JP2012104574A - Power transformer and cooling method of the power transformer - Google Patents

Power transformer and cooling method of the power transformer Download PDF

Info

Publication number
JP2012104574A
JP2012104574A JP2010250372A JP2010250372A JP2012104574A JP 2012104574 A JP2012104574 A JP 2012104574A JP 2010250372 A JP2010250372 A JP 2010250372A JP 2010250372 A JP2010250372 A JP 2010250372A JP 2012104574 A JP2012104574 A JP 2012104574A
Authority
JP
Japan
Prior art keywords
cooling
water
condensate
transformer
insulating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010250372A
Other languages
Japanese (ja)
Other versions
JP5295203B2 (en
Inventor
Masakatsu Matsuwaka
雅勝 松若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010250372A priority Critical patent/JP5295203B2/en
Publication of JP2012104574A publication Critical patent/JP2012104574A/en
Application granted granted Critical
Publication of JP5295203B2 publication Critical patent/JP5295203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transformer Cooling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling method of a power transformer which maintains a power transformer body at a proper temperature, cools the power transformer recovering heat that insulation oil has and the insulation oil to proper temperatures, and effectively utilizes the heat that the insulation oil has for operations of a steam power generation plant.SOLUTION: A power transformer 1 is provided at a steam power generation plant. The power transformer 1 includes a transformer body 2, a water cooling type cooler 3 cooling insulation oil, an oil circulation pump 4, and an insulation oil circulation line 5 connecting the transformer body 2 with the water cooling type cooler 3 so as to circulate the insulation oil. The steam power generation plant has a condensate system 10 including a water condenser 11 cooling exhaust steam of a turbine and condensing the steam, a condensate pump 12 provided at an outlet port of the water condenser 11, and pipe lines connecting the water condenser 11 with the condensate pump 12 so as to supply water. The steam power generation plant sends condensate of the condensate system 10 as a cooling medium to the water cooling type cooler 3 and returns condensate which was used for heat exchange with the insulation oil to the condensate system 10.

Description

本発明は、汽力発電プラントに備えられる変圧器及びその冷却方法に関する。   The present invention relates to a transformer provided in a steam power plant and a cooling method thereof.

発電所に備えられる主変圧器など容量の大きい変圧器には、変圧器本体に収納された鉄心及び巻線が絶縁油に浸された油入変圧器が多く使用されている。変圧器本体の外部には冷却装置が設けられ、変圧器本体と冷却装置とは管路で結ばれ油循環ラインが形成され、絶縁油は、油循環ラインの途中に設けられた油循環ポンプを介して変圧器本体と冷却装置との間を循環し、変圧器本体内の温度の高くなった絶縁油は、冷却装置で冷却された後、変圧器本体内に戻される。冷却装置は、一般的に絶縁油が流通する空冷式冷却器と空冷式冷却器に冷却用の空気を送るファンとで構成されている(例えば特許文献1参照)。   For transformers with a large capacity such as a main transformer provided in a power plant, an oil-filled transformer in which an iron core and a winding housed in a transformer body are immersed in insulating oil is often used. A cooling device is provided outside the transformer body, the transformer body and the cooling device are connected by a pipe to form an oil circulation line, and insulating oil is supplied from an oil circulation pump provided in the middle of the oil circulation line. Insulating oil that circulates between the transformer main body and the cooling device and has a high temperature in the transformer main body is cooled by the cooling device and then returned to the transformer main body. The cooling device generally includes an air-cooled cooler through which insulating oil flows and a fan that sends cooling air to the air-cooled cooler (see, for example, Patent Document 1).

変圧器の冷却方法については、これまでに多くの発明がなされている(例えば特許文献2)。特許文献2に記載の変圧器の冷却方法は、消費電力を抑制しつつ絶縁油を適正な温度に冷却するために絶縁油の温度に応じて、油循環ポンプとファンとを同時に稼働させる、ファンを稼働させることなく油循環ポンプのみ稼働させ油を循環させる、油循環ポンプ及びファンを共に停止させる方法を採用している。   Many inventions have been made so far about the cooling method of the transformer (for example, Patent Document 2). The cooling method for a transformer described in Patent Document 2 is a fan that operates an oil circulation pump and a fan at the same time in accordance with the temperature of the insulating oil in order to cool the insulating oil to an appropriate temperature while suppressing power consumption. A method of stopping both the oil circulation pump and the fan is employed, in which only the oil circulation pump is operated without operating the oil, and the oil is circulated.

特開2000−68119号公報JP 2000-68119 A 特開2009−290109号公報JP 2009-290109 A

これまで変圧器に関しては、変圧器の冷却方法、特に絶縁油の適切な冷却方法又は効率的な冷却方法の開発、改善に注目が集まっており、特許文献2以外にも多くの変圧器の冷却方法に関する発明がなされている。絶縁油の冷却は、逆方向からみれば絶縁油の保有する熱の回収と捉えることができるが、これまで絶縁油の保有する熱の回収については、殆ど着目されておらず、絶縁油の保有する熱を回収しつつ変圧器を冷却する方法、さらにはそれに使用する装置の発明は、これまでになされていない。発電所に備えられる主変圧器などでは、変圧器本体を適正な温度に維持すると共に絶縁油の保有する熱を回収し、回収した熱を発電プラントの運転に有効利用することができれば、発電プラントの熱効率が高まり好ましい。   Until now, with regard to transformers, attention has been focused on the development and improvement of transformer cooling methods, particularly appropriate or efficient cooling methods for insulating oil. Inventions relating to methods have been made. Insulating oil cooling can be viewed as the recovery of the heat retained by the insulating oil from the opposite direction, but there has been little focus on the recovery of the heat retained by the insulating oil so far. A method for cooling a transformer while recovering heat generated, and an invention of an apparatus used for the method have not been made so far. For main transformers, etc. installed in power plants, if the transformer body can be maintained at an appropriate temperature and the heat retained by the insulating oil can be recovered, and the recovered heat can be used effectively for power plant operation, This is preferable because the thermal efficiency is increased.

本発明の目的は、汽力発電プラントに備えられる変圧器であって、変圧器本体を適正な温度に維持すると共に絶縁油の保有する熱を回収可能な変圧器及び絶縁油を適正な温度に冷却すると共に絶縁油の保有する熱を汽力発電プラントの運転に有効利用できる変圧器の冷却方法を提供することである。   An object of the present invention is a transformer provided in a steam power plant, which maintains a transformer body at an appropriate temperature and cools the transformer and the insulation oil that can recover the heat held by the insulation oil to an appropriate temperature. In addition, an object of the present invention is to provide a transformer cooling method capable of effectively utilizing the heat possessed by insulating oil for the operation of a steam power plant.

