JP2012102904A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2012102904A
JP2012102904A JP2010249944A JP2010249944A JP2012102904A JP 2012102904 A JP2012102904 A JP 2012102904A JP 2010249944 A JP2010249944 A JP 2010249944A JP 2010249944 A JP2010249944 A JP 2010249944A JP 2012102904 A JP2012102904 A JP 2012102904A
Authority
JP
Japan
Prior art keywords
room temperature
air
compressor
air conditioner
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010249944A
Other languages
Japanese (ja)
Other versions
JP5646958B2 (en
Inventor
Takaho Itoigawa
高穂 糸井川
Yoshiaki Notoya
義明 能登谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010249944A priority Critical patent/JP5646958B2/en
Publication of JP2012102904A publication Critical patent/JP2012102904A/en
Application granted granted Critical
Publication of JP5646958B2 publication Critical patent/JP5646958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner that improves driving comfort and reduces power consumption during driving.SOLUTION: The air conditioner C includes a room temperature measuring means 11 of measuring a room temperature in a room, blowout direction change means 12, 13 of changing a direction of blowing out air, and setting input means (r) of inputting settings of operation. The air conditioner C blows air substantially downward when a compressor 2 is in heating operation at a rotational frequency N1. The air conditioner also includes a control part which performs control so that when a difference between the room temperature measured by the room temperature measuring means 11 and a set temperature input to the setting input means (r) is equal to or higher than a predetermined value during the heating operation and the state is maintained for a predetermined time, the compressor 2 operates at a rotational frequency lower than the N1, and the blowout direction change means 12, 13 blow air upward from the substantially downward direction.

Description

本発明は、空気調和機に係り、より詳細には運転時に快適性を維持しつつ消費電力量を削減する空調を行える空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner that can perform air conditioning that reduces power consumption while maintaining comfort during operation.

一般家庭の全消費電力量に占める家庭用の空気調和機の消費電力量の割合は大きい。そのため、地球温暖化問題や資源の枯渇などに起因する省エネルギの議論において、家庭用の空気調和機の消費電力量の削減は重要となっている。
一方、空気調和機の進歩で建物内の快適性は向上している。
そこで、快適性を損なうことなく、消費電力量を削減する機能をもつ空気調和機が必要となっている。
The ratio of the power consumption of home air conditioners to the total power consumption of general households is large. For this reason, in the discussion of energy saving caused by global warming problems and resource depletion, it is important to reduce the power consumption of home air conditioners.
On the other hand, the comfort in the building has been improved by the progress of the air conditioner.
Therefore, an air conditioner having a function of reducing power consumption without impairing comfort is required.

従来の空気調和機に関する技術では、特許文献1に示すように、暖房運転時に室温が設定温度に近づいた場合に、下向きに吹き出していた風向を水平方向に切り替え、室温と設定温度が所定の温度差となった場合に風向を下向きに切り替えることで、天井付近に滞留した暖気を床付近へ降ろそうとするものがある。   In the technology related to the conventional air conditioner, as shown in Patent Document 1, when the room temperature approaches the set temperature during heating operation, the wind direction blown downward is switched to the horizontal direction, and the room temperature and the set temperature are a predetermined temperature. When there is a difference, there is one that attempts to lower the warm air staying near the ceiling to the floor by switching the wind direction downward.

また、特許文献2には、室内機内部の温度検出センサとユーザの居住域に設置される第1の温度センサと居住域以外に設置される第2の温度センサを設け、居住域のみを快適にすることで消費電力量の削減を図る運転と、居住域および居住域以外を快適にすることで広範囲を快適にすることを図る運転を行うことが記載されている。   Further, Patent Document 2 includes a temperature detection sensor inside the indoor unit, a first temperature sensor installed in the user's living area, and a second temperature sensor installed outside the living area, so that only the living area is comfortable. It is described that the operation for reducing the power consumption by making it and the operation for making the wide area comfortable by making the residential area and the non-residential area comfortable.

さらに、特許文献3に示すように、居住域に置かれるメインリモコンと、居住域以外に設置されるサブリモコンとを持ち、居住域以外の領域のユーザの有無に従い何れか一方の領域のみを快適にし、消費電力量の削減を図るものがある。   Furthermore, as shown in Patent Document 3, it has a main remote control placed in the living area and a sub-remote control installed outside the living area, and only one of the areas is comfortable according to the presence / absence of the user outside the living area. In some cases, the power consumption is reduced.

特許文献4には、第1の温度センサと第2の温度センサを設け、何れか一方の温度センサが故障した場合に他方の温度センサを用いて快適な制御を継続することを図ることが記載されている。   Patent Document 4 describes that a first temperature sensor and a second temperature sensor are provided, and when one of the temperature sensors fails, the other temperature sensor is used to continue comfortable control. Has been.

特許第3182439号公報Japanese Patent No. 3182439 特許第3378781号公報Japanese Patent No. 33788781 特許第3423197号公報Japanese Patent No. 3423197 特開平9−196447号公報JP-A-9-196447

ところで、特許文献1に記載の運転状態の場合、天井付近に滞留した暖気を下方向へ吹き降ろすことを目的として、室温とユーザの設定温度が近い条件での圧縮機の回転数(回転速度)で、室内機から下方向へ吹き出すこととなる。そのため、初期時、熱交換器で暖かく熱交換されない空気を下方向へ吹き出すこととなり、ユーザに熱交換されない気流を直接当たることによる寒さを与える場合(危険性)がある。
さらに、このような運転状態の場合、圧縮機の回転数(回転速度)は従来と同じであるため、消費エネルギは同じで消費電力量の削減には寄与しない。
By the way, in the case of the operation state described in Patent Document 1, the rotational speed (rotational speed) of the compressor under the condition where the room temperature and the set temperature of the user are close for the purpose of blowing down the warm air staying near the ceiling downward. Then, it will blow out downward from the indoor unit. Therefore, at the initial stage, air that is not warmly heat-exchanged by the heat exchanger is blown downward, and the user may be cold due to direct contact with an airflow that is not heat-exchanged (danger).
Further, in such an operating state, since the rotation speed (rotation speed) of the compressor is the same as the conventional one, the energy consumption is the same and does not contribute to the reduction of the power consumption.

また、高気密・高断熱の住宅の場合、暖房によって室内へ供給した熱の屋外への漏出が少ないため、比較的短時間で天井付近の空気の温度は高くなる。この場合、高温を吹き出す暖房から天井付近に滞留した低温の暖気を吹き降ろす暖房へと切り替えると、上下方向の室温の分布の均一化に伴い、室内から屋外へ漏出する熱量は少量となる。しかしながら、ユーザの足元へ天井付近から熱交換されない気流を吹き付けることとなり、ユーザが、吹き付ける気流による寒さで不快を感じる場合(危険性)がある。   In the case of a highly airtight and highly heat-insulated house, the heat supplied to the room by heating is less leaked to the outside, so that the temperature of the air near the ceiling is increased in a relatively short time. In this case, when switching from heating that blows out high temperature to heating that blows down low-temperature warm air staying in the vicinity of the ceiling, the amount of heat leaked from the room to the outside becomes small as the distribution of the room temperature in the vertical direction becomes uniform. However, an air current that is not heat-exchanged from the vicinity of the ceiling is blown to the user's feet, and the user may feel uncomfortable due to the cold caused by the air flow that is blown (danger).

一方、気密性の低い居室で暖房により高温の暖気を供給する場合、居室外より居室内に侵入する分子密度の高い冷気はユーザの足元に滞留し、分子密度の低い暖気は吹き出された直後から速やかに浮上し天井付近に滞留する。
そのため、気密性の低い居室の場合、従来の技術では、ユーザが生活している領域である床付近に冷気が滞留していても、天井付近に滞留した暖気を温度センサが検知することで高温を吹き出す暖房から天井付近に滞留した暖気を吹き降ろす暖房へと切り替えることとなり、冷気の滞留した床付近に十分な熱をもたない気流を生じさせることとなり、ユーザに寒さによる不快感を与える場合(危険性)がある。
On the other hand, when supplying high-temperature warm air by heating in a room with low airtightness, cold air with high molecular density entering the room from outside the room stays at the user's feet, and warm air with low molecular density immediately after being blown out. Ascend quickly and stay near the ceiling.
Therefore, in the case of a room with low airtightness, in the conventional technology, even if cold air stays near the floor, which is the area where the user lives, the temperature sensor detects the warm air staying near the ceiling. When the heating that blows out the air is switched to the heating that blows off the warm air that stays near the ceiling, an air current that does not have enough heat is generated near the floor where the cold air stays, and the user feels uncomfortable due to the cold (There is a risk.

また、特許文献2、3のような運転状態の場合、サブリモコンで設定温度を変更することができず、サブリモコンの領域の暖房負荷が日射により低減されている場合でも設定温度を下げることができず、ユーザに暑さによる不快な環境を与える危険性がある。
さらに、サブリモコンはメインリモコンとは異なる領域に固定されており、サブリモコンの領域を変更する場合、壁に取り付けられているサブリモコンを取り外し、位置情報を設定し直し、さらに設定し直した領域に再度固定する手間が生じる。
Also, in the case of operating states as in Patent Documents 2 and 3, the set temperature cannot be changed by the sub remote controller, and the set temperature can be lowered even when the heating load in the sub remote controller area is reduced by solar radiation. There is a risk that the user may be uncomfortable due to heat.
In addition, the sub remote control is fixed in a different area from the main remote control. When changing the sub remote control area, remove the sub remote control attached to the wall, reset the location information, and then reset the area There is a trouble of fixing again.

一方、特許文献4のような運転状態の場合、一方の温度センサが故障した場合に他方の温度センサが有効となり運転の信頼性が向上するものの、ユーザの快適性の向上や消費電力量の削減には寄与する技術ではない。
本発明は上記実状に鑑み、運転時の快適性を向上するとともに運転時の消費電力量を削減する空気調和機の提供を目的とする。
On the other hand, in the driving state as in Patent Document 4, when one of the temperature sensors fails, the other temperature sensor becomes effective and driving reliability is improved, but the user's comfort is improved and the power consumption is reduced. Is not a contributing technology.
In view of the above situation, an object of the present invention is to provide an air conditioner that improves driving comfort and reduces power consumption during driving.

上記目的を達成すべく、第1の本発明に関わる空気調和機は、室内の室温を測定する室温測定手段と、吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、運転の設定が入力される設定入力手段とを備え、圧縮機が回転数N1での暖房運転時には、前記吹き出し空気を略下方向に吹き出す空気調和機であって、暖房運転時に、前記室温測定手段で測定された室温と前記設定入力手段に入力された設定温度との差が所定の値以上となり、その状態を所定の時間維持した場合、前記圧縮機が前記N1より少ない回転数で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を前記略下方向より上方向に吹き出すように制御する制御部を設けている。   In order to achieve the above object, the air conditioner according to the first aspect of the present invention receives room temperature measuring means for measuring room temperature in the room, blowing direction changing means for changing the blowing direction of the blowing air, and operation settings. An air conditioner that blows out the blown air substantially downward when the compressor is in the heating operation at the rotation speed N1, and the room temperature measured by the room temperature measuring means during the heating operation. When the difference from the set temperature input to the setting input means is a predetermined value or more and the state is maintained for a predetermined time, the compressor is operated at a rotation speed less than N1, and the blowing direction changing means A control unit is provided for controlling the blown air to blow upward from the substantially downward direction.

第2の本発明に関わる空気調和機は、室内の室温を測定する室温測定手段と、吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、運転の設定が入力される設定入力手段と、空気を吹き出す貫流ファンとを備え、圧縮機が回転数N1での暖房運転時には貫流ファンが回転数n1で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を略下方向に吹き出す空気調和機であって、暖房運転時に、前記室温測定手段で測定された室温と前記設定入力手段に入力された設定温度との差が所定の値以上となり、その状態を所定の時間維持した場合、前記圧縮機が前記N1より少ない回転数で運転されるとともに前記貫流ファンが前記n1より少ない回転数で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を前記略下方向より上方向に吹き出すように制御する制御部を設けている。   The air conditioner according to the second aspect of the present invention includes a room temperature measuring means for measuring a room temperature in a room, a blowing direction changing means for changing a blowing direction of the blowing air, a setting input means for inputting operation settings, an air An air conditioner that blows the blown-out air substantially downward by the blowing direction changing means when the compressor is in a heating operation at a rotational speed of N1 and the through-flow fan is operated at the rotational speed of n1. In the heating operation, when the difference between the room temperature measured by the room temperature measurement unit and the set temperature input to the setting input unit is a predetermined value or more and the state is maintained for a predetermined time, the compressor is The cross-flow fan is operated at a rotational speed less than n1 while being operated at a rotational speed less than N1, and the blown-out air is moved in the substantially downward direction by the blow-out direction changing means. A control unit for controlling to blow in Riue direction are provided.

第3の本発明に関わる空気調和機は、室内の室温を測定する室温測定手段と、吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、運転の設定が入力される設定入力手段とを備え、圧縮機が回転数N2での冷房運転時には、前記吹き出し空気を略水平方向に吹き出す空気調和機であって、冷房運転時に、前記設定入力手段に入力された設定温度と前記室温測定手段で測定された室温との差が所定の値以上となり、その状態を所定の時間維持した場合、前記圧縮機が前記N2より少ない回転数で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を前記略水平方向より下方向に吹き出すように制御する制御部を設けている。   An air conditioner according to a third aspect of the present invention includes room temperature measuring means for measuring room temperature in a room, blowing direction changing means for changing the blowing direction of blown air, and setting input means for inputting operation settings. The air conditioner that blows out the blown air in a substantially horizontal direction when the compressor is in cooling operation at the rotational speed N2, and is measured by the set temperature input to the setting input means and the room temperature measuring means during cooling operation. When the difference from the room temperature is equal to or greater than a predetermined value and the state is maintained for a predetermined time, the compressor is operated at a rotation speed less than the N2, and the blown air is changed to the substantially horizontal by the blowing direction changing means. The control part which controls to blow out from the direction below is provided.

第4の本発明に関わる空気調和機は、室内の室温を測定する室温測定手段と、吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、運転の設定が入力される設定入力手段と、空気を吹き出す貫流ファンとを備え、圧縮機が回転数N2での冷房運転時には貫流ファンが回転数n2で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を略水平方向に吹き出す空気調和機であって、冷房運転時に、前記設定入力手段に入力された設定温度と前記室温測定手段で測定された室温との差が所定の値以上となり、その状態を所定の時間維持した場合、前記圧縮機が前記N2より少ない回転数で運転されるとともに前記貫流ファンが前記n2より少ない回転数で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を前記略水平方向より下方向に吹き出すように制御する制御部を設けている。   An air conditioner according to a fourth aspect of the present invention includes a room temperature measuring means for measuring a room temperature in a room, a blowing direction changing means for changing a blowing direction of the blowing air, a setting input means for inputting operation settings, an air An air conditioner that blows out the blown-out air in a substantially horizontal direction by the blowing direction changing means, wherein the compressor is operated at the rotation number n2 during cooling operation at a rotation speed of N2. In the cooling operation, when the difference between the set temperature input to the setting input means and the room temperature measured by the room temperature measuring means is a predetermined value or more and the state is maintained for a predetermined time, the compressor The cross-flow fan is operated at a rotational speed lower than N2 and the cross-flow fan is operated at a rotational speed lower than n2, and the blown-out air is changed to the substantially horizontal by the blow-out direction changing means. It is provided with a control unit for controlling to blow downward from the direction.

