JP2012103079A - Nondestructive inspection method of mixture of air bubble in high viscosity liquid food - Google Patents

Nondestructive inspection method of mixture of air bubble in high viscosity liquid food Download PDF

Info

Publication number
JP2012103079A
JP2012103079A JP2010251148A JP2010251148A JP2012103079A JP 2012103079 A JP2012103079 A JP 2012103079A JP 2010251148 A JP2010251148 A JP 2010251148A JP 2010251148 A JP2010251148 A JP 2010251148A JP 2012103079 A JP2012103079 A JP 2012103079A
Authority
JP
Japan
Prior art keywords
container
viscosity liquid
capacitance
liquid food
yogurt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010251148A
Other languages
Japanese (ja)
Inventor
Yoshio Hagura
義雄 羽倉
Akira Iguchi
亮 井口
Takashi Mawatari
隆志 馬渡
Shiho Oikawa
志保 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Glico Dairy Products Co Ltd
Original Assignee
Hiroshima University NUC
Glico Dairy Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Glico Dairy Products Co Ltd filed Critical Hiroshima University NUC
Priority to JP2010251148A priority Critical patent/JP2012103079A/en
Publication of JP2012103079A publication Critical patent/JP2012103079A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To perform a nondestructive inspection of various kinds of high viscosity liquid food filled in a container or in a production plant.SOLUTION: For an article filled in a container, capacitance of a container housing electrode adjusted to the container shape and a plate electrode loaded on the container is measured by an LCR meter. Since the capacitance increases when there are product breaks, mixture of air bubbles, etc., an increase variation is used as an index to grasp a situation of high viscosity food in the container. Presence/absence of bubble mixture of the high viscosity liquid food in a filling pipe is also measured by arranging a pair of parallel flat plate electrodes in the filling pipe of the production plant to similarly measure the increase variation in capaciance by the LCR meter. Yogurt and the high viscosity liquid food are applied to various food such as yogurt, pudding, jelly, Tofu, savoury egg custard, jam, ketchup, honey.

Description

本発明は、ヨーグルト、豆腐、茶碗蒸し、ジャム、ケチャップ、蜂蜜等の工場の容器充填前のインライン乃至容器充填した高粘度液状食品における気泡混入を非破壊的に検査する高粘度液状食品気泡混入の非破壊検査方法に関する。   The present invention is a non-destructive inspection of high-viscosity liquid food air bubbles in non-destructive inspection of in-line or container-filled high-viscosity liquid foods such as yogurt, tofu, tea-steamed, jam, ketchup, honey, etc. It relates to a destructive inspection method.

食品加工における気泡混入の有無を非破壊的に検査する検査方法として、下記非特許文献1は、食品、特にオリーブ油の静電容量を測定し、オリーブ油に気泡混入を行ったとき、該静電容量が低下する事実に基づいて、γ線透過法、探針による検出法に代えて、静電容量の低下を指標として気泡混入を判定することができるとする実験結果を報告している。   As an inspection method for non-destructively inspecting the presence or absence of bubbles in food processing, the following Non-Patent Document 1 measures the capacitance of food, particularly olive oil, and when the bubbles are mixed in olive oil, the capacitance On the basis of the fact that the air bubble decreases, an experimental result has been reported that it is possible to determine bubble contamination using the decrease in capacitance as an index instead of the γ-ray transmission method and the detection method using the probe.

「静電容量変化を利用した気泡検出法の開発」(広島工業大学研究紀要 第7巻第2号 107〜111(1973)"Development of bubble detection method using capacitance change" (Hiroshima Institute of Technology Vol. 7, No. 2, 107-111 (1973)

非特許文献1は、静電容量を測定することによって、オリーブ油の気泡混入の有無を判定し得るとするものであるところ、ヨーグルト、豆腐、茶碗蒸し、ジャム、ケチャップ、蜂蜜等の高粘度液状食品は、それが高粘度であることによって、気泡混入時にオリーブ油とは異なる挙動を呈する可能性があり、従って非特許文献1を高粘度液状食品に適用することはできない。   Non-Patent Document 1 describes that it is possible to determine the presence or absence of bubbles in olive oil by measuring electrostatic capacity, and high-viscosity liquid foods such as yogurt, tofu, chawanmushi, jam, ketchup, and honey are Because of its high viscosity, there is a possibility that it will behave differently from olive oil when mixed with bubbles, and therefore, Non-Patent Document 1 cannot be applied to high-viscosity liquid foods.

即ち、高粘度液状食品、例えばヨーグルトは、一般に原材料の混合、スターター接種培養、容器充填等の一連の製造工程を伴うところ、例えば前発酵済みのものを崩してゲル化剤、糖類等を混合して容器充填するハードヨーグルト乃至糖類、果肉等を混合して容器充填するソフトヨーグルトにあっては、該ヨーグルトをパイプ輸送する際や容器充填時に泡噛み、気泡混入を招く可能性があり、また容器充填後にクレートに収容して後発酵を行うものにあっては、搬送時の振動等により製品崩れが生じる可能性があるが、これらパイプ中の泡噛み、容器充填時の気泡混入、クレート収容後の製品崩れは、商品苦情等の原因となって商品価値を低下させる要因となるため、これら泡噛み、気泡混入、カード崩れがあったとき、その選別排除を行う必要があるところ、該選別排除は、これを密封容器の外観検査によって行うことができず、従って、ヨーグルト等の食品にあっては、これらに適した非破壊検査をなし得るようにする必要がある。   That is, high-viscosity liquid foods such as yogurt are generally accompanied by a series of manufacturing processes such as mixing of raw materials, starter inoculation culture, container filling and the like. In the case of soft yogurt filled with containers, such as hard yogurt or saccharides, pulp, etc., filled in a container, there is a possibility that the yogurt may be bubble-engaged and mixed with bubbles when transporting the pipe or filling the container. For products that are stored in a crate after filling and subjected to post-fermentation, product collapse may occur due to vibration during transportation, etc. The collapse of the product causes a complaint about the product and causes a decline in the value of the product. Therefore, when these bubbles are bitten, mixed with bubbles, or collapsed, they are removed. In short, the sorting and exclusion cannot be performed by visual inspection of the sealed container. Therefore, food such as yogurt needs to be able to perform non-destructive inspection suitable for these. is there.

本発明はかかる事情に鑑みてなされたもので、その解決課題とするところは、高粘度液状食品製造の工場における容器充填前のインラインによる泡噛みや該高粘度液状食品を充填した充填容器における製品崩れ、気泡の混入を非破壊的に検査可能な高粘度液状食品気泡混入の非破壊検査方法を提供するにある。   The present invention has been made in view of such circumstances, and the problem to be solved is foam chewing by in-line before container filling in a factory for producing high-viscosity liquid foods or products in filling containers filled with the high-viscosity liquid foods An object of the present invention is to provide a non-destructive inspection method for high-viscosity liquid food air bubbles that can be inspected in a nondestructive manner.

上記課題に沿って研究したところ、ヨーグルト、豆腐、茶碗蒸し、ジャム、ケチャップ、蜂蜜等の高粘度液状食品にあって、該高粘度液状食品に製品崩れや気泡混入があるとき、その静電容量の変化を測定すると、静電容量が増変化する事実を見出すに至った。従って、該静電容量の増変化の有無を検査することによって、高粘度液状食品のインラインの泡噛みを非破壊的に検査してこれを監視し、また、高粘度液状食品を充填した充填容器における製品崩れや気泡混入を非破壊的に検査して、その選別出荷を行う等の措置を採ることが可能となるとの知見を得た。   When research was conducted along the above-mentioned issues, it was found that in high-viscosity liquid foods such as yogurt, tofu, chawanmushi, jam, ketchup, honey, etc. Measurement of the change led to the finding that the capacitance increased. Therefore, by inspecting the presence or absence of an increase in the capacitance, the in-line foam biting of the high-viscosity liquid food is non-destructively inspected and monitored, and the filling container filled with the high-viscosity liquid food We obtained knowledge that it would be possible to take measures such as non-destructively inspecting product collapse and bubble contamination and sorting and shipping.