本発明は、汽力発電プラントに備えられる変圧器であって、変圧器本体と、絶縁油を冷却する水冷式冷却器と、循環ポンプを備え、前記変圧器本体と前記水冷式冷却器との間を絶縁油を循環可能に接続する絶縁油循環ラインと、を備えることを特徴とする変圧器である。   The present invention is a transformer provided in a steam power plant, comprising a transformer body, a water-cooled cooler that cools insulating oil, and a circulation pump, between the transformer body and the water-cooled cooler. And an insulating oil circulation line for connecting the insulating oil so that the oil can be circulated.

また本発明は、前記変圧器の冷却方法であって、前記汽力発電プラントは、タービンの排気蒸気を冷却し復水にする復水器、前記復水器の出口部に設けられた復水ポンプ及びこれらの間を送水可能に結ぶ管路を含み構成される復水系統を有し、前記水冷式冷却器に冷却媒体として前記復水系統の復水を送り、前記絶縁油と熱交換した復水を前記復水系統に戻すことを特徴とする変圧器の冷却方法である。   The present invention is also a method for cooling the transformer, in which the steam power plant cools the exhaust steam of the turbine to condensate, and a condensate pump provided at the outlet of the condenser And a condensate system that includes a conduit that connects the pipes so that water can be fed between them. The condensate of the condensate system is sent to the water-cooled cooler as a cooling medium to exchange heat with the insulating oil. A method for cooling a transformer, wherein water is returned to the condensate system.

また本発明は、前記変圧器の冷却方法において、前記水冷式冷却器に冷却媒体として前記復水ポンプの出口部から復水を送ることを特徴とする。   The present invention is also characterized in that in the method for cooling a transformer, condensate is sent from the outlet of the condensate pump as a cooling medium to the water-cooled cooler.

また本発明は、前記変圧器の冷却方法において、前記絶縁油と熱交換した復水を前記復水ポンプの吸込側に戻すことを特徴とする。   The present invention is also characterized in that, in the transformer cooling method, the condensate heat-exchanged with the insulating oil is returned to the suction side of the condensate pump.

また本発明は、前記変圧器の冷却方法であって、前記汽力発電プラントは、タービンの排気蒸気を冷却し復水にする復水器、前記復水器の出口部に設けられた復水ポンプ、前記復水ポンプの出口部に設けられた復水熱交換器及びこれらの間を送水可能に結ぶ管路を含み構成される復水系統と、軸受冷却水ポンプを通じて水素ガスクーラ、補機等に冷却水を送り、温度の高くなった戻り冷却水を軸受冷却水冷却器で冷却し、冷却水を循環使用する軸冷系統と、を備え、前記復水熱交換器の高温側と前記軸冷系統とが接続し、前記軸冷系統の戻り冷却水で復水が加熱可能に構成され、前記水冷式冷却器に冷却媒体として前記軸冷系統の冷却水を送り、前記絶縁油と熱交換した冷却水を前記軸冷系統に戻すことを特徴とする変圧器の冷却方法である。   The present invention is also a method for cooling the transformer, in which the steam power plant cools the exhaust steam of the turbine to condensate, and a condensate pump provided at the outlet of the condenser , A condensate heat exchanger provided at the outlet of the condensate pump and a condensate system including a conduit connecting the pipes so that water can be supplied between the condensate pump, and a hydrogen gas cooler and an auxiliary machine through a bearing cooling water pump. A shaft cooling system that feeds cooling water, cools the return cooling water whose temperature has been increased by a bearing cooling water cooler, and circulates and uses the cooling water, the high temperature side of the condensate heat exchanger and the shaft cooling system. The system is connected, and the condensate can be heated by the return cooling water of the shaft cooling system, and the cooling water of the shaft cooling system is sent as a cooling medium to the water cooling type cooler, and heat is exchanged with the insulating oil. A cooling method for a transformer, wherein the cooling water is returned to the shaft cooling system.

また本発明は、前記変圧器の冷却方法において、前記変圧器は、前記水冷式冷却器を複数備え、複数の水冷式冷却器が前記絶縁油循環ラインに直列に配置され、上流側の前記水冷式冷却器に冷却媒体として前記復水系統の復水を送り、前記絶縁油と熱交換した復水を前記復水系統に戻し、下流側の前記水冷式冷却器に冷却媒体として前記軸冷系統の冷却水を送り、前記絶縁油と熱交換した冷却水を前記軸冷系統に戻すことを特徴とする。   Further, the present invention provides the method for cooling a transformer, wherein the transformer includes a plurality of the water-cooled coolers, a plurality of water-cooled coolers are arranged in series with the insulating oil circulation line, and the upstream water-cooled The condensate of the condensate system is sent as a cooling medium to the cooler, the condensate exchanged heat with the insulating oil is returned to the condensate system, and the shaft cooling system is used as a cooling medium in the water-cooled cooler on the downstream side. The cooling water is fed, and the cooling water heat-exchanged with the insulating oil is returned to the shaft cooling system.

また本発明は、前記変圧器の冷却方法において、前記変圧器の負荷及び/又は外気温に応じて、前記上流側水冷式冷却器及び/又は前記下流側水冷式冷却器に冷却媒体を送ることを特徴とする。   According to the present invention, in the method for cooling the transformer, a cooling medium is sent to the upstream water-cooled cooler and / or the downstream water-cooled cooler according to the load and / or outside air temperature of the transformer. It is characterized by.

また本発明は、前記変圧器の冷却方法において、前記循環ポンプを常時運転し、前記変圧器本体内を規定温度以下に維持することを特徴とする。   In the method for cooling a transformer, the present invention is characterized in that the circulating pump is always operated and the inside of the transformer body is maintained at a specified temperature or lower.

本発明の変圧器は、汽力発電プラントに備えられる変圧器であって、絶縁油を冷却する水冷式冷却器を備えるので、汽力発電プラントから水冷式冷却器に冷却用の水を送ることで、絶縁油を十分に冷却することができる。これにより変圧器本体を適正な温度に維持するができる。また絶縁油を冷却し温度を上昇させた水を汽力発電プラントの運転に利用することで汽力発電プラントの熱効率を高めることができる。   The transformer of the present invention is a transformer provided in the steam power plant, and includes a water-cooled cooler that cools the insulating oil.By sending cooling water from the steam power plant to the water-cooled cooler, The insulating oil can be sufficiently cooled. As a result, the transformer body can be maintained at an appropriate temperature. Moreover, the thermal efficiency of a steam power plant can be improved by using the water which cooled insulating oil and raised temperature for the operation of a steam power plant.