本発明によれば、運転時の快適性を向上するとともに運転時の消費電力量を削減する空気調和機を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which improves the comfort at the time of driving | operation and reduces the power consumption at the time of driving | operation can be implement | achieved.

実施形態の空気調和機の冷凍サイクルを示す図。The figure which shows the refrigerating cycle of the air conditioner of embodiment. (a)は実施形態の室内でユーザが目視する室内機の正面図、(b)は(a)の室内機のA−A線断面図、(c)は室内機の運転を操作するためのリモコンの正面図。(a) is a front view of the indoor unit visually observed by the user in the room of the embodiment, (b) is a cross-sectional view taken along the line AA of the indoor unit of (a), and (c) is for operating the indoor unit. The front view of a remote control. (a)、(b)、(c)はそれぞれ比較例(従来)の大なる暖房能力で暖房運転をしているときの室内機のルーバの位置を示す図、(d)、(e)、(f)はそれぞれ実施形態の大なる暖房能力で暖房運転をしているときのルーバの位置を示す図。(a), (b), (c) is the figure which shows the position of the louver of an indoor unit when performing heating operation with the large heating capacity of the comparative example (conventional), respectively, (d), (e), (f) is a figure which shows the position of a louver when heating operation is carried out with the large heating capacity of each embodiment. (a)は暖房運転時に室内の空気を攪拌しない場合の図、(b)は室内の空気を攪拌する場合の図。(a) is a figure when the room air is not stirred during heating operation, and (b) is a figure when the room air is stirred. 比較例(従来)の暖房運転時の制御フローを示す図。The figure which shows the control flow at the time of the heating operation of a comparative example (conventional). (a)、(b)、(c)、(d)は、それぞれ比較例(従来)の暖房運転時の時間に対する室温の変化、貫流ファンの回転数、ルーバの向き、圧縮機の回転数を示す図。(a), (b), (c), and (d) show the change in room temperature with respect to the time of heating operation of the comparative example (conventional), the rotational speed of the cross-flow fan, the direction of the louver, and the rotational speed of the compressor, respectively. FIG. 実施形態の暖房運転時の制御フローを示す図。The figure which shows the control flow at the time of heating operation of embodiment. (a)、(b)、(c)、(d)は、それぞれ実施形態の暖房運転時の時間に対する室温の変化、貫流ファンの回転数、ルーバの向き、圧縮機の回転数を示す図。(a), (b), (c), (d) is a figure which shows the change of the room temperature with respect to the time at the time of heating operation of embodiment, the rotation speed of a once-through fan, the direction of a louver, and the rotation speed of a compressor, respectively. 比較例(従来)の冷房運転時の制御フローを示す図。The figure which shows the control flow at the time of the cooling operation of a comparative example (conventional). (a)、(b)、(c)、(d)は、それぞれ比較例(従来)の暖房運転時の時間に対する室温の変化、貫流ファンの回転数、ルーバの向き、圧縮機の回転数を示す図。(a), (b), (c), and (d) show the change in room temperature with respect to the time of heating operation of the comparative example (conventional), the rotational speed of the cross-flow fan, the direction of the louver, and the rotational speed of the compressor, respectively. FIG. 実施形態の冷房運転時の制御フローを示す図。The figure which shows the control flow at the time of the air_conditionaing | cooling operation of embodiment. (a)、(b)、(c)、(d)は、それぞれ実施形態の冷房運転時の時間に対する室温の変化、貫流ファンの回転数、ルーバの向き、圧縮機の回転数を示す図。(a), (b), (c), (d) is a figure which shows the change of the room temperature with respect to the time at the time of the air_conditionaing | cooling operation of embodiment, the rotation speed of a once-through fan, the direction of a louver, and the rotation speed of a compressor, respectively.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は実施形態の空気調和機Cの冷凍サイクルを示している。
実施形態の空気調和機Cは、冷凍サイクルの冷媒の熱交換により室内を冷房または暖房する室内機7と、室内機7と冷凍サイクルの冷媒配管4で接続され冷媒と外気とで熱交換を行う室外機9とを具備している。冷凍サイクルの冷媒は、冷媒配管4内を流れ、室内機7と室外機9とを循環する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a refrigeration cycle of the air conditioner C of the embodiment.
The air conditioner C of the embodiment is connected to the indoor unit 7 that cools or heats the room by heat exchange of the refrigerant in the refrigeration cycle, and the refrigerant is exchanged between the indoor unit 7 and the refrigerant pipe 4 of the refrigeration cycle. And an outdoor unit 9. The refrigerant in the refrigeration cycle flows through the refrigerant pipe 4 and circulates between the indoor unit 7 and the outdoor unit 9.

空気調和機Cの冷凍サイクルは、低温・低圧のガス冷媒を圧縮して高温・高圧のガス冷媒にする圧縮機2と、暖房時には高温・高圧のガス冷媒から熱を放出して常温・高圧の液状冷媒にする凝縮器となる室内熱交換器5と、常温・高圧の液状冷媒を低温・低圧の液状冷媒にして熱を放出する膨張弁8と、暖房時には低温・低圧の液状冷媒が熱を吸収して低温・低圧のガス冷媒にする蒸発器となる室外熱交換器10とにより構成されている。
なお、冷房時には、室内熱交換器5と室外熱交換器10とが、暖房時と反対の役割を担い、室内熱交換器5が室内の熱を吸収する。
The refrigeration cycle of the air conditioner C includes a compressor 2 that compresses a low-temperature / low-pressure gas refrigerant into a high-temperature / high-pressure gas refrigerant, and releases heat from the high-temperature / high-pressure gas refrigerant at room temperature / high pressure during heating. The indoor heat exchanger 5 as a condenser for converting into a liquid refrigerant, the expansion valve 8 for converting the room temperature / high pressure liquid refrigerant into a low temperature / low pressure liquid refrigerant and releasing the heat, and the low temperature / low pressure liquid refrigerant during the heating process An outdoor heat exchanger 10 serving as an evaporator that absorbs and converts the refrigerant into a low-temperature and low-pressure gas refrigerant.
During cooling, the indoor heat exchanger 5 and the outdoor heat exchanger 10 play a role opposite to that during heating, and the indoor heat exchanger 5 absorbs indoor heat.

室内に配置される室内機7は、室内熱交換器5と、室内熱交換器5で熱交換された空気流を室内に吹き出す貫流ファン6とを備える。
室外に配置される室外機9は、圧縮機2、冷媒配管4の流路を切り換える四方弁3、室外熱交換器10、室外熱交換器10を循環する冷媒と外気との熱交換を促進させるための空気流を発生させるファン1、膨張弁8などを備える。
The indoor unit 7 disposed indoors includes an indoor heat exchanger 5 and a cross-flow fan 6 that blows out the air flow heat-exchanged by the indoor heat exchanger 5 into the room.
The outdoor unit 9 arranged outdoors promotes heat exchange between the refrigerant circulating in the compressor 2, the four-way valve 3 that switches the flow path of the refrigerant pipe 4, the outdoor heat exchanger 10, and the outdoor heat exchanger 10 and the outside air. The fan 1, the expansion valve 8, etc. which generate the airflow for this are provided.

図2(a)は、室内でユーザが目視する室内機7の正面図を示し、図2(b)は図2(a)の室内機7のA−A線断面図を示し、図2(c)は室内機7の運転を操作するためのリモコンrの正面図を示す。
室内機7の内部には、室温を検知して室内機7の環境情報(運転情報)を得る室温センサ11が設けられている。
図2(b)に示す室内機7の下部には、運転時に開放され、室内熱交換器5で冷媒と熱交換した空気流を室内に向けて吹き出す際に、風向を上下(鉛直)方向に変更するルーバ12、13が設けられている。
FIG. 2A shows a front view of the indoor unit 7 that is visually observed by the user indoors, and FIG. 2B shows a cross-sectional view of the indoor unit 7 of FIG. c) shows a front view of the remote controller r for operating the indoor unit 7.
Inside the indoor unit 7, a room temperature sensor 11 that detects the room temperature and obtains environmental information (operation information) of the indoor unit 7 is provided.
At the lower part of the indoor unit 7 shown in FIG. 2 (b), when the air flow which is opened during operation and exchanges heat with the refrigerant in the indoor heat exchanger 5 is blown out toward the room, the air direction is changed in the vertical (vertical) direction. The louvers 12 and 13 to be changed are provided.

空気調和機Cは、図示しない制御部で制御される。制御部は、マイクロコンピュータ(microcomputer)、インターフェース回路、A/D・D/A変換器、室温センサ11の検知電流を増幅する増幅回路、圧縮機2などの駆動回路などで構成されている。なお、制御部は、所定の機能が果たせれば、実施態様はこの構成に限定されないのは勿論である。
ユーザは、図2(c)に示すリモコン(remote contoroller)rを室内機7に向けて操作して、無線で操作指令信号を室内機7の制御部に送り、制御部により所望の室内機7の運転が行われる。
The air conditioner C is controlled by a control unit (not shown). The control unit includes a microcomputer, an interface circuit, an A / D / D / A converter, an amplification circuit that amplifies the detection current of the room temperature sensor 11, a drive circuit such as the compressor 2, and the like. It should be noted that the embodiment is not limited to this configuration as long as the control unit can perform a predetermined function.
The user operates a remote controller r shown in FIG. 2 (c) toward the indoor unit 7, wirelessly sends an operation command signal to the control unit of the indoor unit 7, and the desired indoor unit 7 is transmitted by the control unit. Is operated.

次に、暖房時の比較例(従来)の室内機7のルーバ12、13の位置と実施形態の室内機7のルーバ12、13の位置を、図3を用いて説明する。
図3(a)〜(c)は、大なる暖房能力で暖房運転をしているときの比較例(従来)の室内機7のルーバ12、13の位置を示し、図3(d)〜(f)は、大なる暖房能力で暖房運転をしているときの実施形態のルーバ12、13の位置を示す。
なお、図3(a)〜(f)の白抜きの矢印は、比較例(従来)または実施形態の室内機7のルーバ12、13により吹き出される空気を示しており、その方向が吹き出し方向を表し、その大きさが風速の大きさを表している。
Next, the positions of the louvers 12 and 13 of the indoor unit 7 of the comparative example (conventional) during heating and the positions of the louvers 12 and 13 of the indoor unit 7 of the embodiment will be described with reference to FIG.
3A to 3C show the positions of the louvers 12 and 13 of the indoor unit 7 of the comparative example (conventional) when the heating operation is performed with a large heating capacity, and FIGS. f) shows the position of the louvers 12 and 13 of the embodiment when the heating operation is performed with a large heating capacity.
3A to 3F, the white arrows indicate the air blown out by the louvers 12 and 13 of the indoor unit 7 of the comparative example (conventional) or the embodiment, and the direction is the blowing direction. The size represents the wind speed.

暖房の初期時、比較例の図3(a)、実施形態の(d)に示すように、室内の空気が室内熱交換器5を通過することで冷媒と熱交換された暖気を、ルーバ12、13で略下方向(例えば鉛直方向から±20°の範囲内の方向)に比較的早い風速で吹き降ろす。これにより、冷気が溜まり易いユーザ14の生活域の床付近に暖気を供給し、暖房を行っている。高温の暖気は気体分子の密度が低く、一方、冷気は気体分子の密度が高いため、暖房時に高温の暖気を床付近に供給するためには比較的早い風速で、暖気を略下方向に吹き出すことが必要である。   At the initial stage of heating, as shown in FIG. 3 (a) of the comparative example and (d) of the embodiment, the indoor air passes through the indoor heat exchanger 5 and the warm air exchanged with the refrigerant is converted into the louver 12. , 13 is blown down at a relatively high wind speed in a substantially downward direction (for example, a direction within a range of ± 20 ° from the vertical direction). Thereby, warm air is supplied to the vicinity of the floor of the living area of the user 14 where cold air is likely to accumulate, and heating is performed. High-temperature warm air has a low density of gas molecules, while cold air has a high density of gas molecules. Therefore, to supply high-temperature warm air near the floor during heating, the warm air is blown out substantially downward at a relatively high wind speed. It is necessary.

暖房の次の段階の比較例(従来)の図3(b)、実施形態の図3(e)は、ユーザが設定した設定室温よりも室温センサ11によって測定した実際の室温の方が所定の温度(例えば1℃)だけ高くなったと、制御部が判断した場合の比較例のルーバ12、13の位置(図3(b))と、実施形態のルーバ12、13の位置(図3(e))とを示している。   FIG. 3B of the comparative example (conventional) at the next stage of heating and FIG. 3E of the embodiment show that the actual room temperature measured by the room temperature sensor 11 is more predetermined than the set room temperature set by the user. The position of the louvers 12 and 13 in the comparative example (FIG. 3B) when the control unit determines that the temperature has increased by 1 ° C. (for example, 1 ° C.) and the position of the louvers 12 and 13 in the embodiment (FIG. 3E). )).

図3(b)(比較例)、図3(e)(実施形態)では、ユーザによる設定室温より実際の室温の方が高い温度(例えば1℃)であるため、高温の暖気を供給する必要がないと制御部が判断し、圧縮機2の回転(運転)を止めている。そのため、ルーバ12、13は略下方向を向いているが、室内機7内の貫流ファン6も停止または低い回転数での運転となり、熱交換されていない室内の空気をユーザ14の生活域の床付近へ吹き降ろさない制御となっている。   In FIG. 3B (comparative example) and FIG. 3E (embodiment), since the actual room temperature is higher than the room temperature set by the user (for example, 1 ° C.), it is necessary to supply high-temperature warm air. The control unit determines that there is no rotation and stops the rotation (operation) of the compressor 2. Therefore, although the louvers 12 and 13 are directed substantially downward, the cross-flow fan 6 in the indoor unit 7 is also stopped or operated at a low rotational speed, and the indoor air that is not heat-exchanged is used in the living area of the user 14. It is controlled not to blow down near the floor.

また、図3(b)(比較例)、図3(e)(実施形態)では、ルーバ12、13は略下方向へ向いているが、室内機7内の貫流ファン6が停止または低い回転数となっているため、ルーバ12、13が、略下方向より上方向(例えば、鉛直方向下向きより45°上方向)を向いていても、ユーザ14の生活域の床付近へ熱交換されていない空気を供給することはない。   In FIG. 3B (comparative example) and FIG. 3E (embodiment), the louvers 12 and 13 are directed substantially downward, but the cross-flow fan 6 in the indoor unit 7 is stopped or rotated at a low speed. Therefore, even if the louvers 12 and 13 are directed upward from a substantially lower direction (for example, 45 ° upward from the vertical downward direction), heat is exchanged near the floor of the user's 14 living area. Never supply air.

図3(c)(比較例(従来))では、実際の室温がユーザによる設定室温より所定の値(例えば2℃)低くまたは高くなった場合のルーバ12、13の位置を示している。また、図3(f)(実施形態)では、ユーザによる設定室温より実際の室温が所定の値(例えば2℃)高くなり、その差が所定の値以上である状態が所定の時間(例えば5分間)続いた場合の室内機7のルーバ12、13の位置とそのときの風向と風速を示している。   FIG. 3C (comparative example (conventional)) shows the positions of the louvers 12 and 13 when the actual room temperature is lower or higher than a room temperature set by the user by a predetermined value (for example, 2 ° C.). Further, in FIG. 3F (embodiment), the actual room temperature is higher than the room temperature set by the user by a predetermined value (for example, 2 ° C.), and the difference is not less than the predetermined value for a predetermined time (for example, 5 The position of the louvers 12 and 13 of the indoor unit 7 and the wind direction and speed at that time are shown.