本発明はかかる知見に基づいてなされたもので、即ち、請求項1に記載の発明を、高粘度液状食品を非破壊的に検査する検査方法であって、高粘度液状食品における静電容量増変化を測定し、該静電容量増変化を指標として該高粘度液状食品のプラントパイプ内の泡噛み、充填容器中の崩れ損傷乃至気泡混入を非破壊的に判定することを特徴とする高粘度液状食品の非破壊検査方法としたものである。   The present invention has been made on the basis of such knowledge. That is, the invention according to claim 1 is an inspection method for non-destructively inspecting a high-viscosity liquid food, wherein the capacitance increase in the high-viscosity liquid food is achieved. Measuring the change, and using the increase in capacitance as an index, it is possible to nondestructively determine whether the high-viscosity liquid food is chewing foam in the plant pipe, collapsing damage or mixing of bubbles in the filling container This is a non-destructive inspection method for liquid foods.

請求項2に記載の発明は、上記に加えて、製品崩れや気泡混入の有無乃至程度の非破壊検査の対象を、高粘度液状食品を充填した充填容器として、該充填容器の充填密封状態における気泡混入を有効且つ確実に検査し得るように、これを、上記静電容量増変化の測定を、高粘度液状食品充填容器を被嵌配置して該充填容器を収容し又は該充填容器の両側面に対向配置して該充填容器を挟持する容器側電極と、該容器の上面に配置したプレート電極を両極として、該食品容器中の高粘度液状食品の崩れ損傷乃至気泡混入を非破壊的に判定することを特徴とする請求項1に記載の高粘度液状食品の非破壊検査方法としたものである。   In addition to the above, the invention described in claim 2 is a filling container filled with high-viscosity liquid food, in which the object of non-destructive inspection for the presence or absence of product collapse and air bubble mixing is used. In order to effectively and reliably inspect for air bubbles, the above increase in the capacitance is measured by placing a high-viscosity liquid food filling container in place, and containing the filling container or both sides of the filling container. Non-destructive damage to the high-viscosity liquid food in the food container or mixing of air bubbles with the container-side electrode sandwiching the filling container facing the surface and the plate electrode disposed on the upper surface of the container as both electrodes The non-destructive inspection method for high-viscosity liquid food according to claim 1, wherein the determination is made.

請求項3に記載の発明は、同じく上記に加えて、同じく非破壊検査の対象を、容器充填後に容器内発酵乃至容器内ゲル化を行って完成品とするヨーグルト、プリン、ゼリー等の嗜好食品とすることによって、容器充填後の、例えば、クレート搬送等の振動や衝撃によって生じることのある製品崩れや気泡混入を直接に容器外から有効且つ確実に把握し、その選別出荷を行う等の措置を採り得るように、これを、上記高粘度液状食品を、ヨーグルト、プリン、ゼリー等の加熱充填後に容器内発酵乃至容器内ゲル化を行う嗜好食品とし、該食品の出荷前に非破壊的判定を行うことを特徴とする請求項2に記載の高粘度液状食品の非破壊検査方法としたものである。   In addition to the above, the invention described in claim 3 is also a taste food such as yogurt, pudding, jelly, etc., in which the object of nondestructive inspection is also subjected to fermentation in the container or gelation in the container after filling the container. For example, after the container is filled, for example, the product collapse or bubble mixing that may occur due to vibrations or shocks such as crate conveyance can be directly and effectively grasped from the outside of the container, and the product is sorted and shipped. The high-viscosity liquid food is used as a favorite food that undergoes in-container fermentation or in-container gelation after heating and filling with yogurt, pudding, jelly, etc., and is determined non-destructively before the food is shipped. The non-destructive inspection method for high-viscosity liquid food according to claim 2, wherein

請求項4に記載の発明は、同じく上記に加えて、上記各種の高粘度液状食品の製造工程において、その終了後に容器に充填する充填ラインにおいて直接にライン外から有効且つ確実に把握し、インラインの泡噛みのあるとき、その充填前に充填を停止して、泡噛みの気泡混入充填を回避する措置を採り得るように、これを、上記静電容量増変化の測定を、高粘度液状食品の製造プラントの充填パイプ中に配置した平行一対のプレート電極を用いることによって、該充填パイプ中の高粘度液状食品の泡噛みを非破壊的にインライン判定することを特徴とする請求項1に記載の高粘度液状食品の非破壊検査方法としたものである。   In addition to the above, the invention described in claim 4 can be effectively and reliably grasped from outside the line directly in the filling line for filling the container after the completion of the production process of the various high-viscosity liquid foods. When there is a bubble chewing, the filling is stopped before filling, and the measure of the increase in capacitance is measured so that the measure of the increase in capacitance can be taken. The non-destructive in-line determination of foam biting of the high-viscosity liquid food in the filling pipe is performed by using a pair of parallel plate electrodes arranged in the filling pipe of the manufacturing plant of claim 1. This is a non-destructive inspection method for high viscosity liquid foods.

請求項5に記載の発明は、高粘度液状食品の粘性率と静電容量は相関関係にあることから、該粘性率を測定することによって、静電容量増変化の測定に代えて、該静電容量増変化の判定を行うことができるように、これを、上記静電容量増変化の判定を、上記静電容量増変化の測定に代えて、高粘度液状食品の粘性率と静電容量との相関関係に基づいて、該高粘度液状食品の粘性率を測定することによって行うことを特徴とする請求項1、2、3又は4に記載の高粘度液状食品の非破壊検査方法としたものである。   Since the viscosity of the high-viscosity liquid food and the capacitance of the high-viscosity liquid food product are in a correlation, the measurement of the viscosity makes it possible to replace the static increase with the static by measuring the viscosity. In order to be able to determine the capacitance increase change, instead of determining the capacitance increase change, instead of measuring the capacitance increase change, the viscosity and capacitance of the high viscosity liquid food The non-destructive inspection method for high-viscosity liquid food according to claim 1, 2, 3, or 4, wherein the viscosity is measured by measuring the viscosity of the high-viscosity liquid food based on the correlation with Is.

本発明はこれらをそれぞれ発明の要旨として上記課題解決の手段としたものである。   The present invention uses each of these as the gist of the invention as means for solving the above problems.

本発明は以上のとおりに構成したから、請求項1に記載の発明は、高粘度液状食品の静電容量の増変化の有無を検査することによって、高粘度液状食品製造の工場における容器充填前のインラインによる泡噛みや該高粘度液状食品を充填した充填容器における製品崩れ、気泡の混入を非破壊的に検査可能な高粘度液状食品気泡混入の非破壊検査方法を提供することができる。   Since the present invention is configured as described above, the invention according to claim 1 is the method for checking the presence or absence of an increase in the capacitance of the high-viscosity liquid food before filling the container in the factory for manufacturing the high-viscosity liquid food. It is possible to provide a non-destructive inspection method for high-viscosity liquid food bubbles that can non-destructively inspect in-line bubble chewing, product collapse in a filling container filled with the high-viscosity liquid food, and bubble contamination.

請求項2に記載の発明は、上記に加えて、製品崩れや気泡混入の有無乃至程度の非破壊検査の対象を、高粘度液状食品を充填した充填容器として、該充填容器の充填密封状態における気泡混入を有効且つ確実に検査し得るものとすることができる。   In addition to the above, the invention described in claim 2 is a filling container filled with high-viscosity liquid food, in which the object of non-destructive inspection for the presence or absence of product collapse and air bubble mixing is used. It is possible to effectively and reliably check for air bubbles.

請求項3に記載の発明は、同じく上記に加えて、同じく非破壊検査の対象を、容器充填後に容器内発酵乃至容器内ゲル化を行って完成品とするヨーグルト、プリン、ゼリー等の嗜好食品とすることによって、容器充填後の、例えば、クレート搬送等の振動や衝撃によって生じることのある製品崩れや気泡混入を直接に容器外から有効且つ確実に把握し、その選別出荷を行う等の措置を採り得るものとすることができる。   In addition to the above, the invention described in claim 3 is also a taste food such as yogurt, pudding, jelly, etc., in which the object of nondestructive inspection is also subjected to fermentation in the container or gelation in the container after filling the container. For example, after the container is filled, for example, the product collapse or bubble mixing that may occur due to vibrations or shocks such as crate conveyance can be directly and effectively grasped from the outside of the container, and the product is sorted and shipped. Can be adopted.

