JP2012104225A - Battery module, method of manufacturing battery module and spacer for battery - Google Patents

Battery module, method of manufacturing battery module and spacer for battery Download PDF

Info

Publication number
JP2012104225A
JP2012104225A JP2010248807A JP2010248807A JP2012104225A JP 2012104225 A JP2012104225 A JP 2012104225A JP 2010248807 A JP2010248807 A JP 2010248807A JP 2010248807 A JP2010248807 A JP 2010248807A JP 2012104225 A JP2012104225 A JP 2012104225A
Authority
JP
Japan
Prior art keywords
battery
rod
unit
battery module
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010248807A
Other languages
Japanese (ja)
Inventor
Takahiro Morimoto
高広 森本
Toshiyuki Isho
利之 井床
Takayuki Yagi
貴之 八木
Kenichiro Ayukawa
健一郎 鮎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2010248807A priority Critical patent/JP2012104225A/en
Publication of JP2012104225A publication Critical patent/JP2012104225A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spacer for battery having a simple structure and a high cooling efficiency, and to provide a battery module equipped with it and a method of manufacturing a battery module.SOLUTION: The spacers (3) consisting of a plurality of rodlike members (31) which can be attached detachably to a comb-shaped jig (7) are arranged in parallel, at an equal pitch, between unit cells (2) and a space surrounded by adjoining rodlike members (31) and adjoining unit cells (2) is formed as a flow path (32) for cooling medium. When the cooling medium passes through the flow path (32) for cooling medium, the cooling medium comes into direct contact with the unit cells (2) on both sides thus cooling the unit cells (2) efficiently.

Description

本発明は、電池モジュール、電池モジュールの製造方法および電池用スペーサに関し、特に、単位電池を複数積層してなる電池モジュール、その製造方法および積層する単位電池間に配する電池用スペーサに関する。   The present invention relates to a battery module, a battery module manufacturing method, and a battery spacer, and more particularly, to a battery module formed by stacking a plurality of unit cells, a manufacturing method thereof, and a battery spacer disposed between stacked unit cells.

単位電池を複数積層してなる電池モジュールは、従来、種々提案されている。この種の電池モジュールは、電気製品からハイブリッド車,鉄道車両,マイクログリッドシステムに至るまで、様々に用いられている。特に、ハイブリッド車や鉄道車両,マイクログリッドシステムなどにおいては、電池モジュールに高出力,大容量のものが要求されるため、このような電池モジュールにはエネルギー密度の高いニッケル水素電池やリチウムイオン電池などが用いられている。   Various battery modules formed by laminating a plurality of unit batteries have been conventionally proposed. This type of battery module is used in various applications ranging from electrical products to hybrid vehicles, railway vehicles, and microgrid systems. In particular, in hybrid vehicles, railway vehicles, microgrid systems, etc., battery modules are required to have high output and large capacity. Therefore, such battery modules have high energy density, such as nickel metal hydride batteries and lithium ion batteries. Is used.

一方、これらニッケル水素電池やリチウムイオン電池は大電流を流すため、電池が発熱し高温となる場合がある。特に、鉄道車両やマイクログリッドシステムなどに用いる場合、電池が大型となるため、このような大型電池を積層した大型の電池モジュールは、電池を冷却するための冷却構造を採用したものが提案されている。   On the other hand, since these nickel hydride batteries and lithium ion batteries pass a large current, the batteries may generate heat and become high temperature. In particular, when used in railway vehicles, microgrid systems, etc., the battery becomes large, so a large battery module in which such large batteries are stacked has been proposed to employ a cooling structure for cooling the battery. Yes.

この種の先行技術として、上下方向に貫通する空気の流通経路を複数設け、導電材として、表面をニッケルメッキした電池の放熱用仕切り板を用いた冷却構造が提案されている(例えば、特許文献1)。   As this type of prior art, there has been proposed a cooling structure in which a plurality of air flow paths penetrating in the vertical direction are provided, and a heat radiating partition plate having a nickel-plated surface is used as a conductive material (for example, Patent Documents) 1).

また、その他の先行技術として、積層した単位電池間に、金属板の片側若しくは両側に冷却媒体用流路を設けた放熱プレートを配した二次電池モジュールが提案されている(例えば、特許文献2)。特許文献2の二次電池モジュールは、冷却媒体によって単位電池を直接冷却できる放熱プレートを有している。   As another prior art, a secondary battery module has been proposed in which a heat radiating plate having a cooling medium channel provided on one side or both sides of a metal plate is disposed between stacked unit cells (for example, Patent Document 2). ). The secondary battery module of Patent Document 2 includes a heat dissipation plate that can directly cool the unit battery with a cooling medium.

特開2008−171628号公報(図1,図4参照)Japanese Patent Laying-Open No. 2008-171628 (see FIGS. 1 and 4) 特開2006−278330号公報(図1,図3,図5参照)Japanese Patent Laying-Open No. 2006-278330 (see FIGS. 1, 3 and 5)

しかしながら、特許文献1の放熱用仕切り板は、流通経路として多数の中空部を有する形状のものをアルミ等の金属材により押出一体成形(以下、一体成形)しているため、製造コストが大きい。さらに、表面全体および中空部内部にニッケルメッキを施して製造するため、製造コストがさらに大きくなる。   However, since the heat dissipation partition plate of Patent Document 1 is formed by extrusion integral molding (hereinafter referred to as integral molding) with a metal material such as aluminum having a shape having a large number of hollow portions as distribution channels, the manufacturing cost is high. Furthermore, since the entire surface and the inside of the hollow part are plated with nickel, the manufacturing cost is further increased.

また、特許文献1の放熱用仕切り板は、まず流通経路を通る冷却媒体によって放熱用仕切り板を冷却し、その冷却された放熱用仕切り板によって電池を冷却する。つまり、電池が放熱用仕切り板を介して間接的に冷却されるため、電池を直接冷却する場合に比べると、冷却効率が低い。   In addition, the heat dissipation partition plate of Patent Document 1 first cools the heat dissipation partition plate with a cooling medium passing through the flow path, and cools the battery with the cooled heat dissipation partition plate. In other words, since the battery is indirectly cooled through the heat radiating partition plate, the cooling efficiency is low as compared with the case of directly cooling the battery.

一方、特許文献2の放熱プレートは一体成形であるため、特許文献1の放熱用仕切り板と同様の課題がある。また、この放熱プレートは、冷却媒体によって片方又は両方の単位電池を直接冷却できるが、冷却媒体用流路(クーリングチャネル)を形成するための基材部(特許文献2の図3左側の半円切り欠きのない部分、図5中央の土台部)が必須の構成となる。電池モジュール全体のサイズを小型化する際、基材部も小型化しなければならないが、構造上、基材部の小型化が困難な場合がある。さらに、冷却媒体は単位電池を冷却するだけでなく、基材部も冷却することとなり、その分単位電池の冷却効率は低下する。   On the other hand, since the heat radiating plate of Patent Document 2 is integrally molded, there is a problem similar to that of the heat radiating partition plate of Patent Document 1. In addition, this heat radiating plate can directly cool one or both unit cells with a cooling medium, but a base material for forming a cooling medium flow path (cooling channel) (a semicircle on the left side of FIG. 3 of Patent Document 2). The part without a notch, the base part in the center of FIG. 5 is an essential configuration. When the size of the battery module as a whole is reduced, the substrate portion must also be reduced. However, it may be difficult to reduce the size of the substrate portion due to the structure. Furthermore, the cooling medium not only cools the unit battery, but also cools the base member, and the cooling efficiency of the unit battery is reduced accordingly.

上記のように、特許文献1又は2に開示されている放熱板(放熱用仕切り板又は放熱プレート)には、以下の点で改良すべき余地がある。
(1)複雑な断面構造を有する一体成形された放熱板であり、製造コストがかかる。
(2)電池が放熱板を介して間接的に冷却されるため、電池を直接冷却する場合に比べ、冷却効率が低下する。
(3)基材部が必須の構成となり、電池モジュール全体のサイズを小型化する際、基材部の板厚やその存在自体が電池モジュールの小型化の妨げとなる場合がある。また、冷却媒体は、単位電池の冷却には直接関係しない基材部をも冷却する。
As described above, the heat dissipating plate (heat dissipating partition plate or heat dissipating plate) disclosed in Patent Document 1 or 2 has room for improvement in the following points.
(1) It is an integrally formed heat dissipation plate having a complicated cross-sectional structure, which requires manufacturing costs.
(2) Since the battery is indirectly cooled via the heat radiating plate, the cooling efficiency is reduced as compared with the case where the battery is directly cooled.
(3) When the base material portion is an essential configuration and the size of the entire battery module is reduced, the thickness of the base material portion and its presence may hinder the battery module from being downsized. Further, the cooling medium also cools the base material portion that is not directly related to the cooling of the unit battery.

本発明は上述の点に鑑みてなされたもので、簡単な構造の放熱板をスペーサとして用いることにより、低コストで冷却効率が高い電池モジュール、電池モジュールの製造方法および電池用スペーサを提供することを目的とする。   The present invention has been made in view of the above points, and provides a battery module having a low cost and high cooling efficiency, a battery module manufacturing method, and a battery spacer by using a heat sink having a simple structure as a spacer. With the goal.

上記の課題を解決するために本発明に係る電池モジュールは、単位電池を複数積層し、隣り合う各単位電池間にスペーサを配した電池モジュールにおいて、前記スペーサは、所定方向に延伸する複数の棒状部材からなり、前記棒状部材は、積層方向の前後に当接する2つの前記単位電池に挟持され、隣り合う前記棒状部材間が、冷却媒体用流路として形成されてなることを特徴とする。   In order to solve the above problems, the battery module according to the present invention is a battery module in which a plurality of unit cells are stacked and a spacer is disposed between adjacent unit cells, and the spacer is a plurality of rods extending in a predetermined direction. The rod-shaped member is sandwiched between two unit batteries that are in contact with the front and rear in the stacking direction, and the adjacent rod-shaped member is formed as a cooling medium flow path.

この構成によれば、簡単な構造の棒状部材を、各単位電池間に間隔をあけて複数配置することで、隣り合う単位電池と隣り合う棒状部材とにより囲われる空間を、冷却媒体の流路として形成することができる。また、冷却媒体が直接単位電池に接触するため、冷却効率が高い。   According to this configuration, a plurality of bar-shaped members having a simple structure are arranged with a space between each unit cell, so that a space surrounded by the adjacent unit cells and the adjacent bar-shaped member is formed as a flow path for the cooling medium. Can be formed as Moreover, since the cooling medium directly contacts the unit cell, the cooling efficiency is high.