図3(c)(比較例(従来))では、設定室温と実際の室温との差が所定値(例えば2℃)となった場合(例えば実際の室温が設定室温より2℃低いまたは高い場合)、室内機7のルーバ12、13は略下方向を向き、比較的強い風速となるよう比較的高い回転数で室内機7の貫流ファン6は回転している。設定室温と室温の差が小さい場合、室内には十分に暖気が供給され、天井付近には暖気が滞留していると考えられる。比較例のルーバ12、13の位置は、天井付近の暖気を比較的高い回転数で回転する貫流ファン6により略下方向に吹き出すことで、ユーザ14の生活域の床付近に暖気を供給することを図っている。最近の高気密・高断熱の住宅の場合、このような制御により室内から屋外へ流出(漏出)する熱量を少量とすることは可能である。   In FIG. 3C (comparative example (conventional)), when the difference between the set room temperature and the actual room temperature reaches a predetermined value (for example, 2 ° C.) (for example, the actual room temperature is 2 ° C. lower or higher than the set room temperature). ), The louvers 12 and 13 of the indoor unit 7 are directed substantially downward, and the cross-flow fan 6 of the indoor unit 7 is rotating at a relatively high rotational speed so as to obtain a relatively high wind speed. When the difference between the set room temperature and the room temperature is small, it is considered that the warm air is sufficiently supplied to the room and the warm air stays near the ceiling. The positions of the louvers 12 and 13 in the comparative example supply warm air near the floor of the living area of the user 14 by blowing the warm air near the ceiling substantially downward by the cross-flow fan 6 rotating at a relatively high rotational speed. I am trying. In the case of recent highly airtight and highly insulated houses, it is possible to reduce the amount of heat flowing out (leakage) from the room to the outside by such control.

しかしながら、このような制御では、ユーザ14が室内機7の室内熱交換器5で熱交換されない暖かくない気流を直接受けることにより、寒さで不快を感じる場合(危険性)がある。
図3(e)(実施形態)の状態を経過した後の図3(f)(実施形態)の設定室温と実際の室温との差が所定値(例えば2℃)となった場合(例えば実際の室温が設定室温より2℃低いまたは高い場合)、ルーバ12、13は略下方向より上方向(例えば水平方向から上下方向に±10℃の範囲)を向き、比較的大きな風速となるよう比較的高い回転数で室内機7の貫流ファン6を回転させている。
However, in such control, there is a case where the user 14 feels uncomfortable in the cold (risk) by directly receiving a non-warm airflow that is not heat exchanged by the indoor heat exchanger 5 of the indoor unit 7.
When the difference between the set room temperature and the actual room temperature in FIG. 3F (embodiment) after passing the state of FIG. 3E (embodiment) becomes a predetermined value (for example, 2 ° C.) (for example, actual When the room temperature is 2 ° C lower or higher than the set room temperature), the louvers 12 and 13 are directed upward from a substantially lower direction (for example, a range of ± 10 ° C from the horizontal direction to the upper and lower direction) and compared so that the wind speed is relatively large. The cross-flow fan 6 of the indoor unit 7 is rotated at a relatively high rotational speed.

設定室温より室温の方が温度が高く、また、室温と設定室温(設定温度)の差が大きく、その状態を所定の時間維持している場合、室内空気の攪拌により室内の上下方向の温度差を小さくするのに十分な量の暖気が天井付近に滞留していると考えられる。
そこで、図3(f)(実施形態)に示すように、室内機7からルーバ12、13で略下方向より上方向に吹き出し、天井付近の暖気を対流させるため、ユーザ14の生活域である床付近に熱交換されない気流を直接提供することがなく、ユーザ14に気流による寒さで不快感を生じさせることはない。
If the room temperature is higher than the set room temperature, and the difference between the room temperature and the set room temperature (set temperature) is large, and this state is maintained for a predetermined time, the temperature difference in the vertical direction of the room due to the stirring of the room air It is considered that a sufficient amount of warm air stays in the vicinity of the ceiling.
Therefore, as shown in FIG. 3 (f) (embodiment), it is a living area of the user 14 because the indoor unit 7 blows out from the louvers 12, 13 upward substantially downward and convects the warm air near the ceiling. The air flow that is not heat exchanged is not directly provided near the floor, and the user 14 does not feel uncomfortable due to the cold due to the air flow.

この場合、比較的高い回転数で貫流ファン6を回転させるため、室内機7からの吹き出し空気は、略下方向より上方向に吹き出されるので、吹き出された空気は、壁などにより方向を変え速度を下げながら天井付近に滞留する暖気をユーザ14の生活域の床付近へ供給する。ユーザ14の生活域の床付近に供給される暖気の風速は低いため、ユーザ14に気流による寒さを感じさせることなく、ユーザ14の生活域に暖気を供給することが可能となる。   In this case, since the cross-flow fan 6 is rotated at a relatively high rotational speed, the blown air from the indoor unit 7 is blown upward from a substantially lower direction, so the direction of the blown air is changed by a wall or the like. Warm air staying near the ceiling is supplied to the vicinity of the floor of the user's 14 living area while reducing the speed. Since the wind speed of the warm air supplied near the floor of the user's 14 living area is low, the warm air can be supplied to the living area of the user 14 without causing the user 14 to feel cold due to the airflow.

すなわち、室内機7からルーバ12、13でユーザ14の生活域の床付近の略下方向に吹き出す(図3(c)参照)ことは、ユーザ14の生活域への暖気の供給に伴いユーザ14に気流による寒さで不快を感じさせてしまう危険性があるが、ルーバ12、13でユーザ14の生活域の略下方向より上方向に吹き出すことで、ユーザ14に気流による寒さを感じさせることなくユーザ14の生活域へ暖気を供給することが可能となる。   That is, blowing out from the indoor unit 7 in the substantially downward direction near the floor of the user's 14 living area with the louvers 12 and 13 (see FIG. 3C) is accompanied by the supply of warm air to the user's 14 living area. However, the louvers 12 and 13 blow out upward from substantially the lower direction of the user's living area without causing the user 14 to feel the cold due to the air current. It becomes possible to supply warm air to the living area of the user 14.

また、室温と設定室温の差が所定の値より大きい状態を所定の時間維持した後には、ユーザ14の生活域に供給するのに十分な量の暖気を天井付近に確実に滞留させることが可能となる。そこで、室温と設定室温の差が所定の値より大きい状態を所定の時間維持した後、ルーバ12、13で略下方向より上方向に吹き出すことで、天井付近とユーザ14の生活域との間で空気の対流を起こし、上下方向の温度差を小さくできる。
従って、ユーザ14に、気流による寒さで不快感を感じさせることなく、ユーザ14の生活域の床付近に暖気を供給することが可能となり、ユーザ14の快適感を向上させることが可能となる。
In addition, after maintaining a state where the difference between the room temperature and the set room temperature is greater than a predetermined value for a predetermined time, it is possible to reliably retain a sufficient amount of warm air near the ceiling to be supplied to the user's 14 living area. It becomes. Therefore, after maintaining a state in which the difference between the room temperature and the set room temperature is greater than a predetermined value for a predetermined time, the louvers 12 and 13 are blown upward from a substantially lower direction so that the space between the vicinity of the ceiling and the living area of the user 14 is increased. In this way, convection of air is caused and the temperature difference in the vertical direction can be reduced.
Therefore, it is possible to supply warm air to the vicinity of the floor in the living area of the user 14 without causing the user 14 to feel uncomfortable with the cold due to the airflow, and to improve the comfort of the user 14.

また、略下方向より上方向に吹き出しているときに圧縮機2の回転数を低下させるため、図3(c)の比較例(従来)の圧縮機2の高い回転数の運転に比べ、消費電力量を削減することが可能となる。さらに、上下方向の温度分布を均一化することにより、室内から屋外への熱の流出を低減することが可能となり(詳細は後記)、消費電力量を削減することが可能となる。   Further, since the rotational speed of the compressor 2 is reduced when the air is blown upward substantially from the lower direction, the consumption is higher than the operation of the compressor 2 of the comparative example (conventional) in FIG. It becomes possible to reduce the amount of electric power. Furthermore, by making the temperature distribution in the vertical direction uniform, it is possible to reduce the outflow of heat from the room to the outdoors (details will be described later), and it is possible to reduce the power consumption.

次に、暖房運転時の室内の空気を攪拌する場合と攪拌しない場合との室内から室外への熱漏洩量の比較について説明する。
図4に、暖房運転時に室内の空気を攪拌しない場合(図4(a))と、室内の空気を攪拌する場合(図4(b))との室内から屋外への熱漏洩量の違いを説明する図を示す。
Next, a description will be given of a comparison of the amount of heat leakage from the room to the room when the room air is stirred during heating operation and when the room air is not stirred.
Fig. 4 shows the difference in the amount of heat leakage from the room to the outdoors when the room air is not stirred during heating operation (Figure 4 (a)) and when the room air is stirred (Figure 4 (b)). The figure to illustrate is shown.

図4(a)において、室温taは、暖房により天井付近に滞留している室内機7から吹き出された暖気の温度を示している。室内機7から吹き出された暖気は、その密度の低さから天井付近に滞留することとなる。
室温tbは、暖房により室内機7から暖気が吹き出された後に、床付近に滞留している空気の温度を示している。暖気以外の空気は、その密度の高さから重力により床付近に滞留することとなる。
In FIG. 4A, the room temperature ta indicates the temperature of warm air blown out from the indoor unit 7 staying near the ceiling due to heating. The warm air blown out from the indoor unit 7 stays near the ceiling because of its low density.
The room temperature tb indicates the temperature of air staying in the vicinity of the floor after warm air is blown out from the indoor unit 7 by heating. Air other than warm air stays near the floor due to gravity due to its high density.

図4(a)、(b)の地面温度tjは、一年を通して、気温と比較して変動の小さい地面の温度を示している。
気温tdは、室外の気温を示している。
図4(b)の室温teは、図4(a)の室温taの空気と室温tbの空気がそれぞれ容積aと容積bだけ室内に存在するときに、それらの空気を攪拌した場合の室温を示している。
The ground temperature tj in FIGS. 4 (a) and 4 (b) indicates the temperature of the ground that is less fluctuated compared to the air temperature throughout the year.
The temperature td indicates the outdoor temperature.
The room temperature te in FIG. 4 (b) is the room temperature when the air at room temperature ta and the air at room temperature tb in FIG. Show.

図4(a)の容積aは、室温taの空気の容積を示しており、容積bは、室温tbの空気の容積を示している。
図4(b)の容積a+bは、図4(a)の室温taの空気と室温tbの空気を攪拌した場合の空気の容積を示している。
図4(a)、(b)の熱伝導率λは、天井面、壁面、床面の熱伝導率を示している。図4(a)、(b)では、各面の熱伝導率λは同一の値としている。
図4(a)の場合の室内と屋外の熱交換量をQ1とすると式(1)で表せ、図4(b)の場合の室内と屋外の熱交換量をQ2とすると式(2)で表せる。
The volume a in FIG. 4A indicates the volume of air at room temperature ta, and the volume b indicates the volume of air at room temperature tb.
The volume a + b in FIG. 4B indicates the volume of air when the air at room temperature ta and the air at room temperature tb in FIG.
The thermal conductivity λ in FIGS. 4A and 4B indicates the thermal conductivity of the ceiling surface, wall surface, and floor surface. 4A and 4B, the thermal conductivity λ of each surface is the same value.
If the amount of heat exchange between indoor and outdoor in the case of FIG. 4 (a) is Q1, it can be expressed by equation (1), and if the amount of heat exchange between the indoor and outdoor in FIG. 4 (b) is Q2, it can be expressed by equation (2). I can express.

Figure 2012102904
ここで、Mは、天井面、4つの壁面、床面の各面の面積を示している。なお、図4(a)、(b)では、各面の1面の面積は同一の値Mとしている。
Figure 2012102904
Here, M has shown the area of each surface of a ceiling surface, four wall surfaces, and a floor surface. 4A and 4B, the area of one surface of each surface is the same value M.

図4(a)の場合(暖房運転時に室内の空気を攪拌しない場合)の式(1)の熱交換量Q1の1項目は、室温taの空気と触れている天井面および壁面の一部(a/a+b)から屋外(気温td)への熱の流出量を示しており、2項目は室温tbの空気と触れている壁面の一部(b/a+b)から屋外(気温td)への熱の流出量を示しており、3項目は室温tbの空気と触れている床面から地表面(地面温度tj)への熱の流出量を示している。   In the case of FIG. 4 (a) (when indoor air is not agitated during heating operation), one item of the heat exchange amount Q1 in the equation (1) is a part of the ceiling surface and wall surface in contact with air at room temperature ta ( a / a + b) shows the amount of heat flowing out to the outside (temperature td), and two items are the heat from the part of the wall surface (b / a + b) in contact with the air at room temperature tb to the outside (temperature td) The three items show the amount of heat outflow from the floor surface in contact with air at room temperature tb to the ground surface (ground temperature tj).

図4(b)の場合(暖房運転時に室内の空気を攪拌した場合)の式(2)の熱交換量Q2の1項目は、室温teの空気と触れている天井面および壁面から屋外(気温td)への熱の流出量を示しており、2項目は室温teの空気と触れている床面から地表面(地面温度tj)への熱の流出量を示している。   In the case of FIG. 4 (b) (when the room air is stirred during heating operation), one item of the heat exchange amount Q2 in the equation (2) is the outdoor (air temperature) from the ceiling surface and wall surface in contact with the air at room temperature te. The amount of heat flowing out to td) is shown, and the two items show the amount of heat flowing out from the floor surface in contact with air at room temperature te to the ground surface (ground temperature tj).

Figure 2012102904
式(3)は、室温taの空気と室温tbの空気がそれぞれ容積aと容積bだけ室内に存在するときに、それらの室内空気を攪拌した場合に室温teが得られる関係を示している。
Figure 2012102904
Equation (3) shows the relationship in which room temperature te is obtained when air at room temperature ta and air at room temperature tb exist in the room by volume a and volume b, respectively, when the room air is stirred.

室温taの空気と室温tbの空気がそれぞれ室内に容積aと容積bだけ存在する場合に対し、室内を攪拌し室温teの空気を得た方が室内から屋外への熱の流出量が少なくなる場合について、以下に示す。

Figure 2012102904
Compared to the case where room temperature ta and room temperature tb are present only in volume a and volume b, respectively, the amount of heat flowing from the room to the outdoors is reduced when the room is stirred to obtain room temperature air. The case is shown below.
Figure 2012102904

室内の空気を攪拌しない場合(図4(a))の熱流出量であるQ1が攪拌する場合(図4(b))の熱流出量であるQ2より大きくなる条件は、式(4)を解くと式(5)となる。すなわち、天井付近に滞留している室温taの暖気の容積aが、床付近に沈下(滞留)している室温tbの室内空気の容積bより大きい場合、攪拌により室内から屋外への熱の流出量を小さく(式(4)参照)することが可能となる。
図3(b)(比較例)、(e)(実施形態)に示すように、ルーバ12、13は略下方向を向いているが、室内機7の貫流ファン6は停止または低い回転数での運転であるため、室内の天井付近に滞留している暖気をユーザ14の生活域である床付近に提供することはできない。
The condition that Q1 which is the heat outflow amount when the room air is not stirred (FIG. 4A) is larger than Q2 which is the heat outflow amount when the room air is stirred (FIG. 4B) is as follows. When solved, equation (5) is obtained. That is, when the volume a of warm air at room temperature ta staying near the ceiling is larger than the volume b of room air at room temperature tb sinking (staying) near the floor, heat flows out of the room to the outside by stirring. It is possible to reduce the amount (see equation (4)).
As shown in FIGS. 3B (comparative example) and (e) (embodiment), the louvers 12 and 13 are directed substantially downward, but the cross-flow fan 6 of the indoor unit 7 is stopped or rotated at a low rotational speed. Therefore, the warm air staying near the ceiling in the room cannot be provided near the floor, which is the living area of the user 14.