請求項4に記載の発明は、同じく上記に加えて、上記各種の高粘度液状食品の製造工程において、その終了後に容器に充填する充填ラインにおいて直接にライン外から有効且つ確実に把握し、インラインの泡噛みのあるとき、その充填前に充填を停止して、泡噛みの気泡混入充填を回避する措置を採り得るものとすることができる。   In addition to the above, the invention described in claim 4 can be effectively and reliably grasped from outside the line directly in the filling line for filling the container after the completion of the production process of the various high-viscosity liquid foods. When there is a bubble biting, it is possible to stop the filling before filling and take measures to avoid the bubble biting and filling.

請求項5に記載の発明は、高粘度液状食品の粘性率と静電容量は相関関係にあることから、該粘性率を測定することによって、静電容量増変化の測定に代えて、該静電容量増変化の判定を行うことができる。   Since the viscosity of the high-viscosity liquid food and the capacitance of the high-viscosity liquid food product are in a correlation, the measurement of the viscosity makes it possible to replace the static increase with the static by measuring the viscosity. It is possible to determine a change in capacitance.

静電容量測定装置を示す概念図である。It is a conceptual diagram which shows an electrostatic capacitance measuring apparatus. 平行平板電極の斜視図である。It is a perspective view of a parallel plate electrode. ヨーグルト仕込み濃度10%の静電容量測定結果を示すグラフである。It is a graph which shows the electrostatic capacitance measurement result of 10% of yogurt preparation density. ヨーグルト仕込み濃度20%の静電容量測定結果を示すグラフである。It is a graph which shows the electrostatic capacitance measurement result of a yogurt preparation density of 20%. 容器充填のヨーグルトの静電容量測定装置を示す説明図である。It is explanatory drawing which shows the electrostatic capacitance measuring apparatus of yogurt with a container filling. 粘性率測定装置を示す概念図である。It is a conceptual diagram which shows a viscosity measuring device. 静電容量測定結果を示すグラフである。It is a graph which shows an electrostatic capacitance measurement result. 粘性率測定結果を示すグラフである。It is a graph which shows a viscosity measurement result. 静電容量と粘性率の相関関係を示すグラフである。It is a graph which shows the correlation of an electrostatic capacitance and a viscosity. ヨーグルトの充填パイプの静電容量測定装置を示す概念図である。It is a conceptual diagram which shows the electrostatic capacitance measuring apparatus of the filling pipe of yogurt. 測定周波数10Hzの気泡ありの静電容量測定結果を示すグラフである。It is a graph which shows the electrostatic capacitance measurement result with a bubble of measurement frequency 10Hz. 測定周波数10Hzの気泡なしの静電容量測定結果を示すグラフである。It is a graph which shows the electrostatic capacitance measurement result without a bubble of measurement frequency 10Hz. 測定周波数10Hzのヨーグルト流動状態の静電容量測定結果を示すグラフである。It is a graph which shows the electrostatic capacitance measurement result of a yogurt flow state of measurement frequency 10Hz. 測定周波数を変化したときの静電容量測定結果を示すグラフである。It is a graph which shows an electrostatic capacitance measurement result when changing a measurement frequency. 測定周波数1kHzの気泡なしの静電容量測定結果を示すグラフである。It is a graph which shows the electrostatic capacitance measurement result without a bubble of the measurement frequency of 1 kHz. 測定周波数1kHzの気泡ありの静電容量測定結果を示すグラフである。It is a graph which shows the electrostatic capacitance measurement result with a bubble of the measurement frequency of 1 kHz. 測定周波数1kHzのヨーグルト流動状態の静電容量測定結果を示すグラフである。It is a graph which shows the electrostatic capacitance measurement result of a yogurt flow state of a measurement frequency of 1 kHz. 容器充填のヨーグルトの他の例の静電容量測定装置を示す概念図である。It is a conceptual diagram which shows the capacitance measuring apparatus of the other example of yogurt with a container filling.

以下本発明を更に具体的に説明すれば、本発明の非破壊検査は、高粘度液状食品を非破壊的に検査するものとして、粘度液状食品における静電容量増変化を測定し、該静電容量増変化を指標として該高粘度液状食品のプラントパイプ内の泡噛み、充填容器中の崩れ損傷乃至気泡混入を非破壊的に判定するものとしてあり、これによって、高粘度液状食品のインラインの泡噛みを非破壊的に検査してこれを監視し、また、高粘度液状食品を充填した充填容器における製品崩れや気泡混入を非破壊的に検査して、その選別出荷を行う等の措置を採り得るものとしてある。   The present invention will be described in more detail below. The non-destructive inspection of the present invention is a non-destructive inspection of a high-viscosity liquid food. The high-viscosity liquid food is used as an indicator to determine non-destructively whether the high-viscosity liquid food is biting in the plant pipe, collapsing damage in the filling container, or mixing of air bubbles. Inspect the bite non-destructively and monitor this, and take measures such as non-destructively inspecting product collapse and air bubbles in filling containers filled with high-viscosity liquid food, and sorting and shipping the product. There is something to get.

非破壊検査は、光学的方法、放射線的方法、力学的方法、電磁気学的方法等が考えられるが、本発明は、高粘度液状食品内部の品質変化を非破壊・連続的に評価する方法として、電磁気学的方法の1つである誘電特性を利用したものである。これは、誘電特性は測定試料中の特定の原子団や分子の運動状態を直接反映しているために、測定試料中の成分分子の状態や変化を検出する有効な手段となり、高粘度液状食品の製造にあっては非接触計測であるため、食品の汚染の恐れがない、連続計測であるため、食品を製造しながらの測定が可能である、試料に薬品処理を加えないため、食品への薬品汚染がない、測定方法が簡便なため、特別に熟練した技術を必要としない等のメリットがあるからであり、このとき、高粘度液状食品は主として、炭水化物、タンパク質、脂質などから構成されているので、電気的には誘電体であり、従って、食品の誘電特性測定により、食品の物理化学的状態を数値化された情報として把握することができ、高粘度液状食品の品質や加工程度を定量的に評価することが可能になるからである。   The non-destructive inspection can be an optical method, a radiation method, a mechanical method, an electromagnetic method, etc., but the present invention is a non-destructive and continuous evaluation method for quality change inside a high-viscosity liquid food. In this method, dielectric properties which are one of electromagnetic methods are utilized. This is because the dielectric properties directly reflect the state of motion of specific atomic groups and molecules in the measurement sample, which is an effective means for detecting the state and changes of the component molecules in the measurement sample. Because it is a non-contact measurement, there is no risk of contamination of the food, and since it is a continuous measurement, it can be measured while the food is being manufactured. This is because there is a merit that there is no chemical contamination and the measurement method is simple, and specially skilled techniques are not required. At this time, high-viscosity liquid food is mainly composed of carbohydrates, proteins, lipids, etc. Therefore, it is an electrically dielectric material, and therefore, by measuring the dielectric properties of food, the physicochemical state of the food can be grasped as numerical information, and the quality and processing level of high-viscosity liquid food The quantitative Evaluation is because it becomes possible to be.

これを確認するために、下記のように高粘性液状食品の凝固過程の誘電容量、特に静電容量測定、容器内の製品崩れの誘電容量、特に静電容量と粘性率の測定並びに管内製品の誘電容量、特に静電容量の測定について、それぞれ下記のとおりヨーグルトを試料とする各実験を行なった。   In order to confirm this, as described below, the dielectric capacity during the coagulation process of high-viscosity liquid food, especially the electrostatic capacity measurement, the dielectric capacity of the product collapse in the container, especially the electrostatic capacity and viscosity, and the measurement of the product in the tube Regarding the measurement of dielectric capacitance, particularly electrostatic capacitance, each experiment using yogurt as a sample was performed as follows.