ここで、以下語句について簡単に説明する。
・「積層方向」とは、単位電池を積層する方向をいう。
・「冷却媒体」とは、単位電池を冷却するための流体をいい、空気などの気体や、シリコン油、電気絶縁油、PCB油などの液体をいう。
Here, the terms are briefly described below.
-“Lamination direction” refers to the direction in which unit cells are laminated.
“Cooling medium” refers to a fluid for cooling the unit battery, and refers to a gas such as air or a liquid such as silicon oil, electrical insulating oil, or PCB oil.

請求項2に係る電池モジュールは、前記単位電池が、積層方向の前面が正極又は負極のいずれか一方を、後面が他方の極を有し、前記棒状部材が、導電性であることを特徴とする。   The battery module according to claim 2 is characterized in that the unit cell has a front surface in the stacking direction having either one of a positive electrode and a negative electrode, a rear surface having the other electrode, and the rod-shaped member is conductive. To do.

この構成によれば、積層方向における単位電池の前後面が、正極板・負極板で構成された単位電池を用いる場合、この棒状部材を導電性とすれば、各単位電池を電気的に接続することが容易にできる。つまり、この棒状部材が、隣り合う単位電池の対向する正極板と負極板とに当接することにより、これら単位電池を電気的に接続できる。   According to this configuration, when the unit battery in which the front and rear surfaces of the unit cell in the stacking direction are formed of a positive electrode plate and a negative electrode plate is used, each unit cell is electrically connected if the rod-shaped member is conductive. Can be easily done. That is, the unit cells can be electrically connected by abutting the opposing positive and negative electrode plates of the adjacent unit cells.

請求項3に係る電池モジュールは、前記スペーサは、前記各単位電池間への固定前において、前記各棒状部材が着脱可能な櫛歯状治具に保持され、前記各単位電池間への固定後に、前記櫛歯状治具を脱してなることを特徴とする。   In the battery module according to claim 3, the spacer is held by a comb-like jig to which the rod-shaped members can be attached and detached before being fixed between the unit cells, and after being fixed between the unit cells. The comb-shaped jig is removed.

この構成によれば、単位電池への固定前において、スペーサを構成する各棒状部材が上下の櫛歯状治具に保持されており、複数の棒状部材を一体として単位電池間に配置することができるため、スペーサの配置が容易である。そして、単位電池間へスペーサを固定した後に、櫛歯状治具を脱することで、容易にスペーサとしての各棒状部材を所定の位置に固定できる。ここで、「櫛歯状治具」とは、一方に複数の櫛歯が突出した櫛形の治具をいい、櫛歯と櫛歯の間に棒状部材が保持される。   According to this configuration, before fixing to the unit battery, each bar-shaped member constituting the spacer is held by the upper and lower comb-shaped jigs, and a plurality of bar-shaped members can be integrally disposed between the unit cells. Since it can do, arrangement | positioning of a spacer is easy. Then, after fixing the spacers between the unit cells, by removing the comb-shaped jig, it is possible to easily fix the rod-shaped members as the spacers at predetermined positions. Here, the “comb-shaped jig” refers to a comb-shaped jig having a plurality of comb teeth protruding on one side, and a rod-shaped member is held between the comb teeth.

なお、櫛歯状治具の材質としては、棒状部材が保持でき、かつ、棒状部材が着脱可能なものが好ましい。このような材質として、合成ゴムやポリプロピレン,ポリエチレン,シリコンゴムなどを用いることができる。   In addition, as a material of a comb-shaped jig | tool, what can hold | maintain a rod-shaped member and can attach or detach a rod-shaped member is preferable. As such a material, synthetic rubber, polypropylene, polyethylene, silicon rubber, or the like can be used.

請求項4に係る電池モジュールは、前記棒状部材の軸方向断面が、矩形形状であることが好ましい。   In the battery module according to a fourth aspect, it is preferable that an axial cross section of the rod-shaped member has a rectangular shape.

この構成によれば、棒状部材を単位電池に容易に設置でき、単位電池にしっかりと固定できる。   According to this configuration, the rod-shaped member can be easily installed on the unit battery and can be firmly fixed to the unit battery.

請求項5に係る電池モジュールは、前記矩形形状が、正方形又は、積層方向に平行な辺が他方の辺よりも短い長方形であることが好ましい。   In the battery module according to a fifth aspect, the rectangular shape is preferably a square or a rectangle whose side parallel to the stacking direction is shorter than the other side.

この構成によれば、棒状部材を単位電池に設置した際、棒状部材へ横方向の力が生じた場合にも、棒状部材が横に倒れにくい。要するに、棒状部材の軸方向断面を、積層方向に平行な辺の長さ寸法を他辺の長さ寸法以下(正方形又は横に長い長方形)にすることで、せん断力に強い棒状部材とできる。   According to this configuration, when the rod-shaped member is installed in the unit battery, the rod-shaped member is unlikely to fall down even when a lateral force is generated on the rod-shaped member. In short, the axial cross section of the rod-shaped member can be made to be a rod-shaped member resistant to shearing force by setting the length of the side parallel to the stacking direction to be equal to or less than the length of the other side (square or long rectangle).

請求項6に係る電池モジュールは、前記棒状部材の少なくとも一部が、積層方向断面が波形の板材により形成されてもよい。   In the battery module according to claim 6, at least a part of the rod-shaped member may be formed of a plate material having a corrugated cross section in the stacking direction.

この構成によれば、単位電池の積層方向において、棒状部材の断面が波形となり、横に倒れにくい。また、棒状部材の表面積が大きくなるため、冷却媒体に接触する面積も大きくなり、棒状部材の冷却が促進される。さらに、積層方向断面の面積が大きくなり、電気伝導率も高くなる。   According to this configuration, in the stacking direction of the unit cells, the cross-section of the rod-shaped member is corrugated and hardly falls down sideways. Further, since the surface area of the rod-shaped member is increased, the area in contact with the cooling medium is also increased, and cooling of the rod-shaped member is promoted. Furthermore, the area of the cross section in the stacking direction is increased, and the electrical conductivity is increased.

請求項7に係る電池モジュールは、前記棒状部材が、前記各単位電池間に等ピッチで平行に配置されることが好ましい。   In the battery module according to a seventh aspect, it is preferable that the rod-shaped members are arranged in parallel at equal pitches between the unit cells.

この構成によれば、棒状部材の配置が容易で、冷却媒体用流路を均等に形成でき、単位電池全体を均一に冷却することができる。   According to this configuration, the rod-shaped member can be easily arranged, the cooling medium flow path can be formed uniformly, and the entire unit battery can be cooled uniformly.

請求項8に係る電池モジュールは、前記棒状部材の配置が、前記各単位電池の両端部に配置するピッチよりも、同中央部に配置するピッチが広いこととしてもよい。   In the battery module according to an eighth aspect, the arrangement of the rod-shaped members may be wider in the central portion than the pitch in the both end portions of each unit battery.

この構成によれば、単位電池の中央部が、両端部よりも冷却媒体と接触する面積が大きくなり、中央部を積極的に冷却できる。なお、一般的に電池の両端部は熱が放出されやすく、中央部は熱がこもりやすい。   According to this configuration, the area where the central portion of the unit battery contacts the cooling medium is larger than both end portions, and the central portion can be actively cooled. In general, heat is easily released at both ends of the battery, and heat is easily accumulated at the center.

請求項9に係る電池モジュールは、前記棒状部材の積層方向断面が、両先端から中心にかけて膨らんだ形状であってもよい。   The battery module according to claim 9 may have a shape in which a cross section in the stacking direction of the rod-shaped member swells from both ends to the center.

この構成によれば、棒状部材が両先端から中心にかけて膨らんだ形状の棒形となり、横に倒れにくくなる。一方で、冷却媒体用流路は中心部の幅が狭くなるため、冷却媒体が中心部を通過する際に冷却媒体の流速が上がり、電池をより冷却できる。   According to this configuration, the rod-shaped member has a rod shape that swells from both ends to the center, and is less likely to fall sideways. On the other hand, since the cooling medium flow path has a narrow central portion, the flow rate of the cooling medium is increased when the cooling medium passes through the central portion, and the battery can be further cooled.

請求項10に係る電池モジュールは、前記単位電池が、ニッケル水素電池であってもよい。   In the battery module according to claim 10, the unit battery may be a nickel metal hydride battery.

この構成によれば、単位電池のエネルギー密度が高く、高出力の電池モジュールとできる。   According to this configuration, the unit battery has a high energy density and can be a high output battery module.

請求項11に係る電池の製造方法は、単位電池を複数積層してなる電池モジュールの製造方法であって、前記単位電池と、あらかじめ櫛歯状治具に嵌着された複数の棒状部材からなるスペーサを積層して単位電池集積体を形成する工程と、前記単位電池集積体を積層方向に押圧する工程と、両端の前記圧縮板を介して積層方向に単位電池集積体を押圧する工程と、前記単位電池集積体を押圧する工程と、前記単位電池集積体を押圧した後、前記櫛歯状治具を前記棒状部材から脱する工程と、を備えたことを特徴とする。   The battery manufacturing method according to claim 11 is a method of manufacturing a battery module in which a plurality of unit cells are stacked, and includes the unit battery and a plurality of rod-like members fitted in advance to a comb-like jig. Stacking spacers to form unit cell assemblies, pressing the unit cell assemblies in the stacking direction, pressing unit cell assemblies in the stacking direction via the compression plates at both ends, And a step of pressing the unit battery assembly, and a step of removing the comb-shaped jig from the rod-shaped member after pressing the unit battery assembly.

この構成によれば、簡単な構造の棒状部材を、各単位電池間に間隔をあけて複数配置することで、隣り合う単位電池と隣り合う棒状部材とにより囲われる空間を、冷却媒体の流路として形成した電池を容易に製造することができる。具体的には、単位電池の集積体を押圧する前において、スペーサを構成する各棒状部材の端部が櫛歯状治具に保持されているため、スペーサの取り扱いや配置が容易となる。そして、単位電池の集積体を押圧して単位電池間にスペーサを固定した後に、櫛歯状治具を脱することで、容易にスペーサとしての各棒状部材を所定の位置に配置できる。また、冷却媒体が直接単位電池に接触するため、冷却効率が高い。   According to this configuration, a plurality of bar-shaped members having a simple structure are arranged with a space between each unit cell, so that a space surrounded by the adjacent unit cells and the adjacent bar-shaped member is formed as a flow path for the cooling medium. The battery formed as can be easily manufactured. Specifically, since the end portions of the rod-shaped members constituting the spacer are held by the comb-shaped jig before pressing the unit cell assembly, the spacer can be easily handled and arranged. Then, after pressing the unit cell assembly to fix the spacers between the unit cells, the comb-shaped jig is removed, so that each rod-like member as the spacer can be easily arranged at a predetermined position. Moreover, since the cooling medium directly contacts the unit cell, the cooling efficiency is high.