一方、図3(c)(比較例)、(f)(実施形態)に示すように、ルーバ12、13の方向は異なるものの、室内機7において高い回転数で貫流ファン6を運転することで、天井付近に滞留している暖気を床付近に提供することが可能となる。
しかし、図3(c)(比較例)、(f)(実施形態)の場合、天井付近の暖気をユーザ14の生活域である床付近に提供するのであるから、天井付近に十分な量の暖気が滞留している必要がある。すなわち、図4の熱の流出量の検討結果から、運転直後のように天井付近の暖気が少量の場合(式(5)と異なり、a<bの場合)、式(4)、式(5)から、室内空気を攪拌することで攪拌しない場合と比較し、室内から屋外への熱の流出量が多くなる(式(4)と異なり、Q1<Q2)。
On the other hand, as shown in FIGS. 3C (comparative example) and (f) (embodiment), although the directions of the louvers 12 and 13 are different, the cross-flow fan 6 is operated at a high rotational speed in the indoor unit 7. It is possible to provide warm air staying near the ceiling near the floor.
However, in the case of FIGS. 3C (comparative example) and (f) (embodiment), the warm air near the ceiling is provided near the floor, which is the living area of the user 14, so that a sufficient amount is provided near the ceiling. Warm air needs to stay. That is, from the examination result of the heat outflow amount in FIG. 4, when the warm air near the ceiling is a small amount immediately after the operation (a <b, unlike Equation (5)), Equation (4), Equation (5 ), The amount of heat flowing out of the room to the outside increases when the room air is agitated compared to the case where the air is not agitated (unlike equation (4), Q1 <Q2).

そのため、設定室温(設定温度)と室温の差のみにより天井付近に滞留している暖気をユーザ14の生活域である床付近に提供することは、このように、天井付近に十分な量の暖気が滞留するより前(図4(a)のa<bの場合)に室内空気を攪拌してしまう危険がある。この場合、室内から屋外への熱の流出(漏洩)量が多くなる。すなわち、式(4)と異なり、Q1<Q2となる。   For this reason, providing warm air staying in the vicinity of the ceiling only by the difference between the set room temperature (set temperature) and the room temperature in the vicinity of the floor, which is the living area of the user 14, in this way, a sufficient amount of warm air in the vicinity of the ceiling. There is a risk that the room air is agitated before the stagnation occurs (when a <b in FIG. 4A). In this case, the amount of heat outflow (leakage) from the room to the outdoors increases. That is, unlike the equation (4), Q1 <Q2.

一方、設定室温(設定温度)と室温の差だけでなく、室温と設定室温との差が所定の値以上となり、その状態を所定の時間維持したときに室内空気を攪拌する場合、図4(a)における式(5)のa>bに示すように、室温taの容積aが室温tbの容積bより大きくなってからの攪拌が可能となるため、室内から屋外への熱流出量を低減することが可能となる。   On the other hand, not only the difference between the set room temperature (set temperature) and the room temperature, but also the difference between the room temperature and the set room temperature is not less than a predetermined value, and the room air is stirred when the state is maintained for a predetermined time, FIG. As shown in a> b of equation (5) in a), since the stirring is possible after the volume a of the room temperature ta becomes larger than the volume b of the room temperature tb, the amount of heat flow from the room to the outside is reduced. It becomes possible to do.

すなわち、設定室温(設定温度)と室温の差だけでなく、室温と設定室温との差が所定の値以上となり、その状態を所定の時間維持したときに、図4(a)の場合にa>bの関係になるため、室内空気を攪拌することにより、暖房負荷を低減することが可能となる。そのため、暖房時の消費電力量を低減することが可能となる。   That is, not only the difference between the set room temperature (set temperature) and the room temperature, but also the difference between the room temperature and the set room temperature is equal to or greater than a predetermined value and the state is maintained for a predetermined time. Since the relationship is> b, the heating load can be reduced by stirring the room air. Therefore, it becomes possible to reduce the power consumption at the time of heating.

<比較例(従来)の暖房運転時の制御>
次に、比較例(従来)の暖房運転時の制御を、図5および図6を用いて説明する。
図5は、比較例(従来)の暖房運転時の制御フローを示し、図6(a)、(b)、(c)、(d)は、それぞれ比較例の暖房運転時の(経過)時間に対する室温T1の変化、貫流ファン6の回転数、ルーバ12、13の向き、圧縮機2の回転数を示す。
<Control during heating operation of comparative example (conventional)>
Next, control during the heating operation of the comparative example (conventional) will be described with reference to FIGS. 5 and 6.
FIG. 5 shows a control flow during the heating operation of the comparative example (conventional), and FIGS. 6A, 6B, 6C, and 6D show the (elapsed) time during the heating operation of the comparative example, respectively. The change in the room temperature T1, the rotational speed of the cross-flow fan 6, the direction of the louvers 12 and 13, and the rotational speed of the compressor 2 are shown.

まず、ユーザは、リモコンrにより、暖房運転を設定し、操作指令信号を室内機7へ送信する(S(ステップ)1)。また、リモコンrで設定室温T2、風速、風向を設定し、操作指令信号を室内機7へ送信する(S2)。
室内機7の制御部は、暖房運転の指令を受け、室内機7の圧縮機2が回転を開始し(図6(d)の時刻t0)、貫流ファン6も回転を開始(図6(b)の時刻t0)する。ルーバ12、13は、冷媒配管4の温度が所定の温度(暖房開始の冷媒配管温度Tr)以上に上昇する(S4)まで(図6(c)の時刻t1まで)、略水平方向(略水平向き)に位置し、暖気を略水平方向(略水平向き)に送る(S3)。
First, the user sets a heating operation with the remote controller r and transmits an operation command signal to the indoor unit 7 (S (step) 1). Further, the set room temperature T2, the wind speed, and the wind direction are set with the remote controller r, and an operation command signal is transmitted to the indoor unit 7 (S2).
The control unit of the indoor unit 7 receives a heating operation command, the compressor 2 of the indoor unit 7 starts rotating (time t0 in FIG. 6D), and the cross-flow fan 6 also starts rotating (FIG. 6B). ) At time t0). The louvers 12 and 13 are substantially in the horizontal direction (substantially horizontal) until the temperature of the refrigerant pipe 4 rises to a predetermined temperature (refrigerant pipe temperature Tr at which heating starts) or higher (until time t1 in FIG. 6C). The warm air is sent in a substantially horizontal direction (substantially horizontal direction) (S3).

冷媒配管4の温度が所定の温度(暖房開始の冷媒配管温度Tr)以上に上昇し(S4)、室温T1が設定室温T2以下の温度の場合(S5でYes)、室内機7のルーバ12、13は略下方向(略下向き)を向き(図6(c)の時刻t1後)、圧縮機2は高い回転数N1で回転し、ユーザ14の生活域の足元付近に暖気が届くように空調が行われる(S6)。すなわち、図6(a)に示すように、室温T1が設定室温T2に高くなるように空調が行われる。   When the temperature of the refrigerant pipe 4 rises to a predetermined temperature (refrigerant pipe temperature Tr at which heating starts) or higher (S4) and the room temperature T1 is lower than the set room temperature T2 (Yes in S5), the louver 12 of the indoor unit 7; 13 is substantially downward (substantially downward) (after time t1 in FIG. 6 (c)), and the compressor 2 rotates at a high rotation speed N1 so that warm air reaches the feet of the user's 14 living area. Is performed (S6). That is, as shown in FIG. 6A, air conditioning is performed so that the room temperature T1 becomes higher than the set room temperature T2.

さらに、室温T1と設定室温T2との差が所定の値T01以上になった(図6(a)の時刻t3後)場合(S7でYes)、ルーバ12、13は略下方向(略下向き)に位置し(図6(c)参照)、圧縮機2の回転は停止または低回転となる(図6(d)の時刻t3後)(S8)。この状態は設定室温T2と室温T1の差が所定の値T0以上となるまで継続される(S9でNo)。   Further, when the difference between the room temperature T1 and the set room temperature T2 is equal to or greater than a predetermined value T01 (after time t3 in FIG. 6A) (Yes in S7), the louvers 12 and 13 are substantially downward (substantially downward). (See FIG. 6C), the rotation of the compressor 2 is stopped or slow (after time t3 in FIG. 6D) (S8). This state is continued until the difference between the set room temperature T2 and the room temperature T1 becomes equal to or greater than a predetermined value T0 (No in S9).

一方、S4で、冷媒配管4の温度が所定の温度Tr以上に上昇し、室温T1の方が設定室温T2より高い場合(S5でNo)、S7に移行する。
比較例(従来)の暖房運転時の制御を要約すると、図6(a)に示すように、室温T1が設定室温T2プラス所定の値T01(図6(a)の時刻t3)になるように、S6で、圧縮機2が高い回転数N1で運転され、貫流ファン6も高い回転数で運転される。
On the other hand, when the temperature of the refrigerant pipe 4 rises to a predetermined temperature Tr or higher in S4 and the room temperature T1 is higher than the set room temperature T2 (No in S5), the process proceeds to S7.
To summarize the control during the heating operation of the comparative example (conventional), as shown in FIG. 6 (a), the room temperature T1 becomes a set room temperature T2 plus a predetermined value T01 (time t3 in FIG. 6 (a)). In S6, the compressor 2 is operated at a high rotational speed N1, and the cross-flow fan 6 is also operated at a high rotational speed.

そして、室温T1が設定室温T2マイナスT0より小さく、室温T1が設定室温T2以下になると、S6で圧縮機2と貫流ファン6とが最大回転数で運転される(図6(a)の時刻t4からt5まで)。以後、図6(a)に示すように、室温T1が、設定室温T2プラス所定の値T01(時刻t5)と、設定室温T2マイナスT0との間で同様な運転が行われる。   When the room temperature T1 is smaller than the set room temperature T2 minus T0 and the room temperature T1 becomes equal to or less than the set room temperature T2, the compressor 2 and the cross-flow fan 6 are operated at the maximum rotational speed in S6 (time t4 in FIG. 6A). To t5). Thereafter, as shown in FIG. 6A, the room temperature T1 is operated similarly between the set room temperature T2 plus a predetermined value T01 (time t5) and the set room temperature T2 minus T0.

<暖房運転時の制御>(第1の実施形態)
次に、実施形態の室内機7の暖房運転時の制御を、図7および図8を用いて説明する。
図7は、実施形態の暖房運転時の制御フローを示し、図8(a)、(b)、(c)、(d)は、それぞれ実施形態の暖房運転時の(経過)時間に対する室温T1の変化、貫流ファン6の回転数、ルーバ12、13の向き、圧縮機2の回転数を示す。
<Control during heating operation> (first embodiment)
Next, control during heating operation of the indoor unit 7 of the embodiment will be described with reference to FIGS. 7 and 8.
FIG. 7 shows a control flow during the heating operation of the embodiment, and FIGS. 8A, 8B, 8C, and 8D show the room temperature T1 with respect to the (elapsed) time during the heating operation of the embodiment, respectively. , The rotational speed of the once-through fan 6, the direction of the louvers 12 and 13, and the rotational speed of the compressor 2.

まず、ユーザは、リモコンrにより、暖房運転を設定し、操作指令信号を室内機7へ送信する(S(ステップ)110)。また、ユーザは、リモコンrで設定室温T2、風速、風向を設定(選択)し、操作指令信号を室内機7へ送信する(S111)。
室内機7の制御部は、リモコンrからの暖房運転の指令を受け、圧縮機2は回転を開始(図8(d)の時刻t0)し、室内機7の貫流ファン6も回転を開始(図8(b)の時刻t0)する。ルーバ12、13は、冷媒配管4の温度が所定の温度(暖房開始の冷媒配管温度Tr)以上に上昇する(S113)まで、略水平方向(略水平向き)に位置(図8(c)の時刻t1まで)し、暖気を略水平方向(略水平向き)に送る(S112)。
First, the user sets the heating operation by using the remote controller r, and transmits an operation command signal to the indoor unit 7 (S (step) 110). In addition, the user sets (selects) the set room temperature T2, the wind speed, and the wind direction with the remote controller r, and transmits an operation command signal to the indoor unit 7 (S111).
The control unit of the indoor unit 7 receives a heating operation command from the remote controller r, the compressor 2 starts rotating (time t0 in FIG. 8D), and the cross-flow fan 6 of the indoor unit 7 also starts rotating ( Time t0 in FIG. The louvers 12 and 13 are positioned in a substantially horizontal direction (substantially horizontal direction) until the temperature of the refrigerant pipe 4 rises to a predetermined temperature (refrigerant pipe temperature Tr at which heating starts) (S113) (in FIG. 8C). (Until time t1), warm air is sent in a substantially horizontal direction (substantially horizontal direction) (S112).

冷媒配管4の温度が所定の温度(暖房開始の冷媒配管温度Tr)以上に上昇し(図8(c)の時刻t1後)(S113)、室温T1が設定室温T2以下の温度の場合(図8の時刻t1〜t2)(S114でYes)、室内機7のルーバ12、13は略下方向を向き、吹き出し空気を略下方向に吹き出し、圧縮機2は高い回転数N1で回転し、ユーザ14の足元付近に暖気が届くように空調が行われる(S115)。   When the temperature of the refrigerant pipe 4 rises to a predetermined temperature (refrigerant pipe temperature Tr at the start of heating) (after time t1 in FIG. 8C) (S113), and the room temperature T1 is a temperature below the set room temperature T2 (FIG. 8 (time t1 to t2) (Yes in S114), the louvers 12 and 13 of the indoor unit 7 face substantially downward, blown out blown air substantially downward, the compressor 2 rotates at a high rotational speed N1, and the user Air conditioning is performed so that warm air reaches around 14 feet (S115).

ここで、S115の暖房運転時に、室内機7のルーバ12、13が略下方向を向き、吹き出し空気を略下方向に吹き出す略下方向とは、次の角度を意味する。すなわち、暖房では暖気が浮力により上昇することを考慮し、風向を床に向けて吹き出すことが基本となる。そこで、暖房運転時の略下方向とは、鉛直方向から上向きに0〜25.5°の範囲の角度をいう。例えば、上の上下風向板のルーバ12が鉛直より25.5°上向き、下の上下風向板のルーバ13が鉛直より17.2°上向きとなる。   Here, during the heating operation in S115, the substantially downward direction in which the louvers 12 and 13 of the indoor unit 7 are directed substantially downward and the blown air is blown substantially downward means the following angle. That is, in the heating, considering that the warm air rises due to buoyancy, it is fundamental to blow out the wind direction toward the floor. Therefore, the substantially downward direction during heating operation refers to an angle in the range of 0 to 25.5 ° upward from the vertical direction. For example, the louver 12 of the upper vertical wind direction plate is 25.5 ° upward from the vertical, and the louver 13 of the lower vertical wind direction plate is 17.2 ° upward from the vertical.