即ち、ヨーグルトを試料とするその凝固過程の静電容量測定についての実験として、塊のないように撹拌した市販のヨーグルトと市販牛乳によって、仕込み濃度を10%及び20%とした試料を用い、平行な平板電極を試料間に挿入して、該電極間距離を10mm及び20mmとして、ヨーグルト凝固過程の誘電特性、特に静電容量(C=ε(S/d) 但しC:静電容量 ε:誘電率 S:電極板の面積 d:電極板間の距離)を測定した(図1及び図2参照)。仕込み濃度10%のときの結果を図3に、同じく20%のときの結果を図4に示す。これら図3、図4に示すように、試料の凝固に伴って静電容量が緩やかに増変化し、その後は一定の値を示すものとなった。   That is, as an experiment for measuring the capacitance of the coagulation process using yogurt as a sample, parallel samples were prepared using commercially available yogurt stirred with no lump and commercially available milk at a feed concentration of 10% and 20%. A flat plate electrode is inserted between samples, and the distance between the electrodes is set to 10 mm and 20 mm. Dielectric characteristics in the process of solidification of yogurt, especially capacitance (C = ε (S / d) where C: capacitance ε: dielectric The ratio S: the area of the electrode plates d: the distance between the electrode plates) was measured (see FIGS. 1 and 2). FIG. 3 shows the result when the preparation concentration is 10%, and FIG. 4 shows the result when the preparation concentration is 20%. As shown in FIGS. 3 and 4, the capacitance gradually increased with the solidification of the sample, and thereafter showed a constant value.

該実験によれば、平行平板電極の電極板間距離を10mmと設定したとき変化が顕著に現れた。ヨーグルト仕込み濃度が10%と20%の両方で、測定開始直後からおよそ30分経過した時点まで静電容量は減少し、測定開始約3〜4時間まで静電容量は緩やかに増加し、それ以降は一定の値をとった。またヨーグルト仕込み濃度が10%の場合と比べ20%の場合の方が静電容量が緩やかに増加した。測定開始直後、静電容量が減少した要因として、実験を開放系で行ったことにより、水分の蒸発が影響したものとみられ、そのため電極板に対する空気の割合が大きくなり静電容量が減少したのではないかと見られるが、ヨーグルトの凝固過程において表面のタンパク質や脂肪、糖などで構成される薄い皮膜が現れることから、この皮膜が測定開始およそ30分以降水分の蒸発を防いだために、その後に水分の蒸発を防いだものと見られる。   According to the experiment, the change appeared remarkably when the distance between the parallel plate electrodes was set to 10 mm. At both 10% and 20% yogurt concentration, the capacitance decreased until about 30 minutes after the start of measurement, and gradually increased until about 3 to 4 hours after the start of measurement. Took a certain value. In addition, the capacitance increased more slowly when the concentration of yogurt was 20% than when the concentration was 10%. Immediately after the start of measurement, the reason why the capacitance decreased was that the experiment was conducted in an open system, and it was thought that the evaporation of moisture affected the air, so the ratio of air to the electrode plate increased and the capacitance decreased. However, since a thin film composed of surface protein, fat, sugar, etc. appears in the coagulation process of yogurt, this film prevented evaporation of water after about 30 minutes from the start of measurement. It seems that water evaporation was prevented.

ヨーグルト仕込み濃度が高い20%の方が静電容量が緩やかに上昇した要因は、牛乳に対するヨーグルトの割合が仕込み濃度10%の試料よりも高く、このためヨーグルト仕込み濃度20%の試料は、仕込み濃度10%と比較して凝固が既に進行した状態から測定を開始したことから、静電容量の上昇が緩やかになったものと見られる。   The reason why the capacitance increased more slowly when the yogurt feed concentration was 20% was higher than the sample with a yogurt feed concentration of 10% in the ratio of yogurt to milk. Since the measurement was started from the state where the coagulation had already proceeded as compared with 10%, it is considered that the increase in capacitance was moderated.

測定開始およそ4時間で目視によりヨーグルトの凝固が認められた。静電容量増変化がヨーグルトの凝固過程を反映したものと考えられることから、測定値が一定となった4時間の時点でヨーグルトの凝固終了がなされたものと認められる。   Coagulation of yogurt was observed visually about 4 hours after the start of measurement. Since the increase in capacitance is considered to reflect the coagulation process of yogurt, it is recognized that the coagulation of yogurt was completed at the time point of 4 hours when the measured value became constant.

該実験から図3、図4に示される、凝固過程で静電容量が上昇する要因を探求すると、ヨーグルトが凝固する過程で、ヨーグルトのタンパク質の主成分をなすカゼインが等電点沈殿により凝集して高分子化し、該凝固過程で双極子モーメント(正電荷+qと負電荷−qが距離R離れているとき、μ=qRで定義されるモーメント)が増加し、配向分極(有極性分子の双極子モーメントの配向に基づく分極)が誘起し易くなるため、この配向分極が静電容量増変化の要因となっているものと認められる。   3 and FIG. 4 show the factors that increase the capacitance during the coagulation process. From the experiment, the casein, which is the main component of the yogurt protein, aggregates due to isoelectric point precipitation during the coagulation process of the yogurt. In the solidification process, the dipole moment (the moment defined by μ = qR when the positive charge + q and the negative charge −q are separated by a distance R) increases, and the orientation polarization (the dipole of the polar molecule) (Polarization based on the orientation of the child moment) is likely to be induced, and it is recognized that this orientation polarization is the cause of the increase in capacitance.

従って、ヨーグルトの凝固過程が静電容量の値として現れることから、静電容量増変化の状況を把握することによって、ヨーグルトの製造過程、ひいては各種の高粘度液状食品の製造過程をモニタリングすることができる。   Therefore, since the coagulation process of yogurt appears as a value of capacitance, it is possible to monitor the production process of yogurt and consequently the production process of various high-viscosity liquid foods by grasping the situation of the increase in capacitance. it can.

また、ヨーグルトを試料とする容器内製品崩れの静電容量及び粘性率の測定の実験として、市販のカップ型ヨーグルトが輸送中に崩れることを想定して、購入したカップ型ヨーグルトを、撹拌時間を2分、5分、10分としてボルテックスミキサーにより撹拌したもの、激しく30回上下に振り撹拌したもの、撹拌を行わないヨーグルトをそれぞれ試料とした。試料は4℃で保存していたものを使用したが、撹拌を常温で行ったため、撹拌後は4℃の恒温槽内に約20分間静置して試料とした。   In addition, as an experiment for measuring the capacitance and viscosity of a product collapse in a container using yogurt as a sample, assuming that a commercially available cup-type yogurt collapses during transportation, the purchased cup-type yogurt is mixed with the stirring time. Samples stirred for 2 minutes, 5 minutes and 10 minutes with a vortex mixer, vigorously shaken up and down 30 times, and yogurt without stirring were used as samples. The sample used was stored at 4 ° C., but stirring was performed at room temperature. Therefore, after stirring, the sample was left in a constant temperature bath at 4 ° C. for about 20 minutes to prepare a sample.

静電容量の測定は、市販カップ型ヨーグルトの空容器の内側にアルミホイルを貼り作製したカップ型電極と容器の上面に配置するプレート電極を用いた。カップ型電極をLCRメーター(日置電機株式会社製3532)に接続し、測定値を記録用コンピュータで記録した(図5参照)。測定周波数は1kHzとし、各試料について1分間隔で15回測定した。   The capacitance was measured using a cup-type electrode prepared by attaching an aluminum foil inside an empty container of a commercially available cup-type yogurt and a plate electrode disposed on the upper surface of the container. The cup-type electrode was connected to an LCR meter (manufactured by Hioki Electric Co., Ltd., 3532), and the measured value was recorded with a recording computer (see FIG. 5). The measurement frequency was 1 kHz, and each sample was measured 15 times at 1 minute intervals.

粘性率の測定は、レオメーター(CR−500DX、株式会社サン科学製)、プランジャー(直径:27.35mm、株式会社サン科学製)を使用して、非回転二重円筒法(共軸二重円筒の外筒(シリンダー又はカップ)内の試料に内筒(プランジャー又はボブ)を定速で進入させ、プランジャーが試料から受ける総合的な応力に含まれる粘性力と弾性力とを明確に分離して、試料の粘弾性を解析する計測方法)により測定した(図6参照)。   The viscosity is measured by using a rheometer (CR-500DX, manufactured by San Kagaku Co., Ltd.) and a plunger (diameter: 27.35 mm, manufactured by San Kagaku Co., Ltd.). The inner cylinder (plunger or bob) enters the sample in the outer cylinder (cylinder or cup) of the heavy cylinder at a constant speed, and the viscous force and elastic force included in the total stress that the plunger receives from the sample are clarified. And a measurement method for analyzing viscoelasticity of the sample) (see FIG. 6).