本発明の変圧器の冷却方法は、絶縁油を冷却する水冷式冷却器に冷却媒体として汽力発電プラントの復水系統から復水を送り、絶縁油と熱交換した復水を復水系統に戻すので、絶縁油を適正な温度に冷却しつつ復水を加熱することができる。これにより汽力発電プラントの熱効率を高めることができる。   The method for cooling a transformer according to the present invention sends condensate from a condensate system of a steam power plant as a cooling medium to a water-cooled cooler that cools insulating oil, and returns the condensate heat-exchanged with insulating oil to the condensate system. Therefore, the condensate can be heated while cooling the insulating oil to an appropriate temperature. This can increase the thermal efficiency of the steam power plant.

また本発明によれば、絶縁油を冷却する水冷式冷却器に冷却媒体として復水ポンプ出口部から復水を送るので、簡単に送水することができる。   Further, according to the present invention, the condensate is sent from the outlet of the condensate pump as a cooling medium to the water-cooled cooler that cools the insulating oil, so that the water can be fed easily.

また本発明によれば、絶縁油と熱交換した復水を復水ポンプの吸込側に戻すので、水冷式冷却器の低温流体側圧力を低くすることができる。この結果、水冷式冷却器の設計圧力を低くすることが可能となり好ましい。   Further, according to the present invention, the condensate that has exchanged heat with the insulating oil is returned to the suction side of the condensate pump, so the low-temperature fluid side pressure of the water-cooled cooler can be lowered. As a result, the design pressure of the water-cooled cooler can be lowered, which is preferable.

また本発明の変圧器の冷却方法は、絶縁油を冷却する水冷式冷却器に冷却媒体として軸冷系統の冷却水を送り、絶縁油と熱交換した冷却水を軸冷系統に戻すので、絶縁油を適切に冷却することができる。特に軸冷系統の冷却水は、夏季においても低い温度に調整されているので、夏季でも絶縁油を十分に冷却することができる。また絶縁油と熱交換した冷却水は復水熱交換器に送られ復水を加熱するので、汽力発電プラントの熱効率を高めることができる。   Further, the transformer cooling method of the present invention sends the cooling water of the shaft cooling system as a cooling medium to the water cooling type cooler for cooling the insulating oil, and returns the cooling water exchanged with the insulating oil to the shaft cooling system. The oil can be properly cooled. In particular, since the cooling water of the shaft cooling system is adjusted to a low temperature even in the summer, the insulating oil can be sufficiently cooled even in the summer. Moreover, since the cooling water heat-exchanged with insulating oil is sent to a condensate heat exchanger and heats condensate, the thermal efficiency of a steam power plant can be improved.

また本発明によれば、変圧器は、水冷式冷却器を複数備え、複数の水冷式冷却器が絶縁油循環ラインに対して直列に配置され、上流側の水冷式冷却器を復水で、下流側の水冷式冷却器を軸冷系統の冷却水で冷却するので、絶縁油を適正な温度に冷却すると共に絶縁油の保有する熱を汽力発電プラントの運転に有効利用することができる。   According to the invention, the transformer includes a plurality of water-cooled coolers, the plurality of water-cooled coolers are arranged in series with respect to the insulating oil circulation line, and the upstream water-cooled cooler is condensate, Since the water-cooled cooler on the downstream side is cooled by the cooling water of the shaft cooling system, the insulating oil can be cooled to an appropriate temperature and the heat held by the insulating oil can be effectively used for the operation of the steam power plant.

また本発明によれば、変圧器の負荷及び/又は外気温に応じて、前記上流側水冷式冷却器及び/又は前記下流側水冷式冷却器に冷却媒体を送るので、冷却媒体供給のランニングコストを抑制しつつ絶縁油を適切な温度に冷却し、さらに絶縁油の保有する熱を汽力発電プラントの運転に有効利用することができる。   Further, according to the present invention, the cooling medium is sent to the upstream water-cooled cooler and / or the downstream water-cooled cooler according to the load of the transformer and / or the outside air temperature. It is possible to cool the insulating oil to an appropriate temperature while suppressing the above, and to effectively use the heat held by the insulating oil for the operation of the steam power plant.

また本発明によれば、循環ポンプを常時運転し、変圧器本体内を規定温度以下に維持するので、変圧器の寿命低下を抑制することができる。   Further, according to the present invention, the circulation pump is always operated and the inside of the transformer main body is maintained at a specified temperature or lower, so that it is possible to suppress the life reduction of the transformer.

本発明の第1実施形態としての変圧器の構成及び水冷式冷却器へ送る冷却媒体の系統を示す図である。It is a figure which shows the structure of the transformer as 1st Embodiment of this invention, and the system | strain of the cooling medium sent to a water cooling type cooler. 本発明の第2実施形態としての変圧器の水冷式冷却器へ送る冷却媒体の系統を示す図である。It is a figure which shows the system | strain of the cooling medium sent to the water cooling type | mold cooler of the transformer as 2nd Embodiment of this invention. 本発明の第3実施形態としての変圧器の構成及び水冷式冷却器へ送る冷却媒体の系統を示す図である。It is a figure which shows the system | strain of the structure of the transformer as 3rd Embodiment of this invention, and the cooling medium sent to a water cooling type cooler.

図1は、本発明の第1実施形態としての変圧器の構成及び水冷式冷却器へ送る冷却媒体の系統を示す図である。変圧器1は、汽力発電プラント内に設置されている。   FIG. 1 is a diagram showing a configuration of a transformer and a system of a cooling medium sent to a water-cooled cooler as a first embodiment of the present invention. The transformer 1 is installed in a steam power plant.

変圧器1は、油入変圧器であり、変圧器本体2と、絶縁油を冷却する水冷式冷却器3と、油循環ポンプ4を備え、変圧器本体2と水冷式冷却器3との間を絶縁油を循環可能に接続する絶縁油循環ライン5とを備える。   The transformer 1 is an oil-filled transformer, and includes a transformer body 2, a water-cooled cooler 3 that cools the insulating oil, and an oil circulation pump 4, and is provided between the transformer body 2 and the water-cooled cooler 3. And an insulating oil circulation line 5 for connecting the insulating oil so that it can be circulated.

変圧器本体2は、密閉した筐体内に鉄心及び巻線を収納し、鉄心及び巻線は、絶縁油に浸漬した状態で筐体内に収納されている。鉄心及び巻線の損失熱により温度を上昇させた絶縁油は、油循環ポンプ4を介して水冷式冷却器3に送られる。   The transformer body 2 houses an iron core and a winding in a sealed housing, and the iron core and the winding are housed in the housing in a state immersed in insulating oil. The insulating oil whose temperature has been raised by the heat loss of the iron core and the windings is sent to the water-cooled cooler 3 via the oil circulation pump 4.

