * 2004-07-12 2006-02-02 Honda Motor Co Ltd Spherical band seal member, and method for manufacturing the same
WO2009078165A1 (en) * 2007-12-17 2009-06-25 Oiles Corporation Spherical-zone seal body, and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061184A1 (en) * 2012-10-16 2014-04-24 オイレス工業株式会社 Spherical band-shaped sealing body and method for producing same
JP5972991B2 (en) * 2012-10-16 2016-08-17 オイレス工業株式会社 Sphere-shaped sealing body and method for manufacturing the same
RU2621110C2 (en) * 2012-10-16 2017-05-31 Оилз Корпорейшн Spherical annular sealing element and its manufacturing method
US9759328B2 (en) 2012-10-16 2017-09-12 Oiles Corporation Spherical annular seal member and method of manufacturing the same

Also Published As

Publication number Publication date
JP5724315B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5347971B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP5347970B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP5807532B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP2001099325A (en) Spherical zone seal material and manufacture thereof
WO2014061184A1 (en) Spherical band-shaped sealing body and method for producing same
JP5691772B2 (en) Sphere-shaped sealing body and method for manufacturing the same
WO2012042712A1 (en) Spherical annular seal member, and method for producing same
WO2012053168A1 (en) Sphered-band sealing object and process for producing same
WO2013105181A1 (en) Spherical exhaust pipe joint
WO2015045327A1 (en) Spherical zone-shaped seal
JP5724315B2 (en) Sphere seal
WO2014147949A1 (en) Spherical sealing body
JP5966879B2 (en) Sphere seal
JP2016020742A (en) Spherical belt-like seal body and manufacturing method thereof
JP6337462B2 (en) Ball-shaped seal
JP2016017462A (en) Exhaust pipe spherical joint
JP5978989B2 (en) Sphere seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5724315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250