一方、S114で、冷媒配管4の温度が所定の温度以上に上昇し、室温T1が設定室温T2より高い場合(S114でNo)、S116に移行する。
そして、設定室温T2と室温T1の差が所定の値T3以上になり(図8(a)の時刻t3)(S116でYes)、その状態を所定の時間ts(たとえば5分間)(図8(a)の時刻t3〜t4)維持した場合(S117でYes)、室内機7のルーバ12、13は略下方向(略下向き)より上方向を向き(図8(c)の時刻t4後)、圧縮機2は停止または低回転となる(S118)。
On the other hand, when the temperature of the refrigerant pipe 4 rises to a predetermined temperature or higher in S114 and the room temperature T1 is higher than the set room temperature T2 (No in S114), the process proceeds to S116.
Then, the difference between the set room temperature T2 and the room temperature T1 becomes equal to or greater than a predetermined value T3 (time t3 in FIG. 8A) (Yes in S116), and this state is determined for a predetermined time ts (for example, 5 minutes) (FIG. 8 ( When a) times t3 to t4) are maintained (Yes in S117), the louvers 12 and 13 of the indoor unit 7 face upward from substantially downward (substantially downward) (after time t4 in FIG. 8C). The compressor 2 stops or rotates at a low speed (S118).

そして、室温T1と設定室温T2との差が所定の値T01(図8(a)参照)以上の場合(S119でYes)には、S118に移行する。
一方、室温T1と設定室温T2との差が所定の値T01(図8(a)参照)より小さい場合には(S119でNo)、設定室温T2と室温T1との差が所定の値T0以上(図8(a)参照)か判定される(S120)。
If the difference between the room temperature T1 and the set room temperature T2 is equal to or greater than a predetermined value T01 (see FIG. 8A) (Yes in S119), the process proceeds to S118.
On the other hand, when the difference between the room temperature T1 and the set room temperature T2 is smaller than the predetermined value T01 (see FIG. 8A) (No in S119), the difference between the set room temperature T2 and the room temperature T1 is equal to or greater than the predetermined value T0. (See FIG. 8A) is determined (S120).

設定室温T2と室温T1との差が所定の値T0以上の場合(S120でYes)、室温T1が設定室温T2より所定の値T0以上下がったのでS115に移行する。
一方、設定室温T2と室温T1との差が所定の値T0未満の場合(S120でNo)、S118に移行する。
以上が、図7に示す暖房運転時の制御フローである。なお、ユーザがリモコンrで運転
停止を操作するとその時点で図7の暖房運転の制御は停止される。
If the difference between the set room temperature T2 and the room temperature T1 is equal to or greater than the predetermined value T0 (Yes in S120), the process proceeds to S115 because the room temperature T1 has dropped from the set room temperature T2 by the predetermined value T0 or more.
On the other hand, when the difference between the set room temperature T2 and the room temperature T1 is less than the predetermined value T0 (No in S120), the process proceeds to S118.
The above is the control flow during the heating operation shown in FIG. When the user operates the remote controller r to stop the operation, the control of the heating operation in FIG. 7 is stopped at that time.

上述の暖房運転によれば、設定室温T2と室温T1との差が所定の値T3以上(S116でYes)となり、その状態を所定の時間tsだけ維持させる(S117でYes)ことで、天井付近に十分な量の暖気を確保することが可能となる。そのため、天井付近の暖気を、ルーバ12、13で略下方向(略下向き)より上方向に吹き出し、室内の空気を攪拌することで、ユーザ14の生活域である床付近に暖気を提供することが可能となる。   According to the heating operation described above, the difference between the set room temperature T2 and the room temperature T1 is equal to or greater than a predetermined value T3 (Yes in S116), and the state is maintained for a predetermined time ts (Yes in S117), thereby near the ceiling. It is possible to ensure a sufficient amount of warm air. Therefore, warm air in the vicinity of the ceiling is blown out from the substantially downward direction (substantially downward) by the louvers 12 and 13 and the indoor air is stirred to provide warm air near the floor that is the living area of the user 14. Is possible.

また、室温T1と設定室温T2との差が所定の値T3以上となり、その状態を所定の時間tsだけ維持させることで、天井付近に十分な量の暖気を確保することが可能となり(図4(a)でa>b)、室内の空気の攪拌により室内から屋外への熱流出量を低減することが可能となる(式(4)、式(5)参照)。このように、室内から屋外への熱の流出量が低減されることで、暖房負荷を低く維持することが可能となり、暖房による消費電力量を低減させることが可能となる。   Further, the difference between the room temperature T1 and the set room temperature T2 is equal to or greater than a predetermined value T3, and by maintaining this state for a predetermined time ts, a sufficient amount of warm air can be secured near the ceiling (FIG. 4). In (a), a> b), it becomes possible to reduce the amount of heat flow from the room to the outside by stirring the room air (see equations (4) and (5)). As described above, the amount of heat flowing out of the room to the outside is reduced, so that the heating load can be kept low, and the amount of power consumed by heating can be reduced.

さらに、天井付近に滞留した暖気を床付近に提供する際に、略下方向(略下向き)より上方向に吹き出すことで、ユーザ14の生活域の足元に直接空気を吹き出さず、ユーザ14に寒さによる不快感を生じさせることなく、暖気を供給することが可能となる。
また、図8(d)に示すように、暖房運転時に圧縮機2の回転数を低減することにより、消費電力量を削減することが可能となる。
Furthermore, when the warm air staying in the vicinity of the ceiling is provided near the floor, the air is blown upward from substantially downward (substantially downward), so that air is not blown directly to the feet of the user's 14 living area. Warm air can be supplied without causing discomfort due to cold.
Moreover, as shown in FIG.8 (d), it becomes possible to reduce power consumption by reducing the rotation speed of the compressor 2 at the time of heating operation.

なお、図7および図8では、T3が正の値をとるよう示しているが、T3は負でもゼロでもよい。以下、T3が正の値の場合、T3が負の値の場合、T3がゼロの値の場合を例示する。
T3が正の場合、S116で所定の値T3が+3℃に設定されていると、S(ステップ)114で室温T1=5℃、設定室温T2=22℃のとき、S115で室温T1が5℃から25℃まで暖房され、S116において、室温T1=25℃と設定室温T2=22℃との差の3℃が所定の値T3=3℃に等しくなり、S117に移行する。
7 and 8 show that T3 takes a positive value, T3 may be negative or zero. Hereinafter, a case where T3 is a positive value, a case where T3 is a negative value, and a case where T3 is a zero value will be exemplified.
When T3 is positive and the predetermined value T3 is set to + 3 ° C. in S116, the room temperature T1 is 5 ° C. in S115 when the room temperature T1 = 5 ° C. and the set room temperature T2 = 22 ° C. in S (step) 114. From S116, the difference between the room temperature T1 = 25 ° C. and the set room temperature T2 = 22 ° C. becomes equal to the predetermined value T3 = 3 ° C., and the process proceeds to S117.

T3がゼロの場合、S116で所定の値T3が0℃に設定されていると、S(ステップ)114で室温T1=5℃、設定室温T2=22℃のとき、S115で室温T1が5℃から22℃まで暖房され、S116において、室温T1=22℃と設定室温T2=22℃との差の0℃が所定の値T3=0℃に等しくなり、S117に移行する。
T3が負の場合、S116で所定の値T3が−2℃に設定されていると、S(ステップ)114で室温T1=5℃、設定室温T2=22℃のとき、S115で室温T1が5℃から20℃まで暖房され、S116において、室温T1=20℃と設定室温T2=22℃との差の−2℃が所定の値T3=−2℃に等しくなり、S117に移行する。
When T3 is zero and the predetermined value T3 is set to 0 ° C. in S116, the room temperature T1 is 5 ° C. in S115 when the room temperature T1 = 5 ° C. and the set room temperature T2 = 22 ° C. in S (step) 114. In step S116, 0 ° C. of the difference between the room temperature T1 = 22 ° C. and the set room temperature T2 = 22 ° C. becomes equal to a predetermined value T3 = 0 ° C., and the process proceeds to S117.
If T3 is negative and the predetermined value T3 is set to −2 ° C. in S116, the room temperature T1 is 5 in S115 when the room temperature T1 = 5 ° C. and the set room temperature T2 = 22 ° C. in S (step) 114. In S116, -2 ° C, which is the difference between the room temperature T1 = 20 ° C and the set room temperature T2 = 22 ° C, becomes equal to the predetermined value T3 = -2 ° C, and the process proceeds to S117.

次に、図7のS118における室内機7のルーバ12、13が略下方向(略下向き)より上方向の角度の最適角度、許容角度について説明する。
S118におけるルーバ12、13の最適角度は、最大暖房可能広さである20畳の部屋の、最も奥の床であっても直接風を吹きかけることのない角度である水平方向を基準として下方向に12.5°である。
本最適角度は、床に直接風を吹きかけることのないため、20畳の部屋であっても直接足元を冷やされることが無く、熱交換されていない吹き出し空気で足元の寒さを感じることが無い。
Next, the optimum angle and the allowable angle of the upward direction of the louvers 12 and 13 of the indoor unit 7 in S118 of FIG. 7 from the substantially downward direction (substantially downward) will be described.
The optimum angle of the louvers 12 and 13 in S118 is downward with respect to the horizontal direction, which is the angle at which the wind is not blown directly even in the innermost floor of a 20 tatami room that is the maximum heatable area. 12.5 °.
This optimum angle does not blow wind directly on the floor, so even in a 20 tatami room, the feet are not cooled directly, and the feet are not felt by the blown air that is not heat-exchanged.

S118におけるルーバ12、13の許容角度は、最少暖房可能広さである6畳の部屋の、最も奥の床に直接風を吹きかけることのない角度である水平方向を基準にして下方向に0〜36.5°の範囲内の角度である。
36.5°より大きい角度で吹き出すと、6畳の部屋では足元に風が吹きつけられることはないが、奥行きが2.7m以上ある部屋では、2.7mより遠い位置では足元に直接風が吹きつけられ、足元に寒さを感じる可能性がある。
一方、0°より小さい角度、すなわち上向きに吹き出す場合、天井付近に滞留した暖気をそのまま暖気の中に吹き出すことになり、暖気をユーザの生活域に送ることができない。
The allowable angle of the louvers 12 and 13 in S118 is 0 to the downward direction on the basis of the horizontal direction, which is the angle in which the wind is not directly blown to the innermost floor of the 6 tatami room which is the smallest heatable area. The angle is in the range of 36.5 °.
If it blows at an angle larger than 36.5 °, the wind will not be blown at the foot in a 6 tatami room, but in a room with a depth of 2.7 m or more, the wind is directly at the foot at a position farther than 2.7 m. There is a possibility that you will feel cold in your feet.
On the other hand, when the air is blown upward at an angle smaller than 0 °, that is, the warm air staying near the ceiling is blown into the warm air as it is, the warm air cannot be sent to the user's living area.

上述したように、空気調和機Cは、室内の室温を測定する室温測定手段(室温センサ11)と、吹き出し空気の吹き出し方向を変更するルーバ12、13と、運転の設定を入力する設定入力手段(リモコンr)とを備えてなり、圧縮機2が回転数N1(第1回転数)での暖房運転時には吹き出し空気を略下方向(略下向き)に吹き出す空気調和機であって、暖房運転時に、室温測定手段(室温センサ11)で測定した室温T1と設定入力手段(リモコンr)で設定した設定室温(設定温度)T2との差が所定の値T3以上となり、その状態を所定の時間ts維持した場合、N1(第1回転数)より少ない圧縮機2の回転数で、ルーバ12、13により略下方向(略下向き)より上方向に吹き出す制御部を設けている。   As described above, the air conditioner C includes the room temperature measuring means (room temperature sensor 11) for measuring the room temperature in the room, the louvers 12 and 13 for changing the blowing direction of the blown air, and the setting input means for inputting the operation setting. (Remote controller r), and the compressor 2 is an air conditioner that blows out blown air substantially downward (substantially downward) during heating operation at the rotational speed N1 (first rotational speed). The difference between the room temperature T1 measured by the room temperature measuring means (room temperature sensor 11) and the set room temperature (set temperature) T2 set by the setting input means (remote controller r) is equal to or greater than a predetermined value T3, and this state is maintained for a predetermined time ts. When maintained, a control unit is provided which blows out from the lower direction (substantially downward) upward by the louvers 12 and 13 at the number of rotations of the compressor 2 smaller than N1 (first rotation number).

<暖房運転時の貫流ファン6の回転数の低減>(第2の実施形態)
図8(b)に示すように、空気調和機Cは、暖房運転時に、設定室温T2と室温T1との差が所定の値T3より大きくなり(時刻t3後)、その状態を所定の時間tsだけ維持した場合(時刻t3〜t4)に、圧縮機2の回転数を低減させる(図8(d)参照)とともに、貫流ファン6の回転数を低減させる。
圧縮機2の回転数に加えて貫流ファン6の回転数を、回転数n1から低減させることにより、圧縮機2の回転数のみを低減させる場合より大きく消費電力量を低減することが可能となる。
<Reduction of Rotational Speed of Cross-Flow Fan 6 during Heating Operation> (Second Embodiment)
As shown in FIG. 8B, in the air conditioner C, during the heating operation, the difference between the set room temperature T2 and the room temperature T1 becomes larger than a predetermined value T3 (after time t3), and the state is changed to a predetermined time ts. Only when it is maintained (time t3 to t4), the rotational speed of the compressor 2 is reduced (see FIG. 8D) and the rotational speed of the cross-flow fan 6 is reduced.
By reducing the rotational speed of the cross-flow fan 6 in addition to the rotational speed of the compressor 2 from the rotational speed n1, it is possible to reduce the power consumption more than when reducing only the rotational speed of the compressor 2. .

このように、空気調和機Cは、室内の室温を測定する室温測定手段(室温センサ11)と、吹き出し空気の吹き出し方向を変更するルーバ12、13と、運転の設定を入力する設定入力手段(リモコンr)と、空気を吹き出す貫流ファン6とを備えてなり、圧縮機2の回転数N1(第2回転数)での暖房運転時には貫流ファン6が回転数n1(第3回転数)で運転され吹き出し空気を略下方向(略下向き)に吹き出す空気調和機であって、暖房運転時に、室温測定手段(室温センサ11)で測定した室温T1と設定入力手段(リモコンr)で設定した設定室温(設定温度)T2との差が所定の値T3以上となり、その状態を所定の時間ts維持した場合、圧縮機2をN1(第2回転数)より少ない回転数で運転するとともに、貫流ファン6をn1(第3回転数)より少ない回転数で運転し、ルーバ12、13で略下方向(略下向き)より上方向に吹き出す制御部を設けたことを特徴としている。   In this way, the air conditioner C includes a room temperature measuring means (room temperature sensor 11) for measuring the room temperature in the room, louvers 12 and 13 for changing the blowing direction of the blown air, and setting input means for inputting operation settings ( Remote control r) and a once-through fan 6 for blowing out air, and the once-through fan 6 is operated at the rotation speed n1 (third rotation speed) during heating operation at the rotation speed N1 (second rotation speed) of the compressor 2. An air conditioner that blows out the blown air substantially downward (substantially downward), and at the time of heating operation, the room temperature T1 measured by the room temperature measuring means (room temperature sensor 11) and the set room temperature set by the setting input means (remote controller r) When the difference from (set temperature) T2 is equal to or greater than a predetermined value T3 and this state is maintained for a predetermined time ts, the compressor 2 is operated at a rotational speed less than N1 (second rotational speed) and the cross-flow fan 6 At a speed lower than n1 (third speed) It is characterized in that a control unit for blowing upward from the substantially downward direction (substantially downward) in bar 12, 13.