水冷式冷却器3は、隔壁式熱交換器であり、水冷式冷却器3に送られた絶縁油は、冷却媒体である汽力発電プラントの復水系統10から送られる復水と熱交換し温度を低下させる。ここで使用可能な水冷式冷却器3は、隔壁式熱交換器であれば、特定の熱交換器に限定されるものではなく、例えば、シェルアンドチューブ形熱交換器、多管式熱交換器を使用することができる。冷却された絶縁油は、絶縁油循環ライン5を通じて変圧器本体2内に返送される。このように変圧器1は、変圧器本体2内の温度の上昇した絶縁油を水冷式冷却器3で冷却後、変圧器本体2内に返送することで、変圧器本体2内の温度上昇を抑制する。   The water-cooled cooler 3 is a partition wall heat exchanger, and the insulating oil sent to the water-cooled cooler 3 exchanges heat with the condensate sent from the condensate system 10 of the steam power plant as a cooling medium. Reduce. The water-cooled cooler 3 that can be used here is not limited to a specific heat exchanger as long as it is a partition wall heat exchanger. For example, a shell-and-tube heat exchanger, a multi-tube heat exchanger, and the like. Can be used. The cooled insulating oil is returned into the transformer body 2 through the insulating oil circulation line 5. As described above, the transformer 1 cools the insulating oil whose temperature in the transformer main body 2 has increased by the water-cooled cooler 3 and then returns it to the transformer main body 2, thereby increasing the temperature in the transformer main body 2. Suppress.

水冷式冷却器3には、汽力発電プラントの復水系統10の復水が冷却媒体として送られ、絶縁油は復水により冷却される。汽力発電プラントの復水系統10は、蒸気タービンの排気蒸気を凝縮させ復水にする復水器11、復水を圧送する復水ポンプ12、水中の塩類を除去する脱塩装置13、復水昇圧ポンプ14、復水昇圧ポンプ14から送られる復水と軸冷系統の軸冷水とを熱交換させ、軸冷水から熱回収する復水熱交換器15及びこれらを送水可能に結ぶ管路16、17、18、19、20を含み構成される。   Condensate from the condensate system 10 of the steam power plant is sent to the water-cooled cooler 3 as a cooling medium, and the insulating oil is cooled by the condensate. A condensate system 10 for a steam power plant includes a condenser 11 that condenses exhaust steam from a steam turbine to condensate, a condensate pump 12 that pumps condensate, a demineralizer 13 that removes salt in water, and condensate. A condensate heat exchanger 15 for exchanging heat between the condensate sent from the booster pump 14 and the condensate booster pump 14 and the axial cold water of the axial cooling system and recovering heat from the axial cold water; 17, 18, 19, 20.

復水ポンプ12と脱塩装置13とを結ぶ管路17の途中には、流量調整が可能な三方弁25が取付けられている。三方弁25の一方の出口部は、管路26を通じて水冷式冷却器3の冷却媒体入口部と結ばれ、水冷式冷却器3の冷却媒体出口部は、管路27を通じて脱塩装置13の入口部と接続する管路17につながる。   A three-way valve 25 capable of adjusting the flow rate is attached in the middle of the pipe line 17 connecting the condensate pump 12 and the desalinator 13. One outlet portion of the three-way valve 25 is connected to the cooling medium inlet portion of the water-cooled cooler 3 through the pipe line 26, and the cooling medium outlet portion of the water-cooled cooler 3 is connected to the inlet port of the desalinator 13 through the pipe line 27. It connects with the pipe line 17 connected with a part.

三方弁25の制御は、温度調節計7が行う。水冷式冷却器3出口部の絶縁油循環ライン5には、温度調節計7と接続する温度検出器6が装着されており、温度調節計7は、水冷式冷却器3出口部の絶縁油温度が設定温度となるように、三方弁25を介して水冷式冷却器3に送る復水の量を調整する。   The temperature controller 7 controls the three-way valve 25. A temperature detector 6 connected to a temperature controller 7 is attached to the insulating oil circulation line 5 at the outlet of the water-cooled cooler 3, and the temperature controller 7 has an insulating oil temperature at the outlet of the water-cooled cooler 3. The amount of condensate sent to the water-cooled cooler 3 via the three-way valve 25 is adjusted so that becomes the set temperature.

上記のように構成される変圧器1は、絶縁油を冷却する冷却器が水冷式であるので、空冷式冷却器に比較して冷却能力に優れ、絶縁油を十分に冷却することができる。また絶縁油と熱交換し温度を上昇させた復水は、復水系統10に戻されるので復水の温度が上昇する。この結果、給水加熱器の負荷が低下し、汽力発電プラントの熱効率が上昇する。また水冷式冷却器3への復水の供給を、復水ポンプ12の出口部から行うので簡単に行うことができる。   Since the transformer 1 configured as described above is a water-cooled cooler that cools the insulating oil, the transformer 1 is excellent in cooling capacity compared to the air-cooled cooler and can sufficiently cool the insulating oil. Further, the condensate whose temperature has been increased by exchanging heat with insulating oil is returned to the condensate system 10, so that the temperature of the condensate increases. As a result, the load of the feed water heater is reduced and the thermal efficiency of the steam power plant is increased. Further, since the condensate is supplied to the water-cooled cooler 3 from the outlet of the condensate pump 12, it can be easily performed.

上記実施形態は、次のように変更することもできる。上記実施形態では、水冷式冷却器3から排出される戻り復水は、脱塩装置13の入口部に戻されるが、この戻り復水を復水ポンプ12の吸込側に戻してもよい。具体的には、水冷式冷却器3の冷却媒体出口部に設けられる管路27の出口部を管路16につなぎ、必要に応じて管路27の途中に背圧弁を設ける。水冷式冷却器3から排出される戻り復水を復水ポンプ12の吸込側に戻す場合、一部の復水が循環使用されることとなる。一般的に、復水を循環使用する方法は、復水の温度が上昇するので、冷却媒体の供給方法として好ましい方法とは言えない。しかし復水ポンプ12の吐出量に比べ、水冷式冷却器3に送る復水の量が小さい場合には、殆ど温度上昇がないか、温度上昇してもほんのわずかであるので、冷却媒体として十分に使用することができる。   The above embodiment can be modified as follows. In the above embodiment, the return condensate discharged from the water-cooled cooler 3 is returned to the inlet of the demineralizer 13, but this return condensate may be returned to the suction side of the condensate pump 12. Specifically, the outlet part of the pipe line 27 provided at the cooling medium outlet part of the water-cooled cooler 3 is connected to the pipe line 16, and a back pressure valve is provided in the middle of the pipe line 27 as necessary. When returning the return condensate discharged from the water-cooled cooler 3 to the suction side of the condensate pump 12, a part of the condensate is circulated and used. Generally, the method of circulating and using condensate is not a preferable method for supplying a cooling medium because the temperature of the condensate increases. However, when the amount of condensate sent to the water-cooled cooler 3 is smaller than the discharge amount of the condensate pump 12, there is almost no temperature increase or only a slight increase in temperature. Can be used for