即ち、カップヨーグルトをレオメーターに設置した後、プランジャーを所定の深さまで進入させた。この時の深さを進入線と呼ぶこととした。その後、プランジャーを所定の測定速度で、0.2mm進入させ、荷重を測定した。得られた荷重‐時間曲線と測定理論に基づき、解析ソフトNRCC Visco−Proからずり速度及び粘性率を求めた。測定条件は、プランジャー直径27.35mm、容器内径60.00mm、Lo:24.15mm、Lb:11.95mm、測定速度:10、20、30、40、50、60、70、80mm/min、移動距離:0.2mm、測定温度:4℃、試料密度:1000kg/mであった。Loとは、プランジャー底面から進入線までの距離、Lbとはプランジャー底面から測定容器底面までの距離のことであり、Lo+Lbが試料高さとなる。測定速度を、10mm/minから80mm/minまで10mm/minずつ上げていき、各測定速度につき3回の粘性率測定を行い、その平均値を各測定速度での粘性率とした。 That is, after the cup yogurt was installed in the rheometer, the plunger was advanced to a predetermined depth. The depth at this time was called the approach line. Thereafter, the plunger was allowed to enter 0.2 mm at a predetermined measurement speed, and the load was measured. Based on the obtained load-time curve and measurement theory, the shear rate and the viscosity were obtained from the analysis software NRCC Visco-Pro. Measurement conditions are: plunger diameter 27.35 mm, container inner diameter 60.00 mm, Lo: 24.15 mm, Lb: 11.95 mm, measurement speed: 10, 20, 30, 40, 50, 60, 70, 80 mm / min, The moving distance was 0.2 mm, the measurement temperature was 4 ° C., and the sample density was 1000 kg / m 3 . Lo is the distance from the bottom surface of the plunger to the approach line, and Lb is the distance from the bottom surface of the plunger to the bottom surface of the measuring container, and Lo + Lb is the sample height. The measurement speed was increased by 10 mm / min from 10 mm / min to 80 mm / min, and the viscosity was measured three times for each measurement speed, and the average value was taken as the viscosity at each measurement speed.

静電容量測定結果を図7に、粘性率測定結果を図8に示し、更に、静電容量と粘性率の関係を図9に示す。   FIG. 7 shows the capacitance measurement result, FIG. 8 shows the viscosity measurement result, and FIG. 9 shows the relationship between the capacitance and the viscosity.

図6に示すように、該実験からは、ボルテックスミキサーを使用しないで上下に振って攪拌を施した試料を除いて、それぞれ攪拌が進行するに伴って静電容量が増加する傾向を示した。上下に振って撹拌を施した試料で静電容量が低かった原因として、カップ内側の壁面へのヨーグルトの付着が多くなり静電容量の測定値に影響を及ぼした可能性、短時間の撹拌であるため、ボルテックスミキサーを用いた他の試料と比べ結露の発生が比較的少なかった可能性がその要因として考えられる。   As shown in FIG. 6, the experiment showed a tendency for the capacitance to increase as stirring progressed, except for the sample that was shaken up and down without using a vortex mixer. The reason why the capacitance was low in the sample that was shaken up and down was that the yogurt adhered to the inner wall surface of the cup, which may have affected the measured capacitance value. Therefore, it is considered that the possibility of the occurrence of dew condensation is relatively small compared to other samples using a vortex mixer.

図6の結果は、上記ヨーグルト中のタンパク質が高分子化することで静電容量が上昇するという結論とは異なるものであった。しかしながら、図8のように、カップ内のヨーグルトの粘性率は静電容量と相関があることが明らかとなった。即ち、撹拌することにより気泡が混入し静電容量に影響を与えたものと考えられ、連続相に存在する気泡の量や大きさが静電容量に与える影響については、今後検討する必要があるが、以上から、カップ内のヨーグルトの崩れを容器を未開封のまま、検査できることが明らかとなった。また、ヨーグルトの崩れ具合が粘性率で表現できるとすると、この方法により、カップ内のヨーグルトの損傷程度も非破壊で計測できるものと認められる。   The result of FIG. 6 was different from the conclusion that the capacitance increases as the protein in the yogurt is polymerized. However, as shown in FIG. 8, it became clear that the viscosity of yogurt in the cup has a correlation with the capacitance. That is, it is considered that bubbles were mixed by stirring and the electrostatic capacity was affected, and the influence of the amount and size of bubbles existing in the continuous phase on the electrostatic capacity needs to be studied in the future. However, it has become clear from the above that the yogurt in the cup can be inspected without opening the container. If the degree of yogurt collapse can be expressed in terms of viscosity, it is recognized that the degree of yogurt damage in the cup can be measured nondestructively by this method.

更に、管内ヨーグルトの静電容量測定について、パイプ輸送の際、ヨーグルトの泡噛み現象が起こり、気泡混入が生じることによる食感への悪影響を及ぼす可能性があることから、市販2種類のヨーグルトをそれぞれビーカーに移し、気泡が混入しないよう十分に撹拌したものとエアストーンおよびエアポンプを用い十分に気泡を混入させたものを試料とした(気泡は実験の直前に混入した)。   In addition, regarding the measurement of the capacitance of yogurt in the tube, two types of commercially available yogurt can be used since the bubble biting phenomenon of yogurt occurs during transportation of the pipe, and there is a possibility of adversely affecting the texture due to the mixing of bubbles. Each sample was transferred to a beaker and sufficiently agitated so that bubbles were not mixed, and a sample in which bubbles were sufficiently mixed using an air stone and an air pump (bubbles were mixed immediately before the experiment).

液体測定電極(HP16452A)を接続したLCRメーター(日置電機(株)製3522−50)を用い静電容量の測定を行い、測定値を記録用コンピュータで記録した(図10参照)。測定は、液送ポンプを用いチューブおよび液体測定電極内にヨーグルトを満たした後、ヨーグルトを一定速度で循環させ、チューブと接続した液体測定電極を用いて行った。測定開始時間は液送ポンプのスイッチを入れた時点とし、流動終了後、液送ポンプを止めた状態の静電容量についても同様に測定した。   The capacitance was measured using an LCR meter (Hioki Electric Co., Ltd. 3522-50) connected with a liquid measurement electrode (HP16452A), and the measured value was recorded with a recording computer (see FIG. 10). The measurement was performed using the liquid measurement electrode connected to the tube after the yogurt was filled in the tube and the liquid measurement electrode using a liquid feed pump, and then the yogurt was circulated at a constant speed. The measurement start time was the time when the liquid feed pump was turned on, and the capacitance in a state where the liquid feed pump was stopped after the end of flow was measured in the same manner.

測定条件は、(1)恒温槽内温度を4℃、測定周波数を10Hz、電極板間距離を2mmとし、6秒間隔で120回測定し、また、液体測定電極の側面部から上部へとヨーグルトを流動させ、更に、(2)恒温槽内温度を4℃、測定周波数を1kHz、電極板間距離を2mmとし、6秒間隔で240回測定した。また液体測定電極の下部から上部へとヨーグルトを流動させた。   The measurement conditions are as follows: (1) The temperature inside the thermostatic chamber is 4 ° C., the measurement frequency is 10 Hz, the distance between the electrode plates is 2 mm, and the measurement is performed 120 times at intervals of 6 seconds. Further, (2) the temperature in the thermostatic chamber was 4 ° C., the measurement frequency was 1 kHz, the distance between the electrode plates was 2 mm, and the measurement was performed 240 times at intervals of 6 seconds. The yogurt was allowed to flow from the lower part to the upper part of the liquid measuring electrode.