請求項12に係る電池の製造方法は、単位電池を複数積層してなる電池モジュールの製造方法であって、前記単位電池と、あらかじめ櫛歯状治具に嵌着された複数の棒状部材からなるスペーサと、を積層して単位電池集積体を形成する工程と、前記単位電池集積体の積層方向両端部に、該単位電池集積体を両側から挟着するための挟着プレートを配する工程と、前記挟着プレートの積層方向断面は、前記単位電池の同断面よりも側方向に大きく、該挟着プレートの両側部にはボルトを挿通するための貫通孔が設けられており、前記挟着プレートを介して積層方向に前記単位電池集積体を押圧する工程と、前記単位電池集積体を押圧した後、積層方向両端部に配した前記挟着プレート間に前記ボルトを連通させ、前記単位電池集積体を積層方向両端から挟着するように、前記ボルトにより両端の前記挟着プレートを締結する工程と、前記ボルトと前記挟着プレートとの締結後に、前記櫛歯状治具を前記棒状部材から脱する工程と、を備えたことを特徴とする。   A battery manufacturing method according to claim 12 is a method of manufacturing a battery module in which a plurality of unit batteries are stacked, and includes the unit battery and a plurality of rod-shaped members fitted in advance to a comb-like jig. A step of stacking spacers to form a unit cell assembly, and a step of arranging sandwiching plates for sandwiching the unit cell assembly from both sides at both ends of the unit cell assembly in the stacking direction. The cross-section in the stacking direction of the sandwich plate is larger in the lateral direction than the same cross section of the unit cell, and through holes for inserting bolts are provided on both sides of the sandwich plate. A step of pressing the unit cell assembly in the stacking direction via a plate; and after pressing the unit cell assembly, the bolt is communicated between the sandwiching plates disposed at both ends in the stacking direction, Stack the stacking direction A step of fastening the clamping plates at both ends with the bolt so as to be clamped from an end; and a step of removing the comb-shaped jig from the rod-shaped member after the bolt and the clamping plate are fastened. , Provided.

この構成によれば、上記請求項11と異なる構成の電池についても、同様の効果が期待できる。   According to this configuration, the same effect can be expected for a battery having a configuration different from that of claim 11.

請求項13に係る電池の製造方法は、前記櫛歯状治具が、可撓性であることが好ましい。   In the battery manufacturing method according to a thirteenth aspect, the comb-shaped jig is preferably flexible.

この構成によれば、櫛歯状治具を可撓性のものとすることで、棒状部材を保持でき、かつ、棒状部材を容易に着脱できる。   According to this configuration, by making the comb-like jig flexible, the rod-shaped member can be held and the rod-shaped member can be easily attached and detached.

請求項14に係る電池の製造方法は、前記櫛歯状治具の櫛歯部分の先端が、鋭角又は丸みを帯びて形成されることが好ましい。   In the battery manufacturing method according to a fourteenth aspect, it is preferable that the tip of the comb tooth portion of the comb-shaped jig is formed with an acute angle or a rounded shape.

この構成によれば、櫛歯状治具の櫛歯部間に棒状部材を長手方向に沿って嵌め込む際、棒状部材がガイドされスムーズに嵌め込むことができる。   According to this configuration, when the rod-shaped member is fitted along the longitudinal direction between the comb-tooth portions of the comb-shaped jig, the rod-shaped member is guided and can be fitted smoothly.

請求項15に係る電池の製造方法は、前記櫛歯状治具の櫛歯部分の周面角部が、面取りされて形成されてもよい。   The battery manufacturing method according to claim 15 may be formed by chamfering a peripheral corner portion of a comb tooth portion of the comb-like jig.

この構成によれば、櫛歯状治具の櫛歯部間に棒状部材を厚み方向に沿って嵌め込む際、棒状部材がガイドされスムーズに嵌め込むことができる。   According to this configuration, when the rod-shaped member is fitted along the thickness direction between the comb-tooth portions of the comb-shaped jig, the rod-shaped member is guided and can be fitted smoothly.

請求項16に係る電池用スペーサは、単位電池を複数積層してなる電池の、隣り合う単位電池間に配し、単位電池を冷却するための冷却媒体用流路を形成する電池用スペーサであって、所定方向に延伸する複数の棒状部材からなり、前記棒状部材は、積層方向の前後に当接する2つの前記単位電池に挟持され、隣り合う前記棒状部材間を、前記冷却媒体用流路として用いることを特徴とする。   The battery spacer according to claim 16 is a battery spacer that is provided between adjacent unit cells of a battery in which a plurality of unit cells are stacked, and forms a cooling medium flow path for cooling the unit cells. The rod-shaped member is sandwiched between the two unit cells that are in contact with the front and rear in the stacking direction, and the adjacent rod-shaped member is used as the cooling medium flow path. It is characterized by using.

この構成によれば、簡単な構造の棒状部材を、各単位電池間に間隔をあけて複数配置することで、隣り合う単位電池と隣り合う棒状部材とにより囲われる空間を、冷却媒体の流路として形成することができる。また、冷却媒体が直接単位電池に接触するため、冷却効率が高い。   According to this configuration, a plurality of bar-shaped members having a simple structure are arranged with a space between each unit cell, so that a space surrounded by the adjacent unit cells and the adjacent bar-shaped member is formed as a flow path for the cooling medium. Can be formed as Moreover, since the cooling medium directly contacts the unit cell, the cooling efficiency is high.

請求項17に係る電池用スペーサは、前記棒状部材が、導電性であることを特徴とする。   The battery spacer according to claim 17 is characterized in that the rod-shaped member is conductive.

請求項18に係る電池用スペーサは、前記スペーサは、前記各単位電池間への固定前において、前記棒状部材が着脱可能な櫛歯状治具に保持され、前記単位電池への固定後に、前記櫛歯状治具を脱することを特徴とする。   The spacer for a battery according to claim 18, wherein the spacer is held by a comb-like jig to which the rod-shaped member is detachable before being fixed between the unit batteries, and after being fixed to the unit battery, The comb-shaped jig is removed.

請求項19に係る電池用スペーサは、前記棒状部材が、前記各単位電池間に等ピッチで平行に配置されることが好ましい。   In the battery spacer according to claim 19, it is preferable that the rod-shaped members are arranged in parallel at an equal pitch between the unit batteries.

請求項20に係る電池用スペーサは、前記櫛歯状治具が、可撓性であることが好ましい。   In the battery spacer according to claim 20, it is preferable that the comb-shaped jig is flexible.

以上のように、本発明に係る電池モジュール、電池モジュールの製造方法および電池用スペーサは、次のような優れた効果がある。
・簡単な構造のスペーサを用いて電池の冷却効率を向上でき、低コスト化できる。
・電池が冷却媒体により直接冷却されるため、冷却効率が高くなる。
・各棒状部材を繋ぐための基材部が不要であり、電池を小型化できる。また、冷却媒体は基材部を冷却しないので、冷却効率が高くなる。
As described above, the battery module, the battery module manufacturing method, and the battery spacer according to the present invention have the following excellent effects.
-The cooling efficiency of the battery can be improved by using a spacer having a simple structure, and the cost can be reduced.
-Since the battery is directly cooled by the cooling medium, the cooling efficiency is increased.
-The base material part for connecting each rod-shaped member is unnecessary, and a battery can be reduced in size. Further, since the cooling medium does not cool the substrate portion, the cooling efficiency is increased.

本発明の実施形態に係る電池モジュールの斜視図である。It is a perspective view of the battery module which concerns on embodiment of this invention. (a)は、スペーサを櫛歯状治具に嵌めた状態の正面図である。(b)は、同スペーサを単位電池に接続した状態の平面図である。(c)は、同スペーサ端部を一部拡大した斜視図である。(A) is a front view of a state in which a spacer is fitted in a comb-like jig. (B) is a top view of the state which connected the same spacer to the unit battery. (C) is the perspective view which expanded the spacer edge part partially. (a),(b)は、本発明の実施形態に係る電池モジュールにおいて、スペーサの棒状部材の形状を変えた変形例を示す正面図である。(A), (b) is a front view which shows the modification which changed the shape of the rod-shaped member of a spacer in the battery module which concerns on embodiment of this invention. (a)〜(d)は、本発明の実施形態に係る電池モジュールにおいて、櫛歯状治具の櫛歯部形状を変えた変形例を示す図である。(A)-(d) is a figure which shows the modification which changed the comb-tooth part shape of the comb-shaped jig | tool in the battery module which concerns on embodiment of this invention. 本発明の実施形態に係る電池モジュールにおけるスペーサ内の冷却媒体(空気)の流れを示す斜視図である。It is a perspective view which shows the flow of the cooling medium (air) in the spacer in the battery module which concerns on embodiment of this invention. 図5の電池モジュールにおける単位電池内の熱の流れ方向を示す平面図である。It is a top view which shows the flow direction of the heat | fever in the unit battery in the battery module of FIG. 本発明の実施形態に係る電池モジュールに取り付ける、強制冷却ファンと風洞により冷却を行う冷却ユニットの斜視図である。It is a perspective view of the cooling unit which cools with the forced cooling fan and wind tunnel which are attached to the battery module which concerns on embodiment of this invention. (a)〜(c)は、本発明の実施形態に係る電池モジュールにおいて、スペーサの棒状部材の形状や配置を変えた変形例を示す正面図である。(A)-(c) is a front view which shows the modification which changed the shape and arrangement | positioning of the rod-shaped member of a spacer in the battery module which concerns on embodiment of this invention. 本発明の実施形態に係る電池モジュールの製造プロセスを示す斜視図である。It is a perspective view which shows the manufacturing process of the battery module which concerns on embodiment of this invention. 本発明の実施形態に係る電池モジュールの変形例の製造プロセスを示す斜視図である。It is a perspective view which shows the manufacturing process of the modification of the battery module which concerns on embodiment of this invention.

以下、本発明に係る電池モジュール及び電池モジュールの製造方法並びに電池用スペーサの実施形態について、図面に基づき説明する。なお、本発明は下記実施形態に限定されるものではない。   Embodiments of a battery module, a battery module manufacturing method, and a battery spacer according to the present invention will be described below with reference to the drawings. The present invention is not limited to the following embodiment.