水冷式冷却器3から排出される戻り復水を脱塩装置13の入口部に戻す場合、水冷式冷却器3は、復水ポンプ12の吐出圧に耐える仕様とする必要がある。一方、水冷式冷却器3から排出される戻り復水を復水ポンプ12の吸込側に戻す場合、水冷式冷却器3の設計圧力を、大幅に低下させることができる。通常、汽力発電プラントに設けられる復水器11は真空状態で運転されているため復水ポンプ12の吸込側圧力は低く、復水ポンプ12の吸込側と連絡する管路27内の圧力も低くなる。復水ポンプ12の吐出圧は、通常、1MPa程度であるので、水冷式冷却器3から排出される戻り復水を復水ポンプ12の吸込側に戻す方法は、水冷式冷却器3の設計圧力を低下させる点において有用な方法と言える。   When returning the return condensate discharged from the water-cooled cooler 3 to the inlet of the demineralizer 13, the water-cooled cooler 3 needs to have a specification that can withstand the discharge pressure of the condensate pump 12. On the other hand, when returning the return condensate discharged from the water-cooled cooler 3 to the suction side of the condensate pump 12, the design pressure of the water-cooled cooler 3 can be significantly reduced. Usually, since the condenser 11 provided in the steam power plant is operated in a vacuum state, the suction side pressure of the condensate pump 12 is low, and the pressure in the pipe line 27 communicating with the suction side of the condensate pump 12 is also low. Become. Since the discharge pressure of the condensate pump 12 is normally about 1 MPa, the method of returning the return condensate discharged from the water-cooled cooler 3 to the suction side of the condensate pump 12 is the design pressure of the water-cooled cooler 3. It can be said that it is a useful method in terms of lowering.

図2は、本発明の第2実施形態としての変圧器の水冷式冷却器へ送る冷却媒体の系統を示す図である。第1実施形態に示す変圧器及び冷却媒体の系統と同一の構成には同一の符号を付して説明を省略する。   FIG. 2 is a diagram showing a system of a cooling medium sent to a water-cooled cooler of a transformer as a second embodiment of the present invention. The same components as those of the transformer and cooling medium system shown in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施形態では、水冷式冷却器3には、汽力発電プラントの軸冷系統30の冷却水が冷却媒体として送られ、絶縁油は軸冷系統30の冷却水より冷却される。汽力発電プラントの軸冷系統30は、軸受冷却水ポンプ31、軸受冷却水冷却器32及びこれらの間を結び冷却水を循環させる管路を含み、循環路が形成され、冷却水は、循環使用される。   In the present embodiment, the cooling water of the shaft cooling system 30 of the steam power plant is sent to the water cooling type cooler 3 as a cooling medium, and the insulating oil is cooled from the cooling water of the shaft cooling system 30. A shaft cooling system 30 of a steam power plant includes a bearing cooling water pump 31, a bearing cooling water cooler 32, and a pipe that connects between them and circulates the cooling water. A circulation path is formed, and the cooling water is used for circulation. Is done.

軸受冷却水ポンプ31から送水された戻り冷却水は、軸受冷却水冷却器32で温度を低下させた後、管路33を通じて水素ガスクーラ51に送られる。水素ガスクーラ51で水素ガスを冷却し温度を上昇させた戻り冷却水は、管路34を通じて復水熱交換器15に送られる。同様に軸受冷却水冷却器32を出た冷却水は、管路33に接続する管路35を通じて給水ポンプ、通風機などのボイラ・タービン補機52に送られ、軸受部を冷却し温度を上昇させた戻り冷却水は、管路36を通じて管路34に合流した後、復水熱交換器15に送られる。復水熱交換器15では、復水と戻り冷却水とが熱交換し、復水は温度を上昇させ、戻り冷却水は、熱を奪われ温度を低下させる。復水と熱交換した戻り冷却水は、管路37を通じて軸受冷却水ポンプ31に送られる。軸受冷却水冷却器32には、冷却媒体として海水が使用される。なお、図示を省略したが、軸冷系統30の冷却水は、水素ガスクーラ51と同様の要領で、交流励磁器冷却器、固定子冷却水装置、タービン油冷却器、離相母線冷却器を冷却する。   The return cooling water sent from the bearing cooling water pump 31 is lowered in temperature by the bearing cooling water cooler 32 and then sent to the hydrogen gas cooler 51 through the pipe 33. The return cooling water whose temperature has been increased by cooling the hydrogen gas with the hydrogen gas cooler 51 is sent to the condensate heat exchanger 15 through the pipe 34. Similarly, the cooling water exiting the bearing cooling water cooler 32 is sent to a boiler / turbine auxiliary machine 52 such as a water supply pump and a ventilator through a pipe line 35 connected to the pipe line 33 to cool the bearing portion and raise the temperature. The returned cooling water is joined to the pipe 34 through the pipe 36 and then sent to the condensate heat exchanger 15. In the condensate heat exchanger 15, the condensate and the return cooling water exchange heat, the condensate raises the temperature, and the return cooling water takes heat and lowers the temperature. The return cooling water heat-exchanged with the condensate is sent to the bearing cooling water pump 31 through the pipe 37. The bearing cooling water cooler 32 uses seawater as a cooling medium. Although illustration is omitted, the cooling water of the shaft cooling system 30 cools the AC exciter cooler, the stator cooling water device, the turbine oil cooler, and the phase separation bus cooler in the same manner as the hydrogen gas cooler 51. To do.