(1)の測定周波数10Hzの測定結果を図11及び図12、図13に示す。気泡の有無に関わらずヨーグルトを流動させた場合の方が静電容量は高くなり、測定時間の増加とともに、その値は減少する傾向を示した。またヨーグルトを流動させない場合、気泡の有無による静電容量の顕著な違いは見られなかったが、気泡を混入させた試料では、気泡がない試料と比べて静電容量は急激に減少していた(但し、上記条件では、液体測定電極の側面から上部へのヨーグルトの流れのため、電極板の上部分にのみ試料が流動していた可能性がある)。   The measurement results of (1) at a measurement frequency of 10 Hz are shown in FIG. 11, FIG. 12, and FIG. Capacitance was higher when yogurt was flowed regardless of the presence or absence of bubbles, and the value tended to decrease with increasing measurement time. In addition, when yogurt was not flowed, there was no significant difference in capacitance due to the presence or absence of bubbles, but the sample with bubbles mixed in decreased the capacitance more rapidly than the sample without bubbles. (However, under the above conditions, the sample may flow only in the upper part of the electrode plate due to the flow of yogurt from the side surface of the liquid measurement electrode to the upper part).

また、電解質を含む液体に金属電極が接すると、そこに電気二重層が形成されて電極分極現象が生じるから、電極分極が起こると低周波数領域で大きな静電容量の増加を示し、試料自体の誘電緩和現象を覆い隠すことによって測定周波数10Hzのとき電極分極現象を捉えている可能性があり、また、低周波数領域での測定のため低分子物質の挙動を捕捉した可能性も否めない。   In addition, when a metal electrode comes into contact with a liquid containing an electrolyte, an electric double layer is formed there and an electrode polarization phenomenon occurs, so when the electrode polarization occurs, a large increase in capacitance occurs in the low frequency region, and the sample itself By covering up the dielectric relaxation phenomenon, there is a possibility that the electrode polarization phenomenon is captured at a measurement frequency of 10 Hz, and there is no denying the possibility that the behavior of a low molecular substance is captured for measurement in the low frequency region.

そこで、ヨーグルトを流動させない場合において、周波数を変化させ電極分極の影響について検討した結果を図14に示す。周波数の増加に従って静電容量は減少し、周波数約150Hzから静電容量は一定となった。静電容量が一定となる時点までの周波数では、電極分極現象を捕捉していることが示唆された。   Therefore, FIG. 14 shows the result of examining the influence of electrode polarization by changing the frequency when yogurt is not flowed. The capacitance decreased with increasing frequency, and the capacitance became constant from a frequency of about 150 Hz. It was suggested that the electrode polarization phenomenon was captured at the frequency up to the point where the capacitance became constant.

これらのことを考慮し、(2)のkHzの測定では、液体測定電極の下部から上部へとヨーグルトを流動させた。その測定結果を図15、図16、図17に示す。ヨーグルトを流動させた場合、静電容量は増加傾向にあり、気泡を混入させた場合の方が静電容量は高く、測定開始から約300秒まで測定値は不安定であった。また流動させない場合、静電容量は緩やかに減少していた。チューブ内をヨーグルトが流動することで気泡やヨーグルトの構造の変化、たとえば気泡の粒子径の減少や均質化、粘性率の低下が起こり、上記のような挙動が現れたと考えられる。また流動を止めたことでゲル(凝固)の再構築が起こり、静電容量の減少が起こっていたことが認められた。   Considering these facts, in the measurement of kHz of (2), the yogurt was flowed from the lower part to the upper part of the liquid measuring electrode. The measurement results are shown in FIG. 15, FIG. 16, and FIG. When yogurt was allowed to flow, the electrostatic capacity tended to increase. When air bubbles were mixed, the electrostatic capacity was higher, and the measured value was unstable from the start of measurement to about 300 seconds. Further, when not flowing, the electrostatic capacity gradually decreased. It is considered that the above behavior appeared due to the change in the structure of bubbles and yogurt caused by the flow of yogurt in the tube, for example, the particle diameter of the bubbles was reduced and homogenized, and the viscosity was lowered. Moreover, it was confirmed that the gel (coagulation) was reconstructed by stopping the flow, and the capacitance decreased.

従って、ヨーグルトの製造工程中のパイプ輸送時の品質管理にこの方法は応用可能であると考えられる。   Therefore, it is considered that this method can be applied to quality control during pipe transportation during the yogurt manufacturing process.

以上の各実験の結果、発酵過程のモニタリング、ヨーグルトをパイプ輸送する際の泡噛み、カップ内のヨーグルトの崩れについての品質検査を、誘電特性を用いることによって非破壊・非接触かつ連続的に測定し、状態を評価するについて、
ヨーグルトの凝固過程において、静電容量は増加し、凝固が完了したと思われる時点で静電容量は一定となった、カップ型ヨーグルトにおいて、粘性率が低いほど、すなわちカップ内のヨーグルトが崩れるに従って静電容量は増加する傾向を示した、また、ヨーグルトに気泡を混入させて管内を流動させた場合、気泡を混入させなかった試料と比べ、静電容量の値が明確に異なっていた。
As a result of each of the above experiments, non-destructive, non-contact and continuous measurement of the quality of the fermentation process monitoring, foam biting during pipe transportation of yogurt, and yogurt collapse in the cup by using dielectric properties And assessing the condition
In the coagulation process of yogurt, the capacitance increased, and the capacitance became constant when coagulation was considered to be complete. In cup-type yogurts, the lower the viscosity, that is, as the yogurt in the cup collapsed The capacitance showed a tendency to increase, and when the bubbles were mixed in the yogurt and flowed in the tube, the capacitance values were clearly different from the sample in which bubbles were not mixed.

即ち、ヨーグルトの凝固過程における静電容量増変化は、双極子モーメントの増加によるものであると考えられ、誘電特性を用いてヨーグルトの凝固過程を捉えることが可能になった。   That is, the increase in capacitance during the solidification process of yogurt is considered to be due to an increase in the dipole moment, and it has become possible to capture the solidification process of yogurt using dielectric characteristics.

また、カップ内ヨーグルトの崩れの非接触モニタリングでは、カップ内の試料の撹拌の程度(粘性率)と静電容量との間に相関があることが明らかとなった。すなわち、カップ内のヨーグルトの崩れを容器を未開封のまま、検査できることが明らかとなった。また、ヨーグルトの崩れ具合が粘性率で表現できるとすると、本方法により、カップ内のヨーグルトの損傷程度も非破壊で計測できる可能性があることが明らかとなった。   Further, non-contact monitoring of the collapse of yogurt in the cup revealed that there was a correlation between the degree of stirring (viscosity) of the sample in the cup and the capacitance. That is, it became clear that the collapse of the yogurt in the cup can be inspected with the container unopened. Also, if the degree of yogurt collapse can be expressed in terms of viscosity, it has become clear that the degree of yogurt damage in the cup may be measured nondestructively by this method.

更に、管内ヨーグルトの誘電特性測定においては、流動状態の試料で気泡の有無の違いが静電容量の値の違いとして明確に現れていた。すなわち、ヨーグルトの製造工程中のパイプ輸送時の品質管理にこれを応用可能であることが明らかとなった。   Furthermore, in the measurement of the dielectric properties of the yogurt in the tube, the difference in the presence or absence of bubbles in the fluidized sample clearly appeared as a difference in capacitance value. That is, it became clear that this can be applied to quality control at the time of pipe transportation during the manufacturing process of yogurt.

これらの実験結果に基づいて、本発明の上記非破壊検査方法にあって、充填容器中の高粘度液状食品の非破壊検査は、例えばヨーグルト以外の豆腐、茶碗蒸し、ジャム、ケチャップ、蜂蜜等の液状食品についてこれを行うことができ、また、ヨーグルト以外に、プリン、ゼリー等の加熱充填後に容器内発酵乃至容器内ゲル化を行う嗜好食品とし、該食品の出荷前に非破壊的判定を行うこともできる。   Based on these experimental results, in the above non-destructive inspection method of the present invention, the non-destructive inspection of the high-viscosity liquid food in the filling container is performed by using liquids such as tofu, chamomile, jam, ketchup, honey, etc. other than yogurt. This can be done for food, and in addition to yogurt, it should be a favorite food that undergoes in-container fermentation or in-container gelation after heating and filling with pudding, jelly, etc., and performs non-destructive judgment before shipment of the food You can also.