<比較例(従来)の冷房運転時の制御>
次に、比較例(従来)の冷房運転時の制御を、図9および図10を用いて説明する。
図9は、比較例(従来)の冷房運転時の制御フローを示し、図10(a)、(b)、(c)、(d)は、それぞれ比較例(従来)の冷房運転時の(経過)時間に対する室温T1の変化、貫流ファン6の回転数、ルーバ12、13の向き、圧縮機2の回転数を示す。
<Control during cooling operation of comparative example (conventional)>
Next, the control during the cooling operation of the comparative example (conventional) will be described with reference to FIGS.
FIG. 9 shows a control flow during the cooling operation of the comparative example (conventional), and FIGS. 10 (a), (b), (c), and (d) respectively show the control flow during the cooling operation of the comparative example (conventional). Elapsed time) The change in room temperature T1 with respect to time, the rotational speed of the cross-flow fan 6, the direction of the louvers 12 and 13, and the rotational speed of the compressor 2 are shown.

まず、ユーザはリモコンrにより、冷房運転を設定し、操作指令信号を室内機7へ送信する(S(ステップ)21)。また、リモコンで設定室温T5、風速、風向を設定し、操作指令信号を室内機7へ送信する(S22)。
室内機7の制御部は、冷房運転の指令を受け、室内機7の圧縮機2は回転を開始し(図10(d)の時刻t0)、貫流ファン6も回転を開始(図10(b)の時刻t0)する。設定室温T5と室温T4の差が所定の値T02より小さい場合(図10の時刻t0〜t1)(S26でNo)、室内機7のルーバ12、13は略水平方向(略水平向き)を向き、圧縮機2は高い回転数N2で回転し、ユーザ14の足元付近に冷気が届くように空調が行われる(S23〜S25)。
First, the user sets a cooling operation by using the remote controller r, and transmits an operation command signal to the indoor unit 7 (S (step) 21). Further, the set room temperature T5, the wind speed, and the wind direction are set with the remote controller, and an operation command signal is transmitted to the indoor unit 7 (S22).
The control unit of the indoor unit 7 receives a cooling operation command, the compressor 2 of the indoor unit 7 starts rotating (time t0 in FIG. 10D), and the cross-flow fan 6 also starts rotating (FIG. 10B). ) At time t0). When the difference between the set room temperature T5 and room temperature T4 is smaller than the predetermined value T02 (time t0 to t1 in FIG. 10) (No in S26), the louvers 12 and 13 of the indoor unit 7 face in a substantially horizontal direction (substantially horizontal direction). The compressor 2 rotates at a high rotation speed N2, and air conditioning is performed so that the cool air reaches near the feet of the user 14 (S23 to S25).

一方、設定室温T5と室温T4の差が所定の値T02以上(図10(a)の時刻t1以後の場合(S26でYes)、ルーバ12、13は略水平向きに位置し、圧縮機2の回転は停止または低速(低回転)となる(S27)。この状態は設定室温T5と室温T4の差が所定の値T0未満の間、継続される(S27、S28)。そして、室温T4と設定室温T5との差が所定の値T0以上になる(図10(a)の時刻t2)と(S28でYes)、S24に移行し、S24〜S28が繰り返され、図10の時刻t2以後の制御が行われる。   On the other hand, when the difference between the set room temperature T5 and the room temperature T4 is equal to or greater than a predetermined value T02 (after time t1 in FIG. 10A (Yes in S26)), the louvers 12 and 13 are positioned in a substantially horizontal direction. The rotation is stopped or slow (low rotation) (S27) This state is continued while the difference between the set room temperature T5 and the room temperature T4 is less than a predetermined value T0 (S27, S28), and the room temperature T4 is set. When the difference from the room temperature T5 becomes equal to or greater than the predetermined value T0 (time t2 in FIG. 10A) (Yes in S28), the process proceeds to S24, S24 to S28 are repeated, and the control after time t2 in FIG. Is done.

<冷房運転時の制御>(第3の実施形態)
次に、実施形態の室内機7の冷房運転時の制御を、図11および図12を用いて説明する。
図11は、実施形態の冷房運転時の制御フローを示し、図12(a)、(b)、(c)、(d)は、それぞれ実施形態の冷房運転時の(経過)時間に対する室温T1の変化、貫流ファン6の回転数、ルーバ12、13の向き、圧縮機2の回転数を示す。
まず、ユーザは、リモコンrにより、冷房運転を設定し、操作指令信号を室内機7へ送信する(S(ステップ)201)。また、ユーザは、リモコンrで設定室温T5、風速、風向を設定し、操作指令信号を室内機7へ送信する(S202)。
<Control during cooling operation> (Third embodiment)
Next, control during the cooling operation of the indoor unit 7 of the embodiment will be described with reference to FIGS. 11 and 12.
FIG. 11 shows a control flow during the cooling operation of the embodiment, and FIGS. 12A, 12B, 12C, and 12D show the room temperature T1 with respect to the (elapsed) time during the cooling operation of the embodiment, respectively. , The rotational speed of the once-through fan 6, the direction of the louvers 12 and 13, and the rotational speed of the compressor 2.
First, the user sets the cooling operation by using the remote controller r and transmits an operation command signal to the indoor unit 7 (S (step) 201). In addition, the user sets the set room temperature T5, the wind speed, and the wind direction with the remote controller r, and transmits an operation command signal to the indoor unit 7 (S202).

室内機7の制御部は、リモコンrからの冷房運転の指令を受け、圧縮機2は回転を開始(図12(d)の時刻t0)し、室内機7の貫流ファン6も回転を開始(図12(b)の時刻t0)する。
設定室温T5と室温T4の差が所定の値T6より小さい場合(S206でNo)、室内機7のルーバ12、13は略水平方向(略水平向き)に位置し吹き出し空気を略水平方向に吹き出し、圧縮機2は高い回転数N2で回転する(S205)。この状態は、設定室温T5と室温T4の差が所定の差T6以上となるまで継続される(S203〜S205)。
The control unit of the indoor unit 7 receives a cooling operation command from the remote controller r, the compressor 2 starts rotating (time t0 in FIG. 12D), and the cross-flow fan 6 of the indoor unit 7 also starts rotating ( Time t0 in FIG.
When the difference between the set room temperature T5 and the room temperature T4 is smaller than the predetermined value T6 (No in S206), the louvers 12 and 13 of the indoor unit 7 are positioned in a substantially horizontal direction (substantially horizontal direction) and blow out air in a substantially horizontal direction. The compressor 2 rotates at a high rotation speed N2 (S205). This state is continued until the difference between the set room temperature T5 and the room temperature T4 is equal to or greater than a predetermined difference T6 (S203 to S205).

なお、S205の冷房運転時に、室内機7のルーバ12、13は略水平方向(略水平向き)に位置し、吹き出し空気を略水平方向に吹き出す略水平方向とは、次の角度を意味する。すなわち、冷房は天井に沿って吹き出すことで遠方まで冷気を送ることができるため、水平方向への吹き出しが基本となる。そこで、冷房運転時の略水平方向とは、水平から下向きに0°〜22.8°の範囲の角度をいう。例えば、上の上下風向板のルーバ12が水平より0.45°下向き、下の上下風向板のルーバ13が水平より22.8°下向きである。   During the cooling operation of S205, the louvers 12 and 13 of the indoor unit 7 are positioned in a substantially horizontal direction (substantially horizontal direction), and the substantially horizontal direction in which the blown air is blown out in a substantially horizontal direction means the following angle. In other words, the cooling is blown out along the ceiling, so that the cool air can be sent far away, so that the air blowout in the horizontal direction is fundamental. Therefore, the substantially horizontal direction during the cooling operation refers to an angle in a range of 0 ° to 22.8 ° from the horizontal to the downward direction. For example, the louver 12 of the upper vertical wind direction plate is 0.45 ° downward from the horizontal, and the louver 13 of the lower vertical wind direction plate is 22.8 ° downward from the horizontal.

設定室温T5と室温T4の差が所定の値T6以上となり(図12(a)の時刻t1後)(S206でYes)、ルーバ12、13は略水平を向き、圧縮機2は高い回転数N2で回転し、その状態を所定の時間tc(例えば5分間)(図12(d)参照)維持した場合(図12の時刻t1〜t2)(S207でYes)、ルーバ12、13は略水平方向(略水平向き)より下方向を向き、圧縮機2は停止または低回転となる(S208)。   The difference between the set room temperature T5 and the room temperature T4 is equal to or greater than a predetermined value T6 (after time t1 in FIG. 12A) (Yes in S206), the louvers 12 and 13 are directed substantially horizontally, and the compressor 2 has a high rotational speed N2. And the state is maintained for a predetermined time tc (for example, 5 minutes) (see FIG. 12D) (time t1 to t2 in FIG. 12) (Yes in S207), the louvers 12 and 13 are substantially horizontal. The compressor 2 stops or rotates at a low speed (S208).

そして、設定室温T5と室温T4との差が所定の値T02(図12(a)参照)以上の場合(S209でYes)には、S208に移行する。
一方、設定室温T5と室温T4との差が所定の値T02(図12(a)参照)より小さい場合には(S209でNo)、室温T4と設定室温T5との差が所定の値T0以上(図12(a)参照)か判定される(S210)。
If the difference between the set room temperature T5 and the room temperature T4 is equal to or greater than a predetermined value T02 (see FIG. 12A) (Yes in S209), the process proceeds to S208.
On the other hand, when the difference between the set room temperature T5 and the room temperature T4 is smaller than the predetermined value T02 (see FIG. 12A) (No in S209), the difference between the room temperature T4 and the set room temperature T5 is greater than or equal to the predetermined value T0. (See FIG. 12A) is determined (S210).

室温T4と設定室温T5との差が所定の値T0以上の場合(S210でYes)、S205に移行し、室内機7のルーバ12、13は略水平方向(略水平向き)に位置し、圧縮機2は高い回転数N2で回転する。   When the difference between the room temperature T4 and the set room temperature T5 is equal to or greater than the predetermined value T0 (Yes in S210), the process proceeds to S205, where the louvers 12 and 13 of the indoor unit 7 are positioned in a substantially horizontal direction (substantially horizontal direction) and compressed. Machine 2 rotates at a high speed N2.

一方、室温T4と設定室温T5との差が所定の値T0未満の場合(S210でNo)、S208に移行し、ルーバ12、13は略水平方向(略水平向き)より下方向を向き、圧縮機2は停止または低回転とする。
以上が、図11に示す冷房運転時の制御フローである。なお、ユーザがリモコンrで運転停止を操作するとその時点で図11の冷房運転の制御は停止される。
On the other hand, if the difference between the room temperature T4 and the set room temperature T5 is less than the predetermined value T0 (No in S210), the process proceeds to S208, where the louvers 12 and 13 are compressed downward from the substantially horizontal direction (substantially horizontal direction). The machine 2 is set to stop or low rotation.
The above is the control flow during the cooling operation shown in FIG. When the user operates the remote controller r to stop the operation, the cooling operation control in FIG. 11 is stopped at that time.

上述の冷房運転によれば、設定室温T5と室温T4の差が所定の値T6以上となり(S206でYes)、その状態を所定の時間tcだけ維持させる(S207でYes)ことで、室内に十分な量の冷気を確保することが可能となり(図4(a)でa>b)、その冷気を、ルーバ12、13で略水平方向(略水平向き)より下方向に吹き出し室内の空気を攪拌することで、屋外から室内への熱の流入量を低減することが可能となる(式(4)、式(5)参照)。   According to the above-described cooling operation, the difference between the set room temperature T5 and the room temperature T4 is equal to or greater than the predetermined value T6 (Yes in S206), and the state is maintained for a predetermined time tc (Yes in S207). It is possible to secure a sufficient amount of cold air (a> b in FIG. 4A), and the louvers 12 and 13 stir the air in the blowout chamber from the substantially horizontal direction (substantially horizontal direction) downward. By doing so, it becomes possible to reduce the amount of heat flowing from the outside into the room (see equations (4) and (5)).

このように、室内から屋外への熱の流入量が低減されることで、室内の温度を低く維持することが可能となり、冷房による消費電力量を低減させることが可能となる。
さらに、床付近に滞留した冷気をルーバ12、13で攪拌する際に、略水平方向(略水平向き)より下方向に吹き出すことで、ユーザ14の生活域の足元へ直接吹き出すこととなり、ユーザ14に気流による快適感の向上を提供することが可能となる。
In this manner, the amount of heat flowing from the room to the outdoors is reduced, so that the room temperature can be kept low, and the amount of power consumed by cooling can be reduced.
Furthermore, when the cold air staying in the vicinity of the floor is stirred by the louvers 12 and 13, it is blown out from the substantially horizontal direction (substantially horizontal direction) to the bottom of the user's 14 living area. It is possible to provide an improved feeling of comfort due to airflow.

ここで、図11のS208における室内機7のルーバ12、13が略水平方向(略水平向き)より下方向の角度の最適角度、許容角度について説明する。
S208におけるルーバ12、13の最適角度は、最小冷房可能広さである6畳の部屋の、最も奥の床であっても直接風を吹き付けることのできる角度である水平方向を基準にして下方向に36.5°である。
最適角度で直接床に吹き付けることで、室内の空気を撹拌するだけでなく、ユーザの足元に気流感による涼しさを感じさせることができる。
Here, the optimum angle and the allowable angle of the louvers 12 and 13 of the indoor unit 7 in S208 of FIG. 11 that are downward from the substantially horizontal direction (substantially horizontal direction) will be described.
The optimum angle of the louvers 12 and 13 in S208 is the downward direction with respect to the horizontal direction, which is the angle at which the wind can be blown directly even in the innermost floor of a 6 tatami room, which is the smallest space that can be cooled. 36.5 °.
By spraying directly on the floor at the optimum angle, not only the air in the room is agitated, but also the user's feet can feel the coolness due to the feeling of airflow.

S208におけるルーバ12、13の許容角度は、最大冷房可能広さである30畳の部屋の、最も奥の床であっても、直接風を吹き付けることのできる角度である水平方向を基準にして下方向に8.4°〜90°の範囲内の角度である。
8.4°未満の角度で吹き出すと、奥行きが13.5m以下の部屋ではユーザの足元に吹き出すことができず、気流感による涼しさが低減する可能性がある。
一方、90.0°より大きい角度、すなわち垂直よりも据え付けられている壁に向けて吹き出す場合、8.4°より小さい角度で吹き出す場合と同様に、ユーザの気流感による涼しさが低減する可能性がある。
The allowable angle of the louvers 12 and 13 in S208 is based on the horizontal direction, which is the angle at which the wind can be blown directly, even on the farthest floor of a 30 tatami room, which is the maximum cooling capacity. An angle in the range of 8.4 ° to 90 ° in the direction.
If it blows off at an angle of less than 8.4 °, it cannot blow out to the user's feet in a room with a depth of 13.5 m or less, and coolness due to the airflow may be reduced.
On the other hand, when the air is blown toward an angle larger than 90.0 °, that is, toward a wall installed perpendicularly, the coolness due to the airflow of the user can be reduced in the same manner as when the air is blown at an angle smaller than 8.4 °. There is sex.

また、図12(d)に示すように、冷房運転時に圧縮機2の回転数を低減することにより、消費電力量を削減することが可能となる。
なお、図11および図12では、T6が正の値となるよう示しているが、T6は負またはゼロでもよい。
Moreover, as shown in FIG.12 (d), it becomes possible to reduce power consumption by reducing the rotation speed of the compressor 2 at the time of air_conditionaing | cooling operation.
11 and 12, T6 is shown to be a positive value, but T6 may be negative or zero.

このように、空気調和機Cは、室内の室温を測定する室温測定手段(室温センサ11)と、吹き出し空気の吹き出し方向を変更するルーバ12、13と、運転の設定を入力する設定入力手段(リモコンr)とを備えてなり、圧縮機2の回転数N2(第4回転数)での冷房運転時には吹き出し空気を略水平方向(略水平向き)に吹き出す空気調和機であって、冷房運転時に、室温測定手段(室温センサ11)で測定した室温T4と設定入力手段(リモコンr)により設定された設定室温(設定温度) T5との差が所定の値T6以上となり、その状態を所定の時間tc(図12参照)維持した場合、N2(第4回転数)より少ない圧縮機2の回転数で略水平方向(略水平向き)より下方向に吹き出す制御部を設けている。   In this way, the air conditioner C includes a room temperature measuring means (room temperature sensor 11) for measuring the room temperature in the room, louvers 12 and 13 for changing the blowing direction of the blown air, and setting input means for inputting operation settings ( An air conditioner that blows out blown air in a substantially horizontal direction (substantially horizontal direction) during cooling operation at the rotation speed N2 (fourth rotation speed) of the compressor 2, The difference between the room temperature T4 measured by the room temperature measuring means (room temperature sensor 11) and the set room temperature (set temperature) T5 set by the setting input means (remote controller r) is equal to or greater than a predetermined value T6, and this state is maintained for a predetermined time. When tc (see FIG. 12) is maintained, a control unit is provided which blows downward from the substantially horizontal direction (substantially horizontal direction) at the number of rotations of the compressor 2 smaller than N2 (fourth rotation number).

<冷房運転時の貫流ファン6の回転数の低減>(第4の実施形態)
図12(b)に示すように、空気調和機Cは、冷房運転時に、設定室温T5と室温T4の差が所定の値T6より大きくなり、その状態を所定の時間tcだけ維持した場合に、圧縮機2の回転数を回転数N2から低減させ、また貫流ファン6の回転数を回転数n2から低減させる。
<Reduction of Rotational Speed of Cross-Flow Fan 6 during Cooling Operation> (Fourth Embodiment)
As shown in FIG. 12B, the air conditioner C has a difference between the set room temperature T5 and the room temperature T4 larger than a predetermined value T6 during the cooling operation, and maintains this state for a predetermined time tc. The rotational speed of the compressor 2 is reduced from the rotational speed N2, and the rotational speed of the cross-flow fan 6 is reduced from the rotational speed n2.

圧縮機2の回転数に加えて貫流ファン6の回転数を回転数n2から低減させることにより、圧縮機2の回転数のみを回転数N2から低減させる場合より大きく消費電力量を低減することが可能となる。   By reducing the rotational speed of the cross-flow fan 6 from the rotational speed n2 in addition to the rotational speed of the compressor 2, the power consumption can be reduced more than when only the rotational speed of the compressor 2 is reduced from the rotational speed N2. It becomes possible.

上述したように、空気調和機Cは、室内の室温を測定する室温測定手段(室温センサ11)と、吹き出し空気の吹き出し方向を変更するルーバ12、13と、運転の設定を入力する設定入力手段(リモコンr)と、空気を吹き出す貫流ファン6とを備えてなり、圧縮機2の回転数N2(第5回転数)での冷房運転時には貫流ファン6が回転数n2(第6回転数)で吹き出し空気を略水平方向(略水平向き)に吹き出す空気調和機であって、冷房運転時に、室温測定手段(室温センサ11)で測定した室温T4と設定入力手段(リモコンr)により設定された設定室温(設定温度)T5との差が所定の値T6以上となり、その状態を所定の時間tc維持した場合(図12参照)、圧縮機2をN2(第5回転数)より少ない回転数で運転するとともに、貫流ファン6をn2(第6回転数)より少ない回転数で運転し(図12の時刻t2後)、ルーバ12、13で略水平方向(略水平向き)より下方向に吹き出す制御部を設けている。   As described above, the air conditioner C includes the room temperature measuring means (room temperature sensor 11) for measuring the room temperature in the room, the louvers 12 and 13 for changing the blowing direction of the blown air, and the setting input means for inputting the operation setting. (Remote controller r) and a once-through fan 6 that blows out air, and when the cooling operation of the compressor 2 is performed at the rotation speed N2 (fifth rotation speed), the once-through fan 6 is at the rotation speed n2 (sixth rotation speed) An air conditioner that blows out blown air in a substantially horizontal direction (substantially horizontal direction), and is set at room temperature T4 measured by a room temperature measurement means (room temperature sensor 11) and setting input means (remote control r) during cooling operation. When the difference from room temperature (set temperature) T5 is greater than or equal to a predetermined value T6 and this state is maintained for a predetermined time tc (see FIG. 12), the compressor 2 is operated at a rotational speed less than N2 (fifth rotational speed). In addition, the cross-flow fan 6 is rotated less than n2 (sixth rotation speed). A control unit is provided which operates at a rotational speed (after time t2 in FIG. 12) and blows downward from the substantially horizontal direction (substantially horizontal direction) by the louvers 12 and 13.

以上、本実施形態をまとめと、
第1の実施形態にかかる空気調和機は、室内の室温を測定する室温測定手段と、吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、運転の設定が入力される設定入力手段とを備え、圧縮機が回転数N1(第1回転数)での暖房運転時には、吹き出し空気を略下方向に吹き出す空気調和機であって、暖房運転時に、室温測定手段で測定された室温(T1)と設定入力手段に入力された設定温度(T2)との差が所定の値(T3)以上となり、その状態を所定の時間(ts)維持した場合、圧縮機が前記N1(第1回転数)より少ない回転数で運転され、吹き出し方向変更手段によって吹き出し空気を前記略下方向より上方向に吹き出すように制御する制御部を設けたことを特徴とする。
As above, this embodiment is summarized,
The air conditioner according to the first embodiment includes room temperature measuring means for measuring room temperature in the room, blowing direction changing means for changing the blowing direction of the blowing air, and setting input means for inputting operation settings. The air conditioner that blows out the blown air substantially downward when the compressor is in the heating operation at the rotation speed N1 (first rotation speed), and the room temperature (T1) measured by the room temperature measuring means during the heating operation When the difference from the set temperature (T2) input to the setting input means exceeds a predetermined value (T3), and the state is maintained for a predetermined time (ts), the compressor starts from N1 (first rotation speed). A control unit is provided which is operated at a small number of rotations and controls the blowing air to be blown upward from the substantially downward direction by the blowing direction changing means.

第1の実施形態によれば、暖房運転時に、圧縮機の回転数を低下させることにより、消費電力量を低減することが可能となる。   According to the first embodiment, it is possible to reduce the amount of power consumption by reducing the rotation speed of the compressor during the heating operation.

第2の実施形態の空気調和機は、室内の室温を測定する室温測定手段と、吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、運転の設定が入力される設定入力手段と、空気を吹き出す貫流ファンとを備え、圧縮機が回転数N1(第2回転数)での暖房運転時には貫流ファンが回転数n1(第3回転数)で運転され、吹き出し方向変更手段によって吹き出し空気を略下方向に吹き出す空気調和機であって、暖房運転時に、室温測定手段で測定された室温(T1)と設定入力手段に入力された設定温度(T2)との差が所定の値(T3)以上となり、その状態を所定の時間(ts)維持した場合、圧縮機が前記N1(第2回転数)より少ない回転数で運転されるとともに貫流ファンが前記n1(第3回転数)より少ない回転数で運転され、吹き出し方向変更手段によって吹き出し空気を前記略下方向より上方向に吹き出すように制御する制御部を設けてもよい。   The air conditioner of the second embodiment includes room temperature measuring means for measuring the room temperature in the room, blowing direction changing means for changing the blowing direction of the blowing air, setting input means for inputting operation settings, and air A once-through fan that blows out, and when the compressor is in heating operation at the rotation speed N1 (second rotation speed), the once-through fan is operated at the rotation speed n1 (third rotation speed). This is an air conditioner that blows in the direction, and during heating operation, the difference between the room temperature (T1) measured by the room temperature measurement means and the set temperature (T2) input to the setting input means is greater than or equal to a predetermined value (T3) When the state is maintained for a predetermined time (ts), the compressor is operated at a speed lower than N1 (second speed) and the cross-flow fan is operated at a speed lower than n1 (third speed). Driven and blown out by blowing direction changing means However, a control unit may be provided that controls the air to be blown upward from the substantially downward direction.

第2の実施形態によれば、暖房運転時に、圧縮機の回転数を低下させ、貫流ファンの回転数を低下させることで、消費電力量をさらに削減することが可能となる。   According to the second embodiment, it is possible to further reduce power consumption by reducing the rotation speed of the compressor and the rotation speed of the cross-flow fan during heating operation.

第1・第2の実施形態によれば、暖房運転時に、設定温度と室温との差だけでなく、設定室温と室温の差が所定の範囲内を維持した時間を加味することで、上下方向の温度分布を小さくするのに十分な量の暖気を天井付近に確保することが可能となる。   According to the first and second embodiments, in the heating operation, not only the difference between the set temperature and the room temperature but also the time during which the difference between the set room temperature and the room temperature is maintained within the predetermined range, It is possible to ensure a sufficient amount of warm air in the vicinity of the ceiling to reduce the temperature distribution.

また、第1・第2の実施形態によれば、暖房運転時に、室内の上下方向の温度分布を小さくすることで、室内から屋外への漏洩熱量を低減することが可能となり、消費電力量を低減することが可能となる。   In addition, according to the first and second embodiments, it is possible to reduce the amount of heat leaked from the room to the outdoors by reducing the temperature distribution in the indoor vertical direction during the heating operation, thereby reducing the power consumption. It becomes possible to reduce.

また、第1・第2の実施形態によれば、暖房運転時に、吹き出し空気を略下方向(略下向き)より上方向に位置させ室内空気を攪拌することで、ユーザの足元に吹き出すことによる寒さをユーザに感じさせること無く、天井付近に滞留した暖気を床付近で生活するユーザに供給することが可能となり、ユーザの快適感を向上させることが可能となる。   Further, according to the first and second embodiments, during the heating operation, the cold air blown out to the user's feet by positioning the blown air upward from the substantially downward direction (substantially downward) and stirring the room air. It is possible to supply warm air staying in the vicinity of the ceiling to the user living near the floor without making the user feel, and to improve the user's comfort.

第3の実施形態の空気調和機は、室内の室温を測定する室温測定手段と、吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、運転の設定が入力される設定入力手段とを備え、圧縮機が回転数N2(第4回転数)での冷房運転時には、吹き出し空気を略水平方向に吹き出す空気調和機であって、冷房運転時に、設定入力手段に入力された設定温度(T5)と室温測定手段で測定された室温(T4)との差が所定の値(T6)以上となり、その状態を所定の時間(tc)維持した場合、圧縮機が前記N2(第4回転数)より少ない回転数で運転され、吹き出し方向変更手段によって吹き出し空気を前記略水平方向より下方向に吹き出すように制御する制御部を設けてもよい。   The air conditioner of the third embodiment includes a room temperature measuring means for measuring the room temperature in the room, a blowing direction changing means for changing the blowing direction of the blowing air, and a setting input means for inputting operation settings. When the compressor is in cooling operation at the rotation speed N2 (fourth rotation speed), it is an air conditioner that blows out blown air in a substantially horizontal direction, and during the cooling operation, the set temperature (T5) input to the setting input means When the difference from the room temperature (T4) measured by the room temperature measuring means is a predetermined value (T6) or more and the state is maintained for a predetermined time (tc), the compressor is less than the N2 (fourth rotation speed). There may be provided a control unit that is operated at a rotational speed and controls the blowing air to be blown downward from the substantially horizontal direction by the blowing direction changing means.

第3の実施形態によれば、冷房運転時に、圧縮機の回転数を低下させることにより、消費電力量を提言することが可能となる。   According to the third embodiment, it is possible to propose the amount of power consumption by reducing the rotation speed of the compressor during the cooling operation.

第4の実施形態の空気調和機は、室内の室温を測定する室温測定手段と、吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、運転の設定が入力される設定入力手段と、空気を吹き出す貫流ファンとを備え、圧縮機が回転数N2(第5回転数)での冷房運転時には貫流ファンが回転数n2(第6回転数)で運転され、吹き出し方向変更手段によって吹き出し空気を略水平方向に吹き出す空気調和機であって、冷房運転時に、設定入力手段に入力された設定温度(T5)と室温測定手段で測定された室温(T4)との差が所定の値(T6)以上となり、その状態を所定の時間(tc)維持した場合、圧縮機が前記N2(第5回転数)より少ない回転数で運転されるとともに貫流ファンが前記n2(第6回転数)より少ない回転数で運転され、吹き出し方向変更手段によって吹き出し空気を前記略水平方向より下方向に吹き出すように制御する制御部を設けてもよい。   The air conditioner of the fourth embodiment includes a room temperature measuring means for measuring the room temperature in the room, a blowing direction changing means for changing the blowing direction of the blowing air, a setting input means for inputting operation settings, and air. A cross-flow fan that blows out, and when the compressor is in cooling operation at the rotation speed N2 (fifth rotation speed), the cross-flow fan is operated at the rotation speed n2 (sixth rotation speed), and the blown air is substantially horizontal by the blowing direction changing means. This is an air conditioner that blows in the direction, and during cooling operation, the difference between the set temperature (T5) input to the setting input means and the room temperature (T4) measured by the room temperature measuring means becomes a predetermined value (T6) or more. When the state is maintained for a predetermined time (tc), the compressor is operated at a rotational speed less than N2 (fifth rotational speed) and the cross-flow fan is operated at a rotational speed less than n2 (sixth rotational speed). Driven and blown by blowing direction changing means You may provide the control part which controls so that discharge air may be blown out below the said substantially horizontal direction.

第4の実施形態によれば、冷房運転時に、圧縮機の回転数を低下させ、貫流ファンの回転数を低下させることで、消費電力量をさらに削減することが可能となる。   According to the fourth embodiment, it is possible to further reduce power consumption by reducing the rotational speed of the compressor and the rotational speed of the cross-flow fan during cooling operation.

第3・第4の実施形態によれば、冷房運転時に、吹き出し空気を略水平方向(略水平向き)より下方向に位置させユーザに気流を供給することで、気流により人体からの放熱が促進され、ユーザの快適感を向上させることが可能となる。   According to the third and fourth embodiments, during the cooling operation, the blown air is positioned below the substantially horizontal direction (substantially horizontal direction) and the air flow is supplied to the user, so that heat radiation from the human body is promoted by the air flow. Thus, it is possible to improve the user's comfort.