管路33には、冷却水を水冷式冷却器3に送る管路41が接続し、管路41は他端部を水冷式冷却器3の冷却媒体入口部と接続する。水冷式冷却器3の冷却媒体出口部には、冷却水を軸冷系統に戻すための管路42が接続し、管路42は、管路34に接続する。管路41の途中には、流量調整弁43が設けられ、流量調整弁43は、水冷式冷却器3出口部の絶縁油温度を検出する温度検出器6と接続する温度調節計7からの信号により、水冷式冷却器3出口部の絶縁油温度が設定温度となるように冷却水量を調整する。   A conduit 41 that sends cooling water to the water-cooled cooler 3 is connected to the conduit 33, and the other end of the conduit 41 is connected to the cooling medium inlet of the water-cooled cooler 3. A conduit 42 for returning the coolant to the axial cooling system is connected to the cooling medium outlet of the water-cooled cooler 3, and the conduit 42 is connected to the conduit 34. A flow rate adjustment valve 43 is provided in the middle of the pipe 41, and the flow rate adjustment valve 43 is a signal from the temperature controller 7 connected to the temperature detector 6 that detects the insulating oil temperature at the outlet of the water-cooled cooler 3. Thus, the amount of cooling water is adjusted so that the insulating oil temperature at the outlet of the water-cooled cooler 3 becomes the set temperature.

第2実施形態に示す水冷式冷却器3も第1実施形態の変圧器1と同様に、絶縁油を十分に冷却することができる。軸冷系統30の冷却水は、年間を通じて30℃程度に維持されているので、好ましい冷却媒体と言える。絶縁油と熱交換し温度を上昇させた冷却水は、復水熱交換器15で熱回収されるので復水の温度が上昇し、結果、給水加熱器の負荷が低下し、汽力発電プラントの熱効率が上昇する。   Similarly to the transformer 1 of the first embodiment, the water-cooled cooler 3 shown in the second embodiment can sufficiently cool the insulating oil. Since the cooling water of the shaft cooling system 30 is maintained at about 30 ° C. throughout the year, it can be said to be a preferable cooling medium. The cooling water whose temperature has been increased by exchanging heat with insulating oil is recovered by the condensate heat exchanger 15, so that the temperature of the condensate rises. As a result, the load on the feed water heater decreases, and Increases thermal efficiency.

図3は、本発明の第3実施形態としての変圧器の構成及び水冷式冷却器へ送る冷却媒体の系統を示す図である。第1及び第2実施形態に示す変圧器及び冷却媒体の系統と同一の構成には同一の符号を付して説明を省略する。   FIG. 3 is a diagram showing a configuration of a transformer as a third embodiment of the present invention and a system of a cooling medium sent to a water-cooled cooler. The same components as those of the transformer and cooling medium system shown in the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted.

第3実施形態に示す変圧器8は、水冷式冷却器3a、3bを2基備え、上流側に配置される水冷式冷却器3aで冷却された絶縁油をさらに下流側に配置される水冷式冷却器3bで冷却可能に2基の水冷式冷却器3a、3bが、絶縁油循環ライン5に直列に配置されている。この水冷式冷却器3a、3bは共に隔壁式熱交換器である。上流側に配置される水冷式冷却器3aには、汽力発電プラントの復水系統10の復水が冷却媒体として送られ、下流側に配置される水冷式冷却器3bには、汽力発電プラントの軸冷系統30の冷却水が冷却媒体として送られる。   The transformer 8 shown in the third embodiment includes two water-cooled coolers 3a and 3b, and a water-cooled type in which insulating oil cooled by the water-cooled cooler 3a disposed on the upstream side is further disposed on the downstream side. Two water-cooled coolers 3 a and 3 b are arranged in series with the insulating oil circulation line 5 so as to be cooled by the cooler 3 b. The water-cooled coolers 3a and 3b are both partition heat exchangers. The condensate of the condensate system 10 of the steam power plant is sent as a cooling medium to the water-cooled cooler 3a disposed on the upstream side, and the water-cooled cooler 3b disposed on the downstream side includes the condensate of the steam power plant. The cooling water of the shaft cooling system 30 is sent as a cooling medium.

第3実施形態に示す変圧器8は、水冷式冷却器3a、3bが2基、絶縁油循環ライン5に直列に配置されているので、より効率的に絶縁油を冷却し、さらに熱回収することができる。夏季には、復水の温度は40℃程度となるので、上流側に配置される水冷式冷却器3aで絶縁油を50℃程度まで冷却した後、下流側に配置される水冷式冷却器3bで絶縁油を45℃程度まで冷却させることもできる。冬季では、復水の温度も30℃程度であるので、上流側に配置される水冷式冷却器3aにのみ冷却媒体を送るようにしてもよい。温度の異なる冷却媒体を使用し、上流側の水冷式冷却器3aに温度の高い冷却媒体を供給することで、変圧器8の負荷、季節、外気温によらず効率的に絶縁油を冷却することができる。   In the transformer 8 shown in the third embodiment, since two water-cooled coolers 3a and 3b are arranged in series in the insulating oil circulation line 5, the insulating oil is cooled more efficiently and further heat is recovered. be able to. In the summer, the temperature of the condensate is about 40 ° C. Therefore, after the insulating oil is cooled to about 50 ° C. with the water-cooled cooler 3a disposed on the upstream side, the water-cooled cooler 3b disposed on the downstream side. The insulating oil can be cooled to about 45 ° C. In the winter season, the temperature of the condensate is also about 30 ° C., so the cooling medium may be sent only to the water-cooled cooler 3a arranged on the upstream side. By using a cooling medium having a different temperature and supplying a high-temperature cooling medium to the upstream water-cooled cooler 3a, the insulating oil is efficiently cooled regardless of the load, season, and outside temperature of the transformer 8. be able to.

上記実施形態で示すように本発明の変圧器1、8は、絶縁油を冷却する水冷式冷却器3、3a、3bを備えるので、冷却媒体として汽力発電プラントから復水系統10、軸冷系統30の冷却水を送ることで、絶縁油を十分に冷却することができる。さらに絶縁油を冷却し温度を上昇させた水を汽力発電プラントの運転に利用することで、変圧器本体2を適正な温度に冷却しつつ絶縁油の保有する熱を汽力発電プラントの運転に有効利用することができる。また油循環ポンプ4を常時運転し、変圧器本体2内を規定温度以下に維持することで、変圧器1、8の寿命低下を抑制することができる。このような変圧器は、容量の大きい主変圧器に好適に使用することができる。   As shown in the above embodiment, the transformers 1 and 8 of the present invention include water-cooled coolers 3, 3 a, and 3 b that cool the insulating oil. By sending 30 cooling water, the insulating oil can be sufficiently cooled. Furthermore, by cooling the insulating oil and using the water whose temperature has been raised for the operation of the steam power plant, the heat of the insulating oil is effectively used for the operation of the steam power plant while cooling the transformer body 2 to an appropriate temperature. Can be used. Moreover, the lifetime reduction of the transformers 1 and 8 can be suppressed by always operating the oil circulation pump 4 and maintaining the inside of the transformer main body 2 below the specified temperature. Such a transformer can be suitably used for a main transformer having a large capacity.