該充填容器中の高粘度液状食品の非破壊検査は、その静電容量増変化の測定を、高粘度液状食品充填容器を被嵌配置して該充填容器を収容し又は該充填容器の両側面に対向配置して該充填容器を挟持する容器側電極と、該容器の上面に配置したプレート電極を両極として、該食品容器中の高粘度液状食品の崩れ損傷乃至気泡混入を非破壊的に判定することによって、これを行うことができる。   The non-destructive inspection of the high-viscosity liquid food in the filling container is carried out by measuring the increase in capacitance by placing the high-viscosity liquid food filling container in a fitted manner to accommodate the filling container or on both sides of the filling container. A non-destructive determination of collapse damage or air bubble contamination of the high-viscosity liquid food in the food container using the container-side electrode sandwiched between the container and the plate electrode disposed on the upper surface of the container as both electrodes This can be done.

即ち、例えば上記カップ型ヨーグルトの静電容量を測定した実験における図5に示すように、容器側電極を、これらの高粘度液状食品充填容器に合わせた各容器形状に形成し、該充填容器を収容自在とした金属製乃至金属内張りのものとして、該充填容器を、例えば個別に収容することによって、該容器側電極を被嵌配置するものとし、更に該容器側電極の上面に配置したプレート電極は、該充填容器上に載置する平坦プレートにして同じく金属製乃至金属内張りのものとするようにすればよい。   That is, for example, as shown in FIG. 5 in the experiment in which the capacitance of the cup-type yogurt was measured, the container-side electrode was formed in each container shape corresponding to these high-viscosity liquid food filling containers, and the filling containers were As a metal or metal-lined one that can be accommodated, the container side electrode is fitted and disposed by individually accommodating the filling container, for example, and a plate electrode disposed on the upper surface of the container side electrode The flat plate placed on the filling container may be made of metal or metal lining.

このとき、該容器側電極及びプレート電極による静電容量測定は、これら双方の電極を、例えばLCRメーターに接続し且つ該LCRメーターをパソコンに接続することによって測定装置を形成して行うものとしてある。該高粘度液状食品充填容器は、例えばクレートの搬送ラインに配置した判定位置において該クレートから選択的又は全品を個別に取り出して上記容器側電極に挿入するように収容し且つプレート電極を載置するようにすればよく、また、クレートからの該充填容器の取り出し、充填容器の容器側電極への挿入、プレート電極の載置、測定後のプレート電極の取り外し、充填容器の容器側電極からの取り出しとクレートの定位置への復帰収容は、搬送ラインの測定部位に、充填容器の把持移動機構、プレート電極の昇降機構等を配置することによって、これを行うことができる。   At this time, the capacitance measurement by the container side electrode and the plate electrode is performed by forming a measuring device by connecting both of these electrodes to, for example, an LCR meter and connecting the LCR meter to a personal computer. . The high-viscosity liquid food filling container accommodates a plate electrode on which the selective or all items are individually taken out from the crate and inserted into the container-side electrode, for example, at a determination position arranged on the crate conveying line. The filling container is taken out from the crate, the filling container is inserted into the container side electrode, the plate electrode is placed, the plate electrode is removed after the measurement, and the filling container is taken out from the container side electrode. The crate can be returned to a fixed position by placing a filling container gripping movement mechanism, a plate electrode raising / lowering mechanism, and the like at the measurement site of the transfer line.

該充填容器中の高粘度液状食品の非破壊検査は、また、例えば図18に示すように、容器側電極を、充填容器の両側面に対向配置して容器に密着又は僅少空隙を空けて充填容器を挟持する平板状一対にして金属製乃至金属内張りのものとし、該容器側電極の上面に配置したプレート電極を、上記と同様に充填容器上に載置する平坦プレートの同じく金属製乃至金属内張りのものとすることによって、これを行うことができる。このとき、該容器側電極及びプレート電極による静電容量測定は、これら双方の電極を、同様にLCRメーターに接続し且つ該LCRメーターをPC(図示省略)に接続して、これを測定装置として行うものとしてある。このとき該高粘度液状食品充填容器は、例えばクレートの搬送ラインに配置した判定位置において該クレートから同様に選択的又は全品を個別に取り出して、上記容器側電極とプレート電極による囲繞スペースを通過させるようにすればよく、このとき同様にクレートからの該充填容器の取り出し、充填容器の電極間通過、通過測定後の充填容器のクレートの定位置への復帰収容は、搬送ラインの測定部位に充填容器の把持移動機構等を配置することによって、これを行うようにすればよい。   The non-destructive inspection of the high-viscosity liquid food in the filling container is also performed, for example, as shown in FIG. 18, with the container-side electrode placed opposite to both sides of the filling container so as to be in close contact with the container or with a small gap. A flat plate that is placed on the top of the filling container in the same manner as described above, which is made of metal or metal lining with a pair of flat plates sandwiching the container, and is placed on the top surface of the container side electrode. This can be done by having a lining. At this time, the capacitance measurement using the container-side electrode and the plate electrode is performed by connecting both electrodes to the LCR meter and connecting the LCR meter to a PC (not shown). There is something to do. At this time, the high-viscosity liquid food filling container, for example, selectively or all items from the crate are separately taken out from the crate at the determination position arranged on the crate conveying line, and passed through the surrounding space formed by the container-side electrode and the plate electrode. Similarly, at this time, taking out the filling container from the crate, passing between the electrodes of the filling container, returning to the fixed position of the crate of the filling container after passing measurement, filling the measurement site of the transport line This may be done by arranging a container gripping movement mechanism or the like.

更に、充填容器中の高粘度液状食品非破壊検査は、その静電容量変化の測定を、高粘度液状食品の製造プラントの充填パイプ中に配置した平行一対のプレート電極を用いることによって、該充填パイプ中の高粘度液状食品の泡噛みを非破壊的にインライン判定することによって、これを行うことができる。   Further, the non-destructive inspection of high-viscosity liquid food in a filling container is performed by measuring the change in capacitance by using a pair of parallel plate electrodes arranged in a filling pipe of a high-viscosity liquid food production plant. This can be done by non-destructively determining in-line the bubble chewing of the high viscosity liquid food in the pipe.

このときプレート電極は、平行一対の平板のものとして、該プレート電極を充填パイプ中に、10mm乃至20mm程度の間隔を置いて挿入配置し、該プレート電極を同様にLCRメーターに接続し且つ該LCRメーターをPCに接続するようにして、その測定を行うようにすればよい。プレート電極は、その面積を製造プラントに合せた大きさのものとするように拡大することによって、正確な静電容量の測定をなし得るようになる。   At this time, the plate electrode is a pair of parallel flat plates, and the plate electrode is inserted and arranged in the filling pipe with an interval of about 10 mm to 20 mm, the plate electrode is similarly connected to the LCR meter, and the LCR The measurement may be performed by connecting the meter to a PC. The plate electrode can be made to have an accurate capacitance measurement by enlarging its area to the size of the manufacturing plant.

また、上記実験により高粘度液状食品の粘性率と静電容量は相関関係にあることが明らかとなったから、上記静電容量増変化の判定を、上記静電容量増変化の測定に代えて、高粘度液状食品の粘性率と静電容量との相関関係に基づいて、該高粘度液状食品の粘性率を測定することによって行うことができる。該粘性率の測定は、製造プラントにおける高粘度液状食品の粘性率を測定することによって、特に製品崩れの有無を非破壊的に判定することができる。   In addition, the above experiment revealed that the viscosity of the high-viscosity liquid food and the capacitance are correlated, so the determination of the increase in capacitance is replaced with the measurement of the increase in capacitance. This can be done by measuring the viscosity of the high viscosity liquid food based on the correlation between the viscosity of the high viscosity liquid food and the capacitance. The viscosity can be measured in a non-destructive manner, in particular, by checking the viscosity of a high-viscosity liquid food product in the production plant to determine whether the product has collapsed.