また、第3・第4の実施形態によれば、冷房運転時に、設定温度と室温の差だけでなく、設定室温と室温の差が所定の範囲内を維持した時間を加味することで、略水平方向(略水平向き)より下方向に吹き出す際に、ユーザの快適感を向上させるのに十分な量の冷気を室内に供給することが可能となる。   Further, according to the third and fourth embodiments, during the cooling operation, not only the difference between the set temperature and the room temperature but also the time during which the difference between the set room temperature and the room temperature is maintained within a predetermined range can be substantially reduced. When the air is blown downward from the horizontal direction (substantially horizontal), it is possible to supply a sufficient amount of cold air to the room to improve the user's comfort.

また、第3・第4の実施形態によれば、冷房運転時に、室内の上下方向の温度分布を小さくすることで、室内から屋外への漏洩熱量を低減することが可能となり、消費電力量を低減することが可能となる。   Further, according to the third and fourth embodiments, it is possible to reduce the amount of heat leaked from the room to the outside by reducing the temperature distribution in the vertical direction of the room during the cooling operation, thereby reducing the power consumption. It becomes possible to reduce.

なお、特許請求の範囲の「冷房運転時には、吹き出し空気を略水平方向に吹き出す」という記載の略水平方向とは、次の角度を意味する。すなわち、冷房は天井に沿って吹き出すことで遠方まで冷気を送ることができるため、水平方向への吹き出しが基本となる。そこで、冷房運転時の略水平方向とは、水平から下向きに0°〜22.8°の範囲の角度をいう。   In addition, the substantially horizontal direction described in the claims “Blowing out blown air in a substantially horizontal direction during cooling operation” means the following angle. In other words, the cooling is blown out along the ceiling, so that the cool air can be sent far away, so that the air blowout in the horizontal direction is fundamental. Therefore, the substantially horizontal direction during the cooling operation refers to an angle in a range of 0 ° to 22.8 ° from the horizontal to the downward direction.

また、特許請求の範囲の「暖房運転時には、吹き出し空気を略下方向に吹き出す」という記載の略下方向とは、次の角度を意味する。すなわち、暖房では暖気が浮力により上昇することを考慮し、風向を床に向けて吹き出すことが基本となる。そこで、暖房運転時の略下方向とは、鉛直方向から上向きに0〜25.5°の範囲の角度をいう。   In addition, the substantially downward direction described in the claims “Blowing out blown air substantially downward during heating operation” means the following angle. That is, in the heating, considering that the warm air rises due to buoyancy, it is fundamental to blow out the wind direction toward the floor. Therefore, the substantially downward direction during heating operation refers to an angle in the range of 0 to 25.5 ° upward from the vertical direction.

2 圧縮機
6 貫流ファン
7 室内機(空気調和機)
11 室温センサ(室温測定手段)
12、13 ルーバ(吹き出し方向変更手段)
C 空気調和機
N1 回転数
N2 回転数
n1 回転数
n2 回転数
r リモコン(設定入力手段)
T1 室温
T2 設定室温(設定温度)
T3 所定の値
T4 室温
T5 設定室温(設定温度)
T6 所定の値
tc 所定の時間
ts 所定の時間
2 Compressor 6 Cross-flow fan 7 Indoor unit (air conditioner)
11 Room temperature sensor (room temperature measuring means)
12, 13 Louver (Blowing direction changing means)
C Air conditioner
N1 speed
N2 speed
n1 Rotation speed
n2 Speed r Remote control (setting input means)
T1 room temperature
T2 set room temperature (set temperature)
T3 Predetermined value
T4 room temperature
T5 Set room temperature (set temperature)
T6 Predetermined value
tc Predetermined time
ts predetermined time

Claims (8)

室内の室温を測定する室温測定手段と、
吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、
運転の設定が入力される設定入力手段とを備え、
圧縮機が回転数N1での暖房運転時には、前記吹き出し空気を略下方向に吹き出す空気調和機であって、
暖房運転時に、前記室温測定手段で測定された室温と前記設定入力手段に入力された設定温度との差が所定の値以上となり、その状態を所定の時間維持した場合、
前記圧縮機が前記N1より少ない回転数で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を前記略下方向より上方向に吹き出すように制御する制御部を設けた
ことを特徴とする空気調和機。
Room temperature measuring means for measuring room temperature in the room;
A blowing direction changing means for changing a blowing direction of the blowing air;
A setting input means for inputting operation settings;
During the heating operation at the rotation speed N1, the compressor is an air conditioner that blows out the blown air substantially downward,
During heating operation, when the difference between the room temperature measured by the room temperature measuring unit and the set temperature input to the setting input unit is a predetermined value or more, and the state is maintained for a predetermined time,
An air conditioner characterized in that the compressor is operated at a rotational speed less than N1, and a control unit is provided for controlling the blowing air to be blown upward from the substantially downward direction by the blowing direction changing means. .
室内の室温を測定する室温測定手段と、
吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、
運転の設定が入力される設定入力手段と、
空気を吹き出す貫流ファンとを備え、
圧縮機が回転数N1での暖房運転時には前記貫流ファンが回転数n1で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を略下方向に吹き出す空気調和機であって、
暖房運転時に、前記室温測定手段で測定された室温と前記設定入力手段に入力された設定温度との差が所定の値以上となり、その状態を所定の時間維持した場合、
前記圧縮機が前記N1より少ない回転数で運転されるとともに前記貫流ファンが前記n1より少ない回転数で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を前記略下方向より上方向に吹き出すように制御する制御部を設けた
ことを特徴とする空気調和機。
Room temperature measuring means for measuring room temperature in the room;
A blowing direction changing means for changing a blowing direction of the blowing air;
A setting input means for inputting operation settings;
With a once-through fan that blows out air,
When the compressor is heated at a rotation speed of N1, the cross-flow fan is operated at a rotation speed of n1, and is an air conditioner that blows out the blown air substantially downward by the blowing direction changing means,
During heating operation, when the difference between the room temperature measured by the room temperature measuring unit and the set temperature input to the setting input unit is a predetermined value or more, and the state is maintained for a predetermined time,
The compressor is operated at a rotational speed less than the N1, the cross-flow fan is operated at a rotational speed less than the n1, and the blown air is blown upward from the substantially downward direction by the blowing direction changing means. An air conditioner comprising a control unit for controlling.
前記略下方向より上方向とは、水平方向を基準にして下方向に12.5°である
ことを特徴とする請求項1または請求項2に記載の空気調和機。
3. The air conditioner according to claim 1, wherein the upward direction from the substantially downward direction is 12.5 ° downward with respect to a horizontal direction.
前記略下方向より上方向とは、水平方向を基準にして下方向に0〜36.5°の範囲内である
ことを特徴とする請求項1または請求項2に記載の空気調和機。
3. The air conditioner according to claim 1, wherein the upward direction from the substantially downward direction is within a range of 0 to 36.5 ° in a downward direction with respect to a horizontal direction.
室内の室温を測定する室温測定手段と、
吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、
運転の設定が入力される設定入力手段とを備え、
圧縮機が回転数N2での冷房運転時には、前記吹き出し空気を略水平方向に吹き出す空気調和機であって、
冷房運転時に、前記設定入力手段に入力された設定温度と前記室温測定手段で測定された室温との差が所定の値以上となり、その状態を所定の時間維持した場合、
前記圧縮機が前記N2より少ない回転数で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を前記略水平方向より下方向に吹き出すように制御する制御部を設けた
ことを特徴とする空気調和機。
Room temperature measuring means for measuring room temperature in the room;
A blowing direction changing means for changing a blowing direction of the blowing air;
A setting input means for inputting operation settings;
During the cooling operation at a rotational speed of N2, the compressor is an air conditioner that blows out the blown air in a substantially horizontal direction,
At the time of cooling operation, when the difference between the set temperature input to the setting input means and the room temperature measured by the room temperature measuring means is a predetermined value or more and the state is maintained for a predetermined time,
An air conditioner characterized in that the compressor is operated at a rotational speed lower than N2, and a control unit is provided for controlling the blown-out air to be blown downward from the substantially horizontal direction by the blow-out direction changing means. .
室内の室温を測定する室温測定手段と、
吹き出し空気の吹き出し方向を変更する吹き出し方向変更手段と、
運転の設定が入力される設定入力手段と、
空気を吹き出す貫流ファンとを備え、
圧縮機が回転数N2での冷房運転時には前記貫流ファンが回転数n2で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を略水平方向に吹き出す空気調和機であって、
冷房運転時に、前記設定入力手段に入力された設定温度と前記室温測定手段で測定された室温との差が所定の値以上となり、その状態を所定の時間維持した場合、
前記圧縮機が前記N2より少ない回転数で運転されるとともに前記貫流ファンが前記n2より少ない回転数で運転され、前記吹き出し方向変更手段によって前記吹き出し空気を前記略水平方向より下方向に吹き出すように制御する制御部を設けた
ことを特徴とする空気調和機。
Room temperature measuring means for measuring room temperature in the room;
A blowing direction changing means for changing a blowing direction of the blowing air;
A setting input means for inputting operation settings;
With a once-through fan that blows out air,
When the compressor is in cooling operation at a rotational speed of N2, the cross-flow fan is operated at a rotational speed of n2, and is an air conditioner that blows out the blown air in a substantially horizontal direction by the blowing direction changing means,
At the time of cooling operation, when the difference between the set temperature input to the setting input means and the room temperature measured by the room temperature measuring means is a predetermined value or more and the state is maintained for a predetermined time,
The compressor is operated at a rotational speed less than the N2 and the cross-flow fan is operated at a rotational speed less than the n2 so that the blown air is blown downward from the substantially horizontal direction by the blowing direction changing means. An air conditioner comprising a control unit for controlling.
前記略水平方向より下方向とは、水平方向を基準にして下方向に36.5°の範囲内である
ことを特徴とする請求項5または請求項6に記載の空気調和機。
The air conditioner according to claim 5 or 6, wherein the downward direction from the substantially horizontal direction is within a range of 36.5 ° in a downward direction with respect to the horizontal direction.
前記略水平方向より下方向とは、水平方向を基準にして下方向に8.4°〜90°の範囲内である
ことを特徴とする請求項5または請求項6に記載の空気調和機。
The air conditioner according to claim 5 or 6, wherein the downward direction from the substantially horizontal direction is within a range of 8.4 ° to 90 ° in the downward direction with respect to the horizontal direction.
JP2010249944A 2010-11-08 2010-11-08 Air conditioner Active JP5646958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010249944A JP5646958B2 (en) 2010-11-08 2010-11-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010249944A JP5646958B2 (en) 2010-11-08 2010-11-08 Air conditioner

Publications (2)

Publication Number Publication Date
JP2012102904A true JP2012102904A (en) 2012-05-31
JP5646958B2 JP5646958B2 (en) 2014-12-24

Family

ID=46393515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010249944A Active JP5646958B2 (en) 2010-11-08 2010-11-08 Air conditioner

Country Status (1)

Country Link
JP (1) JP5646958B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031985A (en) * 2012-08-06 2014-02-20 Panasonic Corp Air conditioner
JP6038264B1 (en) * 2015-11-04 2016-12-07 三菱電機株式会社 Air conditioning system
CN107461844A (en) * 2017-07-27 2017-12-12 广东美的制冷设备有限公司 Air-conditioning system and its Poewr control method and device
CN108844192A (en) * 2018-05-22 2018-11-20 广东美的制冷设备有限公司 Control method, air conditioner and the computer readable storage medium of air conditioner
CN110173852A (en) * 2019-05-28 2019-08-27 宁波奥克斯电气股份有限公司 The control method for frequency and air conditioner of air conditioner
JP2019173997A (en) * 2018-03-27 2019-10-10 ダイキン工業株式会社 Air conditioner
CN111457470A (en) * 2020-04-20 2020-07-28 宁波奥克斯电气股份有限公司 Air output control method and air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101128A (en) * 2002-09-12 2004-04-02 Sharp Corp Air conditioner
JP2007278552A (en) * 2006-04-04 2007-10-25 Matsushita Electric Ind Co Ltd Operation method of air conditioner
JP2009097755A (en) * 2007-10-15 2009-05-07 Mitsubishi Electric Corp Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101128A (en) * 2002-09-12 2004-04-02 Sharp Corp Air conditioner
JP2007278552A (en) * 2006-04-04 2007-10-25 Matsushita Electric Ind Co Ltd Operation method of air conditioner
JP2009097755A (en) * 2007-10-15 2009-05-07 Mitsubishi Electric Corp Air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031985A (en) * 2012-08-06 2014-02-20 Panasonic Corp Air conditioner
JP6038264B1 (en) * 2015-11-04 2016-12-07 三菱電機株式会社 Air conditioning system
WO2017077732A1 (en) * 2015-11-04 2017-05-11 三菱電機株式会社 Air-conditioning system
JP2017089917A (en) * 2015-11-04 2017-05-25 三菱電機株式会社 Air Conditioning System
CN107461844A (en) * 2017-07-27 2017-12-12 广东美的制冷设备有限公司 Air-conditioning system and its Poewr control method and device
CN107461844B (en) * 2017-07-27 2020-05-05 广东美的制冷设备有限公司 Air conditioning system and power control method and device thereof
JP2019173997A (en) * 2018-03-27 2019-10-10 ダイキン工業株式会社 Air conditioner
CN108844192A (en) * 2018-05-22 2018-11-20 广东美的制冷设备有限公司 Control method, air conditioner and the computer readable storage medium of air conditioner
CN110173852A (en) * 2019-05-28 2019-08-27 宁波奥克斯电气股份有限公司 The control method for frequency and air conditioner of air conditioner
CN110173852B (en) * 2019-05-28 2022-01-25 宁波奥克斯电气股份有限公司 Frequency control method of air conditioner and air conditioner
CN111457470A (en) * 2020-04-20 2020-07-28 宁波奥克斯电气股份有限公司 Air output control method and air conditioner

Also Published As

Publication number Publication date
JP5646958B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5646958B2 (en) Air conditioner
JP4743039B2 (en) Hot water circulation heating system for heating by circulating hot water in buildings
JP6125040B2 (en) Air conditioning controller
JP5585556B2 (en) Air conditioner
WO2013172279A1 (en) Air conditioning system
JP5858062B2 (en) Air conditioning system
JP5014376B2 (en) Air conditioning system
AU2012392672B2 (en) Air conditioning apparatus
AU2012392673B2 (en) Air conditioning apparatus
JP6249387B1 (en) Floor air conditioning system
JP2014031950A (en) Window opening/closing device interlocked with air conditioner
GB2513694A (en) Indoor unit and air conditioning apparatus
JP2011220608A (en) Air conditioning system
JP2011196666A (en) Air conditioner
JP2016099078A (en) Air conditioner
JP2016090113A (en) Air conditioner
JP2013181671A (en) Air conditioner
JP2004028450A (en) Air conditioner
JP2008281319A (en) Air-conditioning outdoor unit connected type hot cold water system floor heating cooling unit
WO2022024261A1 (en) Air conditioning device
EP3208550B1 (en) Air conditioning apparatus
JP2011149615A (en) Air conditioning system
CN111912029A (en) Air conditioning device and control method thereof
JP5797146B2 (en) Air conditioning system
CN220417515U (en) Fanless air conditioner with electronic ceramic refrigeration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141106

R150 Certificate of patent or registration of utility model

Ref document number: 5646958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250