本発明は、上記実施形態に、また先の実施形態で使用された数値に限定されるものではなく、要旨を変更しない範囲で変更し使用することができる。例えば、第1から第3実施形態では、流量を調整する三方弁25、流量調整弁43を冷却媒体の入口側に設けているが、出口側に設けてもよい。三方弁25に代え、流量調整弁を設けてもよい。さらに場合によっては、常時一定量の冷却水を復水系統10、軸冷系統30から送るようにして流量調整弁、温度調節計を省略してもよい。また上記実施形態の復水系統10には、脱塩装置13、復水昇圧ポンプ14が設けられていたが、これらを備えない復水系統10の復水を使用可能なことは言うまでもない。   The present invention is not limited to the numerical values used in the above embodiment and in the previous embodiment, and can be changed and used without departing from the scope of the invention. For example, in the first to third embodiments, the three-way valve 25 for adjusting the flow rate and the flow rate adjusting valve 43 are provided on the inlet side of the cooling medium, but may be provided on the outlet side. Instead of the three-way valve 25, a flow rate adjusting valve may be provided. Further, in some cases, a constant amount of cooling water may be sent from the condensate system 10 and the shaft cooling system 30 at all times, and the flow rate adjustment valve and the temperature controller may be omitted. Moreover, although the desalination apparatus 13 and the condensate pressure | voltage rise pump 14 were provided in the condensate system 10 of the said embodiment, it cannot be overemphasized that the condensate of the condensate system 10 not equipped with these can be used.

1 変圧器
2 変圧器本体
3、3a、3b 水冷式冷却器
4 油循環ポンプ
5 絶縁油循環ライン
8 変圧器
10 復水系統
11 復水器
12 復水ポンプ
15 復水熱交換器
25 三方弁
30 軸冷系統
31 軸受冷却水ポンプ
32 軸受冷却水冷却器
51 水素ガスクーラ
52 ボイラ・タービン補機
DESCRIPTION OF SYMBOLS 1 Transformer 2 Transformer main body 3, 3a, 3b Water-cooled cooler 4 Oil circulation pump 5 Insulating oil circulation line 8 Transformer 10 Condensation system 11 Condenser 12 Condensation pump 15 Condensate heat exchanger 25 Three-way valve 30 Shaft cooling system 31 Bearing cooling water pump 32 Bearing cooling water cooler 51 Hydrogen gas cooler 52 Boiler / turbine auxiliary machinery

Claims (8)

汽力発電プラントに備えられる変圧器であって、
変圧器本体と、
絶縁油を冷却する水冷式冷却器と、
循環ポンプを備え、前記変圧器本体と前記水冷式冷却器との間を絶縁油を循環可能に接続する絶縁油循環ラインと、
を備えることを特徴とする変圧器。
A transformer provided in a steam power plant,
The transformer body,
A water-cooled cooler that cools the insulating oil;
An insulating oil circulation line that includes a circulation pump and connects the insulating oil so that it can circulate between the transformer body and the water-cooled cooler;
A transformer characterized by comprising:
請求項1に記載の変圧器の冷却方法であって、
前記汽力発電プラントは、タービンの排気蒸気を冷却し復水にする復水器、前記復水器の出口部に設けられた復水ポンプ及びこれらの間を送水可能に結ぶ管路を含み構成される復水系統を有し、
前記水冷式冷却器に冷却媒体として前記復水系統の復水を送り、前記絶縁油と熱交換した復水を前記復水系統に戻すことを特徴とする変圧器の冷却方法。
The method for cooling a transformer according to claim 1,
The steam power plant is configured to include a condenser that cools the exhaust steam of the turbine to condensate, a condensate pump provided at an outlet of the condenser, and a pipe that connects these to allow water to be fed. Have a condensate system
A method for cooling a transformer, wherein condensate of the condensate system is sent to the water-cooled cooler as a cooling medium, and the condensate heat-exchanged with the insulating oil is returned to the condensate system.
前記水冷式冷却器に冷却媒体として前記復水ポンプの出口部から復水を送ることを特徴とする請求項2に記載の変圧器の冷却方法。   The method for cooling a transformer according to claim 2, wherein condensate is sent from the outlet of the condensate pump as a cooling medium to the water-cooled cooler. 前記絶縁油と熱交換した復水を前記復水ポンプの吸込側に戻すことを特徴とする請求項3に記載の変圧器の冷却方法。   The method for cooling a transformer according to claim 3, wherein the condensate heat-exchanged with the insulating oil is returned to the suction side of the condensate pump. 請求項1に記載の変圧器の冷却方法であって、
前記汽力発電プラントは、タービンの排気蒸気を冷却し復水にする復水器、前記復水器の出口部に設けられた復水ポンプ、前記復水ポンプの出口部に設けられた復水熱交換器及びこれらの間を送水可能に結ぶ管路を含み構成される復水系統と、
軸受冷却水ポンプを通じて水素ガスクーラ、補機等に冷却水を送り、温度の高くなった戻り冷却水を軸受冷却水冷却器で冷却し、冷却水を循環使用する軸冷系統と、を備え、
前記復水熱交換器の高温側と前記軸冷系統とが接続し、前記軸冷系統の戻り冷却水で復水が加熱可能に構成され、
前記水冷式冷却器に冷却媒体として前記軸冷系統の冷却水を送り、前記絶縁油と熱交換した冷却水を前記軸冷系統に戻すことを特徴とする変圧器の冷却方法。
The method for cooling a transformer according to claim 1,
The steam power plant includes a condenser for cooling and condensing turbine exhaust steam, a condensate pump provided at the outlet of the condenser, and condensate heat provided at the outlet of the condensate pump. A condensate system that includes an exchanger and a pipe that connects the pipes so that water can be sent between them;
A shaft cooling system that sends cooling water to a hydrogen gas cooler, an auxiliary machine, etc. through a bearing cooling water pump, cools the return cooling water whose temperature has risen with a bearing cooling water cooler, and circulates and uses the cooling water,
The high temperature side of the condensate heat exchanger and the shaft cooling system are connected, and the condensate can be heated with the return cooling water of the shaft cooling system,
A cooling method for a transformer, wherein the cooling water of the shaft cooling system is sent as a cooling medium to the water cooling type cooler, and the cooling water heat-exchanged with the insulating oil is returned to the shaft cooling system.
請求項1に記載の変圧器は、前記水冷式冷却器を複数備え、複数の水冷式冷却器が前記絶縁油循環ラインに直列に配置され、
上流側の前記水冷式冷却器に冷却媒体として前記復水系統の復水を送り、前記絶縁油と熱交換した復水を前記復水系統に戻し、下流側の前記水冷式冷却器に冷却媒体として前記軸冷系統の冷却水を送り、前記絶縁油と熱交換した冷却水を前記軸冷系統に戻すことを特徴とする請求項5に記載の変圧器の冷却方法。
The transformer according to claim 1, comprising a plurality of the water-cooled coolers, wherein a plurality of water-cooled coolers are arranged in series with the insulating oil circulation line,
Condensate of the condensate system is sent as a cooling medium to the water-cooled cooler on the upstream side, the condensate heat-exchanged with the insulating oil is returned to the condensate system, and the cooling medium is supplied to the water-cooled cooler on the downstream side. 6. The method for cooling a transformer according to claim 5, wherein the cooling water of the shaft cooling system is sent as the cooling water returned to the shaft cooling system after heat exchange with the insulating oil.
前記変圧器の負荷及び/又は外気温に応じて、前記上流側水冷式冷却器及び/又は前記下流側水冷式冷却器に冷却媒体を送ることを特徴とする請求項6に記載の変圧器の冷却方法。   The transformer according to claim 6, wherein a cooling medium is sent to the upstream water-cooled cooler and / or the downstream water-cooled cooler according to a load and / or an outside air temperature of the transformer. Cooling method. 前記循環ポンプを常時運転し、前記変圧器本体内を規定温度以下に維持することを特徴とする請求項2から7のいずれか1に記載の変圧器の冷却方法。   The method for cooling a transformer according to any one of claims 2 to 7, wherein the circulating pump is always operated and the inside of the transformer main body is maintained at a specified temperature or lower.
JP2010250372A 2010-11-09 2010-11-09 Transformer cooling method Expired - Fee Related JP5295203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010250372A JP5295203B2 (en) 2010-11-09 2010-11-09 Transformer cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010250372A JP5295203B2 (en) 2010-11-09 2010-11-09 Transformer cooling method