[電池モジュールの構成]
図1に示すように、電池モジュール1は、単位電池2、スペーサ3、圧縮板4、側面板5、補強板6とを主要な構成要素とする。具体的には、単位電池2とスペーサ3とを交互に積層して単位電池集積体11を構成し、単位電池集積体11の両端に集電板,絶縁板,圧縮サポート板(図示せず)を介して圧縮板4が配され、左右側面を側面板5で、上下面を補強板6で覆われて電池モジュール1が構成される。なお、本実施形態において、単位電池2等を積層する積層方向は図1のX方向をいう。
[Configuration of battery module]
As shown in FIG. 1, the battery module 1 includes a unit battery 2, a spacer 3, a compression plate 4, a side plate 5, and a reinforcing plate 6 as main components. Specifically, the unit battery 2 and the spacer 3 are alternately stacked to form a unit battery assembly 11, and a current collector plate, an insulating plate, and a compression support plate (not shown) are provided at both ends of the unit battery assembly 11. The battery plate 1 is configured by covering the left and right side surfaces with side plates 5 and the upper and lower surfaces with reinforcing plates 6. In the present embodiment, the stacking direction in which the unit cells 2 and the like are stacked is the X direction in FIG.

・単位電池2
単位電池2は、密閉型のニッケル水素電池である。図6に示すように、単位電池2は、積層方向Xの前後に、導電性の良い金属からなる正極集電体21と負極集電体23とが対向して設けられている。これら正極集電体21と負極集電体23との間には、イオンは透過するが電子を透過しない蛇腹状のセパレータ25が交互に両集電体に近接するように配置され、これにより正極部と負極部とに区画されている。そして、セパレータ25と正極集電体21とで形成される各空間には電解質溶液とともに正極活物質を含有する正極シート22が配置され、セパレータ25と負極集電体23とで形成される区画される空間には電解質溶液とともに負極活物質を含有する負極シート24が配置され、正極シート22と負極シート24とがセパレータ25を挟んで交互に組み込まれている。なお、正極集電体21と負極集電体23は、それぞれ正極シート22及び負極シート24と接触し、それぞれ正極,負極を構成する。したがって、各単位電池2を、正極集電体21と負極集電体23とが対向するように積層することで、各単位電池2を電気的に接続することができるし、各単位電池2間に導電性のスペーサ(棒状部材31)を介してもよい。
・ Unit battery 2
The unit battery 2 is a sealed nickel-metal hydride battery. As shown in FIG. 6, the unit cell 2 is provided with a positive electrode current collector 21 and a negative electrode current collector 23 made of a metal having good conductivity before and after the stacking direction X. Between the positive electrode current collector 21 and the negative electrode current collector 23, bellows-like separators 25 that transmit ions but do not transmit electrons are alternately arranged so as to be close to both current collectors. And a negative electrode part. In each space formed by the separator 25 and the positive electrode current collector 21, the positive electrode sheet 22 containing the positive electrode active material together with the electrolyte solution is disposed, and is partitioned by the separator 25 and the negative electrode current collector 23. The negative electrode sheet 24 containing the negative electrode active material together with the electrolyte solution is disposed in the space, and the positive electrode sheet 22 and the negative electrode sheet 24 are alternately incorporated with the separator 25 interposed therebetween. The positive electrode current collector 21 and the negative electrode current collector 23 are in contact with the positive electrode sheet 22 and the negative electrode sheet 24, respectively, and constitute a positive electrode and a negative electrode, respectively. Therefore, each unit battery 2 can be electrically connected by stacking each unit battery 2 so that the positive electrode current collector 21 and the negative electrode current collector 23 face each other. Alternatively, a conductive spacer (bar-shaped member 31) may be interposed.

なお、本実施形態において、正極シート22は、例えば、正極活物質と導電性フィラー(導電材)と樹脂とに溶剤を加えてペースト状にしたものを基板上に塗布して板状に成形し、硬化させたものである。負極シート24は、たとえば、負極活物質と導電性フィラーと樹脂とに溶剤を加えてペースト状にしたものを基板上に塗布して板状に成形し、硬化させたものである。   In this embodiment, for example, the positive electrode sheet 22 is formed into a plate by applying a paste to a positive electrode active material, a conductive filler (conductive material), and a resin by adding a solvent. , Cured. The negative electrode sheet 24 is obtained by, for example, applying a paste obtained by adding a solvent to a negative electrode active material, a conductive filler, and a resin, forming the paste on a substrate, and then curing it.

正極活物質および負極活物質としては、すべての公知の活物質材料を用いることができる。導電性フィラーとしては、炭素繊維、炭素繊維にニッケルメッキしたもの、炭素粒子、炭素粒子にニッケルメッキしたもの、有機繊維にニッケルメッキしたもの、繊維状ニッケル、ニッケル粒子、ニッケル箔などを単独または組み合わせて用いることができる。樹脂としては、軟化温度120℃までの熱可塑性樹脂、硬化温度が常温から120℃までの樹脂、蒸発温度120℃以下の溶剤に溶解する樹脂、水に可溶な溶剤に溶解する樹脂、アルコールに可溶な溶剤に溶解する樹脂などを用いることができる。基板としては、アルミ板、ニッケルメッキを施したアルミ板、ニッケル板などの導電性のある金属板などを用いることができる。   As the positive electrode active material and the negative electrode active material, all known active material materials can be used. As the conductive filler, carbon fiber, carbon fiber nickel-plated, carbon particles, carbon particle nickel-plated, organic fiber nickel-plated, fibrous nickel, nickel particles, nickel foil, etc. alone or in combination Can be used. Examples of the resin include thermoplastic resins having a softening temperature of 120 ° C., resins having a curing temperature from room temperature to 120 ° C., resins that dissolve in a solvent having an evaporation temperature of 120 ° C. or less, resins that dissolve in a solvent soluble in water, and alcohol. Resins that are soluble in a soluble solvent can be used. As the substrate, a conductive metal plate such as an aluminum plate, a nickel-plated aluminum plate, or a nickel plate can be used.

・スペーサ3
図2(a)に示すように、本実施形態に係るスペーサ3は、導電性の棒状部材31からなる。棒状部材31には、アルミニウム材、ニッケルメッキを施したアルミニウム材、ニッケル材などの導電性を有する材料を用いることができる。各単位電池2への固定前において、棒状部材31は一対の櫛歯状治具7により、上下端部が保持される。そして、各単位電池2間へ固定された後、櫛歯状治具7を棒状部材31から抜き取ることで、棒状部材31を各単位電池2間に各々等ピッチで平行に配置することができる。
・ Spacer 3
As shown in FIG. 2A, the spacer 3 according to this embodiment includes a conductive rod-shaped member 31. The rod-shaped member 31 can be made of a conductive material such as an aluminum material, a nickel-plated aluminum material, or a nickel material. Before fixing to each unit battery 2, the upper and lower ends of the rod-shaped member 31 are held by the pair of comb-shaped jigs 7. And after fixing between each unit battery 2, the comb-shaped jig | tool 7 is extracted from the rod-shaped member 31, and the rod-shaped member 31 can be arrange | positioned in parallel with each unit cell 2 at equal pitch.

なお、本実施形態においては、単位電池2の高さ方向に延伸した棒状部材31を、単位電池2の横方向に等ピッチで配置しているが、これに限定されず、たとえば単位電池2の横方向に延伸した棒状部材を、単位電池2の高さ方向に等ピッチで配置してもよい。   In the present embodiment, the rod-shaped members 31 extending in the height direction of the unit battery 2 are arranged at an equal pitch in the lateral direction of the unit battery 2. However, the present invention is not limited to this. You may arrange | position the rod-shaped member extended | stretched to the horizontal direction at equal pitch in the height direction of the unit battery 2. FIG.

また、スペーサ3は、あらかじめ櫛歯状治具7に棒状部材31を嵌着させた組立状態で一部品として扱う。こうすれば、単位電池2を積層する際に挟み込むのが容易で作業コストを抑えることができる。また、櫛歯状治具7は、使用後に、再び棒状部材31を嵌着させ使用することができ、リサイクルが可能である。したがって、材料コストを抑えることができる。   The spacer 3 is handled as one component in an assembled state in which the bar-shaped member 31 is fitted in the comb-shaped jig 7 in advance. If it carries out like this, when unit battery 2 is laminated | stacked, it will be easy to pinch | interpose and work cost can be held down. In addition, the comb-like jig 7 can be used by fitting the rod-like member 31 again after use, and can be recycled. Therefore, the material cost can be suppressed.

さらに、図1に示す電池モジュール1や単位電池2に設計変更が生じた結果、スペーサ3に設計変更が生じる場合であっても、図2(a)に示すスペーサ3の棒状部材31の配置や形状は柔軟に設計変更できるので、電池モジュール1の構成を柔軟に設計変更することができる。   Further, even when the design change occurs in the spacer 3 as a result of the design change in the battery module 1 or the unit battery 2 shown in FIG. 1, the arrangement of the rod-shaped members 31 of the spacer 3 shown in FIG. Since the design of the shape can be flexibly changed, the configuration of the battery module 1 can be flexibly changed.

図2(b)は棒状部材31を各単位電池2間に設置した状態の平面図である。図2(b)に示すように、棒状部材31の軸方向断面は略正方形である。また、図2(b)に示すように、隣り合う単位電池2と隣り合うスペーサ3とにより空間が形成され、この空間が冷却媒体を流通するための流路32となる。本実施形態では、冷却媒体として空気を用いる。なお、棒状部材31が単位電池2間に各々等ピッチで平行に配置されているため、流路32は単位電池2の各部において均一に形成され、単位電池2の各部を均一に冷却できる。   FIG. 2B is a plan view showing a state in which the rod-shaped member 31 is installed between the unit cells 2. As shown in FIG.2 (b), the axial direction cross section of the rod-shaped member 31 is a substantially square. Further, as shown in FIG. 2B, a space is formed by the adjacent unit cells 2 and the adjacent spacers 3, and this space becomes a flow path 32 for circulating the cooling medium. In this embodiment, air is used as the cooling medium. Since the rod-shaped members 31 are arranged in parallel at equal pitches between the unit batteries 2, the flow path 32 is uniformly formed in each part of the unit battery 2, and each part of the unit battery 2 can be cooled uniformly.

また、棒状部材31は拍子木形状の金属片からなるため、安価に製造できる。従来の放熱板は、一体成形されているので、放熱板の一部に不具合がある場合、放熱板全体を取り替える必要があるが、本実施形態の場合、不具合のある棒状部材31のみを取り替えればよく、コストダウンが図れる。さらに、棒状部材31は単純な形状(拍子木形状)であるため、加工精度の高い棒状部材31を製造でき、サイズの制限など棒状部材31の製造に伴う制約を少なくすることができる。加えて、従来のスペーサにおいて中空部を構成するための基材部がなくなるので、その厚さの分だけ、本実施形態では、スペーサ3を薄くでき、全体として積層方向に電池モジュールを小型化できる。   Moreover, since the rod-shaped member 31 consists of a timepiece-shaped metal piece, it can be manufactured at low cost. Since the conventional heat sink is integrally formed, if there is a defect in a part of the heat sink, it is necessary to replace the entire heat sink, but in the case of this embodiment, only the defective bar member 31 can be replaced. It is enough to reduce the cost. Furthermore, since the bar-shaped member 31 has a simple shape (beat tree shape), the bar-shaped member 31 with high processing accuracy can be manufactured, and restrictions associated with the manufacturing of the bar-shaped member 31 such as size limitations can be reduced. In addition, since there is no base material for forming the hollow portion in the conventional spacer, the spacer 3 can be made thinner by the thickness, and the battery module can be downsized in the stacking direction as a whole. .

櫛歯状治具7の材質は、棒状部材31を保持できるよう摩擦がとれ、かつ、棒状部材31から容易に抜き取れるようにある程度の変形が可能な可撓性のあるものがよい。また、櫛歯状治具7の材質は、棒状部材31の保持・抜き取りを繰り返し可能とするものが好ましい。このような材質として、ポリプロピレンやポリエチレン、合成ゴム、シリコンゴムなどを用いることができる。   The material of the comb-like jig 7 is preferably a flexible material that can be deformed to some extent so that it can be easily pulled out of the rod-shaped member 31 and can be easily rubbed so as to hold the rod-shaped member 31. The material of the comb-like jig 7 is preferably a material that can repeatedly hold and extract the rod-like member 31. As such a material, polypropylene, polyethylene, synthetic rubber, silicon rubber, or the like can be used.

また、図2(c)に示すように、櫛歯状治具7の積層方向Xの厚さ寸法は、棒状部材31の同方向の厚さ寸法よりも小さくしている。この構成のため、スペーサを固定した後でも、棒状部材31から櫛歯状治具7を抜き取る際に、櫛歯状治具7が単位電池2に干渉せず、抜き取りやすい。   2C, the thickness dimension of the comb-shaped jig 7 in the stacking direction X is smaller than the thickness dimension of the rod-shaped member 31 in the same direction. Due to this configuration, even after the spacer is fixed, the comb-shaped jig 7 does not interfere with the unit battery 2 when the comb-shaped jig 7 is extracted from the rod-shaped member 31 and is easily extracted.

ところで、図1に示すように、本実施形態においては、単位電池2とスペーサ3とを積層してなる単位電池積層体11に取り付ける側面板5の積層方向断面が、コの字形状(略矩形枠の一方を開口した形状)である。この場合は、櫛歯状治具7を棒状部材31から抜き取る際に、側面板5に干渉しないよう、櫛歯状治具7の横寸法を単位電池2の横寸法よりも短い構成にするとよい。さらに、そのままでは単位電池2の両側部に棒状部材31を設置することができないため、単位電池2の両側部には手作業により棒状部材31を設置する。もしくは、櫛歯状治具7の両端に保持される棒状部材31については、棒状部材31の中央部に外方に向けた突出部となる部材をプレスや溶接,接着剤などにより取付線(破線)に沿って、あらかじめ取り付けた棒状部材33を用いてもよい(図3(a))。このように櫛歯状治具や棒状部材の形状を柔軟に調整することでスペーサ3と周辺部材に合わせた形で設置できる。   By the way, as shown in FIG. 1, in this embodiment, the lamination direction cross section of the side plate 5 attached to the unit battery laminated body 11 which laminates | stacks the unit battery 2 and the spacer 3 is U-shaped (substantially rectangular shape). A shape in which one side of the frame is opened). In this case, when the comb-shaped jig 7 is extracted from the bar-shaped member 31, the lateral dimension of the comb-shaped jig 7 is preferably shorter than the lateral dimension of the unit battery 2 so as not to interfere with the side plate 5. . Furthermore, since the rod-shaped members 31 cannot be installed on both sides of the unit battery 2 as they are, the rod-shaped members 31 are manually installed on both sides of the unit battery 2. Or about the rod-shaped member 31 hold | maintained at the both ends of the comb-shaped jig | tool 7, the member which becomes a protrusion part toward the outer side in the center part of the rod-shaped member 31 is attached by a press, welding, an adhesive agent (broken line) ) May be used in advance, as shown in FIG. 3 (a). Thus, it can install in the form matched with the spacer 3 and the peripheral member by adjusting the shape of a comb-shaped jig | tool or a rod-shaped member flexibly.

・圧縮板4
図1に示すように、本実施形態に係る圧縮板4は、鋼板からなり、中央部に円形の開口部41を有し、周縁部にボルト孔42、両側面及び積層方向Xに向かってボルト孔43を有する。また圧縮板4の断面形状は、単位電池2の断面形状と略同一である。圧縮板4は、単位電池積層体11の両端に集電板,絶縁板,圧縮サポート板(図示せず)を順に介在させて設置する。そして、圧縮板4を介して単位電池積層体11を両端から大きな力で押圧し、両端の圧縮板4と側面板5とをボルト固定する。なお、単位電池2及びスペーサ3は、この押圧により圧縮固定される。
・ Compression plate 4
As shown in FIG. 1, the compression plate 4 according to the present embodiment is made of a steel plate, has a circular opening 41 in the center, bolts 42 in the peripheral part, bolts toward both sides and the stacking direction X. A hole 43 is provided. The cross-sectional shape of the compression plate 4 is substantially the same as the cross-sectional shape of the unit battery 2. The compression plate 4 is installed at both ends of the unit cell stack 11 with a current collector plate, an insulating plate, and a compression support plate (not shown) interposed in this order. And the unit battery laminated body 11 is pressed with a big force from both ends via the compression plate 4, and the compression plate 4 and the side plate 5 of both ends are bolt-fixed. The unit battery 2 and the spacer 3 are compressed and fixed by this pressing.

・側面板5
図1に示すように、本実施形態に係る側面板5は、単位電池2の積層方向断面がコの字形状の鋼板であり、圧縮板4とボルト固定するための貫通孔51と、補強板6とボルト固定するための貫通孔52とを有し、単位電池積層体11の両側に設置する。
・ Side plate 5
As shown in FIG. 1, the side plate 5 according to the present embodiment is a steel plate having a U-shaped cross section in the stacking direction of the unit battery 2, a through hole 51 for fixing the compression plate 4 to the bolt, and a reinforcing plate. 6 and through-holes 52 for fixing bolts, and are installed on both sides of the unit cell stack 11.

・補強板6
図1に示すように、本実施形態に係る補強板6は、単位電池2の積層方向断面がコの字形状の鋼板であり、側面板5とボルト固定するための貫通孔61と、電池モジュール1の吊り上げ時に必要なアイボルトを取り付けるための貫通孔(図示せず)とを有する。また、補強板6は単位電池積層体11に側面板5を取り付けた後、上下に取り付ける。
・ Reinforcement plate 6
As shown in FIG. 1, the reinforcing plate 6 according to the present embodiment is a steel plate having a U-shaped cross section in the stacking direction of the unit battery 2, a through hole 61 for fixing the side plate 5 to the bolt, and a battery module. 1 has a through hole (not shown) for attaching an eyebolt necessary for lifting. In addition, the reinforcing plate 6 is attached up and down after the side plate 5 is attached to the unit cell stack 11.

(スペーサ3の変形例)
なお、図3(b)に示すように、上記構造のスペーサ3の棒状部材31に代えて、単位電池の積層方向断面が波形の板材により形成されたスペーサを用いてもよい。このようにすれば、積層方向断面の面積が大きくなるため、電気伝導率も向上する。さらに、波形の板材の同図における側面の表面積が、上記棒状部材31に比べて大きいので、空気に接触する面積を大きくとれる。よって、スペーサ3の冷却が促進され、単位電池2の冷却効率を向上できる。
(Modification of spacer 3)
As shown in FIG. 3B, instead of the rod-shaped member 31 of the spacer 3 having the above structure, a spacer formed by a plate material having a corrugated cross section in the stacking direction of the unit cell may be used. In this way, since the area of the cross section in the stacking direction is increased, the electrical conductivity is also improved. Furthermore, since the surface area of the side surface in the figure of the corrugated plate material is larger than that of the rod-shaped member 31, the area in contact with air can be increased. Therefore, cooling of the spacer 3 is promoted and the cooling efficiency of the unit battery 2 can be improved.

(櫛歯状治具7の変形例)
また、図4(a),(b)に示すように、櫛歯状治具7の各櫛歯部71の先端形状を、鋭角とすることや、丸みを帯びた形状とすることもできる。このようにすれば、あらかじめ櫛歯状治具7に棒状部材31を長手方向に沿って嵌め込む際に、棒状部材31が櫛歯部71間にガイドされるため、作業性がよい。
(Modification of comb-shaped jig 7)
Moreover, as shown to Fig.4 (a), (b), the front-end | tip shape of each comb-tooth part 71 of the comb-tooth shaped jig | tool 7 can also be made into an acute angle, and can also be made into the rounded shape. In this way, when the rod-shaped member 31 is fitted in the comb-shaped jig 7 in advance along the longitudinal direction, the rod-shaped member 31 is guided between the comb-tooth portions 71, so that workability is good.

さらに、図4(c),(d)に示すように、櫛歯状治具7の各櫛歯部71の周面角部を、面取りした形状とすることもできる。このようにすれば、あらかじめ櫛歯状治具7に棒状部材31を厚み方向に沿って嵌め込む際にも、棒状部材31が櫛歯部71間にガイドされる。   Further, as shown in FIGS. 4C and 4D, the peripheral corners of the comb teeth 71 of the comb-shaped jig 7 can be chamfered. By doing so, the rod-shaped member 31 is guided between the comb-tooth portions 71 also when the rod-shaped member 31 is fitted in the comb-shaped jig 7 in the thickness direction in advance.

なお、本実施形態においては、単位電池2とスペーサ3とを横方向Xに積層しているが、これに限定されず、たとえば単位電池2とスペーサ3とを上下方向に積層してもよい。上下方向に積層する場合、図4(c),(d)に示す櫛歯状治具7を用いると、棒状部材31の配置がしやすい。   In the present embodiment, the unit battery 2 and the spacer 3 are stacked in the lateral direction X. However, the present invention is not limited to this. For example, the unit battery 2 and the spacer 3 may be stacked in the vertical direction. In the case of stacking in the vertical direction, if the comb-like jig 7 shown in FIGS. 4C and 4D is used, the rod-shaped members 31 can be easily arranged.

[冷却構造]
次に、本実施形態に係る冷却構造について説明する。図5に示すように、空気が、棒状部材31と単位電池2とに囲われた流路32を下から上へ流通し、単位電池2を冷却する。この時、空気が棒状部材31を冷却して、冷却された棒状部材31が当接する単位電池2を表面から冷却する、と同時に、空気が単位電池2に直接接触することでも単位電池2を表面から冷却する。なお、単位電池2は図6に示す構成をとるため、電池反応の結果、単位電池2の正極シート22又は負極シート24に発生した熱は、図6に示す矢印の方向に伝達されて、正極集電体21や負極集電体23で空気に触れ、外部に放出されるので、効率的に単位電池2を冷却することができる。このように単位電池2を冷却することで、単位電池2の温度を、電池反応がスムーズに実行できる適正な範囲に維持することができる。
[Cooling structure]
Next, the cooling structure according to the present embodiment will be described. As shown in FIG. 5, air flows from the bottom to the top through the flow path 32 surrounded by the rod-shaped member 31 and the unit battery 2 to cool the unit battery 2. At this time, air cools the rod-shaped member 31 and cools the unit cell 2 with which the cooled rod-shaped member 31 abuts from the surface. At the same time, the air directly contacts the unit cell 2 to bring the unit cell 2 to the surface. Cool from. Since the unit battery 2 has the configuration shown in FIG. 6, the heat generated in the positive electrode sheet 22 or the negative electrode sheet 24 of the unit battery 2 as a result of the battery reaction is transferred in the direction of the arrow shown in FIG. Since the current collector 21 and the negative electrode current collector 23 are exposed to air and released to the outside, the unit battery 2 can be efficiently cooled. By cooling the unit battery 2 in this way, the temperature of the unit battery 2 can be maintained in an appropriate range in which the battery reaction can be smoothly executed.

また、特許文献1などのように従来の電池モジュールの冷却構造においては、まず空気が放熱板を冷却し、続いて放熱板が単位電池を冷却する。一方、本発明の冷却構造は、空気が単位電池2を直接冷却することができるため、従来の冷却構造よりもさらに冷却効率を向上できる。   Moreover, in the conventional battery module cooling structure such as Patent Document 1, air first cools the heat sink, and then the heat sink cools the unit battery. On the other hand, since the cooling structure of the present invention can directly cool the unit battery 2, the cooling efficiency can be further improved as compared with the conventional cooling structure.

(冷却構造の変形例1)
本実施形態において、更に冷却効率を向上させるための構造の例を図7に示す。図7は、強制冷却を行う吸気ファン81と風洞(空気流通空間)82,83とを備えた冷却ユニット8の構成を示した斜視図である。冷却ユニット8の内部に、図1に示す電池モジュール1を配置することで、吸気ファン81によって下部空気流通空間82に吸い込まれた空気が、単位電池積層体11内の流路32を通過し、上部空気流通空間83を経て外部に放出される。なお、図7において、矢印は空気の流れる方向を示す。このように、電池モジュールを強制冷却する構造をさらに設けることで、冷却効率を一層高めることができる。
(Modification 1 of cooling structure)
FIG. 7 shows an example of a structure for further improving the cooling efficiency in the present embodiment. FIG. 7 is a perspective view showing a configuration of a cooling unit 8 including an intake fan 81 for performing forced cooling and wind tunnels (air circulation spaces) 82 and 83. By disposing the battery module 1 shown in FIG. 1 inside the cooling unit 8, the air sucked into the lower air circulation space 82 by the intake fan 81 passes through the flow path 32 in the unit battery stack 11, It is discharged to the outside through the upper air circulation space 83. In FIG. 7, the arrow indicates the direction of air flow. Thus, by further providing a structure for forcibly cooling the battery module, the cooling efficiency can be further increased.

(冷却構造の変形例2)
図2(a)に示すように、本実施形態に係る本実施形態において、スペーサ3の棒状部材31は各々等ピッチで平行に設置されているが、この棒状部材31の形状又は配置を変えた変形例を以下に示す。
(Modification 2 of cooling structure)
As shown in FIG. 2A, in the present embodiment according to the present embodiment, the bar-shaped members 31 of the spacer 3 are installed in parallel at equal pitches, but the shape or arrangement of the bar-shaped members 31 is changed. A modification is shown below.

(a)図8(a)は、棒状部材31のピッチについて、単位電池の中央部を端部に比べ広くした変形例である。このようにすれば、単位電池の中央部における空気の流量が端部における空気の流量に比べて大きくなるため、比較的高温となる中央部を積極的に冷却できる。 (A) FIG. 8A is a modification in which the central portion of the unit battery is wider than the end portion with respect to the pitch of the rod-shaped members 31. In this way, since the air flow rate at the central portion of the unit cell is larger than the air flow rate at the end portion, the central portion that is relatively hot can be actively cooled.

(b)図8(b)は、棒状部材31の形状が、上下両端部から中心部にかけて膨らんだ形状とした変形例である。このようにすれば、流路32を通過する空気の速度が、単位電池の下部に比べて、単位電池の中心部において速くなる。そうすると、比較的高温となる単位電池の中心部を積極的に冷却できる。 (B) FIG.8 (b) is the modification which made the shape of the rod-shaped member 31 the shape which swelled from the up-and-down both ends to the center part. In this way, the speed of the air passing through the flow path 32 is faster at the center of the unit cell than at the lower part of the unit cell. If it does so, the center part of the unit battery used as a comparatively high temperature can be actively cooled.

(c)図8(c)は、両端の棒状部材31はそのままで、それ以外の棒状部材31の中心部を切除した変形例である。このようにすれば、単位電池の端部及び中央部の流路32を通過した空気が中心部で混ざり合うことで、空気の温度が均一化し、その空気を各流路32の上部へ一様に流すことができる。
以上、図8(a)〜(c)の変形例によれば、特に単位電池が大型化した場合に、単位電池内部にこもる熱を効率よく放出することができる。
(C) FIG.8 (c) is the modification which cut off the center part of the rod-shaped member 31 other than that, with the rod-shaped member 31 of both ends as it is. In this way, the air that has passed through the end 32 and the center channel 32 of the unit cell is mixed in the center, so that the temperature of the air is uniformed and the air is uniformly distributed to the upper part of each channel 32. Can be shed.
As described above, according to the modified examples of FIGS. 8A to 8C, the heat accumulated in the unit cell can be efficiently released particularly when the unit cell is enlarged.

[電池モジュール1の製造方法]
続いて、本実施形態に係る電池モジュール1の製造方法について、図9を用いて説明する。図9は、電池モジュールの製造工程を示す図である。なお、本実施形態で、電池モジュール1は単位電池2を4個積層した場合を対象としているが、これに限定されるものではない。
[Method for Manufacturing Battery Module 1]
Then, the manufacturing method of the battery module 1 which concerns on this embodiment is demonstrated using FIG. FIG. 9 is a diagram illustrating a manufacturing process of the battery module. In the present embodiment, the battery module 1 is intended for a case where four unit batteries 2 are stacked, but is not limited thereto.

・工程I
図9(I)および(II)に示すように、まず、単位電池2と、上下の櫛歯状治具7によりあらかじめ棒状部材31が保持された状態のスペーサ3とを積層して単位電池集積体11を成形する。この時、各単位電池2の向きを揃えることに注意する。各単位電池2の向きとは、正極面と負極面との向きを言い、各単位電池2の正極面と負極面とが対向する向きで積層する。すなわち、導電性のスペーサ3を介して、電池モジュール1のすべての単位電池2が直列接続されるように、単位電池2の向きを揃えて積層する。
・ Process I
As shown in FIGS. 9 (I) and (II), first, the unit battery 2 and the spacer 3 in a state where the rod-shaped member 31 is held in advance by the upper and lower comb-shaped jigs 7 are stacked to unitize the unit battery. The body 11 is molded. At this time, care should be taken to align the direction of each unit battery 2. The direction of each unit cell 2 refers to the direction of the positive electrode surface and the negative electrode surface, and the unit cells 2 are stacked so that the positive electrode surface and the negative electrode surface face each other. That is, the unit cells 2 are stacked with their orientations aligned so that all the unit cells 2 of the battery module 1 are connected in series via the conductive spacer 3.

・工程II
次に、単位電池積層体11の両端に、集電板,絶縁板,圧縮サポート板(図示せず),の順に介在させ圧縮板4を配置し、両端から圧縮板4を介して単位電池積層体11を押圧する。
・ Process II
Next, a compression plate 4 is arranged in the order of a current collector plate, an insulating plate, and a compression support plate (not shown) at both ends of the unit cell stack 11, and the unit cell stack is stacked from both ends via the compression plate 4. The body 11 is pressed.

・工程III
そして、押圧した状態で、圧縮板4を含めた単位電池積層体11の両側面に、側面板5を取り付け、圧縮板4と側面板5とをボルト固定する。これにより、単位電池2とスペーサ3の棒状部材31とが圧縮固定された状態となる。
・ Process III
And in the pressed state, the side plate 5 is attached to the both side surfaces of the unit cell stack 11 including the compression plate 4, and the compression plate 4 and the side plate 5 are bolted. Thereby, the unit battery 2 and the rod-shaped member 31 of the spacer 3 are compressed and fixed.

・工程IV
続いて、図9(III)に示すように、各スペーサ3の棒状部材31を保持している櫛歯状治具7を上下方向に抜き取る。
・ Process IV
Subsequently, as shown in FIG. 9 (III), the comb-shaped jig 7 holding the rod-shaped member 31 of each spacer 3 is extracted in the vertical direction.

・工程V
最後に、図9(IV)に示すように、単位電池積層体11の上下より補強板6を取り付け、補強板6と側面板5とを貫通孔61を介してボルト固定して、図9(V)に示す単位電池モジュール1が完成する。
以上の工程により、スペーサとしての棒状部材31を設置手法にばらつきのない形で容易に配置でき、電池モジュール1を製造することができる。
・ Process V
Finally, as shown in FIG. 9 (IV), the reinforcing plate 6 is attached from above and below the unit cell stack 11, and the reinforcing plate 6 and the side plate 5 are bolted through the through-hole 61, and FIG. The unit battery module 1 shown in V) is completed.
Through the above steps, the rod-shaped member 31 as a spacer can be easily arranged in a manner that does not vary in installation method, and the battery module 1 can be manufactured.

(電池モジュールの製造方法の変形例)
上記は、単位電池積層体11を圧縮板4とコの字形状の側面板5と補強板6とにより固定した単位電池モジュール1の製造工程であるが、これら圧縮板4,側面板5,補強板6を用いない単位電池モジュール1’の製造工程の一例について、図10を用いて説明する。単位電池モジュール1’は、単位電池積層体11’が両端部の挟着プレート9により圧縮固定されるものである。
(Modification of battery module manufacturing method)
The above is the manufacturing process of the unit cell module 1 in which the unit cell stack 11 is fixed by the compression plate 4, the U-shaped side plate 5 and the reinforcement plate 6. The compression plate 4, the side plate 5, and the reinforcement An example of the manufacturing process of the unit battery module 1 ′ that does not use the plate 6 will be described with reference to FIG. The unit battery module 1 ′ is such that the unit battery stack 11 ′ is compressed and fixed by the sandwiching plates 9 at both ends.

・工程I
まず、図10(I)および(II)に示すように、単位電池2’と、上下の櫛歯状治具7’により棒状部材31’が保持された状態のスペーサ3’とエンドプレート4’と、を交互に積層して単位電池集積体11’を成形する。
・ Process I
First, as shown in FIGS. 10 (I) and (II), a spacer 3 ′ and an end plate 4 ′ in which the rod-shaped member 31 ′ is held by the unit battery 2 ′ and the upper and lower comb-like jigs 7 ′. Are alternately stacked to form a unit cell assembly 11 ′.

・工程II
次に、単位電池積層体11’の両端に集電板,絶縁板,圧縮サポート板(図示せず),の順に介在させ挟着プレート9を配置し、両端から挟着プレート9を介して単位電池積層体11’を押圧する。なお、挟着プレート9の積層方向断面は、単位電池2’の同断面よりも側方向に大きく、挟着プレート9の両側部にはボルト固定するための貫通孔91がそれぞれ2つ設けられている。
・ Process II
Next, a sandwiching plate 9 is disposed in the order of a current collector plate, an insulating plate, and a compression support plate (not shown) at both ends of the unit battery stack 11 ′, and the unit is sandwiched from both ends via the sandwiching plate 9. The battery stack 11 ′ is pressed. The cross section in the stacking direction of the sandwiching plate 9 is larger in the lateral direction than the same cross section of the unit cell 2 ′, and two through holes 91 for fixing bolts are provided on both sides of the sandwiching plate 9. Yes.

・工程III
そして、図10(III)に示すように、押圧した状態で、両端の挟着プレート9の貫通孔91に、単位電池積層体11’の積層方向寸法よりも長いボルトを、それぞれ4本連通させてボルト固定する。これにより、各単位電池2’と各スペーサ3’の棒状部材31’とが圧縮固定された状態となる。
・ Process III
Then, as shown in FIG. 10 (III), in the pressed state, four bolts longer than the dimension in the stacking direction of the unit cell stack 11 ′ are communicated with the through holes 91 of the sandwiching plates 9 at both ends. And fix with bolts. Thereby, each unit battery 2 ′ and the bar-shaped member 31 ′ of each spacer 3 ′ are compressed and fixed.

・工程IV
続いて、図10(IV)に示すように、各スペーサ3’の棒状部材31’が保持されている上下の櫛歯状治具7’を抜き取る。なお、この時、単位電池積層体11’の下部に補強板(図示せず)を配し、この補強板と両端の挟着プレート9とを固定してもよい。
・ Process IV
Subsequently, as shown in FIG. 10 (IV), the upper and lower comb-shaped jigs 7 ′ holding the rod-shaped members 31 ′ of the spacers 3 ′ are extracted. At this time, a reinforcing plate (not shown) may be disposed below the unit cell stack 11 ′, and the reinforcing plate and the sandwiching plates 9 at both ends may be fixed.

・工程V
これにより、図10(V)に示す電池モジュール1’が完成する。
このように、ボルトを使って電池モジュール1’を製造する場合でも、棒状部材をスペーサ3’として、製造工程に組み込むことで、ばらつきのない形で容易にこれを配置できる。
・ Process V
Thereby, the battery module 1 ′ shown in FIG. 10 (V) is completed.
Thus, even when manufacturing battery module 1 'using a volt | bolt, this can be easily arrange | positioned in the form without dispersion | variation by incorporating a rod-shaped member into spacer 3' as a manufacturing process.

以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。とくに、本実施形態においては、単位電池2の高さ方向に延伸した棒状部材31を、単位電池2の横方向に等ピッチで配置しているが、これに代えて、単位電池2の横方向に延伸した棒状部材を、単位電池2の高さ方向に等ピッチで配置することも可能である。また、単位電池2の積層方向を、横方向Xに代えて上下方向としてもよい。したがって、そのようなものも本発明の範囲内に含まれる。   As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but various additions, modifications, or deletions can be made without departing from the spirit of the present invention. In particular, in the present embodiment, the rod-shaped members 31 extending in the height direction of the unit battery 2 are arranged at an equal pitch in the lateral direction of the unit battery 2, but instead of this, the lateral direction of the unit battery 2 is arranged. It is also possible to arrange the rod-shaped members extending in the same direction in the height direction of the unit battery 2 at an equal pitch. Further, the stacking direction of the unit cells 2 may be the vertical direction instead of the horizontal direction X. Therefore, such a thing is also included in the scope of the present invention.

本発明に係る電池モジュールは、ハイブリッド車や鉄道車両,発電機等に好適に用いることができる。   The battery module according to the present invention can be suitably used for hybrid vehicles, railway vehicles, generators, and the like.

1,1’ 電池モジュール
11 単位電池積層体
2,2’ 単位電池
21 正極集電体
22 正極シート
23 負極集電体
24 負極シート
25 セパレータ
3,3’ スペーサ
31,31’ 棒状部材
32 流路(冷却媒体用流路)
4 圧縮板
4’ エンドプレート
41 開口部
42 ボルト孔
43 ボルト孔
5 側面板
51 貫通孔
52 貫通孔
6 補強板
61 貫通孔
7,7’ 櫛歯状治具
71 櫛歯部
8 冷却ユニット
81 吸気ファン
82 上部空気流通空間
83 下部空気流通空間
9 挟着プレート
91 貫通孔
1, 1 'battery module 11 unit cell stack 2, 2' unit battery 21 positive electrode current collector 22 positive electrode sheet 23 negative electrode current collector 24 negative electrode sheet 25 separator 3, 3 'spacer 31, 31' rod-shaped member 32 channel ( Cooling medium flow path)
4 compression plate 4 'end plate 41 opening 42 bolt hole 43 bolt hole 5 side plate 51 through hole 52 through hole 6 reinforcing plate 61 through hole 7, 7' comb tooth jig 71 comb tooth portion 8 cooling unit 81 intake fan 82 Upper air circulation space 83 Lower air circulation space 9 Clamping plate 91 Through hole

Claims (20)

単位電池を複数積層し、隣り合う各単位電池間にスペーサを配した電池モジュールにおいて、
前記スペーサは、所定方向に延伸する複数の棒状部材からなり、
前記棒状部材は、積層方向の前後に当接する2つの前記単位電池に挟持され、
隣り合う前記棒状部材間が、冷却媒体用流路として形成されてなることを特徴とする電池モジュール。
In a battery module in which a plurality of unit cells are stacked and spacers are arranged between adjacent unit cells,
The spacer is composed of a plurality of rod-shaped members extending in a predetermined direction,
The rod-shaped member is sandwiched between the two unit batteries that contact the front and rear in the stacking direction,
A battery module characterized in that a space between adjacent rod-shaped members is formed as a cooling medium flow path.
前記単位電池が、積層方向の前面が正極又は負極のいずれか一方を、後面が他方の極を有し、
前記棒状部材が、導電性であることを特徴とする請求項1に記載の電池モジュール。
The unit cell has either a positive electrode or a negative electrode on the front surface in the stacking direction, and the other electrode on the rear surface,
The battery module according to claim 1, wherein the rod-shaped member is conductive.
前記スペーサは、前記各単位電池間への固定前において、前記各棒状部材が着脱可能な櫛歯状治具に保持され、
前記各単位電池間への固定後に、前記櫛歯状治具を脱してなることを特徴とする請求項1又は2に記載の電池モジュール。
The spacer is held by a comb-like jig to which each rod-like member can be attached and detached before being fixed between the unit cells.
The battery module according to claim 1 or 2, wherein the comb-shaped jig is removed after fixing between the unit batteries.
前記棒状部材の軸方向断面が、矩形形状であることを特徴とする請求項1〜3のいずれか1項に記載の電池モジュール。   The battery module according to any one of claims 1 to 3, wherein an axial cross section of the rod-shaped member has a rectangular shape. 前記矩形形状が、正方形又は、積層方向に平行な辺が他方の辺よりも短い長方形であることを特徴とする請求項4に記載の電池モジュール。   The battery module according to claim 4, wherein the rectangular shape is a square or a rectangle whose side parallel to the stacking direction is shorter than the other side. 前記棒状部材の少なくとも一部が、積層方向断面が波形の板材により形成されていることを特徴とする請求項1〜4のいずれか1項に記載の電池モジュール。   5. The battery module according to claim 1, wherein at least a part of the rod-shaped member is formed of a plate material having a corrugated cross section in the stacking direction. 前記棒状部材が、前記各単位電池間に等ピッチで平行に配置されていることを特徴とする請求項1〜6のいずれか1項に記載の電池モジュール。   The battery module according to claim 1, wherein the rod-shaped members are arranged in parallel at equal pitches between the unit batteries. 前記棒状部材の配置が、前記各単位電池の両端部に配置するピッチよりも、同中央部に配置するピッチが広いことを特徴とする請求項1〜7のいずれか1項に記載の電池モジュール。   The battery module according to any one of claims 1 to 7, wherein the rod-like member is arranged at a central portion wider than a pitch at which both end portions of the unit batteries are arranged. . 前記棒状部材の積層方向断面が、両先端から中心にかけて膨らんだ形状であることを特徴とする請求項1〜8のいずれか1項に記載の電池モジュール。   9. The battery module according to claim 1, wherein the cross-section in the stacking direction of the rod-shaped member has a shape that swells from both ends to the center. 前記単位電池が、ニッケル水素電池であることを特徴とする請求項1〜9のいずれか1項に記載の電池モジュール。   The battery module according to claim 1, wherein the unit battery is a nickel metal hydride battery. 単位電池を複数積層してなる電池モジュールの製造方法であって、
前記単位電池と、あらかじめ櫛歯状治具に嵌着された複数の棒状部材からなるスペーサを積層して単位電池集積体を形成する工程と、
前記単位電池集積体を積層方向に押圧する工程と、
前記単位電池集積体を押圧した後、前記櫛歯状治具を前記棒状部材から脱する工程と、を備えたことを特徴とする電池モジュールの製造方法。
A method for manufacturing a battery module in which a plurality of unit cells are stacked,
A step of stacking the unit battery and a spacer made of a plurality of rod-like members fitted in advance in a comb-like jig to form a unit battery assembly;
Pressing the unit cell assembly in the stacking direction;
And a step of removing the comb-shaped jig from the rod-shaped member after pressing the unit battery assembly.
単位電池を複数積層してなる電池モジュールの製造方法であって、
前記単位電池と、あらかじめ櫛歯状治具に嵌着された複数の棒状部材からなるスペーサを積層して単位電池集積体を形成する工程と、
前記単位電池集積体の積層方向両端部に、該単位電池集積体を両側から挟着するための挟着プレートを配する工程と、
前記挟着プレートの積層方向断面は、前記単位電池の同断面よりも側方向に大きく、該挟着プレートの両側部にはボルトを挿通するための貫通孔が設けられており、前記挟着プレートを介して積層方向に前記単位電池集積体を押圧する工程と、
前記単位電池集積体を押圧した後、前記挟着プレート間に前記ボルトを連通させ、前記単位電池集積体を積層方向両端から挟着するように、前記ボルトにより両端の前記挟着プレートとを締結する工程と、
前記ボルトと前記挟着プレートとの締結後に、前記櫛歯状治具を前記棒状部材から脱する工程と、を備えたことを特徴とする電池モジュールの製造方法。
A method for manufacturing a battery module in which a plurality of unit cells are stacked,
A step of stacking the unit battery and a spacer made of a plurality of rod-like members fitted in advance in a comb-like jig to form a unit battery assembly;
Disposing sandwiching plates for sandwiching the unit cell assembly from both sides at both ends in the stacking direction of the unit cell assembly; and
A cross section in the stacking direction of the sandwich plate is larger in the lateral direction than the same cross section of the unit cell, and through holes for inserting bolts are provided on both sides of the sandwich plate. Pressing the unit cell assembly in the stacking direction via
After pressing the unit cell assembly, the bolts are communicated between the clamping plates, and the clamping plates at both ends are fastened by the bolts so that the unit cell assembly is clamped from both ends in the stacking direction. And a process of
And a step of removing the comb-shaped jig from the rod-shaped member after the bolt and the clamping plate are fastened.
前記櫛歯状治具が、可撓性であることを特徴とする請求項11又は12に記載の電池モジュールの製造方法。   The method for manufacturing a battery module according to claim 11, wherein the comb-shaped jig is flexible. 前記櫛歯状治具の櫛歯部分の先端が、鋭角又は丸みを帯びて形成されていることを特徴とする請求項11〜13のいずれか1項に記載の電池モジュールの製造方法。   The method of manufacturing a battery module according to any one of claims 11 to 13, wherein a tip of a comb tooth portion of the comb-like jig is formed with an acute angle or a rounded shape. 前記櫛歯状治具の櫛歯部分の周面角部が、面取りされて形成されていることを特徴とする請求項11〜14のいずれか1項に記載の電池モジュールの製造方法。   The method of manufacturing a battery module according to any one of claims 11 to 14, wherein a peripheral corner portion of a comb tooth portion of the comb-like jig is chamfered. 単位電池を複数積層してなる電池モジュールの、隣り合う単位電池間に配し、単位電池を冷却するための冷却媒体用流路を形成する電池用スペーサであって、
所定方向に延伸する複数の棒状部材からなり、
前記棒状部材は、積層方向の前後に当接する2つの前記単位電池に挟持され、
隣り合う前記棒状部材間を、前記冷却媒体用流路として用いることを特徴とする電池用スペーサ。
A battery module formed by laminating a plurality of unit cells between adjacent unit cells and forming a cooling medium flow path for cooling the unit cells,
Consisting of a plurality of rod-shaped members extending in a predetermined direction,
The rod-shaped member is sandwiched between the two unit batteries that contact the front and rear in the stacking direction,
A battery spacer characterized in that a space between adjacent rod-shaped members is used as the cooling medium flow path.
前記棒状部材が、導電性であることを特徴とする請求項16に記載の電池用スペーサ。   The battery spacer according to claim 16, wherein the rod-shaped member is conductive. 前記スペーサは、前記各単位電池間への固定前において、前記棒状部材が着脱可能な櫛歯状治具に保持され、
前記単位電池への固定後に、前記治具を脱することを特徴とする請求項16又は17に記載の電池用スペーサ。
The spacer is held by a comb-like jig to which the rod-shaped member can be attached and detached before being fixed between the unit cells.
The battery spacer according to claim 16 or 17, wherein the jig is removed after fixing to the unit battery.
前記棒状部材が、前記各単位電池間に等ピッチで平行に配置されていることを特徴とする請求項16〜18のいずれか1項に記載の電池用スペーサ。   The battery spacer according to any one of claims 16 to 18, wherein the rod-like members are arranged in parallel at equal pitches between the unit batteries. 前記櫛歯状治具が、可撓性であることを特徴とする請求項18又は19に記載の電池用スペーサ。   The battery spacer according to claim 18 or 19, wherein the comb-shaped jig is flexible.
JP2010248807A 2010-11-05 2010-11-05 Battery module, method of manufacturing battery module and spacer for battery Pending JP2012104225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248807A JP2012104225A (en) 2010-11-05 2010-11-05 Battery module, method of manufacturing battery module and spacer for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248807A JP2012104225A (en) 2010-11-05 2010-11-05 Battery module, method of manufacturing battery module and spacer for battery

Publications (1)

Publication Number Publication Date
JP2012104225A true JP2012104225A (en) 2012-05-31

Family

ID=46394416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248807A Pending JP2012104225A (en) 2010-11-05 2010-11-05 Battery module, method of manufacturing battery module and spacer for battery

Country Status (1)

Country Link
JP (1) JP2012104225A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154401A (en) * 2013-02-08 2014-08-25 Mitsubishi Heavy Ind Ltd Battery module and battery unit
DE102013223357A1 (en) * 2013-11-15 2015-05-21 Robert Bosch Gmbh battery module
CN106654110A (en) * 2017-03-02 2017-05-10 华霆(合肥)动力技术有限公司 Changeable battery module and system
CN107039703A (en) * 2015-11-03 2017-08-11 福特全球技术公司 Traction battery assembly
KR101769107B1 (en) 2013-10-31 2017-08-17 주식회사 엘지화학 Pressing tray with structure of facilitating replacement of spacer
KR101800513B1 (en) 2014-12-25 2017-11-22 도요타지도샤가부시키가이샤 Battery pack
US10096871B2 (en) 2015-01-30 2018-10-09 Samsung Sdi Co., Ltd. Battery pack
US11450908B2 (en) 2019-05-30 2022-09-20 Lg Energy Solution, Ltd. Battery module having path through which coolant introduced therein flows when thermal runaway occurs, and battery pack and ESS comprising the same
CN115430938A (en) * 2022-07-12 2022-12-06 重庆三峡时代能源科技有限公司 Welding and grouping method for liquid cooling system of energy storage battery pack

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154401A (en) * 2013-02-08 2014-08-25 Mitsubishi Heavy Ind Ltd Battery module and battery unit
KR101769107B1 (en) 2013-10-31 2017-08-17 주식회사 엘지화학 Pressing tray with structure of facilitating replacement of spacer
DE102013223357A1 (en) * 2013-11-15 2015-05-21 Robert Bosch Gmbh battery module
KR101800513B1 (en) 2014-12-25 2017-11-22 도요타지도샤가부시키가이샤 Battery pack
US10096871B2 (en) 2015-01-30 2018-10-09 Samsung Sdi Co., Ltd. Battery pack
CN107039703A (en) * 2015-11-03 2017-08-11 福特全球技术公司 Traction battery assembly
CN106654110A (en) * 2017-03-02 2017-05-10 华霆(合肥)动力技术有限公司 Changeable battery module and system
US11450908B2 (en) 2019-05-30 2022-09-20 Lg Energy Solution, Ltd. Battery module having path through which coolant introduced therein flows when thermal runaway occurs, and battery pack and ESS comprising the same
CN115430938A (en) * 2022-07-12 2022-12-06 重庆三峡时代能源科技有限公司 Welding and grouping method for liquid cooling system of energy storage battery pack

Similar Documents

Publication Publication Date Title
JP2012104225A (en) Battery module, method of manufacturing battery module and spacer for battery
EP2991133B1 (en) Battery module assembly
KR102640327B1 (en) Large module of battery
EP3817090A1 (en) Battery module
US9539897B2 (en) Fuel cell vehicle
JP2017224627A (en) Battery module
US20090017367A1 (en) Power module
EP2360768B1 (en) Cell stack of fuel cells and method for fastening cell stack of fuel cells
CN107452933B (en) Soft packet of lithium cell module and insulating assemblies and power module
JP2012164456A (en) Heat dissipation plate for secondary battery and method of manufacturing the same, and secondary battery module with heat dissipation plate
JP2015011989A (en) Battery module
US9450252B2 (en) Insulating structure, fuel cell and fuel cell stack
US8697312B2 (en) Cell stack of fuel cell and method of fastening cell stack of fuel cell
JP2009283193A (en) Fastening structure of electricity storage module and vehicle
US20150111125A1 (en) Alignment feature and method for alignment in fuel cell stacks
CN111668526B (en) Fuel cell stack and method for manufacturing dummy single cell
CN111697258B (en) Method for manufacturing dummy unit cell and apparatus for manufacturing dummy unit cell
DE102012222924B4 (en) Battery assembly with a thermal management system
US9673475B2 (en) Fuel cell stack
CN110277581B (en) Fuel cell stack, dummy cell for fuel cell stack, and method for manufacturing dummy cell
CN112805869A (en) Battery module and battery pack
CN114464831A (en) Proton exchange membrane fuel cell stack
KR102663793B1 (en) Battery module and method of manufacturing the same
CN207690904U (en) A kind of improved soft package battery module
JP2022121926A (en) Power storage module