本発明は、その実施に際して高粘度液状食品、その静電容量増変化の測定、該測定による高粘度液状食品の状態、必要に応じて用いる充填容器、製造プラント、容器型電極、プレート電極、粘性率の測定等の具体的方法、形状、構造、材質、検査器具、これらに対する付加等は、上記発明の要旨に反しない限り様々な形態のものとすることができる。   The present invention, in its implementation, the high-viscosity liquid food, the measurement of the increase in capacitance, the state of the high-viscosity liquid food by the measurement, the filling container used as necessary, the production plant, the container-type electrode, the plate electrode, the viscosity Specific methods such as rate measurement, shape, structure, material, inspection instrument, addition to these, and the like can be in various forms as long as they do not contradict the gist of the invention.

Claims (5)

高粘度液状食品を非破壊的に検査する検査方法であって、高粘度液状食品における静電容量増変化を測定し、該静電容量増変化を指標として該高粘度液状食品のプラントパイプ内の泡噛み、充填容器中の崩れ損傷乃至気泡混入を非破壊的に判定することを特徴とする高粘度液状食品の非破壊検査方法。   An inspection method for non-destructively inspecting a high-viscosity liquid food, measuring an increase in capacitance in the high-viscosity liquid food, and using the increase in capacitance as an index in a plant pipe of the high-viscosity liquid food A non-destructive inspection method for high-viscosity liquid foods characterized by non-destructively determining foam biting, collapse damage in a filled container, or bubble mixing. 上記静電容量増変化の測定を、高粘度液状食品充填容器を被嵌配置して該充填容器を収容し又は該充填容器の両側面に対向配置して該充填容器を挟持する容器側電極と、該容器の上面に配置したプレート電極を両極として、該食品容器中の高粘度液状食品の崩れ損傷乃至気泡混入を非破壊的に判定することを特徴とする請求項1に記載の高粘度液状食品の非破壊検査方法。   The measurement of the increase in capacitance is carried out by placing a high-viscosity liquid food filling container so as to accommodate the filling container, or opposed to both side surfaces of the filling container and sandwiching the filling container. 2. The high-viscosity liquid according to claim 1, wherein the plate electrode disposed on the upper surface of the container is used as both electrodes to determine non-destructively whether the high-viscosity liquid food in the food container is damaged or mixed with bubbles. Non-destructive inspection method for food. 上記高粘度液状食品を、ヨーグルト、プリン、ゼリー等の加熱充填後に容器内発酵乃至容器内ゲル化を行う嗜好食品とし、該食品の出荷前に非破壊的判定を行うことを特徴とする請求項2に記載の高粘度液状食品の非破壊検査方法。   The high-viscosity liquid food is a favorite food that undergoes in-container fermentation or in-container gelation after heating and filling yogurt, pudding, jelly, etc., and performs non-destructive determination before shipment of the food. 2. A nondestructive inspection method for high viscosity liquid food according to 2. 上記静電容量増変化の測定を、高粘度液状食品の製造プラントの充填パイプ中に配置した平行一対のプレート電極を用いることによって、該充填パイプ中の高粘度液状食品の泡噛みを非破壊的にインライン判定することを特徴とする請求項1に記載の高粘度液状食品の非破壊検査方法。   The measurement of the increase in capacitance is performed by using a pair of parallel plate electrodes arranged in a filling pipe of a high-viscosity liquid food production plant, thereby eliminating the non-destructive foam chewing of the high-viscosity liquid food in the filling pipe. The non-destructive inspection method for high-viscosity liquid food according to claim 1, wherein in-line determination is performed. 上記静電容量増変化の判定を、上記静電容量増変化の測定に代えて、高粘度液状食品の粘性率と静電容量との相関関係に基づいて、該高粘度液状食品の粘性率を測定することによって行うことを特徴とする請求項1、2、3又は4に記載の高粘度液状食品の非破壊検査方法。   Instead of measuring the increase in capacitance, the determination of the increase in capacitance is based on the correlation between the viscosity and the capacitance of the high-viscosity liquid food. The non-destructive inspection method for high-viscosity liquid food according to claim 1, 2, 3 or 4, characterized by being measured.
JP2010251148A 2010-11-09 2010-11-09 Nondestructive inspection method of mixture of air bubble in high viscosity liquid food Pending JP2012103079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010251148A JP2012103079A (en) 2010-11-09 2010-11-09 Nondestructive inspection method of mixture of air bubble in high viscosity liquid food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010251148A JP2012103079A (en) 2010-11-09 2010-11-09 Nondestructive inspection method of mixture of air bubble in high viscosity liquid food

Publications (1)

Publication Number Publication Date
JP2012103079A true JP2012103079A (en) 2012-05-31

Family

ID=46393664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251148A Pending JP2012103079A (en) 2010-11-09 2010-11-09 Nondestructive inspection method of mixture of air bubble in high viscosity liquid food

Country Status (1)

Country Link
JP (1) JP2012103079A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221285A (en) * 2015-06-01 2016-12-28 株式会社アクセル Action detector, and game machine
KR101819834B1 (en) 2016-11-01 2018-01-17 주식회사 해인 A method for manufacturing apple juice using ozone water washing
WO2020046207A1 (en) * 2018-08-31 2020-03-05 National University Of Singapore Method and system for integrity testing of blister packages
CN114442712A (en) * 2022-02-28 2022-05-06 谢欢 Automatic adaptation system of emulsion pump of fluid infusion constant pressure in succession

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221285A (en) * 2015-06-01 2016-12-28 株式会社アクセル Action detector, and game machine
KR101819834B1 (en) 2016-11-01 2018-01-17 주식회사 해인 A method for manufacturing apple juice using ozone water washing
WO2020046207A1 (en) * 2018-08-31 2020-03-05 National University Of Singapore Method and system for integrity testing of blister packages
CN114442712A (en) * 2022-02-28 2022-05-06 谢欢 Automatic adaptation system of emulsion pump of fluid infusion constant pressure in succession
CN114442712B (en) * 2022-02-28 2023-09-08 青海金祁连乳业有限责任公司 Emulsion pump automatic adaptation system with continuous liquid supplementing and constant pressure

Similar Documents

Publication Publication Date Title
Mcclements Critical review of techniques and methodologies for characterization of emulsion stability
Fang et al. On measurement of food powder reconstitution properties
Rao et al. Measurement of flow and viscoelastic properties
JP2012103079A (en) Nondestructive inspection method of mixture of air bubble in high viscosity liquid food
JP6116701B2 (en) Method and apparatus for monitoring sedimentation parameters of a fluid medium sample
Bahram-Parvar A review of modern instrumental techniques for measurements of ice cream characteristics
US20140043044A1 (en) Fuel sensor based on measuring dielectric relaxation
Ting et al. Use of ultrasound for characterising the gelation process in heat induced CaSO4· 2H2O tofu curd
JP6986260B2 (en) Substance identification device and identification method using electromagnetic waves
Strybulevych et al. Characterizing a model food gel containing bubbles and solid inclusions using ultrasound
Bazilevsky et al. Sedimentation of particles in shear flows of viscoelastic fluids with fibers
Bourne et al. Viscosity measurements of foods
Morita et al. Measurements of standard-viscosity liquids using shear horizontal surface acoustic wave sensors
Mittal Computer-based instrumentation: sensors for in-line measurements
Mohan et al. A low-cost capacitance-based non-destructive evaluation platform for fast moving consumer goods (FMCG) industrial applications
Shamsutdinova et al. Improvement of Methods for Studying the Electrophysicala Viscous Properties of Liquids
JP2017191099A (en) Food inspection device and food inspection method
Coupland et al. Ultrasonic sensors forthe food industry
JP7253792B2 (en) Identification device and identification method for identifying substances using electromagnetic waves
Madhurima et al. Probing the onset of structural instabilities as a tool for detection of staling of dairy milk: A permittivity and conductivity study
JPH02236141A (en) Judgment of change in contents held in container from liquid to solid
De Luca et al. Ultrasound based sensor for fat detection in fresh milk
JPH03197839A (en) Method and device for inspecting viscosity of liquid in container
Mohan et al. Non-Destructive Evaluation of Food and Beverage (F&B) Fast Moving Consumer Goods (FMCG) Using Capacitive Proximity Sensor
Ratajski et al. The use of ultrasonic methods in the identification of honey types