Publications (2)

Publication Number Publication Date
JP2012104574A true JP2012104574A (en) 2012-05-31
JP5295203B2 JP5295203B2 (en) 2013-09-18

Family

ID=46394656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010250372A Expired - Fee Related JP5295203B2 (en) 2010-11-09 2010-11-09 Transformer cooling method

Country Status (1)

Country Link
JP (1) JP5295203B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473701A (en) * 2019-08-29 2019-11-19 安徽金寨抽水蓄能有限公司 A kind of method of quick oil-discharging and oiling when oil-immersed transformer pipeline fittings are replaced
CN113690023A (en) * 2021-09-06 2021-11-23 浙江尔格科技股份有限公司 Intelligent temperature regulating system and method for transformer oil
KR102375331B1 (en) * 2021-08-19 2022-03-16 (주)원일종합전기 Cooling system for gas transformer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061624A (en) * 1973-10-03 1975-05-27
JPH0242102A (en) * 1988-08-02 1990-02-13 Hitachi Ltd Method for recovering thermal energy and apparatus thereof
JP2007240049A (en) * 2006-03-07 2007-09-20 Chugoku Electric Power Co Inc:The Condensate heating system
JP2008185031A (en) * 2007-01-29 2008-08-14 General Electric Co <Ge> Integrated plant cooling system
JP2009299682A (en) * 2008-06-10 2009-12-24 General Electric Co <Ge> System for recovering waste heat generated by auxiliary system of turbo machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061624A (en) * 1973-10-03 1975-05-27
JPH0242102A (en) * 1988-08-02 1990-02-13 Hitachi Ltd Method for recovering thermal energy and apparatus thereof
JP2007240049A (en) * 2006-03-07 2007-09-20 Chugoku Electric Power Co Inc:The Condensate heating system
JP2008185031A (en) * 2007-01-29 2008-08-14 General Electric Co <Ge> Integrated plant cooling system
JP2009299682A (en) * 2008-06-10 2009-12-24 General Electric Co <Ge> System for recovering waste heat generated by auxiliary system of turbo machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473701A (en) * 2019-08-29 2019-11-19 安徽金寨抽水蓄能有限公司 A kind of method of quick oil-discharging and oiling when oil-immersed transformer pipeline fittings are replaced
CN110473701B (en) * 2019-08-29 2021-03-30 安徽金寨抽水蓄能有限公司 Method for quickly discharging and injecting oil during replacement of pipeline accessories of oil-immersed transformer
KR102375331B1 (en) * 2021-08-19 2022-03-16 (주)원일종합전기 Cooling system for gas transformer
CN113690023A (en) * 2021-09-06 2021-11-23 浙江尔格科技股份有限公司 Intelligent temperature regulating system and method for transformer oil
CN113690023B (en) * 2021-09-06 2023-09-01 浙江尔格科技股份有限公司 Intelligent transformer oil temperature regulating system and intelligent transformer oil temperature regulating method

Also Published As

Publication number Publication date
JP5295203B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
KR101280520B1 (en) Power Generation System Using Waste Heat
EP2647938A1 (en) Cooling system with a condensate polishing unit
RU2673959C2 (en) System and method for energy regeneration of wasted heat
JP5775267B2 (en) Water treatment system
JP2012211712A (en) Liquid cooling system
JP2007064048A (en) Waste heat recovery facility of power plant
JP5295203B2 (en) Transformer cooling method
WO2012057098A1 (en) Water treatment system and water treatment method
JP4782661B2 (en) Heat generation equipment cooling method and heat generation equipment cooling device
JP2017172349A (en) Cogeneration device
JP5743490B2 (en) Water treatment system and water treatment method
JP5910122B2 (en) Heat recovery generator
JP2016512298A (en) System and method for cooling an OTEC working fluid pump motor
KR20130101723A (en) Waste heat recovery system for ship that can remove dissolved oxygen by minimizing steam consumption
KR101323822B1 (en) Air Conditioning Apparatus for Ship
CN101832623A (en) Pre-heat system of thermal power plant
TW202005706A (en) Reverse osmosis treatment method and system
CN210289855U (en) Steam turbine lubricating oil quick auxiliary cooling device of steam power plant
BG2047U1 (en) Thermal power plant with absorption lithium bromide refrigerating machine operating as a heat pump
JP4936966B2 (en) Condensate heat exchange system and condensate heat exchanger control method
JP5361079B2 (en) Method for cooling hydrogen cooling device
JP2007240049A (en) Condensate heating system
JP4533818B2 (en) Remodeling method for emergency auxiliary cooling system
CN211316701U (en) Closed water cooling system
CN220728973U (en) Exhaust steam waste heat recovery system and air condensing system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5295203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees